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Abstract

We propose an exactly solvable model of the two-state non-Hermitian quan-

tum system which encircles an exceptional point. Using the model we analyt-

ically demonstrate the breaking of the adiabatic flip. Gilary et al. have shown

only numerically that the adiabatic flip breaks if the motion of parameters is

non-adiabatic. We use the Hashimoto form and the Trotter decomposition

in order to construct the exactly solvable model. We analytically observe the

non-adiabatic effect of the time-evolution operator and find that any initial

states decay into one of the flipping states after the system non-adiabatically

evolves around the exceptional point, which is consistent with the numerical

results given by Gilary et al. We exactly evaluate the transition rate of the

state at |p|2 ≈ 0.189591 for the cycle period T = 1 and |p|2 → 1 in the limit

T → ∞, which is the adiabatic limit.
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1 Introduction

Today the quantum dynamics of non-Hermitian Hamiltonian system attracts

much interest theoretically and experimentally [1–16]. Non-Hermitian Hamil-

tonians are often used for representing decaying open quantum systems [1,2]

and decaying Schrödinger systems [3, 16]. A recent new development is the

theoretical and experimental studies on PT -symmetric Hamiltonians [4–9],

which is non-Hermitian in general.

One of the important features of non-Hermitian systems is the existence

of the exceptional point, the point in the parameter space at which some of

the eigenenergies and the corresponding eigenvectors coalesce into one [17].

The exceptional point is a new type of singular point of the Hamiltonian,

which specifically appears in non-Hermitian systems.

The geometric phase around the exceptional points recently has great

interest [10–15]. For Hermitian systems, previous studies indicate that the

origin of the geometric phase is the diabolic points, another singular point in

the parameter space at which the energy spectrum is degenerate [18].

When a non-Hermitian system adiabatically moves around an exceptional

point in a cycle, the two eigenstates that would coalesce at the exceptional

point flips to each other. This phenomenon is called the adiabatic flip, or

simply the flip [10, 13]. Many studies on adiabatic processes in Hermitian

4



quantum systems [10–15, 18–20] have been carried out for investigating, for

example, the many-body ground state in condensed–matter physics [19, 21]

and the geometric phase [20].

There have been studies on the experimental observability of the adia-

batic flip [13–15]. They pointed out the possible importance of non-adiabatic

effects which emerge when the system non-adiabatically moves around an ex-

ceptional point in a cycle. Uzdin et al. [13] and Gilary et al. [14,15] discussed

these effects numerically for two-by-two non-Hermitian systems. Their re-

sults implied that any initial state approaches a specific superposition of

eigenstates. We can obtain two specific states by encircling an exceptional

point clockwise or anticlockwise. However, these studies were done ana-

lytically only for adiabatic processes or only numerically for non-adiabatic

processes.

In this paper, we analytically observe a non-adiabatic effect to the adia-

batic flip in a non-adiabatic cycle around an exceptional point. We exactly

calculate the time-evolution operator of the time-dependent non-Hermitian

Hamiltonian of a two–state system. The two eigenstates which would coa-

lesce into one at an exceptional point are flipped to each other if we move

the system around the point adiabatically. We investigate the non-adiabatic

time-evolution of the initial state and find that any states evolve to one state

after one cycle with incomplete flip. This incompleteness is a result from the
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non-adiabatic effects.

In order to calculate the time-evolution operator analytically, we rewrite it

by employing the Hashimoto form of non-Hermitian Hamiltonians [16]. The

reason of using the Hashimoto form is that we expect it to be more useful

than the diagonalization for the analysis of the evolution around exceptional

points. Combining it with the Trotter decomposition, we obtain a compact

effective Hamiltonian for further use. Demanding it to be a lower triangular

matrix, we come up with a model system that encircles an exceptional point

for which we can analytically calculate the operator of the non-adiabatic time

evolution.

