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Abstract

In the present thesis, we study the heat flow in mesoscopic one-dimensional transport sys-
tems. Using the analysis of full counting statistics, we calculate the cumulant generating
function of the particle and heat flows and prove its symmetry. The symmetry produces the
relations among transport coefficients of the particle and heat flows when we expand these
flows with respect to the appropriate affinities. Moreover, we consider the generalized flows
which are superpositions of the particle and energy flows. We show that we can choose the
appropriate affinities of the generalized flows and derive the relations among their transport
coefficients when we expand the generalized flows with respect to their affinities.
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Chapter 1

Intoroduction and Notation

In this chapter, we explain a brief history of studies on linear irreversible thermodynamics and
its application to thermoelectric devices. We then introduce mesoscopic transport systems, in
particular mesoscopic thermoelectric systems, which can be beyond linear-response regime. We
finally explain notations which are used throughout this thesis.

1.1 Introduction

1.1.1 Thermoelectric device as a heat engine and linear irreversible
thermodynamics

Thermoelectric devices, which convert heat to work or vice versa, have helped the development
of our society. Applications of thermoelectric devices include thermoelectric generator, thermo-
electric refrigerator, and so on [1]. In order to analyze thermoelectric devices, linear irreversible
thermodynamics has been used [1,2]. Linear irreversible thermodynamics is a phenomenological
formalism which was constructed mainly by Onsager. Although the standard thermodynamics
can treat only equilibrium, not transport problems, the linear irreversible thermodynamics lets
us handle the latter.

Let us overview Onsager’s formalism of linear irreversible thermodynamics [1–3]. We con-
sider two regions whose temperatures and chemical potentials we can define as shown in Fig. 1.1.
We then assume that the system has reached a non-equilibrium steady state in which there are
constant flows from one region to the other. Let us expand the particle and energy flows, JN

Figure 1.1: The system in consideration.
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and JE, in terms of µ/T and −1/T :

JN = LNN∆
(µ
T

)
+ LNE∆

(
− 1

T

)
, (1.1)

JE = LEN∆
(µ
T

)
+ LEE∆

(
− 1

T

)
. (1.2)

The expansion coefficients LNN , LNE, LEN , and LEE are the transport coefficients for the
particle and energy flows. The Onsager-Casimir relations are the relations among them under
a magnetic field B [3–5]:

LNN(B) = LNN(−B), (1.3)

LNE(B) = LEN(−B), (1.4)

LEE(B) = LEE(−B). (1.5)

Recently, the thermoelectric device has been studied as a heat engine from a point of view
of the efficiency at the maximum power [6–12]. Let us describe the setup to consider the
thermoelectric device as a heat engine. We set the chemical potential of the right reservoir
to be higher than the left, while the temperature of the left reservoir to be higher than the
right so that an electric current may go from left to right against the difference of the chemical
potential; in other words, we set ∆T > 0 and ∆µ < 0 in Fig. 1.1. What happens per unit time
is the following. Electrons gain heat defined by JQ = JE − µJN from the hot left reservoir, go
to the right against the potential difference −∆µ = |∆µ|, during which electrons do the work
of amount JN |∆µ|. We can thus consider this system as a heat engine. The efficiency η of this
engine is therefore given by

η =
JN |∆µ|
JQ

. (1.6)

In order to analyze the efficiency of a heat engine, linear irreversible thermodynamics is still
useful. When the relations for the particle and energy flows, Eqs. (1.3)–(1.5), are valid, we can
prove that the Onsager-Casimir relations are also valid for the coefficients of the particle and
heat flows [2]. In order to prove it, we expand JN and JQ as follows:

JN = LNN∆
(µ
T

)
+ LNE∆

(
− 1

T

)
= LNN

[
∆µ

T
+ µ∆

(
1

T

)]
+ LNE∆

(
− 1

T

)
= LNN

∆µ

T
+ (LNE − µLNN)∆

(
− 1

T

)
, (1.7)

and

JQ = JE − µJN

= (LEN − µLNN)∆
(µ
T

)
+ (LEE − µLNN)∆

(
− 1

T

)
= (LEN − µLNN)

[
∆µ

T
+ µ∆

(
1

T

)]
+ (LEE − µLNN)∆

(
− 1

T

)
= (LEN − µLNN)

∆µ

T
+ [LEE − µ(LEN + LNE) + µ2LNN ]∆

(
− 1

T

)
. (1.8)
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Let us define new transport coefficients as follows:

JN = GNN
∆µ

T
+GNQ∆

(
− 1

T

)
, (1.9)

JQ = GQN
∆µ

T
+GQQ∆

(
− 1

T

)
. (1.10)

Comparing Eqs. (1.7)–(1.8) and Eqs. (1.9)–(1.10), we can express the new transport coefficients
GNN , GNQ, GQN , and GQQ in terms of LNN , LNQ, LQN , and LQQ:

GNN = LNN , (1.11)

GNQ = LNE − µLNN , (1.12)

GQN = LEN − µLNN , (1.13)

GQQ = LEE − µ(LEN + LNE) + µ2LNN . (1.14)

We can then prove the Onsager-Casimir relations for the particle and heat flows under a mag-
netic field B as follows:

GNN(B) = LNN(B) = LNN(−B) = GNN(−B), (1.15)

GNQ(B) = LNE(B)− µLNN(B) = LEN(−B)− µLNN(−B) = GQN(−B), (1.16)

GQQ(B) = LEE(B)− µ(LEN(B) + LNE(B)) + µ2LNN(B)

= LEE(−B)− µ(LNE(−B) + LEN(−B)) + µ2LNN(−B) = GQQ(−B), (1.17)

where we used the Onsager-Casimir relations for the particle and energy flows, Eqs. (1.3)–(1.5).
We thus conclude that if the Onsager-Casimir relations for the particle and energy flows are
valid, the Onsager-Casimir relations for the particle and heat flows are also valid. Using these
relations, we can further prove that the upper limit of the efficiency Eq. (1.6) is the Carnot
efficiency, using the Onsager-Casimir relations and the positivity of the entropy production [7].

1.1.2 Thermoelectric device in mesoscopic transport systems

Reservoir Reservoir 
Chemical Potential 

μL  

Chemical Potential 

μR  
Temperature 

TL  
Temperature 

TR  

a quantum wire!

Figure 1.2: The mesoscopic system which has a quasi one-dimensional wire and two reservoirs
attached to it on both sides.

Mesoscopic transport systems are systems in which a conductor of length Ls much shorter
than the momentum-relaxation length Lp and the phase-relaxation length Lφ, is attached to
reservoirs [14, 15]. Various interesting phenomena occur because of the length scale, which is
called the ballistic transport regime. Let us consider here the simplest system shown in Fig. 1.2,
which consists of a quasi-one-dimensional quantum wire in the ballistic transport regime and
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two reservoirs attached to it on both sides. The Landauer-Büttiker formula is particularly
useful in this regime [13–16]:

I =
e

h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)), (1.18)

where I is the electric current across the system, EG the ground-state energy of the wire, τ(ε)
the total transmission probability of the wire, and fα(ε) the Fermi distribution function of a
Fermi gas in a reservoir α = L,R; see the notation section 1.2 and Chapter 2 for details. Such
a system was theoretically considered by R. Landauer in 1957 [13], but had not been realized
experimentally until 1988 [17]. Thanks to the improvement of sub-micron technology today,
more refined mesoscopic transport systems are made experimentally, which is also stimulating
vigorous theoretical researches.

With the development of the research in the mesoscopic transport systems, the mesoscopic
thermoelectric device has also been considered theoretically and experimentally [9–12,18]. It is
expected to have a good efficiency because of its little heat leakage [18].

In such a device, nonlinear effects can occur easily. For example, an experiment [19] suggests
that the Onsager-Casimir relations, which are valid in the linear-response regime, are broken
under a strong external field. This implies that one can make mesoscopic thermoelectric devices
in a nonlinear regime under controlled external fields such as the difference of the chemical
potential and the temperature. However, most of the theoretical approaches are still in the
linear-response regime [9–12]. There are a limited number of researches in the nonlinear regime
[20,21], but a general nonlinear theory for mesoscopic thermoelectric systems, which would be
a counterpart of Onsager’s formalism in the linear-response regime, is yet to come.

Indeed, Saito and Utsumi [22] have recently found relations among nonlinear transport
coefficients of the particle and energy flows, using full counting statistics [23,24]. In the linear-
response regime, if the Onsager-Casimir relations for the particle and energy flows are valid,
those for the particle and heat flows are also valid as we showed above. There should thus be
similar relations among nonlinear transport coefficients of the particle and heat flows. We have
indeed found them using full counting statistics, which we explain in this thesis.

In Chapter 2, we review the Landauer-Büttiker formula [13–16], which is essential in treating
mesoscopic transport systems. Using it, we calculate the average particle flow as well as its
second-order cumulant. In Chapter 3, we review the work by K. Saito and Y. Utsumi [22], in
which the authors obtained the relations among the transport coefficients of the particle and
energy flows. Using the analysis of full counting statistics [23, 24], we calculate the cumulant
generating function of the particle and energy flows and prove its symmetry. The symmetry
produces the relations among transport coefficients of the higher-order cumulants of the particle
and energy flows. In Chapter 4, we properly define the heat flow in mesoscopic transport systems
and derive the relations among the transport coefficients of the higher-order cumulants of the
particle and heat flows. Moreover, we introduce the generalized flows which are superpositions
of the particle and energy flows. We show that we can choose the appropriate affinities of the
generalized flows and derive the relations among their transport coefficients when we expand
the generalized flows with respect to their affinities. We finally discuss their application to the
calculation of the nonlinear Seebeck coefficient. In Chapter 5, we summarize our results and
discuss possible future works.
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1.2 Notation

Let us here fix the notation. Throughout the present thesis, kB denotes the Boltzmann constant,
h the Planck constant and e the elementary charge; for simplicity, we put kB = 1 throughout
this thesis.

Let fα(ε) denote the Fermi distribution function of a Fermi gas in a reservoir α:

fα(ε) = [1 + eβα(ε−µα)]−1, (1.19)

where βα is the inverse temperature 1/Tα with Tα the temperature and µα is the chemical
potential.
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Chapter 2

Landauer-Büttiker Formalism

In this chapter, we explain the Landauer-Büttiker formalism, calculating the first- and second-
order cumulants, namely, the average and the noise of the particle flow. In Section 2.1, We
present an elementary introduction of the Landauer-Büttiker formalism because we would like
readers to understand the formalism intuitively first. In Section 2.2, we introduce the approach
using the second quantization to calculate the average as well as the noise of the particle flow.
Note that we neglect the spin of electrons throughout this chapter.

2.1 Landauer-Büttiker formalism for calculation of av-

erage current

The Landauer-Büttiker formula is used to calculate the electric current through a quasi-one-
dimensional mesoscopic conductor. The word ‘quasi-one-dimensional’ indicates a conductor
with the x-direction free while y- and z-directions confined. We specifically consider the system
shown in Fig. 2.1, which consists of a quasi-one-dimensional quantum wire and two reservoirs
attached to it on both sides.

We here consider free electrons; that is, we neglect the electron-electron and electron-phonon
interactions. The Schrödinger equation of an electron in the wire is given by

HΨ(x, y, z) =

(
~2k2

2m
+ V (y, z)

)
Ψ(x, y, z) = EΨ(x, y, z), (2.1)

where ~ is the Planck constant, k is the wave-number vector, m the effective mass of electrons,
V (y, z) the confined potential, and E the energy. Let us here separate the variables of Ψ(x, y, z)

Reservoir Reservoir 
Chemical Potential 

μL  

Chemical Potential 

μR  
Temperature 

TL  
Temperature 

TR  

a quantum wire!

Figure 2.1: The system in consideration.

13



Figure 2.2: Dispersion relation in the x direction.

as follows:

Ψ(x, y, z) = ψ(x)φ(y, z), (2.2)

which gives the Schrödinger equation in each direction in the forms

~2k2
x

2m
ψ(x) = Exψ(x), (2.3)(~2k2
y + ~2k2

z

2m
+ V (y, z)

)
φ(y, z) = Ey,zφ(y, z), (2.4)

where each of Ex and Ey,z is the energy in the corresponding direction. Solving Eqs. (2.3) and
(2.4), we obtain the wave function Ψ(x, y, z) as follows:

Ψ±kx(x, y, z) = e±ikxxφn(y, z), (2.5)

where kx is the wave number in the x direction given by

Ex =
~2kx

2

2m
. (2.6)

Note that as the electrons are confined in the y and z directions, they have the discrete energy
Ey,z = En, where n is the label of the level. Let us refer to the levels labeled by n as ‘channels’,
through which electrons are transported in the x direction. The total energy of an electron is

E = Ex + Ey,z =
~2kx

2

2m
+ En; (2.7)

see Fig. 2.2. Throughout this thesis, we denote the energy for kx = 0 and n = 0 by the
ground-state energy EG.

