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Abstract

In the present thesis, we study the heat flow in mesoscopic one-dimensional transport sys-
tems. Using the analysis of full counting statistics, we calculate the cumulant generating
function of the particle and heat flows and prove its symmetry. The symmetry produces the
relations among transport coefficients of the particle and heat flows when we expand these
flows with respect to the appropriate affinities. Moreover, we consider the generalized flows
which are superpositions of the particle and energy flows. We show that we can choose the
appropriate affinities of the generalized flows and derive the relations among their transport
coefficients when we expand the generalized flows with respect to their affinities.
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Chapter 1

Intoroduction and Notation

In this chapter, we explain a brief history of studies on linear irreversible thermodynamics and
its application to thermoelectric devices. We then introduce mesoscopic transport systems, in
particular mesoscopic thermoelectric systems, which can be beyond linear-response regime. We
finally explain notations which are used throughout this thesis.

1.1 Introduction

1.1.1 Thermoelectric device as a heat engine and linear irreversible
thermodynamics

Thermoelectric devices, which convert heat to work or vice versa, have helped the development
of our society. Applications of thermoelectric devices include thermoelectric generator, thermo-
electric refrigerator, and so on [1]. In order to analyze thermoelectric devices, linear irreversible
thermodynamics has been used [1,2]. Linear irreversible thermodynamics is a phenomenological
formalism which was constructed mainly by Onsager. Although the standard thermodynamics
can treat only equilibrium, not transport problems, the linear irreversible thermodynamics lets
us handle the latter.

Let us overview Onsager’s formalism of linear irreversible thermodynamics [1-3]. We con-
sider two regions whose temperatures and chemical potentials we can define as shown in Fig. 1.1.
We then assume that the system has reached a non-equilibrium steady state in which there are
constant flows from one region to the other. Let us expand the particle and energy flows, Jy

temperature temperature

T + AT sze T

chemical Jr chemical
potential 9 potential
p+Ap ph

Figure 1.1: The system in consideration.



and Jg, in terms of u/T and —1/T"

Iy = LNNA<%> + LNEA<—%) , (1.1)
Jp = LENA<%) + LEEA(—%> . (1.2)

The expansion coefficients Lyy, Lyg, Leny, and Lgg are the transport coefficients for the
particle and energy flows. The Onsager-Casimir relations are the relations among them under
a magnetic field B [3-5]:

Lyn(B) = Lyn(—B), (1.3)
Lng(B) = Lgn(—B), .
Lip(B) = Lgp(—B). (1.5)

Recently, the thermoelectric device has been studied as a heat engine from a point of view
of the efficiency at the maximum power [6-12]. Let us describe the setup to consider the
thermoelectric device as a heat engine. We set the chemical potential of the right reservoir
to be higher than the left, while the temperature of the left reservoir to be higher than the
right so that an electric current may go from left to right against the difference of the chemical
potential; in other words, we set AT > 0 and Ap < 0 in Fig. 1.1. What happens per unit time
is the following. Electrons gain heat defined by Jo = Jg — pJy from the hot left reservoir, go
to the right against the potential difference —Ap = |Ap|, during which electrons do the work
of amount Jy|Apu|. We can thus consider this system as a heat engine. The efficiency 7 of this
engine is therefore given by

_ In|Ap]
n= Jo

In order to analyze the efficiency of a heat engine, linear irreversible thermodynamics is still
useful. When the relations for the particle and energy flows, Eqs. (1.3)—(1.5), are valid, we can
prove that the Onsager-Casimir relations are also valid for the coefficients of the particle and
heat flows [2]. In order to prove it, we expand Jy and Jg as follows:

Iy = LNNA(E) + LNEA<—%)

(1.6)

T
Ap 1 1
I O )
A 1
= LNNTM + (Lng — MLNN)A(_T) ; (1.7)
and
JQ = JE — ,uJN
1
= (Lgny — PJLNN)A<%> + (Lgg — ,ULNN)A(_?)
A 1 1
= (Lgn — nLnw) [TN + ,MA(T)] + (Lgr — ,MLNN)A(—f)
Ap 9 1
= (Lgny — PJLNN)T + [Lgg — (LN + Lvg) + p”Lyn]A -7 (1.8)



Let us define new transport coefficients as follows:

Ap 1

Jy = GNN T + GNQA(—?) , (19)
Ap 1

JQ = GQNT + GQQA<_T) . (110)

Comparing Eqs. (1.7)—(1.8) and Eqgs. (1.9)—(1.10), we can express the new transport coefficients
GNN; GNQ, GQN, and GQQ in terms of LNN; LNQ, LQN, and LQQ:

Gnn = Lyw, (1.11)
GNQ:LNE_,ULNN> ( )
Gon = Lgy — pLnn, (1.13)
Goo = Lep — u(Len + Lyg) + *Lyn. (1.14)

We can then prove the Onsager-Casimir relations for the particle and heat flows under a mag-
netic field B as follows:

Grw(B) = Lun(B) = Lyn(—B) = Gyn(—B), (1.15)
Gnq(B) = Lng(B) — pLnn(B) = Lpn(—=B) — pLyn(—=B) = Gon(—B), (1.16)
Goo(B) = Lge(B) — i(Len(B) + Lyp(B)) + pLyn(B)

= Lpp(—B) — p(Lye(=B) + Lpn(=B)) + i’ Lyn(=B) = Goo(=B),  (1.17)

where we used the Onsager-Casimir relations for the particle and energy flows, Eqs. (1.3)—(1.5).
We thus conclude that if the Onsager-Casimir relations for the particle and energy flows are
valid, the Onsager-Casimir relations for the particle and heat flows are also valid. Using these
relations, we can further prove that the upper limit of the efficiency Eq. (1.6) is the Carnot
efficiency, using the Onsager-Casimir relations and the positivity of the entropy production [7].

1.1.2 Thermoelectric device in mesoscopic transport systems

Reservoir Reservoir
Chemical Potential Chemical Potential
Uy a quantum wire LR

Temperature

.

Temperature

Tr

Figure 1.2: The mesoscopic system which has a quasi one-dimensional wire and two reservoirs
attached to it on both sides.

Mesoscopic transport systems are systems in which a conductor of length L much shorter
than the momentum-relaxation length L, and the phase-relaxation length L, is attached to
reservoirs [14, 15]. Various interesting phenomena occur because of the length scale, which is
called the ballistic transport regime. Let us consider here the simplest system shown in Fig. 1.2,
which consists of a quasi-one-dimensional quantum wire in the ballistic transport regime and

9



two reservoirs attached to it on both sides. The Landauer-Biittiker formula is particularly
useful in this regime [13-16]:

- / der(&)(fule) — fale)), (1.18)

Eg

where [ is the electric current across the system, Eq the ground-state energy of the wire, 7(€)
the total transmission probability of the wire, and f,(€) the Fermi distribution function of a
Fermi gas in a reservoir o = L, R; see the notation section 1.2 and Chapter 2 for details. Such
a system was theoretically considered by R. Landauer in 1957 [13], but had not been realized
experimentally until 1988 [17]. Thanks to the improvement of sub-micron technology today,
more refined mesoscopic transport systems are made experimentally, which is also stimulating
vigorous theoretical researches.

With the development of the research in the mesoscopic transport systems, the mesoscopic
thermoelectric device has also been considered theoretically and experimentally [9-12,18]. Tt is
expected to have a good efficiency because of its little heat leakage [18].

In such a device, nonlinear effects can occur easily. For example, an experiment [19] suggests
that the Onsager-Casimir relations, which are valid in the linear-response regime, are broken
under a strong external field. This implies that one can make mesoscopic thermoelectric devices
in a nonlinear regime under controlled external fields such as the difference of the chemical
potential and the temperature. However, most of the theoretical approaches are still in the
linear-response regime [9-12]. There are a limited number of researches in the nonlinear regime
[20,21], but a general nonlinear theory for mesoscopic thermoelectric systems, which would be
a counterpart of Onsager’s formalism in the linear-response regime, is yet to come.

Indeed, Saito and Utsumi [22] have recently found relations among nonlinear transport
coefficients of the particle and energy flows, using full counting statistics [23,24]. In the linear-
response regime, if the Onsager-Casimir relations for the particle and energy flows are valid,
those for the particle and heat flows are also valid as we showed above. There should thus be
similar relations among nonlinear transport coefficients of the particle and heat flows. We have
indeed found them using full counting statistics, which we explain in this thesis.

In Chapter 2, we review the Landauer-Biittiker formula [13-16], which is essential in treating
mesoscopic transport systems. Using it, we calculate the average particle flow as well as its
second-order cumulant. In Chapter 3, we review the work by K. Saito and Y. Utsumi [22], in
which the authors obtained the relations among the transport coefficients of the particle and
energy flows. Using the analysis of full counting statistics [23,24], we calculate the cumulant
generating function of the particle and energy flows and prove its symmetry. The symmetry
produces the relations among transport coefficients of the higher-order cumulants of the particle
and energy flows. In Chapter 4, we properly define the heat flow in mesoscopic transport systems
and derive the relations among the transport coefficients of the higher-order cumulants of the
particle and heat flows. Moreover, we introduce the generalized flows which are superpositions
of the particle and energy flows. We show that we can choose the appropriate affinities of the
generalized flows and derive the relations among their transport coefficients when we expand
the generalized flows with respect to their affinities. We finally discuss their application to the
calculation of the nonlinear Seebeck coefficient. In Chapter 5, we summarize our results and
discuss possible future works.
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1.2 Notation

Let us here fix the notation. Throughout the present thesis, kg denotes the Boltzmann constant,
h the Planck constant and e the elementary charge; for simplicity, we put kg = 1 throughout

this thesis.
Let f.(€) denote the Fermi distribution function of a Fermi gas in a reservoir «:

fale) = [1 4 efalempa)] =L, (1.19)

where [, is the inverse temperature 1/T, with T, the temperature and p, is the chemical

potential.
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Chapter 2

Landauer-Buttiker Formalism

In this chapter, we explain the Landauer-Biittiker formalism, calculating the first- and second-
order cumulants, namely, the average and the noise of the particle flow. In Section 2.1, We
present an elementary introduction of the Landauer-Biittiker formalism because we would like
readers to understand the formalism intuitively first. In Section 2.2, we introduce the approach
using the second quantization to calculate the average as well as the noise of the particle flow.
Note that we neglect the spin of electrons throughout this chapter.

2.1 Landauer-Biuttiker formalism for calculation of av-
erage current

The Landauer-Biittiker formula is used to calculate the electric current through a quasi-one-
dimensional mesoscopic conductor. The word ‘quasi-one-dimensional’ indicates a conductor
with the z-direction free while y- and z-directions confined. We specifically consider the system
shown in Fig. 2.1, which consists of a quasi-one-dimensional quantum wire and two reservoirs
attached to it on both sides.