The present paper is organized into three sections: In Section 2, we in-

troduce a non-Hermitian Hamiltonian with parameters and its exceptional

points. We discuss the possibility of diagonalization in the neighborhood of

an exceptional point and introduce the Hashimoto form. Next, we consider

the adiabatic process in quantum systems in Section 3. We present the adi-

abatic process around an exceptional point. After the consideration of the

adiabatic process, we, in Section 4, review the numerical research on non-

adiabatic process around an exceptional point by Gilary et al. [14, 15], and

then present our exact calculation of a non-adiabatic process around an ex-

ceptional point. We use the Trotter decomposition and the Hashimoto form

so as to rewrite the time-evolution operator of the system, and thereby derive
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an effective Hamiltonian. We then introduce an exactly calculable model so

that the effective Hamiltonian may be a lower triangular matrix. Finally, we

exactly evaluate the transition rate from one eigenstate and compare it with

the result Gilary et al.

2 The Effects of Exceptional Points

2.1 Exceptional point

A non-Hermitian matrix is generally not diagonalizable. In reality, however,

it is rather a rare case to be unable to diagonalize non-Hermitian matrices.

We explain this in this subsection.

Let us consider an N × N Hamiltonian with a complex perturbation

parameter λ:

Ĥ = Ĥ0 + λĤ1, (1)

where Ĥ0 and Ĥ1 are both Hermitian. The eigenvalues are given by the

secular equation

det (E1̂N − Ĥ) = 0, (2)

where 1̂N denotes the N -dimensional identity matrix. The coefficient of the

term EN in Eq. (2) is unity. Therefore Eq. (2) must be equivalent to the

7



following equation:

(E − E1)(E − E2) · · · (E − EN) = 0, (3)

where Ek are eigenvalues and either analytic functions of λ or branches [17].

For example, let us consider a 3× 3 Hamiltonian

Ĥ =


aλ 0 0

0 bλ c

0 c −bλ

 (4)

with a, b and c real. The secular equation is

(E − aλ)[(E + b)(E − b)− c2] = 0, (5)

which gives the eigenvalues

E1(λ) = aλ, (6)

E2(λ) =
√
b2λ2 + c2, (7)

E3(λ) = −
√
b2λ2 + c2. (8)

Among them, E1 is an analytic function of λ, while E2 and E3 are a pair

of branches. As the above example indicates, the branches are generally

represented by

Ek(λ) = exp

(
i
2πn

s

)
s
√
f(λ) + g(λ) (9)
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with analytic functions f and g and a positive integer s, where n = 0, 1, · · · , s−

1. All the s branches must appear as the eigenvalues if one of them ap-

pears. For a set of branches, there are points in the parameter space given

by f(λ) = 0, where all branches in the set meet each other. These points are

called the exceptional points [17]. We hereafter denote an exceptional point

by λEP. This is where the matrix becomes non-diagonalizable.

Note that the number of exceptional points is at most finite. In this

sense, it is rare that non-Hermitian matrices are not diagonalizable. Let us

consider the parameter space of the Hamiltonian (1). It is well known that

the number of roots of equation like Eq. (2) are at most finite [17]. Then the

number of exceptional points is also at most finite too.

The eigenvectors also coalesce at an exceptional point, corresponding to

the coalescing eigenvalues; this is the essential difference from the Hermi-

tian degeneracy. Indeed, in the example of Eq. (4), the right eigenvectors
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corresponding to Eq. (8) are

vR
1 (λ) = C1


1

0

0

 ,

vR
2 (λ) = C2


0

−c

E2(λ)− bλ

 ,

vR
3 (λ) = C3


0

−c

E3(λ)− bλ

 , (10)

where C1, C2 and C3 are arbitrary complex constants. At the exceptional

point λEP, the coalescence E2(λEP) = E3(λEP) happens. This coalescence of

the eigenvalues is accompanied by the coalescence of the corresponding eigen-

vectors vR
2 and vR

3 . In other words, the sum of dimensions of the eigenvector

spaces decreases only at the exceptional points:

∑
k

dim Ek(λ) < N iff λ = λEP, (11)

where N is the dimensionality of the system and Ek(λ) is the eigenvector

space corresponding to Ek(λ). Equation (11) says that the Hamiltonian is

not diagonalizable only at the exceptional points.
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We can prove it as follows. If the Hamiltonian is diagonalizable, there

exists a regular matrix Ŝ such that

Ŝ−1ĤŜ = diag (E1, E2, · · · , EN) , (12)

where diag(E1, E2, · · · , EN) is a diagonal matrix whose diagonal elements

are E1, E2, · · · , EN . Since both Ŝ and Ŝ−1 are N ×N matrices, we can find

two sets of mutually linearly independent N pieces of N -dimensional vectors

{vj}Nj=1 and {ṽj}Nj=1 satisfying

Ŝ =

(
v1 v2 · · · vN

)
(13)

and

Ŝ−1 =



Tṽ1

Tṽ2

...

TṽN


. (14)

Since Ŝ−1Ŝ = 1̂N , we have

ṽi · vj = δij, (15)

where δij is Kronecker’s delta defined by

δij =


1 if i = j,

0 if i ̸= j.

(16)
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Using {vj}Nj=1 and {ṽj}Nj=1, we can represent Eq. (12) as

ṽi ·
(
Ĥvj

)
= δijEj (17)

for i, j = 1, 2, · · · , N . Then we have Ĥvi = Eivi for i = 1, 2, · · · , N , which

says vi is the eigenvector corresponding to Ei. Since {vj}Nj=1 are linearly

independent of each other, we have
∑

k dim Ek = N .

On the other hand, if
∑

k dim Ek = N , we can find the N pieces of eigen-

vectors {vj}Nj=1 which are linearly independent of each other. It is clear that

Ŝ defined by Eq. (13) diagonalizes Ĥ. This proves that the Hamiltonian is

not diagonalizable only at the exceptional points.

Features of exceptional points

Exceptional points have a lot of features. We present some of them which

are important in the present paper.

1. At the exceptional points, the energy spectrum becomes degenerate

and the corresponding eigenvectors coalesce into each other. The coa-

lescence of the eigenvectors is a unique phenomenon of non-Hermitian

systems, which makes the Hamiltonian not diagonalizable. This fact

is important because we cannot discuss the perturbation around an

exceptional point in a usual way.
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2. The non-diagonalizability implies that the Hamiltonian is non-Hermitian

when the parameter is at an exceptional point.

3. In the parameter space, there are at most a finite number of exceptional

points. In other words, the Hamiltonian perturbed to be non-Hermitian

is actually diagonalizable at almost every point in the parameter space.

4. The exceptional point is a branch point of some of the eigenenergies.

In other words, the exceptional point is a singularity of order of 1/s.

This leads to the flip of the eigenvectors, which is mainly discussed in

Section 3．

2.2 Normalization of a non-Hermitian Hamiltonian near

an exceptional point

In the present subsection, we discuss the normalization of a non-Hermitian

Hamiltonian, especially near an exceptional point. The term “normalization”

means a similarity transformation of a matrix into a normal form, for exam-

ple, the diagonalized form, the Jordan normal form, etc. According to the

previous subsection, a non-Hermitian Hamiltonian is not diagonalizable iff

λ = λEP, which is caused by the degeneration of eigenspace. To understand

this degeneration, we present a simple example.

For simplicity, let us consider a 2×2 non-Hermitian parametrized Hamil-
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toninan

Ĥ =

ϵ1 0

0 ϵ2

+
λ

2

 0 V

V 0

 , (18)

where ϵ1, ϵ2 and V are non-zero real parameters. The eigenvalues are

E1 =
ϵ1 + ϵ2

2
+

√
(ϵ1 − ϵ2)2 + λ2V 2

2
, (19)

E2 =
ϵ1 + ϵ2

2
−
√

(ϵ1 − ϵ2)2 + λ2V 2

2
. (20)

The corresponding right eigenvectors are

vR
1 =

1√
2(ϵ1 − ϵ2)


c1

λV

 , (21)

vR
2 =

1√
2(ϵ1 − ϵ2)


c2

λV

 (22)

and the left eigenvectors are

vL
1 =

1√
2(ϵ1 − ϵ2)