In the Landauer-Büttiker formalism, the important quantity is the transmission coefficient
of the wire. We therefore explain the quantum scattering problem for a while, particularly the
S-matrix.
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Figure 2.3: The definition of the amplitudes ain, aout, bin, and bout.

2.1.1 Single-channel case

Let us first consider the S-matrix in the case of a single channel, in which we denote ain, aout,
bin, and bout as the amplitudes of the incoming flow from the left reservoir, the outgoing flow to
the left reservoir, the incoming flow from the right reservoir, and the outgoing flow to the right
reservoir, respectively (Fig. 2.3). The relation among the amplitudes ain, aout, bin, and bout is
expressed by the S-matrix in the form(

aout

bout

)
= S

(
ain

bin

)
=

(
r t′

t r′

)(
ain

bin

)
, (2.8)

where r and r′ are the reflection coefficients while t and t′ are the transmission coefficients. We
here remark that |t|2 and |r|2 are the transmission and reflection probabilities from left to right
and |t′|2 and |r′|2 are those from right to left.

We can prove that the S-matrix is unitary as follows. The conservation of the flux gives the
conditions

|ain|2 + |bin|2 = |aout|2 + |bout|2. (2.9)

Using Eqs. (2.8) and (2.9), we have

|aout|2 + |bout|2 =
(
aout† bout†

)(aout

bout

)
=
(
ain† bin†

)
S†S

(
ain

bin

)
=|ain|2 + |bin|2 =

(
ain† bin†

)(ain

bin

)
=
(
aout† bout†

)
S−1†S−1

(
aout

bout

)
, (2.10)

which gives S†S = 1 and S−1†S−1 = (SS†)−1 = 1. The second condition gives SS† = 1. The
S-matrix is therefore unitary.

Using these unitarity conditions, we can derive the following relation among the transmission
and reflection coefficients:

SS† =

(
r t′

t r′

)(
r† t†

t′† r†

)
=

(
|r|2 + |t′|2 rt† + t′r′†

r†t+ r′t′† |r′|2 + |t|2

)
=

(
1 0
0 1

)
, (2.11)

which gives the condition
|r|2 + |t′|2 = |r′|2 + |t|2 = 1. (2.12)

The relation S†S = 1 also gives the condition

|r|2 + |t|2 = |r′|2 + |t′|2 = 1. (2.13)

Using these conditions, we obtain the relations

|r|2 = |r′|2 and |t|2 = |t′|2. (2.14)
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Figure 2.4: The definition of the elements of ain, aout, bin and bout.

2.1.2 Multi-channel case

We can easily extend the single-channel case to the multi-channel case. Let N denote the
number of channels. Note that N can be infinite in principle, but in real materials, the electron
has a cut-off energy because of the energy band structure, and hence N may be finite. We at
first define the N -dimensional vectors ain, aout, bin and bout, whose components ain

n , aout
n , bin

n ,
and bout

n for 1 ≤ n ≤ N , respectively, denote the amplitudes of the incoming flow from the left
reservoir, the outgoing flow to the left reservoir, the incoming flow from the right reservoir, and
the outgoing flow to the right reservoir, each in the nth channel (Fig. 2.4). We can express the
relation among these vectors with the S-matrix in the form(

aout

bout

)
= S

(
ain

bin

)
=

(
r t′

t r′

)(
ain

bin

)
, (2.15)

where r and r′ are N ×N -dimensional reflection matrices and t and t′ are N ×N -dimensional
transmission matrices.

Similarly to Eqs. (2.9)–(2.10), we obtain the unitarity condition SS† = S†S = 1, which
gives the conditions of r, r′, t, and t′:

SS† = 1⇔
N∑
j=1

(|rij|2 + |t′ij|2) =
N∑
j=1

(|r′ij|2 + |tij|2) = 1, (2.16)

S†S = 1⇔
N∑
j=1

(|rji|2 + |tji|2) =
N∑
j=1

(|r′ji|2 + |t′ji|2) = 1. (2.17)

They are followed by

N∑
j=1

(|rij|2 + |t′ij|2) =
N∑
j=1

(|rji|2 + |tji|2), (2.18)

where rij, r
′
ij, tij, t

′
ij are components of the reflection and the transmission matrices r, r′, t,

t′, respectively. We here remark that |rij|2 and |r′ij|2 are the reflection probabilities from the
jth channel of the left and right to the ith channel of the left and right, respectively, while
|tij|2 and |t′ij|2 are the transmission probabilities from the jth channel of the left and right to
the ith channel of the right and left, respectively. Summing both sides of Eq. (2.18) over i, we

16



obtain the equality

N∑
i,j=1

(|rij|2 + |t′ij|2) =
N∑

i,j=1

(|rji|2 + |tji|2)

=
N∑

i,j=1

(|rij|2 + |tij|2), (2.19)

where in the second equality we replaced rji and tji with rij and tij, respectively. We can obtain
from Eq. (2.19) the following equality of the transmission probabilities:

N∑
i,j=1

|t′ij|2 =
N∑

i,j=1

|tij|2, (2.20)

where the left-hand side is the transmission probability from left to right and the right-hand
side is that from right to left. This equality is a generalization of Eq. (2.14) to the multi-channel
case. Note that the transmission probability (2.20) can be expressed in the form

N∑
i,j=1

|tij|2 = Tr(tt†). (2.21)

2.1.3 Calculate the current

Let us now calculate the electric current within the Landauer-Büttiker formula. We calculate
it in the multi-channel case below. We make the following assumptions in order to do so:

• The current coming into the lead holds the Fermi distribution of the reservoir in which
it originally was and relaxes in the reservoir which it goes into.

• The current which goes from the lead into the reservoir is not reflected back into the lead.

• The electrons in the lead are one-dimensional non-interacting Fermi particles, and there-
fore the current to the left and one to the right are independent of each other.

Under these assumptions, the current which flows in the ith channel in the energy range [ε, ε+dε]
is given by

dIαi (ε) = ev(ε)fα(ε)D`(ε)T
α
i (ε)dε, (2.22)

where e is the elementary charge, α = L, R denotes the current from left to right and that from
right to left, respectively, v(ε) = dε/dk is the group velocity of electrons, D`(ε) = dk/dε =
(hv(ε))−1 is the density of states of one-dimensional ideal Fermi gas, and T L

i (ε) is the transmis-
sion probability for electrons to transmit from the ith channel in the left lead to a channel in
the right lead, while TR

i (ε) the opposite.

We can express Tαi (ε) in terms of the elements tij of the transmission matrix; for example,
we have

T L
i (ε) =

N∑
j=1

|tji(ε)|2, (2.23)
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because the matrix element tji is the probability amplitude with which the incoming wave in
the ith channel in the left lead transmits into the jth channel in the right lead as we explained
below Eq. (2.18). We can similarly express TR

i (ε) in terms of t′ji in the form

TR
i (ε) =

N∑
j=1

|t′ji(ε)|2. (2.24)

The total current in the energy range [ε, ε + dε] is the difference between the left-going
current and the right-going current:

dI(ε) =
N∑
i=1

dIL
i −

N∑
i=1

dIR
i

=
e

h

N∑
i,j=1

(fL(ε)|tji(ε)|2 − fR(ε)|t′ji(ε)|2)dε

=
e

h

N∑
i,j=1

|tij(ε)|2(fL(ε)− fR(ε))dε, (2.25)

where in the last equality we exchanged the dummy variables i and j and used Eq. (2.20). We
obtain the total current by integrating dI with respect to the energy ε:

I =

∫
dI(ε)

=
e

h

∫ ∞
EG

dε

[
N∑

i,j=1

|tij(ε)|2(fL(ε)− fR(ε))

]

=
e

h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)), (2.26)

where τ(ε) ≡
∑N

i,j=1 |tij(ε)|2 = Tr(tt†) is the total transmission probability. Equation (2.26) is
called the Landauer-Büttiker formula [13–16].

2.1.4 Conductance quantization

Let us observe the conductance quantization within the Landauer-Büttiker formula at zero
temperature. The Fermi distributions in the left and right reservoirs at zero temperature are
respectively given by

fα(ε) = Θ(ε− µα), (2.27)

where Θ(ε−µα) is the step function. The current I is given by the Landauer-Büttiker formula
(2.26), which in the present case reduces to

I =
e

h

∫ ∞
EG

dετ(ε)[Θ(ε− µL)−Θ(ε− µR)]. (2.28)

Let us calculate the conductance G, which is defined by

G ≡ dI

dV

∣∣∣∣
V=0

, (2.29)
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where V is the voltage difference defined by V = (µL − µR)/e. Using Eq. (2.28), we have

G =
e

h

∫ ∞
EG

dετ(ε)
∂

∂V
[Θ(ε− µL)−Θ(ε− µR)]

∣∣∣∣
V=0

=
e

h
τ(EF), (2.30)

where EF = µL = µR denotes the chemical potential of the left and right reservoirs at V = 0,
namely the Fermi energy.

Let us consider the transmission coefficient τ(EF). Because of the zero temperature, there is
no electron which has an energy above EF, so that no electrons transmit from and to a channel
whose bottom energy is higher than EF. This fact gives the transmission function

τ(EF) =
n∑

i,j=1

|tij(EF)|2, (2.31)

where n is the number of channels below EF. Assuming that the diagonal elements |tii(EF)|2 are
all equal to a constant T and the other elements are equal to zero, we observe the conductance
quantization:

G =
e2

h
Tn. (2.32)

We can find from Eq. (2.32) that the conductance increases stepwise by a discrete value of
(e2/h)T as the number of channels below the Fermi energy increases. This conductance quan-
tization was indeed observed in the experiment [17].

2.2 Calculation of the noise with second quantization

In this section, we calculate the shot noise within the Landauer-Büttiker formalism. In order to
do this, we use the second-quantization approach [16,25]. First, we derive the average current,
whose result is the same as the Landauer-Büttiker formula (2.26). We then derive the expression
of the shot noise. The advantage of this approach is that the Pauli exclusion principle comes
in naturally.

2.2.1 Average current

Figure 2.5: The lead connected to the scatterer. We denote ak and a†k the annihilation and

creation operators of the right-moving electrons, while bk and b†k the annihilation and creation
operators of the left-moving electrons.
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Let us first find the current operator of the system shown in Fig. 2.5. The Hamiltonian of
the lead is

H =
∑
k

εkc
†
kck, (2.33)

where ck and c†k are the annihilation and creation operators, respectively. The energy of the
electron is given by

εk =
~2k2

2m
, (2.34)

where k is the wave number of the electron and m the effective mass. We here remark that
we may derive the Landauer-Büttiker formula without assuming the dispersion relation (2.34),
but for simplicity, we assume that the dispersion relation is given by Eq.(2.34). The current
operator is given by

I(x) =
e~

2mi

(
ψ†(x)

dψ

dx
− dψ†

dx
ψ(x)

)
=

e~
2imL

∑
k,k′

(
ik′ei(k

′−k)xc†kck′ + ikei(k
′−k)xc†kck′

)
=

e~
2mL

∑
k,k′

(k + k′)c†kck′e
i(k−k′)x, (2.35)

where ψ(x) and ψ†(x) are the field operators given by

ψ(x) =
1√
L

∑
k

eikxck, (2.36)

ψ†(x) =
1√
L

∑
k

e−ikxc†k. (2.37)

Since the current is conserved, Eq. (2.35) should be independent of x, and hence should reduce
to

I(x) = I(0) =
e~

2mL

∑
k,k′

(k + k′)c†kck′ . (2.38)

In the Landauer-Büttiker formalism, we consider the current going to right and one going
to left independently, which enables us to define the annihilation and creation operators of the
right-moving electrons, ak and a†k, as well as the annihilation and creation operators of the

left-moving electrons, bk and b†k. Using these operators, we can express the Hamiltonian in the
form

H =
∑
k>0

εka
†
kak +

∑
k<0

εkb
†
kbk. (2.39)
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Figure 2.6: Two leads attached to the both sides of the scatterer.

We can write down the current (2.38) in terms of the new operators as

I(x) = I(0) =
e~

2mL

∑
k,k′

(k + k′)c†kck′

=
e~

2mL

[ ∑
k,k′>0

(k + k′)c†kck′ +
∑
k,k′<0

(k + k′)c†kck′ +
∑

k,k′s.t.kk′<0

(k + k′)c†kck′

]

=
e

2L

[ ∑
k,k′>0

(vk + vk′)c
†
kck′ +

∑
k,k′<0

(vk + vk′)c
†
kck′ +

∑
k,k′s.t.kk′<0

(vk + vk′)c
†
kck′

]
=

e

2L

∑
k,k′>0

(vk + vk′)(c
†
kck′ − c

†
−kc−k′) + (vk − vk′)c†kc−k′ + (vk′ − vk)c†−kck′

=
e

2L

∑
k,k′>0

(vk + vk′)(a
†
kak′ − b

†
kbk′) + (vk − vk′)a†kbk′ + (vk′ − vk)b†kak′

=
e

2L

∑
k,k′>0

(vk + vk′)(a
†
kak′ − b

†
kbk′) + (cross terms), (2.40)

where vk = ~k/m is the group velocity of the electrons. Note that the cross terms vanish when
k = k′.