We here consider free electrons; that is, we neglect the electron-electron and electron-phonon
interactions. The Schrodinger equation of an electron in the wire is given by

h2k?
2m

HY(z,y,2) = ( + V(y, z)) U(x,y,2) = EY(z,y, 2), (2.1)

where h is the Planck constant, k is the wave-number vector, m the effective mass of electrons,
V (y, z) the confined potential, and E the energy. Let us here separate the variables of ¥(z, y, 2)

Reservoir Reservoir
Chemical Potential Chemical Potential
U a quantum wire UR

Temperature

L

Temperature

Tr

Figure 2.1: The system in consideration.
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Figure 2.2: Dispersion relation in the z direction.

as follows:
U(z,y,2) = Y(@)o(y, 2), (2.2)

which gives the Schrodinger equation in each direction in the forms

K2k

5, V(@) = Es(2), (2.3)
(W + V(y, Z)) oy, z) = By .0(y, 2), (2.4)

where each of E, and E, , is the energy in the corresponding direction. Solving Eqgs. (2.3) and
(2.4), we obtain the wave function V(z,y, z) as follows:

Ui, (2,9, 2) = e * ¢, (y, 2), (2.5)
where k, is the wave number in the x direction given by

h2k,?

E, = (2.6)

om

Note that as the electrons are confined in the y and z directions, they have the discrete energy
E, . = FE,, where n is the label of the level. Let us refer to the levels labeled by n as ‘channels’,
through which electrons are transported in the = direction. The total energy of an electron is

h2 2
E=E,+E,,= 27; + B, (2.7)

see Fig. 2.2. Throughout this thesis, we denote the energy for k, = 0 and n = 0 by the
ground-state energy Eg.

In the Landauer-Biittiker formalism, the important quantity is the transmission coefficient
of the wire. We therefore explain the quantum scattering problem for a while, particularly the
S-matrix.

14
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Figure 2.3: The definition of the amplitudes a™™, a®", b™, and b°".

2.1.1 Single-channel case

Let us first consider the S-matrix in the case of a single channel, in which we denote a™®, a°",

b, and b°"* as the amplitudes of the incoming flow from the left reservoir, the outgoing flow to
the left reservoir, the incoming flow from the right reservoir, and the outgoing flow to the right
reservoir, respectively (Fig. 2.3). The relation among the amplitudes ™, a®®, b™, and b°"* is
expressed by the S-matrix in the form

aout ain r t/ ain
(bout) = S (bin) - (t T/) (bin> ) (28>

where r and " are the reflection coefficients while ¢ and ' are the transmission coefficients. We
here remark that |¢t|? and |r|* are the transmission and reflection probabilities from left to right
and |#'|* and |r'|? are those from right to left.

We can prove that the S-matrix is unitary as follows. The conservation of the flux gives the

conditions . .
|a1n‘2 4 |bm|2 — |aout|2 4 ‘bOUt|2. (29>

Using Egs. (2.8) and (2.9), we have

out in
‘aout’2 4 ‘bout’2 _ (aoutT boutT) (Zout) — (ainT binT) STS (Zin>
‘ . ' . in out
:‘am‘Q 4 ’bln’? — <a1nT blnT) (Zin) — <a0utT boutT) S*ﬁsfl <Zout> , (210)

which gives STS =1 and §-17§-1 = (SST)~! = 1. The second condition gives SST = 1. The
S-matrix is therefore unitary.

Using these unitarity conditions, we can derive the following relation among the transmission
and reflection coefficients:

t t 2 /12 t Al
P (T '\ [rT t _ P2+ [H]2 rtt +tr (10
SS (t T’) (t/T i ’I“Tt—i—Tlt/T |,r,/|2+ |t|2 0 1)/’ (2.11)
which gives the condition
2+ 2 = |2+ [t =1 (2.12)

The relation STS = 1 also gives the condition
2 4 2 = |2+ 2 = 1 (2.13)
Using these conditions, we obtain the relations

Ir|> =|r'|* and |t|* = |t'|%. (2.14)

15
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Figure 2.4: The definition of the elements of a™®, a®®, b™ and b°"*.

2.1.2 Multi-channel case

We can easily extend the single-channel case to the multi-channel case. Let N denote the
number of channels. Note that N can be infinite in principle, but in real materials, the electron
has a cut-off energy because of the energy band structure, and hence N may be finite. We at
first define the N-dimensional vectors a'®, a®, b and b°"*, whose components a®, a%", bi",
and b°" for 1 < n < N, respectively, denote the amplitudes of the incoming flow from the left
reservoir, the outgoing flow to the left reservoir, the incoming flow from the right reservoir, and
the outgoing flow to the right reservoir, each in the nth channel (Fig. 2.4). We can express the
relation among these vectors with the S-matrix in the form

aout ain r t/ ain
<bout) = S (bin) = (t 7,/) (bin) ) (215)
where r and 1’ are N x N-dimensional reflection matrices and ¢ and ¢ are N x N-dimensional
transmission matrices.

Similarly to Eqgs. (2.9)-(2.10), we obtain the unitarity condition SST = STS = 1, which
gives the conditions of r, v, ¢, and t':

N
Sst=1« Z (Irsg P+ 151%) = D (' + 1t = 1, (2.16)
7=1
STe =1« Z(|rﬁ|2 + |ti]?) Z (175l + [t'5:%) = 1. (2.17)
j=1 j=1
They are followed by
N N
D gl + 155 = > rsl® + [83:), (2.18)

j=1 j=1
where 7;;, /55, t;;, t';; are components of the reflection and the transmission matrices r, r’, ¢,
t', respectively. We here remark that |r;;|* and |r’;;|* are the reflection probabilities from the
jth channel of the left and right to the ¢th channel of the left and right, respectively, while
|t;;]* and |¢/;;|* are the transmission probabilities from the jth channel of the left and right to
the ith channel of the right and left, respectively. Summing both sides of Eq. (2.18) over ¢, we

16



obtain the equality

N

> (ral® + 1351

ij=1

rial® + [t5l°)

’ﬂ‘j’Q + ‘tz’j‘z)v (2.19)

N
>
ij=1
N

>
ij=1
where in the second equality we replaced r;; and t;; with r;; and ¢;;, respectively. We can obtain
from Eq. (2.19) the following equality of the transmission probabilities:

N N
SO = > Il (2.20)
ij—1 ij—1

where the left-hand side is the transmission probability from left to right and the right-hand
side is that from right to left. This equality is a generalization of Eq. (2.14) to the multi-channel
case. Note that the transmission probability (2.20) can be expressed in the form

N

D Jtisl? = Tr(tt). (2.21)

i,j=1

2.1.3 Calculate the current

Let us now calculate the electric current within the Landauer-Biittiker formula. We calculate
it in the multi-channel case below. We make the following assumptions in order to do so:

e The current coming into the lead holds the Fermi distribution of the reservoir in which
it originally was and relaxes in the reservoir which it goes into.

e The current which goes from the lead into the reservoir is not reflected back into the lead.

e The electrons in the lead are one-dimensional non-interacting Fermi particles, and there-
fore the current to the left and one to the right are independent of each other.

Under these assumptions, the current which flows in the ith channel in the energy range [, e+de|
is given by
I (€) = ev(e) fa(€) De(€) T} (€)de, (2.22)

where e is the elementary charge, « = L., R denotes the current from left to right and that from
right to left, respectively, v(e) = de/dk is the group velocity of electrons, D,(¢) = dk/de =
(hv(e))™! is the density of states of one-dimensional ideal Fermi gas, and T}(e) is the transmis-
sion probability for electrons to transmit from the ¢th channel in the left lead to a channel in
the right lead, while T} (¢) the opposite.

We can express 1 (e) in terms of the elements ¢;; of the transmission matrix; for example,
we have

Ti(e) = Z ti(e)], (2.23)
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because the matrix element ¢;; is the probability amplitude with which the incoming wave in
the ¢th channel in the left lead transmits into the jth channel in the right lead as we explained
below Eq. (2.18). We can similarly express T (¢) in terms of #';; in the form

Rie) = Z It:(e)] 2. (2.24)

The total current in the energy range [e,e + de| is the difference between the left-going
current and the right-going current:

Z dIr — Z dIt

i=1

b‘ |

— fr(e€))de (2.25)

D‘ |

ZfL tji(€)1” — fr(e)[ts;(e)|*)de
5 Xt

where in the last equality we exchanged the dummy variables i and j and used Eq. (2.20). We
obtain the total current by integrating dI with respect to the energy e:

~ [ane

- " e [Z (€ (file) — fale)

=5 [ a0 - fate) (2.26)

where 7(¢) = Zf?;zl |t:;(€)|* = Tr(tt") is the total transmission probability. Equation (2.26) is
called the Landauer-Biittiker formula [13-16].

2.1.4 Conductance quantization

Let us observe the conductance quantization within the Landauer-Biittiker formula at zero
temperature. The Fermi distributions in the left and right reservoirs at zero temperature are
respectively given by

Jal€) = O(e = pa), (2.27)

where ©(e — 11,,) is the step function. The current [ is given by the Landauer-Biittiker formula
(2.26), which in the present case reduces to

= %/w der(€)[O(e — i) — Oe — pr)). (2.28)

Eq
Let us calculate the conductance G, which is defined by

df

G=—
dv

(2.29)

V=0

18



where V' is the voltage difference defined by V' = (u, — ur)/e. Using Eq. (2.28), we have

¢-: /E °° der(€) o 16(e — pe) — Olc — )] »

- %T(EF>, (2.30)
where Fr = up, = ur denotes the chemical potential of the left and right reservoirs at V' = 0,
namely the Fermi energy.
Let us consider the transmission coefficient 7( Er). Because of the zero temperature, there is
no electron which has an energy above Fg, so that no electrons transmit from and to a channel
whose bottom energy is higher than Er. This fact gives the transmission function

T(Er) = Y [t(Ee)P, (2.31)

ij=1
where n is the number of channels below Fr. Assuming that the diagonal elements |¢;;( Er)|* are
all equal to a constant 7" and the other elements are equal to zero, we observe the conductance

quantization:
2

G = %Tn. (2.32)

We can find from Eq. (2.32) that the conductance increases stepwise by a discrete value of
(€2/h)T as the number of channels below the Fermi energy increases. This conductance quan-
tization was indeed observed in the experiment [17].

2.2 Calculation of the noise with second quantization

In this section, we calculate the shot noise within the Landauer-Biittiker formalism. In order to
do this, we use the second-quantization approach [16,25]. First, we derive the average current,
whose result is the same as the Landauer-Biittiker formula (2.26). We then derive the expression
of the shot noise. The advantage of this approach is that the Pauli exclusion principle comes
in naturally.