(
c1 λV

)
, (23)

vL
2 =

1√
2(ϵ1 − ϵ2)

(
c2 λV

)
, (24)

where

c1 = (ϵ1 − ϵ2) +
√
(ϵ1 − ϵ2)2 + λ2V 2, (25)

c2 = (ϵ1 − ϵ2)−
√

(ϵ1 − ϵ2)2 + λ2V 2. (26)
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Note that normalization constants are omitted for simplicity and the factor

1/[
√
2(ϵ1−ϵ2)] is instead introduced for later convenience. From Eqs. (19) and (20),

we have the exceptional points

λEP = ±iϵ1 − ϵ2
V

. (27)

It is clear that the right eigenvectors (21) and (22) coalesce into each other

iff λ = λEP and the left eigenvectors (23) and (24) do so too. Therefore the

Hamiltonian is diagonalizable iff λ ̸= λEP.

Hashimoto et al. [16] showed that it is possible to transform the Hamil-

tonian into a generalized Jordan form around the exceptional points. The

remarkable point is that the generalized Jordan form and the similarity trans-

formation continuously converge to the standard Jordan form and its simi-

larity transformation at the exceptional point. In the present paper, we call

the generalized Jordan form the Hashimoto form. We hereafter explain its

construction. We use the Hamiltonian (18) in the following discussion. The

discussion is greatly based on the work by Hashimoto et al. [16].

15



Definition of co-eigenvector when λ = λEP

Let us first overview the Jordan form. At the exceptional points (27) the

Hamiltonian (18) reduces to

Ĥ =

 ϵ1 ±iδ

±iδ ϵ2

 (28)

with

δ =
ϵ1 − ϵ2

2
, (29)

the eigenvalues (19) and (20) to

EEP =
ϵ1 + ϵ2

2
, (30)

and the right and left eigenvectors (21)–(24) respectively to

vR
EP =

1√
2

 1

±i

 , (31)

vL
EP =

1√
2

(
1 ±i

)
. (32)

For the standard Jordan form, we take another set of vectors

wR
EP =

1√
2

 1

∓i

 , (33)

wL
EP =

1√
2

(
1 ∓i

)
, (34)

which constitute orthogonal systems {vR
EP,w

R
EP} and {wL

EP,v
L
EP} respec-

tively. In the present paper, we call these vectors co-eigenvectors, or more
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simply co-vectors whenever it is not ambiguous. The co-vectors have the

following properties:

wL
EP · vR

EP = 1, wL
EP ·wR

EP = 0,

vL
EP · vR

EP = 0, vL
EP ·wR

EP = 1. (35)

With the eigenvectors and co-vectors, we construct the matrices

ŜEP =

(
vR
EP wR

EP

)
=

1√
2

 1 1

±i ∓i

 , (36)

Ŝ−1
EP =

wL
EP

vL
EP

 =
1√
2

1 ∓i

1 ±i

 , (37)

which constitute a similarity transformation which brings the Hamiltonian

into the Jordan form:

Ŝ−1
EPĤEPŜEP =

EEP 2δ

0 EEP

 . (38)

In other words, wL
EP and wR

EP satisifies

wL
EP · vR

1 = 1, (39)

wL
EPĤEP = EEPw

L
EP + 2δvL

EP (40)

and

vL
EP ·wR

EP = 1, (41)

ĤEPw
R
EP = 2δvR

EP + EEPw
R
EP. (42)
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Definition of co-eigenvector when λ ̸= λEP

Next, we extend the definition of co-eigenvectors to the case around an ex-

ceptional point. The important point is that this extension is continuous

at λEP. The similarity transformation given by the eigenvectors and their

generalized co-vectors bring the Hamiltonian into a generalized Jordan form

even when λ ̸= λEP.