We next consider the system where two leads are attached to the both sides of the scatterer as
shown in Fig. 2.6. We denote the annihilation and creation operators of the incoming electrons
in the lead α = L,R by aα,k and a†α,k, respectively, while those of the outgoing electrons by bα,k

and b†α,k.
The S-matrix defined in Eq. (2.8) gives the relation(

bL,k

bR,k

)
= S

(
aL,k

aR,k

)
, (2.41)

where we now use the notation

S =

(
SLL(k) SLR(k)
SRL(k) SRR(k)

)
=

(
r t′

t r′

)
. (2.42)

The unitarity condition of the S-matrix is guaranteed by the following commutation relations:

[aα,k, a
†
α′,k′ ] = [bα,k, b

†
α′,k′ ] = δα,α′δk,k′ , (2.43)

[aα,k, aα′,k′ ] = [bα,k, bα′,k′ ] = 0, (2.44)

[a†α,k, a
†
α′,k′ ] = [b†α,k, b

†
α′,k′ ] = 0. (2.45)
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We can express the current operator IL(x = 0) going from the lead L to the scatterer as
Eq. (2.40):

IL(x = 0) =
e

2L

∑
k,k′>0

(vk + vk′)(a
†
L,kaL,k′ − b†L,kbL,k′) + (cross terms)

=
e

2L

∑
k,k′>0

(vk + vk′)

×
[
a†L,kaL,k′ − (SLL(k)∗a†L,k + SLR(k)∗a†R,k)(SLL(k′)a†L,k′ + SLR(k′)a†R,k′)

]
+ (cross terms)

=
e

2L

∑
α=L,R

∑
β=L,R

∑
k,k′>0

(vk + vk′)a
†
α,kA

αβ
L (k, k′)aβ,k′ + (cross terms), (2.46)

where
AαβL (k, k′) ≡ δL,αδL,β − SLα(k)∗SLβ(k′). (2.47)

Let us introduce the statistical average of the creation and annihilation operators:

〈a†α,kaβ,k′〉 = δα,βδk,k′fα(k), (2.48)

which means that the distribution of incoming electrons is the Fermi distribution of the bath
where they originally were. We thereby calculate the statistical average of the current as

〈IL〉 =
e

2L

∑
α=L,R

∑
β=L,R

∑
k,k′>0

(vk + vk′)A
αβ
L (k, k′)〈a†α,kaβ,k′〉+ (cross terms)

=
e

2L

∑
α=L,R

∑
k>0

2vkA
αα
L (k, k)fα(k)

=
e

h

∫ ∞
EG

dε
∑
α=L,R

AααL (ε, ε)fα(ε), (2.49)

where in the second equality the cross terms vanish because they survive only when k 6= k′ but
the statistical average insists k = k′. In the last equality we replaced the summation

∑
k with

the integral with respect to energy, assuming that the value of L is large enough for us to do
the transformation as follows:

1

L

∑
k

→
∫

dk

2π
→
∫
dεD`(ε), (2.50)

where

D`(ε) =
1

2π

dk

dE
=

1

2π~vk
=

m

2π~2k
(2.51)

is the density of states of the one-dimensional ideal Fermi gas.
Using the relations between the elements of the S-matrix, we have

ALL
L (ε, ε) = 1− SLL(ε)∗SLL(ε) = 1− |r|2 = |t|2 ≡ τ(ε), (2.52)

ARR
L (ε, ε) = −SLR(ε)∗SLR(ε) = −|t′|2 = −|t|2 ≡ −τ(ε), (2.53)

which reduces (2.49) to the Landauer-Büttiker formula

〈IL〉 =
e

h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)). (2.54)
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2.2.2 Shot noise

The current noise contains much important information of the system in question. The power
spectrum of the current noise is defined by

S(ω) = lim
T→∞

2

T
|∆I(ω)|2 = lim

T→∞

2

T

∫ T
2

−T
2

dt

∫ T
2

−T
2

dt′〈∆I(t)∆I(t′)〉eiω(t−t′), (2.55)

where ω is the frequency, T is the time to observe the current, I(t) is the electric current,
∆I(t) ≡ 〈I(t)〉 − I(t) is the fluctuation of the electric current from its average value, and

I(ω) =
∫ T/2
−T/2 dtI(t)eiωt is the Fourier transform of the electric current I(t). To calculate the

shot noise, let us define the correlation function of the electric current as follows:

C(t, t′) = 〈∆IL(t)∆IL(t′)〉 = 〈IL(t)IL(t′)〉 − 〈IL(t)〉〈IL(t′)〉, (2.56)

where ∆IL(t) = IL(t) − 〈IL(t)〉 is the fluctuation operator of the current. Using this function,
we can express the power spectrum of the current noise, Eq. (2.55), as follows:

S(ω) = lim
T→∞

2

T

∫ T
2

−T
2

dt

∫ T
2

−T
2

dt′C(t, t′)eiω(t−t′), (2.57)

which is of the same form as the classical noise power. Note, however, that the current operators
IL(t) and IL(t′) of different time do not commute with each other in the quantum case. When
the Hamiltonian of the system does not depend on time, the system has the time-translational
symmetry, and hence we can express the correlation function as C(t, t′) = C(t− t′). Moreover,
we assume that the correlation function C(t− t′) tends to zero when the time difference |t− t′|
goes to infinity. Based on these considerations, we can express the noise power S(ω) in the
form:

S(ω) = lim
T→∞

2

T

∫ T
2

−T
2

dt

∫ T
2

−T
2

dt′C(t− t′)eiω(t−t′)

= lim
T→∞

2

T

∫ T
2

−T
2

dt′
∫ T

−T
d∆tC(∆t)eiω∆t

≈ lim
T→∞

2

T

∫ T
2

−T
2

dt′
∫ +∞

−∞
d∆tC(∆t)eiω∆t

= 2

∫ ∞
−∞

dtC(t)eiωt, (2.58)

In general, S(ω) contains many components of different ω. We, however, only calculate the
zero-frequency component of S(ω) for simplicity:

S(0) = 2

∫ ∞
−∞

dt〈∆IL(t)∆IL(0)〉 = 2

∫ ∞
−∞

dt (〈IL(t)IL(0)〉 − 〈IL(t)〉〈IL(0)〉) . (2.59)

In order to calculate S(0), we need the time evolution of the current operator IL(t). We thus
use the time evolution of the creation and annihilation operators:

aα,k(t) = e−iεkt/~cα,k, (2.60)

a†α,k(t) = eiεkt/~c†α,k, (2.61)
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which gives us the expression of the current operator at time t:

IL(t) =
e

2L

∑
α=L,R

∑
β=L,R

∑
k,k′>0

(vk + vk′)a
†
α,kA

αβ
L (k, k′)aβ,k′e

i(εk−εk′ )t/~, (2.62)

where we ignore the cross terms because they will vanish when we take the statistical average
below. Substituting Eq. (2.46) and its time evolution IL(t) into Eq. (2.59), we can express S(0)
in the form:

S(0) = 2
( e

2L

)2
∫ ∞
−∞

dt
∑

k,k′,k′′,k′′′>0

∑
α,β,α′β′

(vk + vk′)(vk′′ + vk′′′)A
αβ
L (k, k′)Aα

′β′

L (k′′, k′′′)

×
[
〈a†α,kaβ,k′a

†
α′,k′′aβ′,k′′′〉 − 〈a†α,kaβ,k′〉〈a

†
α′,k′′aβ′,k′′′〉

]
ei(εk−ε

′
k)t/~. (2.63)

In order to calculate the statistical average of the creation and annihilation operators, we
use Wick’s theorem [26]:

〈ABCD〉 = 〈AB〉〈CD〉 − 〈AC〉〈BD〉+ 〈AD〉〈BC〉, (2.64)

where A, B, C, and D are arbitrary Fermion operators. Substituting a†α,k for A, aβ,k′ for B,

a†α′,k′′ for C, and aβ′,k′′′ for D, we obtain

〈a†α,kaβ,k′a
†
α′,k′′aβ′,k′′′〉 = 〈a†α,kaβ,k′〉〈a

†
α′,k′′aβ′,k′′′〉 − 〈a†α,ka

†
α′,k′′〉〈aβ,k′aβ′,k′′′〉

+ 〈a†α,kaβ′,k′′′〉〈aβ,k′a†α′,k′′〉
= 〈a†α,kaβ,k′〉〈a

†
α′,k′′aβ′,k′′′〉+ 〈a†α,kaβ′,k′′′〉〈aβ,k′a†α′,k′′〉. (2.65)

In the second equality, we used the equation

〈a†α,ka
†
α′,k′′〉〈aβ,k′aβ′,k′′′〉 = 0, (2.66)

because the operators a†α,ka
†
α′,k′′ and aβ,k′aβ′,k′′′ do not conserve the number of particles, so that

the statistical averages of these operators become zero. Using Eqs. (2.48) and (2.65), we obtain
the following relation:

〈a†α,kaβ,k′a
†
α′,k′′aβ′,k′′′〉 − 〈a†α,kaβ,k′〉〈a

†
α′,k′′aβ′,k′′′〉 = 〈a†α,kaβ′,k′′′〉〈a†β,k′aα,k′′〉

= δα,β′δk,k′′′δβ,α′δk′,k′′fα(k)(1− fβ(k)). (2.67)

Using Eq. (2.67) and the transformation (2.50), we finally obtain the expression of the shot
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noise as follows:

S(0) = 2
( e

2L

)2
∫ ∞
−∞

dt
∑

k,k′,k′′,k′′′>0

∑
α,β,α′β′

(vk + vk′)(vk′′ + vk′′′)A
αβ
L (k, k′)Aα

′β′

L (k′′, k′′′)

×
[
〈a†α,kaβ,k′a

†
α′,k′′aβ′,k′′′〉 − 〈a†α,kaβ,k′〉〈a

†
α′,k′′aβ′,k′′′〉

]
ei(εk−ε

′
k)t/~

= 2
( e

2L

)2
∫ ∞
−∞

dt
∑

k,k′,k′′,k′′′>0

∑
α,β,α′β′

(vk + vk′)(vk′′ + vk′′′)A
αβ
L (k, k′)Aα

′β′

L (k′′, k′′′)

× [δα,β′δk,k′′′δβ,α′δk′,k′′fα(k)(1− fβ(k))] ei(εk−ε
′
k)t/~

= 2
( e

2L

)2
∫ ∞
−∞

dt
∑
k,k′>0

∑
α,β,

(vk + vk′)
2AαβL (k, k′)AβαL (k′, k)fα(k)(1− fβ(k))ei(εk−ε

′
k)t/~

=
e2

2h2

∫ ∞
EG

dεD`(ε)

∫ ∞
EG

dε′D`(ε
′)

∫ ∞
−∞

dt

×
∑
α,β

(vk + vk′)
2AαβL (ε, ε′)AβαL (ε′, ε)fα(ε)(1− fβ(ε))ei(ε−ε

′)t/~

=
2e2

h

∫ ∞
EG

dε
∑
α,β

AαβL (ε, ε)AβαL (ε, ε)fα(ε)(1− fβ(ε)), (2.68)

where we used the relation ∫ ∞
−∞

dtei(ε−ε
′)t/~ = 2π~δ(ε− ε′) (2.69)

in the last equality.
In order to express the noise more simply, we use Eqs. (2.52) and (2.53) as well as the

relations

ALR
L (ε, ε) = −SLL(ε)∗SLR(ε) = −r∗t′, (2.70)

ARL
L (ε, ε) = −SLR(ε)∗SLL(ε) = −t′∗r, (2.71)

which give the relations

ALR
L (ε, ε)ARL

L (ε, ε) = ARL
L (ε, ε)ALR

L (ε, ε) = |r|2|t′|2 = |r|2|t′|2 = τ(ε)(1− τ(ε)). (2.72)

We then calculate the integrand of Eq. (2.68) as∑
α,β

AαβL (ε, ε)AβαL (ε, ε)fα(ε)(1− fβ(ε))

= ALL
L (ε, ε)ALL

L (ε, ε)fL(ε)(1− fL(ε)) + ALR
L (ε, ε)ARL

L (ε, ε)fL(ε)(1− fR(ε))

+ ARL
L (ε, ε)ALR

L (ε, ε)fR(ε)(1− fL(ε)) + ARR
L (ε, ε)ARR

L (ε, ε)fR(ε)(1− fR(ε))

= τ(ε)2[fL(ε)(1− fL(ε)) + fR(ε)(1− fR(ε))]

+ τ(ε)(1− τ(ε))[fL(ε)(1− fR(ε)) + fR(ε)(1− fL(ε))]

= τ(ε)(fL(ε) + fR(ε)− 2fL(ε)fR(ε))− τ(ε)2(fL(ε)− fR(ε))2, (2.73)

which gives the final result of the expression of the shot noise:

S(0) =
4e2

h

∫ ∞
EG

dε
[
τ(ε)(fL(ε) + fR(ε)− 2fL(ε)fR(ε))− τ(ε)2(fL(ε)− fR(ε))2

]
. (2.74)
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Chapter 3

Full Counting Statistics

In the previous chapter, we considered the first- and second-order cumulants of the particle flow.
In this chapter, we consider the higher-order cumulants of the particle and energy flows. We
review derivation [22] of the generalized Onsager relations among their transport coefficients
using full counting statistics [23, 24]. In Section 3.1, we introduce the full counting statistics
[23, 24] briefly. In Section 3.2, we review Ref. [22]. We calculate the cumulant generating
function of the particle and energy flows and prove its symmetry. This symmetry gives the
generalized Onsager relations for the particle and energy flows.