2.2.1 Average current

r=0
ap ————
DR
lead scatterer

Figure 2.5: The lead connected to the scatterer. We denote a; and aL the annihilation and
creation operators of the right-moving electrons, while b, and b/,TC the annihilation and creation
operators of the left-moving electrons.
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Let us first find the current operator of the system shown in Fig. 2.5. The Hamiltonian of
the lead is

H=> el (2.33)
k

where ¢, and cL are the annihilation and creation operators, respectively. The energy of the
electron is given by

R2k?

2m

: (2.34)

€L —

where k is the wave number of the electron and m the effective mass. We here remark that
we may derive the Landauer-Biittiker formula without assuming the dispersion relation (2.34),
but for simplicity, we assume that the dispersion relation is given by Eq.(2.34). The current
operator is given by

10) = o (09 - o))

2m dx
:2€hLZ(Zk_/zk —k)x TC +ll€6l(k kxT )
m
ke,k!
eh Nt i(k—k")z
=5z > (k+K)dewe : (2.35)
ke k!

where 1)(z) and v'(z) are the field operators given by

P(z) = % Zei’“ck, (2.36)
\/_Z kel (2.37)

Since the current is conserved, Eq. (2.35) should be independent of x, and hence should reduce
to

eh ,

kK

In the Landauer-Biittiker formalism, we consider the current going to right and one going
to left independently, which enables us to define the annihilation and creation operators of the
right-moving electrons, a; and aL, as well as the annihilation and creation operators of the

left-moving electrons, b, and b,z. Using these operators, we can express the Hamiltonian in the
form

H=> eajap+ Y bl (2.39)

k>0 k<0
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Figure 2.6: Two leads attached to the both sides of the scatterer.

We can write down the current (2.38) in terms of the new operators as

eh
I(x) =1(0) = 5T Z(/{: + k')cLCk'
kK’
h
= 2767’LL [ Z (k’ + k’/)CLCk/ + Z (k? + k?/)CLCk/ + Z (k/‘ + k/)CLCk/]
k,k'>0 k,k’'<0 k,k's.t.kk’<0

(&
=35I [ Z (vx + Uk/)CLCk/ + Z (vp + Uk/)c};ck/ + Z (vg + Uk’)CLCk’]

k,k’'>0 k,k'<0 k,k's.t.kk'<0

e
oL D ok + ow)(chew — clyep) + (0n = vr)cfep + (ow — o)l o

k,k'>0
e
= ﬁ Z (/Uk + /Uk/)(a]tak/ — bLbk/) + (Uk — /Uk’)a'i];;bk’ + (Uk’ — /Uk)b.i[;;ak’
k,k’'>0
= % Z (v + v )(atap — bLby) + (cross terms), (2.40)
k,k’'>0

where v, = hk/m is the group velocity of the electrons. Note that the cross terms vanish when
k=F.

We next consider the system where two leads are attached to the both sides of the scatterer as
shown in Fig. 2.6. We denote the annihilation and creation operators of the incoming electrons
in the lead a = L,R by a, and al}k, respectively, while those of the outgoing electrons by b,

and bL k-
The S-matrix defined in Eq. (2.8) gives the relation

b,k ar, i
k) — g k) 2.41
(bR,kz) (CLR,k ( )
where we now use the notation

7= (Gt ) - r) -

The unitarity condition of the S-matrix is guaranteed by the following commutation relations:

(ks @y ] = [k B o] = OO, (2.43)
[aa,k:a aa’,k’] = [ba,ku ba’,k’] = 07 (244>
[aj;,k’al’,k’] = [bjx,k’ bL’,k’] =0. (2.45)
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We can express the current operator I(x = 0) going from the lead L to the scatterer as
Eq. (2.40):

e
Ii(x=0) = o Z (v + vk/)(aTL’kaLk/ — bTL,kbL,k/) + (cross terms)
koK' >0

e
= ﬁ Z (Uk—FUk/)

e,k >0
X [GLWLJ@’ — (Sti(k)*af . + Sur(k)“af ) (Su(K)al 0 + SLR(k/)aLJc’)]
+ (cross terms)

€ Q,
=57 Z Z Z (v + vk/)&LkAL’B(k, K")ag + (cross terms), (2.46)
a=L,R f=L,R k,k'>0

where
AP (k,K') = 01,0015 — Sra(k) SLa(K). (2.47)
Let us introduce the statistical average of the creation and annihilation operators:
(al, kas) = Ga 0k fulk), (2.48)

which means that the distribution of incoming electrons is the Fermi distribution of the bath
where they originally were. We thereby calculate the statistical average of the current as

(IL) = i Z Z Z (g + o) APP (K, k")(a&ka@m + (cross terms)

a=L,R =L,R k,k'>0
€ ao
a=L,R k>0
(&

=7 /OO de Z AP (e, €) fale), (2.49)

Ec  4=LR

where in the second equality the cross terms vanish because they survive only when & # £’ but
the statistical average insists k£ = k’. In the last equality we replaced the summation ), with
the integral with respect to energy, assuming that the value of L is large enough for us to do
the transformation as follows:

%Z — /% — /dGDg(G), (2.50)

where 1 di .
m
D = _ —_ = = 2.51
(€) 2rndE  2mwhv,  27h2k (2:51)
is the density of states of the one-dimensional ideal Fermi gas.
Using the relations between the elements of the S-matrix, we have
At (e, €) =1 = Spp(€)" Sen(e) = 1 — [r]2 = |t)? = 7(e), (2.52)
AR (e €) = —Spr(€)*Sirle) = —|t'|> = —|t|* = —7(e), (2.53)

which reduces (2.49) to the Landauer-Biittiker formula

(h) =5 [ der()(file) = fule) (2.54)

Eg
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2.2.2 Shot noise

The current noise contains much important information of the system in question. The power
spectrum of the current noise is defined by

T—o0 1’ T—o0 T

S(w) = lim —|AI( = lim —/ dt dt (AT()AI(t))e 1), (2.55)

MH
MH

where w is the frequency, T' is the time to observe the current, I(¢) is the electric current,
A[ ( ) = (I (1)) — [ (t) is the fluctuation of the electric current from its average value, and

f /2 dtI(t)e™! is the Fourier transform of the electric current I(¢). To calculate the
shot noise, let us deﬁne the correlation function of the electric current as follows:

C(t,t') = (AL ALL(H)) = (L) IL(t) = (L)) (L)), (2.56)

where AL (t) = I1,(t) — (IL(t)) is the fluctuation operator of the current. Using this function,
we can express the power spectrum of the current noise, Eq. (2.55), as follows:

S(w hm—/ dt/ dt'C(t,t")e 1), (2.57)

T—o0 T

which is of the same form as the classical noise power. Note, however, that the current operators
I1,(t) and Ip,(t') of different time do not commute with each other in the quantum case. When
the Hamiltonian of the system does not depend on time, the system has the time-translational
symmetry, and hence we can express the correlation function as C(¢,t') = C'(t —t'). Moreover,
we assume that the correlation function C'(t —t’) tends to zero when the time difference |t — /|
goes to infinity. Based on these considerations, we can express the noise power S(w) in the
form:

S(w) = lim = dt dt’ )eiwt=t)
T—oo T T g
. H = ? iwAt
_jlgroloT/gdt/ dAtC(At)e
T
2

s
=
S E
N
—

+o0
dt’ / AAtC(At)e™A!
T

_ / @, (2.58)

—00

In general, S(w) contains many components of different w. We, however, only calculate the
zero-frequency component of S(w) for simplicity:

o0

5(0) =2 / T HALL(DALL(0)) = 2 / dt (L (DIL0) — (L)L),  (259)

o0 [e.e]

In order to calculate S(0), we need the time evolution of the current operator I, (t). We thus
use the time evolution of the creation and annihilation operators:

Ao (1) = €% ey, (2.60)
al,k(t) = e’/ Cokr (2.61)
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which gives us the expression of the current operator at time ¢:

e «@ i(ep—€rs
I(t) = 57 SN0 (e vw)al AP (kK ag el s, (2.62)

a=L,R =L,R k,k'>0

where we ignore the cross terms because they will vanish when we take the statistical average
below. Substituting Eq. (2.46) and its time evolution I1,(t) into Eq. (2.59), we can express S(0)
in the form:

eN? [~ a N B g
S(O) =2 (ﬁ) / dt Z Z (Uk —+ ’Uk/)(vk// + /Uk///)ALﬁ(k, k )AL A (k ,k )

T kR KRS0 B0l

X |:<ajl)z7k‘aﬂ,k/a’(];/,k”a/ﬂlvkm> — <aj)z,k’aﬁyk/><aL/7k//a’B/7km> 6i(ek_€;§;)t/h. (263)

In order to calculate the statistical average of the creation and annihilation operators, we
use Wick’s theorem [26]:

(ABCD) = (AB)/{CD) — (AC)(BD) + (AD)(BC), (2.64)

where A, B, C', and D are arbitrary Fermion operators. Substituting al’k for A, agy for B,
aL%,, for C', and ag p~ for D, we obtain

(al pagal, wag ) = (al asw)al, wag ) — (@l al, ) (aswas )
+ {al pag wr)(agpaly )

= (al japp)(al, pag ) + (al yag ) agal ). (2.65)

In the second equality, we used the equation

(al wal, ) (agwag ) =0, (2.66)

because the operators aL kal, w and agrag g do not conserve the number of particles, so that

the statistical averages of these operators become zero. Using Eqs. (2.48) and (2.65), we obtain
the following relation:

(0l pagwal, wag ) — (al ag i) (al pap ) = (al wag ) (al jyao )
- 5a7ﬁ/5k’k”/6ﬁ7a/6k/7k//fa(k)(1 - fﬁ(k)) (267)

Using Eq. (2.67) and the transformation (2.50), we finally obtain the expression of the shot
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noise as follows:

e\ [ Q N B g
sO=2(37) [ dt XY ok ) ow o) AT (R KA R

k' k" K" >0 a,B8,a! B

: _ !
X [(a;k%,kz'algw%ﬂkﬂ/) — (al cagw)lal, joag )| eHmWI

e \2 0o ) | Lo
’ <ﬁ> / at Z Z (g + o) (Vg + Uk"”)ALB(k’, k)AL ’ (K", k")
—00 k,k’,k”,km>0aﬂ O/,B’
X (B3 Ortr 0,00k o (k) (1 — fa (k)] eiermk)/R
(& 2 0 o / o / 6 .
2 <ﬁ) / dt Y (v +ow) AR (b, K AL (K ) fa(k) (1 — fa(k))elx it/