We define the generalized co-eigenvectors wR
1 and wL

2 for λ ̸= λEP by [16]

wL
1 · vR

1 = 1, (43)

wL
1 Ĥ = E1w

L
1 + 2δvL

2 (44)

and

vL
2 ·wR

2 = 1, (45)

ĤwR
2 = 2δvR

1 + E2w
R
2 . (46)

It should be emphasized that this definition decides wR
1 and wL

2 uniquely.

Indeed, from Eqs. (45) and (46) we uniquely have

wL
1 =

1√
2

(
1

c2
V

)
(47)

and from Eqs. (43) and (44)

wR
2 =

1√
2


1

c1
V

 . (48)
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The solutions of Eq. (45) has the arbitrariness of a constant times vL
2 , but

Eq. (46) fixes the constant, and hence the uniqueness.

According to the definition, we can find properties similar to Eq. (35):

wL
1 · vR

1 = 1, wL
1 ·wR

2 = 0,

vL
2 · vR

1 = 0, vL
2 ·wR

2 = 1. (49)

Indeed, Eq. (44) gives

wL
1 ĤwR

2 = E1w
L
1 ·wR

2 + 2δ, (50)

and with Eq. (46) gives

wL
1 ĤwR

2 = 2δ + E2w
L
1 ·wR

2 . (51)

Since E1 ̸= E2 for λ ̸= λEP, we have wL
1 · wR

2 = 0. The other properties of

Eq. (49) are obtained by definition.

The generalized co-vectors wL
1 and wR

2 respectively converge to wR
EP and

wL
EP as λ→ λEP. In the limit, the definitions (43)–(46) reduce to

wL
1,EP · vR

EP = 1, (52)

wL
1,EP ĤEP = EEPw

L
1,EP + 2δvL

EP (53)

and

vL
EP ·wR

2,EP = 1, (54)

ĤEPw
R
2,EP = 2δvR

EP + EEPw
R
2,EP , (55)
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where wL
1,EP and wR

2,EP are the limits of wL
1 and wR

2 , respectively. Note that

EEP is the limit of both E1 and E2 as indicated in the beginning of this

subsection. From Eqs. (52)–(55), we can find

wL
1,EP · vR

EP = 1, wL
1,EP ·wR

2,EP = 0,

vL
EP · vR

EP = 0, vL
EP ·wR

2,EP = 0. (56)

Comparing Eqs. (35) and (56), we can represent wL
1,EP and wR

2,EP as

wL
1,EP = wL

EP + αvL
EP, (57)

wR
2,EP = βvR

EP +wR
EP, (58)

where α and β are complex constants. By applying Eqs. (40) and (42) to

Eqs. (57) and (58), we have

wL
1,EP ĤEP = EEPw

L
EP + (2δ + αEEP)v

L
EP, (59)

ĤEPw
R
2,EP = (βEEP + 2δ)vR

EP + EEPw
R
EP. (60)

Comparing Eqs. (59) and (60) with Eqs. (53) and (55), we have α = β = 0.

We thereby conclude that

lim
λ→λEP

wL
1 = wL

EP, (61)

lim
λ→λEP

wR
2 = wR

EP. (62)

20



Hashimoto form of Hamiltonian

Let us consider the symmetric matrices defined by the generalized co-vectors:

Ŝ =

(
vR
1 wR

2

)
=

1√
2


c1
2δ

1

λV

2δ

c2
λV

 , (63)

Ŝ−1 =

wL
1

vL
2

 =
1√
2


1

c1
λV

c2
2δ

λV

2δ

 . (64)

It normalizes the Hamiltonian into the generalized Jordan form

Ŝ−1ĤŜ = N̂ ≡

E1 2δ

0 E2

 . (65)

Because of the continuity of vR
1 , w

R
2 , w

L
1 and vL

2 at the exceptional points,

Ŝ and Ŝ−1 are also continuous there. This leads to the fact that the normal

form N̂ in Eq. (65) is also continuous. The normal form (65) is for the first

time given by Hashimoto et al. [16], and hence we refer to it as the Hashimoto

form.