3.1 What is counting statistics?

Counting statistics is an analysis method in which one counts a physical quantity in time s and
examines its statistics. We would like to apply counting statistics to the transport phenomena
driven by thermodynamic power (affinity), such as electrical conduction and heat conduction.
We here explain a concept of full counting statistics [23, 24] using the example of electrical
conduction.

Consider two reservoirs which have different chemical potentials µL and µR. The difference
of chemical potentials, µL − µR, causes an electric current. We here assume µL > µR so that
electrons may flow from right to left. We measure the number of the electrons Q for the time
s. After we repeat the measurement many times, we obtain the probability distribution P (Q)
of the number of electrons Q. Our aim is to know the probability distribution P (Q) for large
enough s because we would like to know the non-equilibrium steady state, a long-time behavior
of the system.

We then explain how we obtain information of the cumulant from P (Q). Let us define the
characteristic function Z(χ), the Fourier transform of P (Q):

Z(χ) ≡
∑
Q

P (Q)eiχQ, (3.1)

where χ is a variable called ‘counting field’. We can compute the expectation value of Qn from
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Z(χ) as follows:

dnZ(χ)

d(iχ)n

∣∣∣∣
χ=0

=
dn

d(iχ)n

∑
Q

P (Q)eiχQ

∣∣∣∣∣
χ=0

=
∑
Q

P (Q)Qn

= 〈Qn〉. (3.2)

Let us define the cumulant 〈〈Qn〉〉 of Q as follows:

〈〈Qn〉〉 =
dn logZ(χ)

d(iχ)n

∣∣∣∣
χ=0

. (3.3)

For example, 〈〈Q〉〉 = 〈Q〉 is the expectation value of Q and 〈〈Q2〉〉 = 〈Q2〉−〈Q〉2 is the variance
of Q.

Let us also define the cumulant generating function for the electric current:

F (χ) ≡ lim
s→∞

1

s
logZ. (3.4)

We can, for example, calculate the cumulant of the electric current I as fallows:

〈〈I〉〉 =
∂F (χ)

∂(iχ)

∣∣∣∣
χ=0

= lim
s→∞

〈Q〉
s
, (3.5)

which is the expectation value of the electric current, and

〈〈I2〉〉 =
∂2F (χ)

∂(iχ)2

∣∣∣∣
χ=0

= lim
s→∞

〈Q2〉 − 〈Q〉2

s
, (3.6)

which is the noise of the electric current. We thus obtain higher-order cumulants from F (χ).
Using this function F (χ), we can obtain an asymptotic expression of P (Q) as follows:

P (Q) =
1

2π

∫ ∞
−∞

dχZ(χ)e−iχQ

=
1

2π

∫ ∞
−∞

dχelogZ(χ)−iχQ

= lim
s→∞

1

2π

∫ ∞
−∞

dχesh(χ), (3.7)

where h(χ) ≡ F (χ) − iχq and q = Q/s. We can evaluate the integral by the saddle-point
method. Let χ? denote the value of χ which makes h(χ) maximum:

dh(χ)

dχ

∣∣∣∣
χ=χ?

= 0, or
dF (χ)

dχ

∣∣∣∣
χ=χ?

= i
Q

s
. (3.8)

Expanding h(χ) around χ = χ? to the second order, we arrive at an asymptotic expression of
P (Q) as follows:

P (Q) = lim
s→∞

1

2π

∫ ∞
−∞

dχ exp

[
s

(
h(χ?) +

1

2
(χ− χ?)2 d2h(χ)

dχ2

∣∣∣∣
χ=χ?

)]
= lim

s→∞
esh(χ?) = lim

s→∞
esF (χ?)−iχ?Q. (3.9)
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3.2 Review of ref. [22]

3.2.1 Setup and model Hamiltonian

Figure 3.1: The system in consideration.

We consider the model in which n quantum dots are connected to m reservoirs as shown in
Fig. 3.1. The Hamiltonian of the model is given by

H =
m∑
r=1

Hr +Hd +Hint +HT , (3.10)

where Hr denotes the Hamiltonian of the rth reservoir, Hd the Hamiltonian of the quantum
dots, Hint the Coulomb interaction between electrons on each dot as well as between the dots,
and HT the tunneling Hamiltonian:

Hr =
∑
kσ

εrka
†
rkσarkσ, (3.11)

where k is the wave number, σ denotes spin, εrk is the energy spectrum of the rth reservoir,
a†rkσ the creation operator of the reservoir, and arkσ the annihilation operator of the reservoir;

Hd =
∑
iσ

εid
†
iσdiσ +

∑
ijσ

tijd
†
iσdjσ, (3.12)

where εi is the energy level of the ith dot, tij is the hopping matrix between the dots, d†iσ the
creation operator of the ith dot, and diσ the annihilation operator of the ith dot;

Hint =
1

2

∑
ijσσ′

Uiσjσ′d†iσd
†
jσ′djσ′diσ, (3.13)

where Uiσjσ′ is the strength of Coulomb interaction on each dot and between the dots;

HT =
∑
rkiσ

trkid
†
iσarkσ + H.c., (3.14)
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where trki is the tunneling matrix between the rth reservoir and the ith dot.
We later consider the situation where we measure the system at time t = −s/2 and t = s/2.

We assume that the initial density matrix ρ0 at the time t = −s/2 is

ρ0 = ρd ⊗ ρ′0

= ρd ⊗
exp[−βr(Hr − µrNr)]

Tr{exp[−βr(Hr − µrNr)]}
, (3.15)

where ρd and ρ′0 are the density matrices of the quantum dots and the reservoirs, respectively,
r the index denoting the reservoirs and d the quantum dots, βr the inverse temperature of the
rth reservoir, µr its chemical potential, and Nr its number operator: Nr =

∑
kσ a

†
rkσarkσ. We

assume that there had been no interaction between the reservoirs and the quantum dots until
the initial time t = −s/2 and hence their density operators are commutative then.

We here assume that ρd = 1d/2
n, where 1d is the identity matrix. Because we expect that

the stationary state in the long-time limit is independent of the initial state of the dots, we can
arbitrarily choose the initial state of the dots, and thus took ρd = 1d/2

n for our convenience. The
assumption becomes useful in proving the symmetry of the characteristic function Eq. (3.31),
whose details are shown in Appendix A.

We then define the particle current operator and the energy current operator with the
Heisenberg equation:

JNr = Ṅr = i[Nr, HT ] = −
∑
ik

itrkid
†
iσarkσ + H.c., (3.16)

JEr = Ḣr = i[Hr, HT ] = −
∑
ik

iεrktrkid
†
iσarkσ + H.c.. (3.17)

Let us define the charge qNr and the energy qEr of the rth reservoir during the measuring time
s as follows:

qNr =

∫ s/2

−s/2
dtJNr(t), (3.18)

qEr =

∫ s/2

−s/2
dtJEr(t). (3.19)

3.2.2 Protocol of the measurement

In order to obtain the expressions of the characteristic function Z(χ) and the cumulant gen-
erating function F (χ), we need to know the probability distribution P (Q) as we discussed in
Sec. 3.1. We can obtain the expression of P (Q), considering the following protocol of measure-
ment [27].

1. At the initial time t = −s/2, we carry out a projection measurement on a reservoir r, and
thereby obtain the result Qinit

Nr,ν and the energy Qinit
Er,ν of the particles in it, which collapses

the wave function of each reservoir into an eigenfunction |ψinit
r,ν 〉 of the particle and energy

operators:

Nr |ψinit
r,ν 〉 = Qinit

Nr,ν |ψinit
r,ν 〉 , (3.20)

Hr |ψinit
r,ν 〉 = Qinit

Er,ν |ψinit
r,ν 〉 . (3.21)

30



Note that the set of kets {|ψinit
r,ν 〉}∞ν=0 is a complete set of the eigenspace of Nr and Hr.

We make the same observation for the other reservoirs and obtain the set of particles
{Qinit

Nr,ν}mr=1 and energies {Qinit
Er,ν}mr=1, which collapses the wave function of the whole system

into

|Ψinit
ν 〉 =

m⊗
r=1

|ψinit
r,ν 〉 ⊗ |ψinit

d 〉 , (3.22)

where |ψinit
d 〉 is the wave function of the quantum dots after measurement of all reservoirs.

2. We let the whole system, which consists of m reservoirs and n quantum dots, evolve over
time s with the unitary operator e−iHs.

3. At the time t = s/2, we again observe a reservoir r to measure the number Qfin
Nr,λ and

the energy Qfin
Er,λ of the particles in it, which collapses the wave function of each reservoir

into the eigenfunction |ψfin
r,λ〉 of the particle and energy operators:

Nr |ψfin
r,λ〉 = Qfin

Nr,λ |ψfin
r,λ〉 , (3.23)

Hr |ψfin
r,λ〉 = Qfin

Er,λ |ψfin
r,λ〉 . (3.24)

Note that the set of kets {|ψfin
r,λ〉}∞λ=0 is also a complete set of the eigenspace of Nr and

Hr. We make the same observation for the other reservoirs and obtain the set of particles
{Qfin

Nr,λ}mr=1 and energies {Qfin
Er,λ}mr=1, which collapses the wave function of the whole system

into

|Ψfin
λ 〉 =

m⊗
r=1

|ψfin
r,λ〉 ⊗ |ψfin

d 〉 , (3.25)

where |ψfin
d 〉 is the wave function of the quantum dots after measurement of all reservoirs.

After the measurement, we obtain the conditional probability Pν→λ({QNr}, {QEr}) of
finding the changes in the numberQNr = QNr,ν−QNr,λ and the energyQEr = QEr,ν−QEr,λ

of the particles in each reservoir under the condition that the initial state of the whole
system is fixed to |Ψinit

ν 〉:

Pν→λ({QNr}, {QEr}) =
∣∣〈Ψfin

λ |e−iHs|Ψinit
ν 〉
∣∣2∣∣∣

ν,λ s.t. QNr=QNr,ν−QNr,λ,QEr=QEr,ν−QEr,λ

=
∞∑
λ=0

∣∣〈Ψfin
λ |e−iHs|Ψinit

ν 〉
∣∣2

×
m∏
r=1

δ[QNr − (Qinit
Nr,ν −Qfin

Nr,λ)]δ[QEr − (Qinit
Er,ν −Qfin

Er,λ)]. (3.26)

4. We iterate the protocols 1 to 3 for the same initial density matrix ρ0 and obtain the
probability of finding the changes in the number QNr and the energy QEr of the particles
in each reservoir with the initial state |Ψinit

ν 〉 obeying the grand-canonical distribution
〈Ψinit

ν |ρ0|Ψinit
ν 〉 in the form:

P ({QNr}, {QEr}) =
∞∑

ν,λ=0

Pν→λ({QNr}, {QEr}) 〈Ψinit
ν |ρ0|Ψinit

ν 〉 . (3.27)
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3.2.3 Symmetry of the cumulant generating function

We can calculate the characteristic function Z(χ) from the probability P ({QNr}, {QEr}) as
follows:

Z({χcr}, {χhr};B) =
∑

{QNr},{QEr}

P ({QNr}, {QEr})
m∏
r=1

ei(χcrQNr+χhrQEr) (3.28)

= Tr[ρ0V
†eiHsV 2e−iHsV †]

≡ 〈V †eiHsV 2e−iHsV †〉ρ0
, (3.29)

where

V =
m∏
r=1

exp

[
−i(χcrNr + χhrHr)