> k,k'>0 o,B,

= gz |, D0 [E wen@) [~ a
D A A€l = o)

2% 4e 7 A (e, AL (6, FalO)(1 = f3(0)). (2.68)

Ba  ap

where we used the relation
dteZ D — onhi(e — €) (2.69)
in the last equality.
In order to express the noise more simply, we use Egs. (2.52) and (2.53) as well as the
relations

AR (e €) = —Spp(€)" Spr(e) = —r*t, (2.70)
Al (e,€) = —Spr(€)*Siple) = —t'r, (2.71)

which give the relations
Aft(e, )AL (e ) = AT (e, ) AL (e ) = [r[P[]P = [rPIE? = 7(e) (1 — 7(e)). (2.72)

We then calculate the integrand of Eq. (2.68) as
> A (e )AL (e, €) fale) (L = fo(e))
a,B

= Ap-(e, ) AL (e, €) fule)(1 = fule) + AL (e, ) AL (e, ) fule) (1 — frle))
+ AL (e, )AL (e, ) frl€) (1 = fule)) + AL (e, )AL (€, €) fr(e) (1 — fr(e))
= 7(e)’[fu(e)(1 = fu(€)) + fr(e)(1 — fr(e))]
+7(6)(1 = 7(e)[fule)(1 = frle)) + fr(e)(1 = fule))]
= 7(e)(ful€) + frle) — 2fu(e) fr(€)) — 7(e)*(fLle) — fr(e))’, (2.73)

which gives the final result of the expression of the shot noise:

S(0) = 5 [ de [r(ale) + fnle) = 2 a(0) = (O (fe) ~ ful] . 70
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Chapter 3

Full Counting Statistics

In the previous chapter, we considered the first- and second-order cumulants of the particle flow.
In this chapter, we consider the higher-order cumulants of the particle and energy flows. We
review derivation [22] of the generalized Onsager relations among their transport coefficients
using full counting statistics [23,24]. In Section 3.1, we introduce the full counting statistics
23, 24] briefly. In Section 3.2, we review Ref. [22]. We calculate the cumulant generating
function of the particle and energy flows and prove its symmetry. This symmetry gives the
generalized Onsager relations for the particle and energy flows.

3.1 What is counting statistics?

Counting statistics is an analysis method in which one counts a physical quantity in time s and
examines its statistics. We would like to apply counting statistics to the transport phenomena
driven by thermodynamic power (affinity), such as electrical conduction and heat conduction.
We here explain a concept of full counting statistics [23,24] using the example of electrical
conduction.

Consider two reservoirs which have different chemical potentials p, and pg. The difference
of chemical potentials, p;, — pr, causes an electric current. We here assume p, > pgr so that
electrons may flow from right to left. We measure the number of the electrons () for the time
s. After we repeat the measurement many times, we obtain the probability distribution P(Q)
of the number of electrons (). Our aim is to know the probability distribution P(Q) for large
enough s because we would like to know the non-equilibrium steady state, a long-time behavior
of the system.

We then explain how we obtain information of the cumulant from P(Q). Let us define the
characteristic function Z(x), the Fourier transform of P(Q):

Z(x) =) _ P(Q)e?, (3.1)
Q

where y is a variable called ‘counting field’. We can compute the expectation value of Q" from
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Z(x) as follows:

an(X) _ d" eixQ
d(ix)" [,og  d@x)" %:P(Q) o
=Y PQ"
Q
= (Q"). (3.2)
Let us define the cumulant (Q™)) of @ as follows:
ny _ 4"log Z(x)

For example, (Q) = (Q) is the expectation value of @ and (Q%) = (Q?) — (Q)? is the variance
of Q.

Let us also define the cumulant generating function for the electric current:

1
F(x) = lim -log Z. (3.4)

§—00 §

We can, for example, calculate the cumulant of the electric current I as fallows:

OF (x) - {Q)
1) = , = lim —=, 3.5
(0= Fagy |, =l (35)
which is the expectation value of the electric current, and
0°F(x) (@) - (@)”
I?) = = lim > 1 \*7 ,
W) = B Bl (3.6)

which is the noise of the electric current. We thus obtain higher-order cumulants from F(y).
Using this function F'(x), we can obtain an asymptotic expression of P(Q) as follows:

1 [ y
P(Q)Zg/ dxZ(x)e ™
= 1 - dyelos Z0)—x@
21 J_ o
= lim L/ dyesh (3.7)
s—o0 2 J_ ’ '

where h(x) = F(x) —ixq and ¢ = @/s. We can evaluate the integral by the saddle-point
method. Let x* denote the value of x which makes h(y) maximum:

dh(x) _0 dF(x) Q

— =i—. 3.8
dy =x* dy S (3.8)

X=x*
Expanding h(y) around x = x* to the second order, we arrive at an asymptotic expression of
P(Q) as follows:

1 [ 1 d?h(x)
P — 1 i * - A *)2
(@) = lim o /_OO dx exp [s (h(x )+ 5 =X7) e |
= lim "0 = lim esFON =@, (3.9)
§—00 S—00
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3.2 Review of ref. [22]

3.2.1 Setup and model Hamiltonian

15 T,
12 a4

Ty
R

M3

Figure 3.1: The system in consideration.

We consider the model in which n quantum dots are connected to m reservoirs as shown in
Fig. 3.1. The Hamiltonian of the model is given by

H=> H,+ Hy+ Hy + Hr, (3.10)

r=1

where H, denotes the Hamiltonian of the rth reservoir, H; the Hamiltonian of the quantum
dots, H;,; the Coulomb interaction between electrons on each dot as well as between the dots,
and Hp the tunneling Hamiltonian:

Hy = el ko, (3.11)

ko

where k is the wave number, o denotes spin, €, is the energy spectrum of the rth reservoir,

aj,,w the creation operator of the reservoir, and a,, the annihilation operator of the reservoir;
Hd = Z Eidzadig + Z tijd;radjg, (312)
o ijo

where ¢; is the energy level of the ith dot, ¢;; is the hopping matrix between the dots, dzg the
creation operator of the ith dot, and d;, the annihilation operator of the ith dot;

1
Hint — 5 Z] Uioja"dj"o’d;o/dja"dia'; (313)
ijoo

where Ui, is the strength of Coulomb interaction on each dot and between the dots;

Hy =Y toidl,am, + He., (3.14)

rkio
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where t,; is the tunneling matrix between the rth reservoir and the ith dot.

We later consider the situation where we measure the system at time ¢t = —s/2 and t = s/2.
We assume that the initial density matrix py at the time t = —s/2 is
Po = pa® pq

o exp[_ﬁr(Hr - MT’NT’)]
I e[, (H, — N )

where pg and pj, are the density matrices of the quantum dots and the reservoirs, respectively,
r the index denoting the reservoirs and d the quantum dots, (3, the inverse temperature of the
rth reservoir, p, its chemical potential, and N, its number operator: N, = >, aikaark(,. We
assume that there had been no interaction between the reservoirs and the quantum dots until
the initial time ¢ = —s/2 and hence their density operators are commutative then.

We here assume that p; = 1,/2", where 1, is the identity matrix. Because we expect that
the stationary state in the long-time limit is independent of the initial state of the dots, we can
arbitrarily choose the initial state of the dots, and thus took p; = 1,/2" for our convenience. The
assumption becomes useful in proving the symmetry of the characteristic function Eq. (3.31),
whose details are shown in Appendix A.

We then define the particle current operator and the energy current operator with the
Heisenberg equation:

(3.15)

Ine = N, = i[N,, Hy] = = itydl au, + Hee, (3.16)
ik

JEr = Hr = i[Hr, HT} = — Z ierktrkidjaamg + H.c.. (317)
ik

Let us define the charge gy, and the energy qg, of the rth reservoir during the measuring time
s as follows:

s/2

gNr :/ dtJNr(t)a (318)
—s/2
s/2

4dEr :/ dtJEr<t) (319)
—s/2

3.2.2 Protocol of the measurement

In order to obtain the expressions of the characteristic function Z(x) and the cumulant gen-
erating function F'(x), we need to know the probability distribution P((Q)) as we discussed in
Sec. 3.1. We can obtain the expression of P(Q), considering the following protocol of measure-
ment [27].

1. At the initial time ¢t = —s/2, we carry out a projection measurement on a reservoir r, and
thereby obtain the result Q¥ , and the energy QB of the particles in it, which collapses
the wave function of each reservoir into an eigenfunction [¢}")") of the particle and energy
operators:

Ny 1) = Que 19 (320)
H, [ty)) = Qe [07)) - (3.21)

TV

30



Note that the set of kets {|¢)%")}72, is a complete set of the eigenspace of N, and H,.
We make the same observation for the other reservoirs and obtain the set of particles
{QN}, 7, and energies {Qp", }7-,, which collapses the wave function of the whole system

r=1»
into
m

|\I,ijnit> _ ®‘ 1n1t> ® |w1n1t> ’ (322>

r=1

where [1)*) is the wave function of the quantum dots after measurement of all reservoirs.

. We let the whole system, which consists of m reservoirs and n quantum dots, evolve over
time s with the unitary operator e~#s.