2

]
. (3.30)

We show the details of the calculation in Appendix A. This characteristic function has the
following symmetry

Z({χcr}, {χhr};B) = Z({−χcr + iAcr}, {−χhr + iAhr};−B), (3.31)

whose proof is also shown in Appendix A.
Using this characteristic function (3.29), we can define the cumulant generating function of

this model in the form:

F ({χcr}, {χhr};B) = lim
s→∞

1

s
lnZ({χcr}, {χhr};B). (3.32)

The symmetry of the characteristic function (3.31) gives the symmetry of this cumulant gen-
erating function as follows:

F ({χcr}, {χhr};B) = F ({−χcr + iAcr}, {−χhr + iAhr};−B). (3.33)

Noting that the cumulant generating function only depends on the difference between two
counting fields [22] as in

F ({χcr}, {χhr};B) = F ({χcr}, {χhr};B), (3.34)

where χcr = χcr − χcr′ and χhr = χhr − χhr′ with r′ fixed and r′ 6= r, we obtain the following
symmetry of the cumulant generating function from the symmetry (3.33):

F ({χcr}, {χhr};B) = F ({−χcr + iAcr}, {−χhr + iAhr};−B), (3.35)

whereAcr andAhr are the affinities (thermodynamic forces) of the particle flow and the energy
flow, respectively:

Acr = βrµr − βr′µr′ , (3.36)

Ahr = −βr + βr′ , (3.37)

with r′ fixed to one of the affinities and r 6= r′. We will explain why we choose these affinities
in Chap. 4. The symmetry (3.35) produces many interesting relations of transport coefficients.
We next see the relations for the simplest two-terminal case.
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3.2.4 Generalized Onsager relation in the case of two terminals

Let us consider the case of two terminals, in which we can write the symmetry of the cumulant
generating function in the form:

F (χc, χh;B) = F (−χc + iAc,−χh + iAh;−B), (3.38)

where χc = χcL−χcR, χh = χhL−χhR, Ac = AcL−AcR = βLµL−βRµR, and Ah = AhL−AhR =
−βL + βR. We can compute the kth cumulant of the particle flow JN and the energy flow JE
by differentiating the cumulant generating function with respect to χc and χh as follows:

〈〈Jk1
N J

k2
E 〉〉 =

∂k1+k2F (χc, χh;B)

∂(iχc)k1∂(iχh)k2

∣∣∣∣
χc=χh=Ac=Ah=0

. (3.39)

We then define the transport coefficients as follows:

Lk1,k2

`1,`2
(B) =

∂`1+`2〈〈Jk1
N J

k2
E 〉〉

∂A`1c ∂A
`2
h

. (3.40)

For later use, we symmetrize and antisymmetrize the transport coefficients and the cumulant
generating function with respect to the magnetic field:

F±(χc, χh;B) = F (χc, χh;B)± F (χc, χh;−B), (3.41)

Lk1,k2

`1,`2±(B) = Lk1,k2

`1,`2
(B)± Lk1,k2

`1,`2
(−B), (3.42)

which satisfy the relation

Lk1,k2

`1,`2±(B) =
∂k1+k2+`1+`2F±(χc, χh;B)

∂(iχc)k1∂(iχh)k2∂A`1c ∂A
`2
h

∣∣∣∣
χc=χh=Ac=Ah=0

. (3.43)

The symmetry in Eq. (3.38) gives the symmetry of F±(χc, χh;B) in the form:

F±(χc, χh;B) = ±F±(−χc + iAc,−χh + iAh;B). (3.44)

Partially differentiating both sides of Eq. (3.44) with respect to χc k1 times, χh k2 times,
Ac `1 times, and Ah `2 times, we arrive at the relation of the transport coefficients as follows:

∂k1+k2+`1+`2F±(χc, χh;B)

∂(iχc)k1∂(iχh)k2∂A`1c ∂A
`2
h

∣∣∣∣
χc=χh=Ac=Ah=0

= ± ∂k1+k2+`1+`2F±(−χc + iAc,−χh + iAh;B)

∂(iχc)k1∂(iχh)k2∂A`1c ∂A
`2
h

∣∣∣∣
χc=χh=Ac=Ah=0

, (3.45)

which produces

Lk1,k2

`1,`2±(B) = ±
`1∑

n1=0

`2∑
n2=0

(
`1

n1

)(
`2

n2

)
(−1)n1+n2+k1+k2Lk1+n1,k2+n2

`1−n1,`2−n2±(B). (3.46)

Note that the cumulant generating function F (χc, χh;B) also depends on the affinities Ac and
Ah when one differentiates F (χc, χh;B). The relation (3.46) is among the coefficients with a
fixed value of N = k1 + k2 + `1 + `2. For N = 2, we have

L01
10(B) = L10

01(−B), (3.47)

L10
10(B) = L10

10(−B), (3.48)

L01
01(B) = L01

01(−B), (3.49)
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which are known as the Onsager-Casimir relations, as well as

L20
00(B) = 2L10

10(B), (3.50)

L02
00(B) = 2L01

01(B), (3.51)

which are known as the fluctuation-dissipation theorem. For N = 3, we have

L20
10,+(B) = L10

20,+(B), (3.52)

L11
10,+(B) = L01

20,+(B) = 2L10
11,+(B)− L20

01,+(B), (3.53)

L11
01,+(B) = L10

02,+(B) = 2L01
11,+(B)− L02

10,+(B), (3.54)

L02
01,+(B) = L01

02,+(B), (3.55)

L30
00,+(B) = L03

00,+(B), (3.56)

L10
20,−(B) =

L20
10,−(B)

3
=
L30

00,−(B)

6
, (3.57)

L01
02,−(B) =

L02
01,−(B)

3
=
L03

00,−(B)

6
, (3.58)

L20
01,−(B) = L01

20,−(B) + 2L10
11,−(B), (3.59)

L02
10,−(B) = L10

02,−(B) + 2L01
11,−(B). (3.60)

The relations among the transport coefficients of the cumulant of the particle flow (3.48), (3.50),
(3.52), and (3.57) have been observed experimentally [28, 29].
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Chapter 4

The Generalized Onsager Relations
between Heat Flow and Particle Flow

In the previous chapter, we consider the higher-order cumulants of the particle and energy flows.
In this chapter, we treat the higher-order cumulants of the heat flow. We show the appropriate
definition of the heat flow in mesoscopic transport systems and derive the generalized Onsager
relations for the particle and heat flows. In Section 4.1, we review the several definitions of the
heat flows, which might have confused researches in the past. We then explain the heat flow
which seems to be the most relevant one. In Section 4.2, we first explain the affinities. We then
derive the generalized Onsager relations for the particle and heat flows when we expand these
flows with respect to the appropriate affinities. We also consider the generalized flows which are
superpositions of the particle and energy flows. We show that we can choose the appropriate
affinities of the generalized flows and derive the relations among transport coefficients of the
flows when we expand them with respect to their affinities. For simplicity, we treat only the
setup with two reservoirs throughout this chapter.

4.1 Heat flow in mesoscopic transport systems

4.1.1 Several ‘heat’ flows in mesoscopic transport systems

We here introduce three expressions of the ‘heat’ flow in mesoscopic transport systems. The
thermodynamic definition of heat is clear, but the wording of the ‘heat flow’ may be confusing
because there seems to be several definitions.

The first definition of the heat flow is given by

JE =
1

h

∫ ∞
EG

dετ(ε)ε(fL(ε)− fR(ε)), (4.1)

which is used widely in researches of mesoscopic transport [30–32]. Although this ‘heat’ flow
should be called an ‘energy’ flow, it is called a ‘heat’ flow probably because it is considered in
the situation where the energy flow does not do work and hence all energy becomes heat.

The second definition of the heat flow is given by

JQ =
1

h

∫ ∞
EG

dετ(ε)(ε− µ)(fL(ε)− fR(ε)), (4.2)

35



which was often used in the dawn of the research of heat flow in mesoscopic systems [33]. This
definition may have been taken from an equation in Callen’s textbook [2],

JQ = JE − µJN , (4.3)

where JE is the energy flow given by Eq. (4.1), while JN is the particle flow, for which the
Landauer-Büttiker formalism gives the expression

JN =
1

h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)). (4.4)

Substituting Eq. (4.1) and Eq. (4.4) into Eq. (4.3), we would obtain the second definition (4.2).
Since this ‘heat’ flow was not microscopically derived, we do not know clearly where it

flows. It is indeed ambiguous of which part of the system in Fig. 1.2 the chemical potential
µ of Eq. (4.3) is. We should probably choose µ so that JQ may satisfy Onsager’s reciprocal
theorem. For example, in Ref. [33], the authors chose µ as (µL + µR)/2 and in Ref. [34], the
author chose µ as µL. The choices do not make difference in the linear response of the voltage
difference (µR − µL)/e but differ in higher orders.

The third definition is given by

JαQ =
1

h

∫ ∞
EG

dετ(ε)(ε− µα)(fL(ε)− fR(ε)), (4.5)

where α = L,R. This appears to be the same as the definition (4.4) with the chemical potential
arbitrarily fixed, but we here make distinction because the definition (4.5) clearly specifies
where the heat flow exists; we will show below that this definition gives the heat flow out of
the left reservoir or into the right reservoir.

4.1.2 Definition of the heat flow

In this section, we derive the third definition of the heat flow (4.5) using the Landauer-Büttiker
formula and thermodynamics. We here derive JL

Q specifically, but we can derive JR
Q in the same

way.

Reservoir 

Chemical Potential 
μL 

quantum wire 

Temperature 
TL  

Figure 4.1: The wire and the left reservoir.

Consider the quantum wire with the left reservoir (Fig. 4.1). We assume that the reservoir
is so large that it is always in equilibrium. Hence we can define thermodynamic quantities of
the reservoir such as the temperature and the chemical potential.
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Since each reservoir is coupled only with the wire, all the heat generated in the left reservoir
goes into the wire. Therefore,

Q̇L = −JL
Q, (4.6)

where Q̇L is the heat generated in the left reservoir per unit time. The negative sign appears
because we define the positive direction so that flows going to the right may be positive.

Using the first law of thermodynamics, dQ = dU + dW , we obtain

Q̇L = U̇L − ẆL, (4.7)

where U̇L is the energy going in the left reservoir per unit time and ẆL is the work per unit
time done on the left reservoir. Let us use the framework in which the volume of the reservoir
is constant. Hence, the pressure dose not do work on the reservoir. Therefore,

ẆL = µLṄL, (4.8)

where ṄL is the number of particles going in the left reservoir per unit time.
In order to find U̇L and ṄL microscopically, we use the Landauer-Büttiker formalism, which

gives

U̇L = −1

h

∫ ∞
EG

dετ(ε)ε(fL(ε)− fR(ε)), (4.9)

ṄL = −1

h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)). (4.10)

We thus arrive at

JL
Q =

1

h

∫ ∞
EG

dετ(ε)(ε− µL)(fL(ε)− fR(ε)). (4.11)

We can derive JR
Q in the same way, expect that we have Q̇R = JR

Q and therefore the sign of U̇R

and ṄR are reversed, which results in

JR
Q =

1

h

∫ ∞
EG

dετ(ε)(ε− µR)(fL(ε)− fR(ε)). (4.12)

These heat flows JL
Q and JR

Q have not been observed experimentally as far as we know. In
order to observe them, the experimental condition should be at low temperatures as was when
the energy flow was observed [35]. We therefore show in appendix B the expansion of JL

Q and
JR
Q at low temperatures.

4.1.3 Constructing heat engine and its efficiency with the heat flow

The heat flows JL
Q and JR

Q in Eq. (4.5) can be used to analyze mesoscopic heat engines [12] in
Fig. 4.2. We set the chemical potential of the right reservoir higher than the left, while the
temperature of the left reservoir higher than the right so that an electric current may go from
left to right against the difference of the chemical potential. What happens per unit time is
the following. Electrons gain heat JL

Q from the hot left reservoir, go to the right against the
potential difference, during which electrons do the work of amount IV , where I is the electric
current and V is the voltage difference, and then dump heat JR

Q to the cold right reservoir. We
can thus consider this system as a heat engine. Its efficiency η is thereby given by

η =
IV

JL
Q

. (4.13)
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Reservoir Reservoir 
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Temperature 

TL = T+ΔT 
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tric 
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rent
 I 

  

  

Figure 4.2: Schematic picture of a mesoscopic heat engine. Note that we cannot define the chem-
ical potential in the wire as this illustration might suggest because it is highly non-equilibrium
there and therefore the thermodynamic quantities, such as the chemical potential cannot be
defined.

The current I is given by the Landauer-Büttiker formula

I =
e

h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)), (4.14)

while the voltage difference is given by

V =
µR − µL

e
. (4.15)

Therefore, the work IV in Eq. (4.13) is given by

IV =
µR − µL

e
· e
h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)) (4.16)

=
1

h

∫ ∞
EG

dετ(ε)(ε− µL)(fL(ε)− fR(ε))− 1

h

∫ ∞
EG

dετ(ε)(ε− µR)(fL(ε)− fR(ε)) (4.17)

= JL
Q − JR

Q , (4.18)

which results in

η = 1−
JR
Q

JL
Q

. (4.19)

We show in Appendix C that the upper limit of this efficiency is the Carnot efficiency as is
expected from the theory of the standard heat engine.

4.1.4 Affinity

Definition

Affinities, or thermodynamic forces are the forces which drive a system in equilibrium out of it,
such as the difference in the temperature, the chemical potential, the pressure, and so on. We
define the affinities as follows. We assume that the entropy of the whole system is a function
of a set of extensive variables {Xk}:

S = S(X0, X1, X2, · · · ). (4.20)
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The entropy production of the whole system is thus given by

Ṡ ≡ dS

dt
=
∑
k

∂S

∂Xk

dXk

dt
≡
∑
k

JkAk, (4.21)

where we define the affinity Ak and the corresponding flux Jk by

Ak ≡
∂S

∂Xk

, (4.22)

Jk ≡
dXk

dt
. (4.23)

Let us generalize this definition of affinities and fluxes as follows. When the entropy produc-
tion can be expressed as a sum of the products of an extensive flux and an intensive parameter,

Ṡ =
∑
k

JkAk, (4.24)

we call Ak an affinity and Jk the corresponding flux. We show below examples of Ak and Jk.

Example 1: Affinities corresponding to JL
Q and JR

Q

Let us consider the setup with two terminals shown in Fig. 2.1. As no entropy is generated in
the wire, the total entropy production is given by the sum of the entropy production of each
reservoir:

Ṡ = ṠL + ṠR

= βLQ̇L + βRQ̇R

= −βLJ
L
Q + βRJ

R
Q

≡ AL
q J

L
Q + AR

q J
R
Q , (4.25)

which lets us define the affinities AL
q ≡ −βL and AR

q ≡ βR of the flows JL
Q and JR

Q , respectively.
Note that the affinities are not a difference of intensive parameters in this case, which might
be because JL

Q and JR
Q are not conserved quantities.

Example 2: Affinities corresponding to JE and JN

We here explain why we chose the affinities of JE and JN as Eqs. (3.36) and (3.37). Using the
relations JL

Q = JE − µLJN and JR
Q = JE − µRJN , we can transform the entropy production as

follows:

Ṡ = −βLJ
L
Q + βRJ

R
Q

= −βL(JE − µLJN) + βR(JE − µRJN)

= (−βL + βR)JE + (βLµL − βRµR)JN

≡ AhJE + AcJN , (4.26)

which leads to the definitions of the affinities Ah ≡ −βL + βR and Ac ≡ βLµL − βRµR of the
flows JE and JN , respectively.
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Example 3: Affinities corresponding to JL
Q or JR

Q and JN

We then derive the affinities corresponding to JL
Q and JN . Using the relation JL

Q − JR
Q =

(µR − µL)JN , we can transform the entropy production as follows:

Ṡ = −βLJ
L
Q + βRJ

R
Q

= −βLJ
L
Q + βR[JL

Q − (µR − µL)JN ]

= (−βL + βR)JL
Q + βR(µL − µR)JN

≡ AL
QJ

L
Q + AL

NJN , (4.27)

which leads to AL
Q ≡ −βL + βR and AL

N ≡ βR(µL−µR) of the flows JL
Q and JN , respectively. In

the same manner, we can find the affinities corresponding to JR
Q and JN :

Ṡ = AR
QJ

R
Q + AR

NJN , (4.28)

where AR
Q ≡ −βL + βR and AR

N ≡ βL(µL − µR).
The notable point here is that the second affinity in either case is proportional to the

difference in the chemical potential. This was not the case in Example 2.

Example 4: Affinities corresponding to flows which are superpositions of JE and
JN

We here consider flows which are general superpositions of JE and JN . Let us define the
generalized flows J1 and J2 by (

J1

J2

)
= K

(
JE
JN

)
, (4.29)

where

K ≡
(
a b
c d

)
, (4.30)

with the condition that a, b, c, d are real and detK = ad− bc 6= 0. The affinities of these flows
are given by (

A1 A2

)
=
(
Ah Ac

)
K−1, (4.31)

because we then have

Ṡ =
(
Ah Ac

)(JE
JN

)
=
(
Ah Ac

)
K−1K

(
JE
JN

)
=
(
A1 A2

)(J1

J2

)
= A1J1 + A2J2. (4.32)

For Example 1, the matrix K is given by

K =

(
1 −µL

1 −µR

)
(4.33)

as in (
JL
Q

JR
Q

)
= K

(
JE
JN

)
, (4.34)
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while for Example 3, it is

K =

(
1 −µL

0 1

)
(4.35)

as in (
JL
Q

JN

)
= K

(
JE
JN

)
. (4.36)

We thereby confirm(
AL
q AR

q

)
=
(
Ah Ac

)(1 −µL

1 −µR

)−1

=
1

µL − µR

(
−βL + βR βLµL − βRµR

)(−µR µL

−1 1

)
=
(
−βL βR

)
, (4.37)

and (
AL
Q AL

N

)
=
(
Ah Ac

)(1 −µL

0 1

)−1

=
(
−βL + βR βLµL − βRµR

)(1 µL

0 1

)
=
(
−βL + βR βR(µL − µR)

)
. (4.38)

4.1.5 Counting fields

Let us consider the counting fields corresponding to the generalized flows J1 and J2. We
transform the counting fields χc and χh so that the exponent in Eq. (3.28),

χcQN + χhQE =
(
χh χc

)(QE

QN

)
, (4.39)

may not change. We can achieve it by defining the new counting fields χ1, χ2 by(
χ1 χ2

)
=
(
χh χc

)
K−1. (4.40)

Noting that Q1 and Q2 are transformed as J1 and J2, we can show that the transformation
does not change exponent in Eq. (3.28):

χcQN + χhQE =
(
χh χc

)(QE

QN

)
=
(
χh χc

)
K−1K

(
QE

QN

)
=
(
χ1 χ2

)(Q1

Q2

)
= χ1Q1 + χ2Q2. (4.41)

Let us present the counting fields of several flows; for JL
Q and JR

Q we have (4.34), and their
counting fields χL

q and χR
q are therefore given by

(
χL
q χR

q

)
=
(
χh χc

)(1 −µL

1 −µR

)−1

; (4.42)
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for JL
Q and JN , because of (4.36), the counting fields χL

Q and χL
N are given by

(
χL
Q χL

N

)
=
(
χh χc

)(1 −µL

0 1

)−1

. (4.43)

We can define the counting fields for JR
Q and JN in the same manner.

4.2 The generalized Onsager relations between the heat

and particle flows

In this section, we derive the generalized Onsager relations between several pairs of flows.

4.2.1 General discussion

Let us define the cumulant generating function for J1 and J2 by

FJ1J2(χ1, χ2, B) ≡ F (χc, χh, B) = F (bχ1 + dχ2, aχ1 + cχ2;B), (4.44)

with which we can define the transport coefficients of J1 and J2 as follows:

Lk1,k2

`1,`2
(B) =

∂k1+k2+`1+`2FJ1J2(χ1, χ2;B)

∂(iχ1)k1∂(iχ2)k2∂A`11 ∂A
`2
2

∣∣∣∣
χ1=χ2=A1=A2=0

. (4.45)

We can prove the following symmetry:

FJ1J2±(χ1, χ2;B) = ±FJ1J2±(−χ1 + iA1,−χ2 + iA2;B), (4.46)

where
FJ1J2±(χ1, χ2;B) = FJ1J2(χ1, χ2;B)± FJ1J2(χ1, χ2;−B). (4.47)

The proof is as follows:

FJ1J2±(χ1, χ2;B) ≡ F±(bχ1 + dχ2, aχ1 + cχ2;B)

= F±(χc, χh;B)

= ±F±(−χc + iAc,−χh + iAh;B)

= ±F±[b(−χ1 + iA1) + d(−χ2 + iA2), a(−χ1 + iA1) + c(−χ2 + iA2);B]

= ±FJ1J2±(−χ1 + iA1,−χ2 + iA2;B), (4.48)

where we used the symmetry (3.38) in the third equality.
From this symmetry (4.47), we derive the relations among the transport coefficients using

the same procedure as in Eqs. (3.44)–(3.46):

Lk1,k2

`1,`2±(B) = ±
`1∑

n1=0

`2∑
n2=0

(
`1

n1

)(
`2

n2

)
(−1)n1+n2+k1+k2Lk1+n1,k2+n2

`1−n1,`2−n2±(B), (4.49)

where
Lk1,k2

`1,`2±(B) = Lk1,k2

`1,`2
(B)± Lk1,k2

`1,`2
(−B). (4.50)

There are an infinite number of choices of J1 and J2, and hence we can derive an infinite number
of corresponding Onsager relations. Of course, not all the choices are physically relevant. We
show below examples of J1 and J2 which have physical meaning.
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4.2.2 The generalized Onsager relations between JL
Q and JR

Q

Let us first consider the case J1 = JL
Q and J2 = JR

Q . Because we have(
χh χc

)
=
(
χL
q χR

q

)
K

=
(
χL
q χR

q

)(1 −µL

1 −µR

)
=
(
χL
q + χR

q −µLχ
L
q − µRχ

R
q

)
, (4.51)

the cumulant generating function for JL
Q and JR

Q is given by

FJL
QJ

R
Q

(χL
q , χ

R
q , B) ≡ F (−µLχ

L
q − µRχ

R
q , χ

L
q + χR

q ;B), (4.52)

with which we can define the transport coefficients of JL
Q and JR

Q in the form (4.45). The
symmetry (4.46) and the relations (4.49) follow from it.

4.2.3 The generalized Onsager relations between JL
Q or JR

Q and JN

We next consider the case J1 = JL
Q and J2 = JN . Because we have

(
χh χc

)
=
(
χL
Q χL

N

)(1 −µL

0 1

)
=
(
χL
Q −µLχ

L
Q + χL

N

)
, (4.53)

the cumulant generating function for JL
Q and JN is given by

FJL
QJN

(χL
Q, χ

L
N , B) ≡ F (−µLχ

L
Q + χL

N , χ
L
Q;B), (4.54)

with which we can define the transport coefficients of JL
Q and JN in the form (4.45). We

will specifically use the notation G for the present case instead of L hereafter for the use
in Subsection 4.2.4. The symmetry (4.46) and the relations (4.49) again follow from (4.54).
We remark that the relations of G reproduce Eqs. (1.15)–(1.17) by identifying G10

10 = GNN ,
G10

01 = GNQ, G01
10 = GQN , and G01

01 = GQQ. However, we need to consider the present treatment
in order to find the relations.

We can do the same for the case J1 = JR
Q and J2 = JN , for which we will use the notation

M instead of L. We note here that the linear coefficients of M coincide with those of G, but
they differ in higher orders.

4.2.4 Application: Nonlinear Seebeck coefficient

We here show that we can express the nonlinear Seebeck coefficient easily using the transport
coefficients Gk1,k2

`1,`2
(B) or Mk1,k2

`1,`2
(B). We will use Gk1,k2

`1,`2
(B) hereafter, but we can use Mk1,k2

`1,`2
(B)

in the same way. The advantage to use the coefficients Gk1,k2

`1,`2
(B) or Mk1,k2

`1,`2
(B) is that the

corresponding affinities AL
N or AR

N and AN contain ∆µ and ∆T explicitly in contrast to the
affinities Ac = βLµL − βRµR. This enables us to expand thermoelectric coefficients, which are
usually related to ∆µ or ∆T , more easily.
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The Seebeck effect is a thermoelectric effect in which the voltage difference V = (µR−µL)/e
is brought about by the temperature gradient ∆T = TR − TL [2]. The Seebeck coefficient is
defined by [2]

S ≡ −
(
V

∆T

)
〈JN 〉=0

. (4.55)

Let us define the higher-order Seebeck coefficients as follows. Under the condition in which the
average of the particle flow 〈JN〉 is zero, the kth-order Seebeck coefficient is defined by [37,38]

−V = S1∆T + S2(∆T )2 + · · ·

=
∞∑
k=1

Sk(∆T )k. (4.56)

Let us express the second-order Seebeck coefficient with the transport coefficients Gk1,k2

`1,`2
(B).