. At the time t = s/2, we again observe a reservoir r to measure the number Q% , and

the energy Qi 7r. Of the particles in it, which collapses the wave function of each reservoir
into the eigenfunction | n> of the particle and energy operators:

N, [p5) = Nr)\ [¥ri) (3.23)
Hy [ps) = Qg [Urh) - (3.24)

Note that the set of kets {|¢3)}32, is also a complete set of the eigenspace of N, and
H,. We make the same observatlon for the other reservoirs and obtain the set of particles
{Q%. \}r-, and energies {Qfn ,}7,, which collapses the wave function of the whole system
into

) = ®| ) ® i) (3.25)

where |1} is the wave function of the quantum dots after measurement of all reservoirs.
After the measurement, we obtain the conditional probability P, x({Qn+},{Qg:}) of
ﬁnding the Changes in the number QNT‘ = QNT,V_QNT,/\ and the energy QET‘ = QET,V_QET,)\
of the particles in each reservoir under the condition that the initial state of the whole
system is fixed to |Winit):

Pya({Qur}, {Qrr}) = (W] ginity |

VA st QNer=QNr,v—QNr \QEr=QEr,—QErA

= > [wrle e[

A=0

x 11 olQn: — (QFL, — QR.DI0Qe: — (QEY, — Q)] (3:26)
r=1

. We iterate the protocols 1 to 3 for the same initial density matrix p, and obtain the
probability of finding the changes in the number )y, and the energy (), of the particles
in each reservoir with the initial state |¥%) obeying the grand-canonical distribution
(Winit| 50| Winity in the form:

P({QNr}a {QET}) = Z PV%A({QNT}» {QET}) <qj§/nit’p0‘qj;1/nit> : (327>

v,A=0
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3.2.3 Symmetry of the cumulant generating function

We can calculate the characteristic function Z(y) from the probability P({Qn}, {Qr-}) as
follows:

Z({xerd: Ixn ks BY = Y P{Qne},{Qp}) [ [ e @nrinn) (3.28)

{QNT'}7{QET'}
— Tr[povTeiHsv2efiHsvT]

= (Viesy2etoyt) (3.29)
where
a —1 CTNT TH’I‘
V=T]exp { il ; Xn )} . (3.30)
r=1

We show the details of the calculation in Appendix A. This characteristic function has the
following symmetry

Z({XC?"}? {th}; B) = Z({_Xcr + iACr}, {_th + Z.Ahr}; _B)a (331)

whose proof is also shown in Appendix A.
Using this characteristic function (3.29), we can define the cumulant generating function of
this model in the form:

F({xerh Do) B) = im — 0 Z({xer}, () B). (3.32)

The symmetry of the characteristic function (3.31) gives the symmetry of this cumulant gen-
erating function as follows:

F({xer}, I }; B) = F({—Xer + A0}, {—Xnr +i4An}; —B). (3.33)

Noting that the cumulant generating function only depends on the difference between two
counting fields [22] as in

F({Xcr}7 {th}; B) = F({Xcr}u {Xh'r}; B)7 (334>

where Xer = Xer — Xerr a0d Xhe = Xnr — Xn With 77 fixed and r’ # r, we obtain the following
symmetry of the cumulant generating function from the symmetry (3.33):

F({Xcr}a {th}; B) = F({_Xcr + iAcr}7 {_Xh'r + iAhr}; —B), (335>

where A, and Ap, are the affinities (thermodynamic forces) of the particle flow and the energy
flow, respectively:

Acr = ﬁrﬂ!r - Br’ﬂr’y (336)
Ahr = _Br =+ 67"’7 (337>

with 7’ fixed to one of the affinities and r # r’. We will explain why we choose these affinities

in Chap. 4. The symmetry (3.35) produces many interesting relations of transport coefficients.
We next see the relations for the simplest two-terminal case.
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3.2.4 Generalized Onsager relation in the case of two terminals

Let us consider the case of two terminals, in which we can write the symmetry of the cumulant
generating function in the form:

F(Xe, xn; B) = F(=xe +iAe, —xn + iAp; —B), (3.38)

where X. = XL — XeR» Xo = XaL — Xnr, Ac = AL — Acr = BrpiL — Brpr, and Ay = App — Apr =
—f + Br. We can compute the kth cumulant of the particle flow Jy and the energy flow Jg
by differentiating the cumulant generating function with respect to x. and xj, as follows:

_ OMRP(xe, X B)

T gy | | . 3.39
(INJTED O(ixe)*0(ixn )k Xe=Xh=Ac=Ap=0 ( |

We then define the transport coefficients as follows:

ki 7k
Lk17k2 B _ aﬂﬁ—fg <<JN1 JE'2>> 3 40
61752 ( ) - 2 lo ' ( : )
0AlOA,
For later use, we symmetrize and antisymmetrize the transport coefficients and the cumulant
generating function with respect to the magnetic field:

Fy(Xes xn; B) = F(Xes xn; B) £ F(Xe, xn; —B), (3.41)
Lyt (B) = Ly y2(B) + Ly 42 (—B), (3.42)

which satisfy the relation

ak1+k2+ﬁ1+€2Fi (X07 Xn; B)

b2 (B) = (3.43)
it Oixe) Oixn)20ACOAR ||\ _a—aro
The symmetry in Eq. (3.38) gives the symmetry of FL(x., x»; B) in the form:
F:I:(Xth;B) = iFi(_Xc+iAca_Xh+iAh;B)' (344)

Partially differentiating both sides of Eq. (3.44) with respect to x. k1 times, x; ko times,
A, {1 times, and A, /5 times, we arrive at the relation of the transport coefficients as follows:
8’614-’62-%-@1-1-52F’:l:(Xc7 Xh; B)
Aixe) 1 Dixa)=20ALOAR |\ 4 a0
Of ikttt [y (—x, + iAy, —xn + iAn; B)
O(ixe)10(ixn) k20 AL DAL

, (3.45)

Xe=Xn=Ac=Ap=0

which produces

6l
l l
k1,k 1 2 n1+n k1+ni,ka+n
L) =+ 30 5 (1) ()l ), o)
n1=0n2=0

Note that the cumulant generating function F'(x., x»; B) also depends on the affinities A. and
Aj, when one differentiates F'(x., xn; B). The relation (3.46) is among the coefficients with a

fixed value of N = ki + ky + {1 + {5. For N = 2, we have

Lis(B) = Loy (= B), (3.47)
Lyo(B) = Lip(~B), (3.48)
Loy (B) = Loy (—B), (3.49)
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which are known as the Onsager-Casimir relations, as well as

Lo(B) = 2Ly (B), (3.50)
Loy(B) = 2Lg;i(B), (3.51)

which are known as the fluctuation-dissipation theorem. For N = 3, we have

L%8,+(B) = L%87+(B), (3'52>

Li(lJ,+(B) - L(2)(1),+(B) - 2Li(1)+<B> Lg(l),+(B)7 (3'53>

Lyi +(B) = Loy (B) = 2L1; . (B) — L5 . (B), (3.54)

Lg; (B) = Loy . (B), (3.55)

Lo 4 (B) = Ly 1+ (B), (3.56)
L20 B LSO B

L;g_(B)— 105( ) _ 008( )’ <3 57)
L02 B L03 B

() - B _HLB) 58,

Lt (B) = Ly, _(B) + 2Ly _(B), (3.59)

LY, _(B) = Loy _(B) + 2L} _(B). (3.60)

The relations among the transport coefficients of the cumulant of the particle flow (3.48), (3.50),
(3.52), and (3.57) have been observed experimentally [28,29].
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Chapter 4

The Generalized Onsager Relations
between Heat Flow and Particle Flow

In the previous chapter, we consider the higher-order cumulants of the particle and energy flows.
In this chapter, we treat the higher-order cumulants of the heat flow. We show the appropriate
definition of the heat flow in mesoscopic transport systems and derive the generalized Onsager
relations for the particle and heat flows. In Section 4.1, we review the several definitions of the
heat flows, which might have confused researches in the past. We then explain the heat flow
which seems to be the most relevant one. In Section 4.2, we first explain the affinities. We then
derive the generalized Onsager relations for the particle and heat flows when we expand these
flows with respect to the appropriate affinities. We also consider the generalized flows which are
superpositions of the particle and energy flows. We show that we can choose the appropriate
affinities of the generalized flows and derive the relations among transport coefficients of the
flows when we expand them with respect to their affinities. For simplicity, we treat only the
setup with two reservoirs throughout this chapter.

4.1 Heat flow in mesoscopic transport systems

4.1.1 Several ‘heat’ flows in mesoscopic transport systems

We here introduce three expressions of the ‘heat’ flow in mesoscopic transport systems. The
thermodynamic definition of heat is clear, but the wording of the ‘heat flow’ may be confusing
because there seems to be several definitions.

The first definition of the heat flow is given by

I = [ dere(i(e) - o). (@.1)

Eg

which is used widely in researches of mesoscopic transport [30-32]. Although this ‘heat’ flow
should be called an ‘energy’ flow, it is called a ‘heat’ flow probably because it is considered in
the situation where the energy flow does not do work and hence all energy becomes heat.

The second definition of the heat flow is given by

Jo =1 [ der(ofe = m)(ale) — fule) (1.2

Eg
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which was often used in the dawn of the research of heat flow in mesoscopic systems [33]. This
definition may have been taken from an equation in Callen’s textbook [2],

JQ = JE — ,uJN, (43)

where Jg is the energy flow given by Eq. (4.1), while Jy is the particle flow, for which the
Landauer-Biittiker formalism gives the expression

Iy=3 [ der(@hld) - i), (4.4
Eg
Substituting Eq. (4.1) and Eq. (4.4) into Eq. (4.3), we would obtain the second definition (4.2).
Since this ‘heat’ flow was not microscopically derived, we do not know clearly where it
flows. It is indeed ambiguous of which part of the system in Fig. 1.2 the chemical potential
p of Eq. (4.3) is. We should probably choose p so that Jg may satisfy Onsager’s reciprocal
theorem. For example, in Ref. [33], the authors chose p as (g, + pur)/2 and in Ref. [34], the
author chose p as ur,. The choices do not make difference in the linear response of the voltage
difference (ur — p1)/e but differ in higher orders.
The third definition is given by

Tg=4 [ der(@le=na)(fule) = fule)), (1.5
Eg

where a = L, R. This appears to be the same as the definition (4.4) with the chemical potential
arbitrarily fixed, but we here make distinction because the definition (4.5) clearly specifies
where the heat flow exists; we will show below that this definition gives the heat flow out of
the left reservoir or into the right reservoir.

4.1.2 Definition of the heat flow

In this section, we derive the third definition of the heat flow (4.5) using the Landauer-Biittiker
formula and thermodynamics. We here derive Jé} specifically, but we can derive JQR in the same
way.

Reservoir

Chemical Potential
Uy quantum wire

Temperature
N

Figure 4.1: The wire and the left reservoir.
Consider the quantum wire with the left reservoir (Fig. 4.1). We assume that the reservoir

is so large that it is always in equilibrium. Hence we can define thermodynamic quantities of
the reservoir such as the temperature and the chemical potential.
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Since each reservoir is coupled only with the wire, all the heat generated in the left reservoir
goes into the wire. Therefore,

QL = —J§, (4.6)

where QL is the heat generated in the left reservoir per unit time. The negative sign appears
because we define the positive direction so that flows going to the right may be positive.
Using the first law of thermodynamics, dQ) = dU + dW, we obtain

QL = U, — W, (4.7)

where Uy, is the energy going in the left reservoir per unit time and Wy, is the work per unit
time done on the left reservoir. Let us use the framework in which the volume of the reservoir
is constant. Hence, the pressure dose not do work on the reservoir. Therefore,

WL = /LLNL, (48)

where Ny, is the number of particles going in the left reservoir per unit time.
In order to find U, and Ny, microscopically, we use the Landauer-Biittiker formalism, which
gives

. 1 [®
U= [ der(Octil) = fato) (1.9
) 1 [®
Ny = ~% /EG det(e)(fu(e) — fr(e€)). (4.10)
We thus arrive at
T =1 [ der(@e = m)(ule) = fale)) (11)

We can derive JS in the same way, expect that we have Qr = JQR and therefore the sign of Ur
and Ny are reversed, which results in

1 o
K= [ der(ote = m) () = fufe) (4.12)
Eg
These heat flows Jé and JQR have not been observed experimentally as far as we know. In
order to observe them, the experimental condition should be at low temperatures as was when
the energy flow was observed [35]. We therefore show in appendix B the expansion of Jgj and
JQR at low temperatures.