In order to do this, we first express AL
N in terms of AL

Q under the condition 〈JN〉 = 0, which
is

〈JN〉 = G10
10A

L
N +G10

01A
L
Q +

G10
20

2!
AL
N

2
+G10

11A
L
NA

L
Q +

G10
02

2!
AL
Q

2
= 0. (4.57)

Solving this, we obtain two types of the affinity AL
N as

AL
N± =

−G10
10 −G10

11A
L
Q ±

√
(G10

10 +G10
11A

L
Q

2
)2 −G10

20(2G10
01A

L
Q +G10

02A
L
Q

2
)

G10
20

, (4.58)

depending on the sign of the square root. Note that we expanded JN only up to the second
order of the affinities because the higher-order terms do not affect the result when we calculate
the second-order Seebeck coefficient. Before expanding (4.58), we have to choose which solution
we use. We choose AL

N+ if G10
01 > 0 and AL

N− if G10
01 < 0 for the following two reasons. One

reason is that the voltage would not be zero with ∆T = 0 unless we choose them in this way. A
finite voltage with no particle flow and no temperature difference is not normal physically. The
other reason is that the first-order Seebeck coefficient would not coincide with the well-known
linear Seebeck coefficient [2].

We then expand the properly chosen solution with respect to AL
Q to the second order:

AL
N = −G

10
01

G10
10

AL
Q −

G10
02G

10
10

2 − 2G10
01G

10
10G

10
11 +G10

01
2
G10

20

2G10
10

3 AL
Q

2
+O(AL

Q

3
), (4.59)

which turns out to be independent of the choice. Inserting the affinities

AL
Q = −βL + βR =

TL − TR

TLTR

=
∆T

TLTR

, (4.60)

AL
N = βR(µL − µR) =

µL − µR

TR

=
eV

TR

, (4.61)

for JL
Q and JN into Eq. (4.59), we have

eV

TR

= −G
10
01

G10
10

∆T

TLTR

− G10
02G

10
10

2 − 2G10
01G

10
10G

10
11 +G10

01
2
G10

20

2G10
10

3

(
∆T

TLTR

)2

+O((∆T )3), (4.62)
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which is followed by the expansion of the form (4.56):

−V =
G10

01

eTLG10
10

∆T +
G10

02G
10
10

2 − 2G10
01G

10
10G

10
11 +G10

01
2
G10

20

2eTL
2TRG10

10
3 (∆T )2. (4.63)

From this we obtain the first- and second-order Seebeck coefficients as follows:

S1 =
1

eTL

G10
01

G10
10

, (4.64)

S2 =
1

eTL
2TR

G10
02G

10
10

2 − 2G10
01G

10
10G

10
11 +G10

01
2
G10

20

2G10
10

3 . (4.65)

Let us express the second-order Seebeck coefficient (4.65) only with linear transport coef-
ficients using the relation of the form (4.49). For simplicity, let us assume that there is no
magnetic filed B = 0. We find from (4.49) that the relations as (3.47)–(3.60) is also valid for
Gk1,k2

`1,`2 :

G10
20 = G20

10, (4.66)

G11
10 = 2G10

11 −G20
01 ⇔ G10

11 =
G11

10 +G20
01

2
, (4.67)

G10
02 = G11

01, (4.68)

under no magnetic field. Using these relations, we can rewrite the second-order Seebeck coeffi-
cient (4.65) as follows:

S2 =
1

eTL
2TR

G11
01G

10
10

2 −G10
01G

10
10(G11

10 +G20
01) +G10

01
2
G20

10

2G10
10

3 . (4.69)

We thus expressed S2 only with the linear-transport coefficients.
In evaluating S2 using the expression (4.65), it may be difficult to measure G10

02 and G10
20,

which are nonlinear coefficients. Using the final expression (4.69), however, we can evaluate
the nonlinear Seebeck coefficient S2 by measuring the transport coefficients only in the linear-
response regime. Indeed, it may seem difficult to observe the heat flow. Recently, however, the
energy flow has been observed at low temperatures in the experiment [35]. We expect that the
heat flow and its noise will become able to be observed experimentally in the future.
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Chapter 5

Summary and Future Works

In this thesis, we explained the details of the heat flow in mesoscopic one-dimensional transport
systems and derived the generalized Onsager relations of flows which are superpositions of the
particle and energy flows. In particular, we derived the relations among the pairs of JN and
JL
Q, JN and JR

Q , and JL
Q and JR

Q .
We here remark the use of the energy flow and the heat flow. In the research area of

thermoelectricity, there seems to be a confusion in using the two flows. The concept of the heat
flow becomes necessary when electrons do work, particularly when we consider a heat engine.
We thus need to use the heat flow when we consider the work of electrons.

The relations that we obtained here will be useful in the future. One possibility is to use
them in calculating the nonlinear coefficients like the nonlinear Seebeck coefficient which we
obtained in Chapter 4. In order to describe thermoelectric devices which are not in the linear-
response regime, the conventional thermoelectric coefficients and the figure of merit, which are
defined in the linear-response regime, should be insufficient. We thus need new coefficients
which describe nonlinear thermoelectric effects. The relations among higher-order cumulants
will be useful in evaluating the coefficients.

Another possibility is the efficiency fluctuation. The research of the efficiency fluctuation ap-
peared recently [39–41]. The authors in Ref. [39] proposed that when we consider the efficiency,
we should replace the conventional second law

〈∆Stot〉 ≥ 0 (5.1)

with the fluctuation theorem
〈e−∆Stot〉 = 1, (5.2)

where ∆Stot is the total entropy production of the system. Combining Eq. (5.2) with Jensen’s
inequality

〈e−∆Stot〉 ≥ e−〈∆Stot〉, (5.3)

we can show that the fluctuation theorem (5.2) includes the second law (5.1); in other words, the
fluctuation theorem is a higher entity than the second law. It then necessitates us to consider
the higher-order cumulants of the entropy production because the quantity 〈e−∆Stot〉 contains
〈∆S2

tot〉, 〈∆S3
tot〉, · · · . The entropy production is expressed as in Eq. (4.32) by the generalized

flows J1 and J2 defined in Eq. (4.29). We thus have to consider the higher-order cumulants of
the generalized flows. Using the generalized Onsager relations which we derived in Chapter 4,
we may understand the behavior of the efficiency in the nonlinear-response regime.

The research of nonlinear thermoelectric devices, particularly as a heat engine, is in the
dawn. We expect that the generalized Onsager relations that we derived in the present thesis
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will help the development of this research area and manufacturing high-efficiency thermoelectric
devices using nonlinearity.
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Appendix A

Detailed Calculations for Chapter 3

In this appendix, we show the details of the calculations in Chapter 3.

A.1 Calculation for Eq. (3.29)

In this section we show the details of calculation to obtain the relation (3.29). We start from
Eq. (3.28), which we reproduce here:

Z({χcr}, {χhr};B) =
∑

{QNr},{QEr}

P ({QNr}, {QEr})
m∏
r=1

ei(χcrQNr+χhrQEr). (A.1)

Inserting Eq. (3.27) into the above, we have

Z({χcr}, {χhr};B) =
∑

{QNr},{QEr}

∑
ν,λ

Pν→λ({QNr}, {QEr}) 〈Ψinit
ν |ρ0|Ψinit

ν 〉

×
m∏
r=1

ei(χcrQNr+χhrQEr). (A.2)
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Using Eq. (3.26) further, we proceed as

Z({χcr}, {χhr};B) =
∑

{QNr},{QEr}

∑
ν,λ

∣∣〈Ψfin
λ |e−iHs|Ψinit

ν 〉
∣∣2 〈Ψinit

ν |ρ0|Ψinit
ν 〉

×
m∏
r=1

{
δ[QNr − (Qinit

Nr,ν −Qfin
Nr,λ)]δ[QEr − (Qinit

Er,ν −Qfin
Er,λ)]

× ei(χcrQNr+χhrQEr)
}

=
∑
ν,λ

∣∣〈Ψfin
λ |e−iHs|Ψinit

ν 〉
∣∣2 〈Ψinit

ν |ρ0|Ψinit
ν 〉

×
m∏
r=1

ei[χcr(Q
init
Nr,ν−Q

fin
Nr,λ)+χhr(Q

init
Er,ν−Q

fin
Er,λ)]

=
∑
ν,λ

〈Ψinit
ν |eiHs

m∏
r=1

[
e−i(χcrQ

fin
Nr,λ+χchQ

fin
Er,λ)

]
|Ψfin

λ 〉

× 〈Ψfin
λ |e−iHs

m∏
r=1

[
ei(χcrQ

init
Nr,ν+χchQ

init
Er,ν)

]
|Ψinit

ν 〉 〈Ψinit
ν |ρ0|Ψinit

ν 〉

=
∑
ν,λ

〈Ψinit
ν |eiHs

m∏
r=1

[
e−i(χcrNr+χchHr)

]
|Ψfin

λ 〉

× 〈Ψfin
λ |e−iHs

m∏
r=1

[
ei(χcrNr+χchHr)

]
|Ψinit

ν 〉 〈Ψinit
ν |ρ0|Ψinit

ν 〉

=
∑
ν,λ

〈Ψinit
ν |eiHsV 2|Ψfin

λ 〉 〈Ψfin
λ |e−iHsV †

2|Ψinit
ν 〉 〈Ψinit

ν |ρ0|Ψinit
ν 〉

= Tr[eiHsV 2e−iHsV †
2
ρ0]

= Tr[eiHsV 2e−iHsV †ρ0V
†]

= Tr[ρ0V
†eiHsV 2e−iHsV †], (A.3)

where

V =
m∏
r=1

exp

[
−i(χcrNr + χhrHr)

2

]
. (A.4)

We here used the relations Nr |Ψinit
ν 〉 = Qinit

Nr,ν |Ψinit
ν 〉, Nr |Ψfin

λ 〉 = Qfin
Nr,λ |Ψfin

λ 〉, Hr |Ψinit
ν 〉 =

Qinit
Er,ν |Ψinit

ν 〉, Hr |Ψfin
λ 〉 = Qfin

Nr,λ |Ψfin
λ 〉, the fact that ρ0 and V † are commutative, and the invari-

ance of the trace under cyclic permutations.

A.2 Calculation for Eq. (3.35)

In this section, we prove the symmetry of the characteristic function

Z({χcr}, {χhr};B) = Z({−χcr + iAcr}, {−χhr + iAhr};−B). (A.5)

We first introduce the time-reversal operator Θ [42]. The operator Θ satisfies the following
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properties:

ΘiΘ = −i, (A.6)

〈n|O|n′〉 = 〈ñ′|ΘO†Θ†|ñ〉 , (A.7)

|ñ〉 = Θ |n〉 , (A.8)

where |n〉, |n′〉, and O are bases and an operator in the Hilbert space, respectively. Let us then
transform the left-hand side of Eq. (A.5). We here write the magnetic-field dependence of H
and V explicitly. Note that H(B) and V (B) are transformed by the time-reversal operator as
follows:

ΘH(B)Θ = H(−B), (A.9)

ΘV (B)Θ = V (−B). (A.10)

We can therefore rewrite the characteristic function as follows:

Z({χcr}, {χhr};B) = Tr[ρ0V (B)†eiH(B)sV (B)2e−iH(B)sV (B)†]

=
∑
n

〈n| ρ0V (B)†eiH(B)sV (B)2e−iH(B)sV (B)† |n〉 (A.11)

=
∑
ñ

〈ñ|Θ(ρ0V (B)†eiH(B)sV (B)2e−iH(B)sV (B)†)†Θ† |ñ〉

=
∑
ñ

〈ñ|Θ(V (B)eiH(B)sV (B)†
2
e−iH(B)sV (B)ρ0)Θ† |ñ〉

=
∑
ñ

〈ñ|V (−B)†e−iH(−B)sV (−B)2eiH(−B)sV (−B)†ρ0 |ñ〉

= Tr[eiH(−B)sV (−B)†ρ0V (−B)†e−iH(−B)sV (−B)2], (A.12)

where we assumed that the states {|ñ〉} span a complete set if {|n〉} do.
Because Hr and Nr commute with each other for any r, ρ′0 defined in (3.15), or

ρ′0(B) =
1

z

m∏
r=1

eAhrHr(B)+AcrNr , (A.13)

where z =
∏m

r=1 TreAhrHr(B)+AcrNr with Ahr = −βr and Acr = −βrµr, and the operator V
defined in (3.30), or more explicitly

V ({χcr}, {χhr};B) =
m∏
r=1

exp

[
−i
2

(χcrNr + χhrHr(B))

]
, (A.14)

also commute with each other. We can therefore write down the two terms in (A.12) as follows:

V ({χcr}, {χhr};−B)†ρ′0V ({χcr}, {χhr};−B)† =
1

z

m∏
r=1

e(Acr+iχcr)Nr+(Ahr+iχhr)Hr(−B), (A.15)

V ({χcr}, {χhr};−B)2 =
m∏
r=1

e−iχcrNr−iχhrHr(−B). (A.16)
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After simple algebras, we can identify them with

1

z
V ({−χcr + iAcr}, {−χhr + iAhr};−B)2, (A.17)

zV ({−χcr + iAcr}, {−χhr + iAhr};−B)†ρ′0V ({−χcr + iAcr}, {−χhr + iAhr};−B)†, (A.18)

respectively. Equation (A.12) is then rewritten as

Tr[eiH(−B)sV (−B)†ρ0V (−B)†e−iH(−B)sV (−B)2]

= Z({−χcr + iAcr}, {−χhr + iAhr};−B), (A.19)

if ρd commutes with H(−B), where in the first line we left out the arguments {−χcr + iAcr}
and {−χhr + iAhr} for brevity.

As is assumed after Eq. (3.15), we here used ρd = 1d/2
n, which indeed commutes with H.

We thereby have the symmetry

Z({χcr}, {χhr};B) = Z({−χcr + iAcr}, {−χhr + iAhr};−B). (A.20)
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Appendix B

The Sommerferd Expansion at Low
Temperatures

B.1 The Sommerferd expansion at low temperatures

In this appendix, we expand the heat flows JL
Q and JR

Q using the Sommerfeld expansion at low
temperatures [43].

B.1.1 The Sommerfeld expansion

We can expand the integral ∫ ∞
EG

dεg(ε)f(ε) (B.1)

in the form ∫ ∞
EG

dεg(ε)f(ε) =

∫ µ

EG

dεg(ε) +
π2T 2

6
g′(µ) +O(T 4), (B.2)

where f(ε) = {1 + exp[β(ε− µ)]}−1 is the Fermi distribution function and g(ε) is an arbitrary
function which is continuous and infinitely differentiable with respect to ε at ε = µ, while
diverges no more rapidly than some power of ε as ε → +∞. Here, g′(µ) denotes the first
derivative of g(ε) with respect to ε at ε = µ. The expansion (B.2) is called the Sommerfeld
expansion [43].

B.1.2 The derivation of the Sommerfeld expansion

Let us derive the Sommerfeld expansion (B.2). We first obtain the most rough approximation
of the integral by setting T = 0:

∫ ∞
EG

dε g(ε)f(ε) ≈
∫ µ

EG

dεg(ε). (B.3)
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In order to approximate the integral (B.1) when the temperature is small but non-zero, we
subtract the left-hand side from right-hand side of Eq. (B.3):∫ ∞

EG

dεg(ε)f(ε)−
∫ µ

EG

dεg(ε) (B.4)

=

∫ ∞
µ

dεg(ε)f(ε)−
∫ µ

EG

dεg(ε)(1− f(ε)) (B.5)

=

∫ ∞
µ

dε
g(ε)

1 + eβ(ε−µ)
−
∫ µ

EG

dε
g(ε)

1 + e−β(ε−µ)
(B.6)

= T

∫ ∞
0

dx
g(µ+ Tx)

ex + 1
− T

∫ β(µ−EG)

0

dx
g(µ− Tx)

ex + 1
. (B.7)

We here used the transformation x = β(ε−µ) in the first term and x = −β(ε−µ) in the second
term of Eq. (B.6). Assuming T � TF, where TF is the Fermi temperature defined as TF ≡ εF
where εF is the Fermi energy, we have

β(µ− EG) =
µ− EG

T
� 1, (B.8)

and
1

ex + 1
� 1 for x� 1, (B.9)

which show that the integrand of the second term in Eq. (B.7) is exponentially small for large
values of x. We can thus extend the upper limit of the integral of the second term in Eq. (B.7)
from β(ε− µ) to infinity:∫ β(µ−EG)

0

dx
g(µ− Tx)

ex + 1
→

∫ ∞
0

dx
g(µ− Tx)

ex + 1
. (B.10)

This lets us expand the integral I in the form

I = T

∫ ∞
0

dx
g(µ+ Tx)− g(µ− Tx)

ex + 1
(B.11)

= 2g′(µ)T 2

∫ ∞
0

dx

(
x

ex + 1

)
+O(T 4) (B.12)

=
π2

6
g′(µ)T 2 +O(T 4), (B.13)

where we used the Taylor expansion of g,

g(µ± Tx) = g(µ)± g′(µ)Tx+
g′′(µ)

2
(Tx)2 + · · · , (B.14)

and the integral formula, ∫ ∞
0

dx
x

ex + 1
=
π2

12
. (B.15)

Note that

g′(µ) =
dg(ε)

dε

∣∣∣∣
ε=µ

. (B.16)
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B.1.3 Expansion of the conventional heat flow

We can expand the conventional heat flow using Eq.(B.2) as follows:

JL
Q =

1

h

∫ ∞
EG

dε(ε− µL)(fL(ε)− fR(ε)) (B.17)

=
1

h

∫ ∞
EG

dε(ε− µL)fL(ε)− 1

h

∫ ∞
EG

dε(ε− µL)fR(ε) (B.18)

=
1

h

[∫ µL

EG

dε(ε− µL) +
π2TL

2

6
+O(TL

4)

]
− 1

h

[∫ µR

EG

dε(ε− µL) +
π2TR

2

6
+O(TR

4)

]
(B.19)

=
π2

6h
(TL

2 − TR
2)− 1

2h
(µR − µL)2 +O(T 4), (B.20)

JR
Q =

1

h

∫ ∞
EG

dε(ε− µR)(fL(ε)− fR(ε)) (B.21)

=
1

h

∫ ∞
EG

dε(ε− µR)fL(ε)− 1

h

∫ ∞
EG

dε(ε− µR)fR(ε) (B.22)

=
1

h

[∫ µL

EG

dε(ε− µR) +
π2TL

2

6
+O(TL

4)

]
− 1

h

[∫ µR

EG

dε(ε− µR) +
π2TR

2

6
+O(TR

4)

]
(B.23)

=
π2

6h
(TL

2 − TR
2) +

1

2h
(µR − µL)2 +O(T 4). (B.24)
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Appendix C

The Upper Bound of The Efficiency of
The Mesoscopic Heat Engine

In this appendix, we show that the upper bound of the efficiency defined by (4.13) is the Carnot
efficiency and give an example of the transmission coefficient which achieves the upper bound.

C.1 The upper bound of the efficiency of the mesoscopic

heat engine

C.1.1 General upper bound of the efficiency

Let ṠL and ṠR denote the entropy productions in the left and right reservoirs, respectively.
Using the equalities dQ = TdS = dU − µdN , we can relate these entropy productions to the
conventional heat flows as

JL
Q ≡ U̇L − µLṄL = −TLṠL, (C.1)

JR
Q ≡ U̇R − µRṄR = TRṠR. (C.2)

These relations let us transform the efficiency (4.13) to the form

η =
IV

JL
Q

(C.3)

=
JL
Q − JR

Q

JL
Q

(C.4)

=
−TLṠL − TRṠR

−TLṠL

(C.5)

=
TLṠL + TRṠR

TLṠL

. (C.6)

57



We here impose the condition that the net entropy production Ṡ = ṠL + ṠR is positive, that is,
ṠR ≥ −ṠL, which gives

η =
TLṠL + TRṠR

TLṠL

(C.7)

≤ TLṠL − TRṠL

TLṠL

(C.8)

= 1− TR

TL

= ηc, (C.9)

where ηc is the Carnot efficiency. We can achieve the equality if and only if ṠL = ṠR, that is,
Ṡ = 0.

C.1.2 Example of the transmission coefficient which gives the Carnot
efficiency

The Landauer-Büttiker formalism with the transmission coefficient gives

I =
e

h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)), (C.10)

JL
Q =

1

h

∫ ∞
EG

dετ(ε)(ε− µL)(fL(ε)− fR(ε)). (C.11)

We thus express the efficiency (C.4) in the form

η =
IV

JL
Q

(C.12)

=
(µR − µL)

∫∞
EG
dετ(ε)(fL(ε)− fR(ε))∫∞

EG
dετ(ε)(ε− µL)(fL(ε)− fR(ε))

. (C.13)

We now know that we can achieve the Carnot efficiency when the total entropy production
of the system is zero. We thus express the total entropy production with the Landauer-Büttiker
formalism:

Ṡ = ṠL + ṠR (C.14)

=
QL

TL

+
QR

TR

(C.15)

= −
JL
Q

TL

+
JR
Q

TR

(C.16)

=

∫ ∞
EG

dετ(ε)

(
−ε− µL

TL

+
ε− µR

TR

)
(fL(ε)− fR(ε)) (C.17)

=

∫ ∞
EG

dετ(ε){[log fL(ε)− log(1− fL(ε))]− [log fR(ε)− log(1− fR(ε))]}

× (fL(ε)− fR(ε)) (C.18)

=

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)) log

[
fL(ε)(1− fR(ε))

fR(ε)(1− fL(ε))

]
. (C.19)
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Let us assume τ(ε) ≥ 0, which is physically reasonable. We can show that the integrand in
Eq. (C.19) is always non-negative as follows. When fL(ε) ≥ fR(ε),

fL(ε)(1− fR(ε)) = fL(ε)− fL(ε)fR(ε) (C.20)

≥ fR(ε)− fL(ε)fR(ε) (C.21)

= fR(ε)(1− fL(ε)), (C.22)

which leads to

log

[
fL(ε)(1− fR(ε))

fR(ε)(1− fL(ε))

]
≥ 0. (C.23)

When fL(ε) ≤ fR(ε), on the other hand, we can show

log

[
fL(ε)(1− fR(ε))

fR(ε)(1− fL(ε))

]
≥ 0 (C.24)

similarly. Using these inequalities and τ(ε) ≥ 0, we can show that the integrand is always
non-negative:

τ(ε)(fL(ε)− fR(ε)) log

[
fL(ε)(1− fR(ε))

fR(ε)(1− fL(ε))

]
≥ 0. (C.25)

Let us then consider the condition for Ṡ = 0. We easily find the following condition; for
each value of ε, τ(ε) = 0 or fL(ε) − fR(ε) = 0. If τ(ε) = 0 for any ε or if fL(ε) − fR(ε) = 0
for any ε, however, the transport would not happen, that is, the condition is trivial. We thus
have to find a nontrivial condition in which τ(ε) 6= 0 and fL(ε)− fR(ε) = 0 at an energy; if we
demanded fL(ε) = fR(ε) at two energies, they would be equal at any energy.

In order to do this, let us set the transmission function [44]

τ(ε) = δ(ε− εc), (C.26)

where εc is a constant. This transmission function is not a sufficient condition but a necessary
condition for us to obtain Ṡ = 0. Let us also set the condition

fL(εc) = fR(εc), (C.27)

which gives the value of εc as follows:

fL(εc) = fR(εc) (C.28)

⇔ 1

1 + eβL(εc−µL)
=

1

1 + eβR(εc−µR)
(C.29)

⇔ βL(εc − µL) = βR(εc − µR) (C.30)

⇔ εc =
TLµR − TRµL

TL − TR

. (C.31)

Substituting Eq. (C.26) into Eq. (C.13), we obtain the following expression of the efficiency:

η =
(µR − µL)

∫∞
EG
dετ(ε)(fL(ε)− fR(ε))∫∞

EG
dετ(ε)(ε− µL)(fL(ε)− fR(ε))

(C.32)

=
(µL − µR)(fL(εc)− fR(εc))

(εc − µL)(fL(εc)− fR(εc))
(C.33)

=
µL − µR

εc − µL

. (C.34)
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Substituting Eq. (C.31) into Eq. (C.34), we indeed achieve the Carnot efficiency:

η =
µL − µR

εc − µL

(C.35)

=
µL − µR

TLµR−TRµL

TL−TR
− µL

(C.36)

=
TLµR − TLµL − TRµR + TRµL

TLµR − TLµL

(C.37)

=
TL(µR − µL)− TR(µR − µL)

TL(µR − µL)
(C.38)

= 1− TR

TL

= ηc. (C.39)

Note that when η = ηc, the electric current and the heat current vanish:

I =
e

h

∫ ∞
EG

dετ(ε)(fL(ε)− fR(ε)) (C.40)

=
e

h
(fL(εc)− fR(εc)) (∵ τ(ε) = δ(ε− εc)) (C.41)

= 0 (∵ fL(εc) = fR(εc)), (C.42)

JL
Q =

1

h

∫ ∞
EG

dετ(ε)(ε− µL)(fL(ε)− fR(ε)) (C.43)

=
1

h
(εc − µL)(fL(εc)− fR(εc)) (∵ τ(ε) = δ(ε− εc)) (C.44)

= 0 (∵ fL(εc) = fR(εc)), (C.45)

which gives the vanishing power IV . This is the same as the standard heat engine; the Carnot
cycle produces zero power.
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