4.1.3 Constructing heat engine and its efficiency with the heat flow

The heat flows Ji5 and J§ in Eq. (4.5) can be used to analyze mesoscopic heat engines [12] in
Fig. 4.2. We set the chemical potential of the right reservoir higher than the left, while the
temperature of the left reservoir higher than the right so that an electric current may go from
left to right against the difference of the chemical potential. What happens per unit time is
the following. Electrons gain heat Jgj from the hot left reservoir, go to the right against the
potential difference, during which electrons do the work of amount IV, where I is the electric
current and V' is the voltage difference, and then dump heat JQR to the cold right reservoir. We
can thus consider this system as a heat engine. Its efficiency 7 is thereby given by

v

- (4.13)
g

n
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Reservoir Reservoir

Chemical Chemical
Potential - Potential

Temperature ' Ve“" | Temperature

T.=T+AT W\/ Tr=T

Figure 4.2: Schematic picture of a mesoscopic heat engine. Note that we cannot define the chem-
ical potential in the wire as this illustration might suggest because it is highly non-equilibrium
there and therefore the thermodynamic quantities, such as the chemical potential cannot be
defined.

The current I is given by the Landauer-Biittiker formula

e o0
I= }—L/ det(e)(fr(e) — fr(e)), (4.14)
Ec
while the voltage difference is given by
V= @ (4.15)

Therefore, the work IV in Eq. (4.13) is given by

pr —pL e [
IV = — /EG det(€)(fr(e) — fr(e)) (4.16)
= %/E der(€)(e — po)(fr(€) — frle)) — %/E det(€)(e — pur)(fule) — fr(e))  (4.17)
=75 = Jo (4.18)
which results in .
n=1- i—z- (4.19)

We show in Appendix C that the upper limit of this efficiency is the Carnot efficiency as is
expected from the theory of the standard heat engine.

4.1.4 Affinity

Definition

Affinities, or thermodynamic forces are the forces which drive a system in equilibrium out of it,
such as the difference in the temperature, the chemical potential, the pressure, and so on. We
define the affinities as follows. We assume that the entropy of the whole system is a function
of a set of extensive variables {X}}:

SZS(Xo,Xl,XQ,"'). (420)
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The entropy production of the whole system is thus given by

. dS ds dX,
== zk: X & = Ek: Je A, (4.21)

where we define the affinity A; and the corresponding flux J; by

oS
A= — 4.22
d X,
= —. 4.2
T =4 (4.23)

Let us generalize this definition of affinities and fluxes as follows. When the entropy produc-
tion can be expressed as a sum of the products of an extensive flux and an intensive parameter,

S=>"JA, (4.24)
k
we call Ay an affinity and J; the corresponding flux. We show below examples of A, and Jj.

Example 1: Affinities corresponding to Jgj and JQR

Let us consider the setup with two terminals shown in Fig. 2.1. As no entropy is generated in
the wire, the total entropy production is given by the sum of the entropy production of each
reservoir:

S = SL + SR
= 5LQL + 5RQR
= —BuJ5 + Brly
= ALJ5+ ALy, (4.25)
which lets us define the affinities AI(; = — [, and AqR = [ of the flows Jch and JQR, respectively.

Note that the affinities are not a difference of intensive parameters in this case, which might
be because Jc,Lg and JQR are not conserved quantities.

Example 2: Affinities corresponding to Jz and Jy

We here explain why we chose the affinities of Jg and Jy as Egs. (3.36) and (3.37). Using the
relations J5 = Jp — pJy and J§ = Jg — prJy, we can transform the entropy production as
follows:

S = —Brds + BrJy
= —bBu(Je — pJn) + Br(JE — prJN)

= (=pL + Br)JE + (Brpr, — Brir)IN
= ApJp + Acdn, (4.26)

which leads to the definitions of the affinities A, = —f, + fr and A. = Prur — Brur of the
flows Jg and Jy, respectively.
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Example 3: Affinities corresponding to Jj or J§ and Jy

We then derive the affinities corresponding to Jé and Jy. Using the relation JCIj — JS =
(ur — pi,)JN, we can transform the entropy production as follows:

S = —Brds + BrJy
= —BLJG + BrlJo — (ur — ) JN]
= (=BL + Br)JG + Brlpw — pr)In
= AGJg + A, (4.27)

which leads to Alé = — B+ Br and A% = Br(uL — pr) of the flows Jgj and Jy, respectively. In
the same manner, we can find the affinities corresponding to Jg” and Jy:

S = ASJS + AN Ty, (4.28)

where Ag = B+ Br and AY = Br(ur, — pr).
The notable point here is that the second affinity in either case is proportional to the
difference in the chemical potential. This was not the case in Example 2.

Example 4: Affinities corresponding to flows which are superpositions of J; and
JIN

We here consider flows which are general superpositions of Jg and Jy. Let us define the

generalized flows J; and J, by
Ji\ JE
(5) = (%) 4

K= (‘CL Z) : (4.30)

with the condition that a, b, ¢, d are real and det K = ad — bc # 0. The affinities of these flows
are given by

where

(A1 Ay) = (A A) K, (4.31)

because we then have
. J
S= (A, A) ( J]E;)
_ J
= (4 A)K'K (Ji)

J
= (A, Ay) ( JD
= A1J1 + AQJQ. (432)

For Example 1, the matrix K is given by

K= G _“L) (4.33)

()~ (2)

as in



while for Example 3, it is

K= ((1) _{LL) (4.35)

JE J
o\ _ E
<JN> K <JN> ' (4:36)
We thereby confirm

1 —p -
(4 A = (a4 (1 )
1

T (=BL+ Br Bupr — Briw) (__MlR /jiL)

= (-B. Br), (4.37)

as in

and
-1
(A 4) = 4) (5 1)
= (=BL+Br Briw — Brim) (é MlL)

= (=BL+Br Brluw — hr)). (4.38)

4.1.5 Counting fields

Let us consider the counting fields corresponding to the generalized flows J; and J,. We
transform the counting fields x. and yj so that the exponent in Eq. (3.28),

Xc&N + XnQE = (Xh Xc) (gE) ) (4.39)
N
may not change. We can achieve it by defining the new counting fields x1, x2 by
(x1 x2) = (0w xe) K% (4.40)

Noting that (); and )2 are transformed as J; and J;, we can show that the transformation
does not change exponent in Eq. (3.28):

X®@N + XnQE = (Xh Xc) (gf])
=(xn Xo) KT'K <QE)

QN
-0 ) ()

= X1Q1 + X2Q2. (4.41)

Let us present the counting fields of several flows; for J; and J§ we have (4.34), and their
counting fields Xf; and X? are therefore given by

O X5 =0 xe) G _ML>_1; (4.42)

—HR
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for J§5 and Jy, because of (4.36), the counting fields x¢ and xj are given by

O )=o) (g 1) (1.43)

We can define the counting fields for JQR and Jy in the same manner.

4.2 The generalized Onsager relations between the heat
and particle flows

In this section, we derive the generalized Onsager relations between several pairs of flows.

4.2.1 General discussion
Let us define the cumulant generating function for J; and J, by

Er (X1, x2: B) = F(Xes Xn: B) = F(bxa + dx2, ax1 + cx2; B), (4.44)
with which we can define the transport coefficients of J; and J, as follows:

B ak1+k2+f1+€2FJ1J2 (Xl; X2; B)

Mk (B) (4.45)
fufe O(ix1)1 O(ix2) 2 OAVOAL || _ 4 —a—o
We can prove the following symmetry:
Frpte(x1,x2: B) = £F) 1,0 (—x1 + 141, —x2 +iAs; B), (4.46)
where
Frn+(x1,x2; B) = Fj0,(x1, x2;: B) £ Frop (X1, X2: —B). (4.47)

The proof is as follows:

Ep (X1, x2; B) = Fi(bxa + dx2, ax1 + cx2; B)
= Fi(Xes Xn; B)
— 4 Fy(—Xe + iAe, —xn + i4n; B)
= £ Fy[b(—x1 +i41) + d(—x2 +iAs), a(=x1 +iA;) + c(—x2 + i4s); B
=+Fy,+(—x1 + A1, —x2 +iAs; B), (4.48)
where we used the symmetry (3.38) in the third equality.

From this symmetry (4.47), we derive the relations among the transport coefficients using
the same procedure as in Eqgs. (3.44)—(3.46):

2
l ¢
k ,k 1 2 n n k n ,k n
£é11,€22i(B) =+ Z Z (n1> (n2> (_1) 1+ 2+k1+k2‘célli—nll,£22jn22i(B)v (449)
n1=0n=0
where
k1,k ki,k k1,k
ﬁell,z;i(B) = Lel,zf(B) + Lel,z;(_B)- (4-50)
There are an infinite number of choices of .J; and Js, and hence we can derive an infinite number

of corresponding Onsager relations. Of course, not all the choices are physically relevant. We
show below examples of J; and J, which have physical meaning.
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4.2.2 The generalized Onsager relations between Jé and J(S”

Let us first consider the case J; = JcIi and Jy = Jg. Because we have

(i xe) = (g X)) K
I —p
_ (L LR
(g xq) (1 _MR)
= (XE+ X8 —pxt — prxy) | (4.51)
the cumulant generating function for Jé and Jg is given by

with which we can define the transport coefficients of J§ and J§5 in the form (4.45). The
symmetry (4.46) and the relations (4.49) follow from it.

4.2.3 The generalized Onsager relations between Jé or Jg and Jy

We next consider the case J; = JCLQ and Jy = Jy. Because we have

(xn xe) = (x5 x%) ((1) _f L)

—pLXG + XK (4.53)

I
—
=
o

the cumulant generating function for JQL2 and Jy is given by
Fi 5 (X6 X3 B) = F(=puxg + x5 X6 B), (4.54)

with which we can define the transport coefficients of Jgj and Jy in the form (4.45). We
will specifically use the notation G for the present case instead of L hereafter for the use
in Subsection 4.2.4. The symmetry (4.46) and the relations (4.49) again follow from (4.54).
We remark that the relations of G reproduce Egs. (1.15)—(1.17) by identifying G195 = G,
GY = Gng, G% = Gon, and G = Ggg. However, we need to consider the present treatment
in order to find the relations.

We can do the same for the case J; = JS and Jo = Jy, for which we will use the notation
M instead of £. We note here that the linear coefficients of M coincide with those of G, but
they differ in higher orders.

4.2.4 Application: Nonlinear Seebeck coefficient

We here show that we can express the nonlinear Seebeck coefficient easily using the transport
coefficients GZ?’Z *(B) or MZ 17’€’ZQ(B). We will use GZ:Z *(B) hereafter, but we can use Mfl 17’4122(3)
in the same way. The advantage to use the coefficients Glgll”ZZ(B) or ME’ZZQ(B) is that the
corresponding affinities A% or AY and Ay contain Ay and AT explicitly in contrast to the
affinities A. = Brur, — Prur- This enables us to expand thermoelectric coefficients, which are
usually related to Ap or AT, more easily.
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The Seebeck effect is a thermoelectric effect in which the voltage difference V' = (ug — 1) /e
is brought about by the temperature gradient AT = Tr — Ty, [2]. The Seebeck coefficient is

defined by [2]
v
S=— (—> . (4.55)
AT (Jn)=0

Let us define the higher-order Seebeck coefficients as follows. Under the condition in which the
average of the particle flow (Jy) is zero, the kth-order Seebeck coefficient is defined by [37, 38|

—V = SIAT + So(AT)* + -

= i Sp(AT)*. (4.56)

Let us express the second-order Seebeck coefficient with the transport coefficients GZJZQ(B).
In order to do this, we first express Ay in terms of Af under the condition (Jy) = 0, which
is
10 AL 1040, G20 412 1040 4L, Go2
(Jn) = GipAx + GoiAg + TAN + G ANAG + o

Solving this, we obtain two types of the affinity A% as

2
A =0. (4.57)

~GIg - GIAL £ \/(GIg + GR AR — GRGI AL + GiRAY’)

AL = 4.58
N+ G%B 9 ( )

depending on the sign of the square root. Note that we expanded Jy only up to the second
order of the affinities because the higher-order terms do not affect the result when we calculate
the second-order Seebeck coefficient. Before expanding (4.58), we have to choose which solution
we use. We choose A% if Gf} > 0 and A% _ if G} < 0 for the following two reasons. One
reason is that the voltage would not be zero with AT = 0 unless we choose them in this way. A
finite voltage with no particle low and no temperature difference is not normal physically. The
other reason is that the first-order Seebeck coefficient would not coincide with the well-known
linear Seebeck coefficient [2].
We then expand the properly chosen solution with respect to AI@ to the second order:

10,¥102 10,10 10 102 1
G02G10 - 2G01G10G11 + G01 G2
103

10
GOI

T 10
Glo

0
Al = 0L 0AL" + 045, (4.59)

which turns out to be independent of the choice. Inserting the affinities

T, — Txr AT
AL — = = 4.60
) pL + Br T, Tw T T (4.60)
— eV
Af = Brlpn — pr) = PL_ AR ot (4.61)
Tk Tr

for .J5 and Jy into Eq. (4.59), we have

eV GY AT GHGI — 2GRGHGE + GI° G < AT

2
— = + O((AT)?), 4.62
- e ) IRCIIIS YUY
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which is followed by the expansion of the form (4.56):

9 2
Cvo G g, GHGIE —26RGRGY + Gi*GYS (AT)?. (4.63)

B eTLG%g QSTLQTRG%g?)

From this we obtain the first- and second-order Seebeck coefficients as follows:

1 GlO
S =—-9 4.64
1 €TL G%87 ( )
o _ 1 GEGIY - 2GRGIIGY + Gt Gy (465)
2= €TL2TR 2G%83 ) '

Let us express the second-order Seebeck coefficient (4.65) only with linear transport coef-
ficients using the relation of the form (4.49). For simplicity, let us assume that there is no
magnetic filed B = 0. We find from (4.49) that the relations as (3.47)—(3.60) is also valid for
Gites

Gl = G, (4.66)
Gll G20

Glh =268 -GR & Gl =00 (4.67)

Gl =Gl (469)

under no magnetic field. Using these relations, we can rewrite the second-order Seebeck coeffi-
cient (4.65) as follows:

2 2
1 GGy — GoiGio(Gio + Gii) + Gor G

S, —
2 eTLQTR 2G%83

(4.69)

We thus expressed S5 only with the linear-transport coefficients.

In evaluating Sy using the expression (4.65), it may be difficult to measure G§3 and G239,
which are nonlinear coefficients. Using the final expression (4.69), however, we can evaluate
the nonlinear Seebeck coefficient Sy by measuring the transport coefficients only in the linear-
response regime. Indeed, it may seem difficult to observe the heat flow. Recently, however, the
energy flow has been observed at low temperatures in the experiment [35]. We expect that the
heat flow and its noise will become able to be observed experimentally in the future.

45



46



Chapter 5

Summary and Future Works

In this thesis, we explained the details of the heat flow in mesoscopic one-dimensional transport
systems and derived the generalized Onsager relations of flows which are superpositions of the
particle and energy flows. In particular, we derived the relations among the pairs of Jy and
J§, Jy and J§, and J§ and J3.

We here remark the use of the energy flow and the heat flow. In the research area of
thermoelectricity, there seems to be a confusion in using the two flows. The concept of the heat
flow becomes necessary when electrons do work, particularly when we consider a heat engine.
We thus need to use the heat flow when we consider the work of electrons.

The relations that we obtained here will be useful in the future. One possibility is to use
them in calculating the nonlinear coefficients like the nonlinear Seebeck coefficient which we
obtained in Chapter 4. In order to describe thermoelectric devices which are not in the linear-
response regime, the conventional thermoelectric coefficients and the figure of merit, which are
defined in the linear-response regime, should be insufficient. We thus need new coefficients
which describe nonlinear thermoelectric effects. The relations among higher-order cumulants
will be useful in evaluating the coefficients.

Another possibility is the efficiency fluctuation. The research of the efficiency fluctuation ap-
peared recently [39-41]. The authors in Ref. [39] proposed that when we consider the efficiency,
we should replace the conventional second law

(ASie) >0 (5.1)

with the fluctuation theorem
(e7B%t) =1, (5.2)

where AS;, is the total entropy production of the system. Combining Eq. (5.2) with Jensen’s
inequality
<6—A5tot> > 6_<AStot>’ (53)

we can show that the fluctuation theorem (5.2) includes the second law (5.1); in other words, the
fluctuation theorem is a higher entity than the second law. It then necessitates us to consider
the higher-order cumulants of the entropy production because the quantity (e=2%«t) contains
(AS2.), (AS3 ), ---. The entropy production is expressed as in Eq. (4.32) by the generalized
flows J; and J; defined in Eq. (4.29). We thus have to consider the higher-order cumulants of
the generalized flows. Using the generalized Onsager relations which we derived in Chapter 4,
we may understand the behavior of the efficiency in the nonlinear-response regime.

The research of nonlinear thermoelectric devices, particularly as a heat engine, is in the
dawn. We expect that the generalized Onsager relations that we derived in the present thesis
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will help the development of this research area and manufacturing high-efficiency thermoelectric
devices using nonlinearity.
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Appendix A

Detailed Calculations for Chapter 3

In this appendix, we show the details of the calculations in Chapter 3.

A.1 Calculation for Eq. (3.29)

In this section we show the details of calculation to obtain the relation (3.29). We start from
Eq. (3.28), which we reproduce here:

Z({xerk: Dk BY = Y P{Que} Q) [T e @nrtrnn@en, (A.1)

{QNT}a{QEr} r=1

Inserting Eq. (3.27) into the above, we have

Z({Xcr}v {th}; B) = Z Z PI/—M({QNr}, {QEr}) <\Ifiynit|p0’\lliynit>

{QNT‘}7{QE7‘} l/v)‘

% H 6i(XchNr+X}LTQET)' (A2)

r=1

49



Using Eq. (3.26) further, we proceed as

Z({xer}, {xn }; B) = Z Z ‘<\I,§n‘e—iHs’qj§/mt>|2 (o [N

{QNT}?{QET‘} VA

X H {5[QNr —( X‘rlrty - Nr e)]0[Qer — ( I’B;tu - %?A)]
=1

X ei(XC"‘QN'r_"XhTQEr)}

= D [ ) | (o U5

m
< | | oilxer QR —QN ) +xar Q! —QF). )]

_ Z (it s H [ i XCTQNM+xchQEM>] |ptiny

r=1

m
x <\ij)i\n|e—z'Hs H [ei(xc7»Q§3$7V+Xcth;§U)} Wijmt) <\Ijijnit’p0|\11init>

r=1

= Z \I]lnlt|€ZH‘9H |: —1 XcrNr‘f‘XchHr)} |\Ij§n>
r=1

x (e o T [0 mxenti] () (W oo 1)
r=1
init| iHs n n| —iHsy 12 |7,ini ini ini
= (Y2 W) (U e VT W) (Ui g | Wikt
v,
_ TI‘[ szv2efiHsvT2p0]
— TI'[ Hsv2 —iHsva VT]

= Tr[p VeV 2 Hs T, (A.3)
where
(Xer Ny rH,
V= Hexp[ (X 2+ XorH) . (A.4)
We here used the relations N, Wity = Qi |winity - N, [Whn) = Qfn | |Win) H, |Pint) —
}E};tl, |winit) - F, @iy = NT \ | i) the fact that py and VT are commutative, and the invari-

ance of the trace under cychc permutations.

A.2 Calculation for Eq. (3.35)

In this section, we prove the symmetry of the characteristic function

Z({Xer}, {xnr }; B) = Z({—Xer + 1A}, {—Xnr + 1A }; —B). (A.5)

We first introduce the time-reversal operator © [42]. The operator © satisfies the following
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properties:

0i0 = —i, (A.6)
(n|O|n'y = (n'|001OT|R) (A7)
n) =©|n), (A.8)

where |n), |n'), and O are bases and an operator in the Hilbert space, respectively. Let us then
transform the left-hand side of Eq. (A.5). We here write the magnetic-field dependence of H
and V explicitly. Note that H(B) and V(B) are transformed by the time-reversal operator as
follows:

©H(B)O = H(-B), (A.9)
OV (B)O = V(-B). (A.10)

We can therefore rewrite the characteristic function as follows:

Z({Xer}, {xur b B) = TrlpoV (B) e B2y (B)2e By (B)1]
= (n|poV (B)'e"" PV (B)2e BV (B)! |n) (A.11)

= _ (@l 0V (B) eV (BB v (B)) 0 |7)

= i (7 OV (B)e ™ PV (B) eV (B) )6 1)

= Xn: (| V(=B)'e RV (= B)* DV (— B) py |11)

= Ti[eiH(B)sV(—B)T poV (=B)'e =By (—B)?, (A.12)

where we assumed that the states {|n)} span a complete set if {|n)} do.
Because H, and N, commute with each other for any r, pj, defined in (3.15), or

m

1
po(B) = = [ J et HrBrtete, (A.13)
r=1
where z = [[, TreAwfr(B)+AaNe with A, = —B, and A.. = —B,.u,, and the operator V
defined in (3.30), or more explicitly
V({Xcr}v {th}; B Hexp [ XCTN + XhTHT(B)) ) (A'14>

also commute with each other. We can therefore write down the two terms in (A.12) as follows:

1 i i 7 —
V({xet, Do ks —B)TP{)V({XW}; O ) —B)T =~ H e (Aer+iXer) Nrt(Apr+ixnr) Hr (= B) (A.15)

r=1

({XCT} {Xh?“} B He X erNr— 'LthH'r( B) (A16)

r=1

o1



After simple algebras, we can identify them with

1
;V({_XCT +iAcr}7{_th +2Ahr}a _B)Qa (Al?)
Zv({_XCT’ + iACT}? {_th + iAhT}; _B)Tpé)v({_Xcr + iAcr}a {_th + iAhr}; _B)Ta (A18)

respectively. Equation (A.12) is then rewritten as

Tl"[eiH(_B)SV(—B)Tp()V(—B)Te_iH(_B)sV(—B)Q}
- Z({_Xcr+iAcr}7{_th+iAhr};_B)7 (A19>

if pg commutes with H(—B), where in the first line we left out the arguments {—x., + iA. }
and {—xpn, + iAp,} for brevity.

As is assumed after Eq. (3.15), we here used p; = 14/2", which indeed commutes with H.
We thereby have the symmetry

Z({Xcr}> {th}7 B) = Z({_Xcr + iAcr}a {_th + iAhr}; _B) (A2O>

o2



Appendix B

The Sommerferd Expansion at Low
Temperatures

B.1 The Sommerferd expansion at low temperatures
In this appendix, we expand the heat flows Jgj and JQR using the Sommerfeld expansion at low

temperatures [43].

B.1.1 The Sommerfeld expansion

We can expand the integral

| deatorfo (B.1)
in the form
[ deatarseo = [ degte) + Tg ) + o) (B.2)

where f(e) = {1 + exp[f(e — )]}~ is the Fermi distribution function and g(e) is an arbitrary
function which is continuous and infinitely differentiable with respect to € at € = pu, while
diverges no more rapidly than some power of € as € — +o00. Here, ¢’(u) denotes the first
derivative of g(e) with respect to € at € = p. The expansion (B.2) is called the Sommerfeld
expansion [43].

B.1.2 The derivation of the Sommerfeld expansion

Let us derive the Sommerfeld expansion (B.2). We first obtain the most rough approximation
of the integral by setting 7" = 0:

| s~ [ degto) (B.3)

Eg Eq
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In order to approximate the integral (B.1) when the temperature is small but non-zero, we
subtract the left-hand side from right-hand side of Eq. (B.3):

AZMMﬁ@—A;@@ (B.4)
=Amﬁﬂdﬂd—A;%MOﬂ—f@) (B.5)
_ /:O de% _ /EZ de% (B.6)
_7 /0 h dxg(g‘x;flm) _T /0 e d:c%. (B.7)

We here used the transformation z = (e — ) in the first term and x = — (e — u) in the second
term of Eq. (B.6). Assuming 7" < T, where TF is the Fermi temperature defined as Tr = €p
where €p is the Fermi energy, we have

Bln—Bo) = L8 >, (B.5)

and

<1 for x>1, (B.9)
e’ +1

which show that the integrand of the second term in Eq. (B.7) is exponentially small for large

values of . We can thus extend the upper limit of the integral of the second term in Eq. (B.7)
from (e — p) to infinity:

Bp—Ec) T e _-T
/ g =T / g3 —Tz) (B.10)
0 e’ +1 0 e® +1

This lets us expand the integral [ in the form

I:T/OodxngrTx;;gl(M_Tx) (B.11)
= 2¢' () T> /Ooo dx <ezi 1) +O(T*) (B.12)
= T ()12 + 01, (B.13)

where we used the Taylor expansion of g,

g//
o= T) = ) £ ()T + N (e 4 (B.14)
and the integral formula,
/ Tt T (B.15)
. el 12 '
Note that a9()
/ g\e
= : B.1
d =37 (B.16)




B.1.3 Expansion of the conventional heat flow

We can expand the conventio

nal heat flow using Eq.(B.2) as follows:

Ty =3 [ dele = )l = fu(e)

Eq

:%é:&&—mﬂﬂd—%A:%k—ﬂﬁﬁ@

il

2

_7T
~ 6h
1
1
" h
1
T h

1
h
7-(2
~ 6h

ST ST
g 38 3

|

HL 27 2
/ de(e — pr) + d 6L + O(TLA‘)}

Eg

|

HR 27,2
/ de(e — py) + T 6R + O(TR4)}

Eg

1
(11 — Tr?) — ﬁ(MR —w)® +O(TY),

de(e — ur)(fL(€) — fr(e))

dele— ) ie) — 5 [ dele — n) (e

Eg

UL 2T 2
/ de(e — pgr) + d 6L + O(TL4)}

Eqg

|

1
(Ti” = T®) + o (e = u0)” + O(T").

KR 27,2
/ de(e — pugr) + d 6R + O(TR4)}

Eg
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(B.20)

(B.21)

(B.22)

(B.23)

(B.24)
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Appendix C

The Upper Bound of The Efficiency of
The Mesoscopic Heat Engine

In this appendix, we show that the upper bound of the efficiency defined by (4.13) is the Carnot
efficiency and give an example of the transmission coefficient which achieves the upper bound.

C.1 The upper bound of the efficiency of the mesoscopic
heat engine

C.1.1 General upper bound of the efficiency

Let S, and Sg denote the entropy productions in the left and right reservoirs, respectively.
Using the equalities dQ) = T'dS = dU — pudN, we can relate these entropy productions to the
conventional heat flows as

JL = UL — NLNL = _TLSLa (Cl)
JR = UR — /LRNR = TRSR. (CQ)

These relations let us transform the efficiency (4.13) to the form

n=—r (C.3)
5
JL _ JR
Q Q
— C4
_ S (©.5)
—T.51, '
_ TuSL + TrSr (C.6)
.S, '
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We here impose the condition that the net entropy production S = Sp + Sg is positive, that is,
Sr > —SL, which gives

_ 71,5t + TrSr (C.7)
T1.5%, '
TLSL - TRSL (C 8)
- TSy '
Tr

where 7, is the Carnot efficiency. We can achieve the equality if and only if Sp, = Sg, that is,
S=0.

C.1.2 Example of the transmission coefficient which gives the Carnot
efficiency

The Landauer-Biittiker formalism with the transmission coefficient gives

1= [ der@i0 - o) (©10)
Ty [ derte)le = m(fule) = (@) (1)
We thus express the efficiency (C.4) in the form
n= % (C.12)
(= ) J3 der(O(Au(0) — fule) o)

Jig der(e)(e — pw)(fule) — frle))

We now know that we can achieve the Carnot efficiency when the total entropy production
of the system is zero. We thus express the total entropy production with the Landauer-Biittiker
formalism:

S = SL + SR (C.l4)
QL QR
=T + T (C.15)
Js JB

- 72474 (C.16)
= [derte (< ) (ko) - fule) (17
— [ derte){log fule) — 0801~ ()]~ log fu(e) ~ logf1 — fule))]}
x (fu(€) = fr(e)) (C.18)
= [ der@hute) - fuleyiog | TOEI. (©.19)
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Let us assume 7(e) > 0, which is physically reasonable. We can show that the integrand in
Eq. (C.19) is always non-negative as follows. When fi,(¢) > fr(e),

fu(e)(1 = fr(e)) = fule) — fule) fr(e) (C.20)
> fr(e) — fu(e) frle) (C.21)
= fr(e)(1 — fule)), (C.22)
which leads to (O — fal©)
o | % Gy > 2

When f1,(¢) < fr(€), on the other hand, we can show

(O~ Jale)
Fa@1 = fL<e>>] =0 (©.24)

similarly. Using these inequalities and 7(e) > 0, we can show that the integrand is always

non-negative:
1—
fr(€)(1 = fr(e))

Let us then consider the condition for S = 0. We easily find the following condition; for
each value of €, 7(¢) = 0 or fr(e) — fr(e) = 0. If 7(¢) = 0 for any € or if fr(e) — fr(e) =0
for any €, however, the transport would not happen, that is, the condition is trivial. We thus
have to find a nontrivial condition in which 7(€) # 0 and fi,(¢) — fr(€) = 0 at an energy; if we
demanded fi,(€) = fr(€) at two energies, they would be equal at any energy.

In order to do this, let us set the transmission function [44]

T(€) = d(€ — €.), (C.26)

log [

() (i) — fule)) log [

where €. is a constant. This transmission function is not a sufficient condition but a necessary
condition for us to obtain S = 0. Let us also set the condition

fulee) = frlec), (C.27)

which gives the value of €. as follows:

fL(EC) = fR(ec) (C.28)
1 1
= 1+ eﬁL(EC_#L) = 1—|—€6R(EC—HR) (C29>
& Pulec — pr) = Brlec — pr) (C.30)
Trpr — Trp,
=T 7 7 31
T T TR T (C.31)

Substituting Eq. (C.26) into Eq. (C.13), we obtain the following expression of the efficiency:
(tr = pin) [, der(€)(fule) — fr(e))

" f;} det(€)(e — p)(fr(e) — fr(e)) (C.32)
(= ) (fulee) — fr(eo))
(e — pn)(fulee) — free)) (C.33)
- lzL—;ﬁR (C.34)
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Substituting Eq. (C.31) into Eq. (C.34), we indeed achieve the Carnot efficiency:

p— HL_ KR (C.35)
€c — ML
ML — MR
TN, (C.36)
_ Trpr — Trpn, — Trpr + Tri (C.37)
Trpr — Ty
_ Ti(pr — pn) — Trlpw — o) (C.38)
T (g — pin)
Tr
R .39
7= (C.39)

Note that when 7 = 7., the electric current and the heat current vanish:

=1 [ deroo - o) (C.40)

= (fuled) — faled) (- 7(0) = dle — ) (1)

=0 ( fL(ec) = fR(Gc))a (042>

Ty =g [ dertelte= ) = fule) (C43)
= e m)(ilee) ~ faled)) (7(6) = de — ) (C44)
=0 (o filee) = faled), (©45)

which gives the vanishing power I'V. This is the same as the standard heat engine; the Carnot
cycle produces zero power.
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