The Hashimoto form has the following advantages. First, it is well-defined

at the exceptional points, while the diagonalized form is not. This can

make the calculation with the eigenstates problematic around the exceptional

points. The Hashimoto form is free from the problem.

For example, it is impossible to use the diagonalized form for pertur-
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bative calculation starting from an exceptional point. This is because the

eigenvectors of non-perturbed Hamiltonian are not enough to form a com-

plete system, which is necessary to expand the eigenstates of the perturbed

Hamiltonian. However, the set of the co-vectors and the eigenvectors at an

exceptional point forms a complete system; its perturbation naturally pro-

duces the Hashimoto form.

In fact, there are other choices of vectors to add in order to form a com-

plete system. The present choice of the co-vectors have two merits. One is

the simplicity of the behavior of the Hamiltonian applied to the co-vectors,

as shown in Eqs. (43)–(46). The other is the continuity of the co-vectors; we

can discuss the perturbation around the exceptional points and away from

them by the same method.

The second advantage of the Hashimoto form is its similarity to the di-

agonalized form. For example, the nth power of Ĥ is given by

Ĥn =
(
ŜN̂ Ŝ−1

)n
= ŜN̂nŜ−1 (66)

with

N̂n =


En

1

2δ(En
1 − En

2 )

E1 − E2

0 En
2

 , (67)
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which resembles the nth power of the diagonalized matrix. We have

wL
1 exp

[
− i

ℏ
Ĥt
]
vR
1 = exp

(
− i

ℏ
E1t

)
, (68)

vL
2 exp

[
− i

ℏ
Ĥt
]
wR

2 = exp

(
− i

ℏ
E2t

)
. (69)

Equation (69) indicates that the vL
2 component of wR

2 (t) is exp (−i/ℏE2t).

Thus, the time evolution of wR
2 is similar to that of vR

2 .

3 Adiabatic process moving around excep-

tional points

3.1 Adiabatic process in quantum mechanics

There have been many studies on the dynamical effect of quantum systems

induced by the motion of parameters of Hamiltonians. These problems can

be divided into two, namely, adiabatic processes and non-adiabatic ones.

The adiabatic process of a quantum system is very useful in investigating

the structure of the energy spectrum of the system. In condensed-matter

physics, for example, the ground state of a system with many-body interac-

tions is sometimes assumed to be well approximated by that of the system

without the interactions. This assumption is based on the adiabatic continu-

ation from the system without interactions to that with interactions [19,21].
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The geometric phase [20] is another instance of using the adiabatic process.

The method of geometric phase is expected to be a good way to know the

structure of singularities of the spectrum.

Many problems concerning the geometric phase have been mainly stud-

ied for Hermitian Hamiltonians. This is because in quantum mechanics the

Hamiltonian is often assumed to be Hermitian. Recently, however, there ap-

peared studies of the geometric phase for non-Hermitian Hamiltonians, which

is of both theoretical and experimental interest [10–12,22].

3.2 Exceptional point – non-Hermitian case

Let us come back to the Hamiltonian (18) and express the eigenvalues (19) and (20)

as

E1 = EEP +∆, (70)

E2 = EEP −∆, (71)

where

∆ =

√
(ϵ1 − ϵ2)2 + λ2V 2

2
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vanishes at λ = λEP. The parameters in Eqs. (25) and (26) are then given

by

c1 = (ϵ1 − ϵ2) + 2∆, (72)

c2 = (ϵ1 − ϵ2)− 2∆. (73)

We now show that when λ moves around an exceptional point, the eigenvec-

tors (21) and (22) interchange with each other.

Let us assume that λ depends on time t and use the notation λ(t). We

also assume that λ(t) is periodic with λ(T ) = λ(0). Then there are two

possibilities that the phase difference between ∆(0) and ∆(T ) are 2nπ or

(2n+ 1)π with integer n. For each case, we have ∆(T ) = ∆(0) and ∆(T ) =

−∆(0). Especially in the latter case, c1 and c2 are flipped to each other:

c1(T ) = c2(0), (74)

c2(T ) = c1(0). (75)

This leads to the flips E1 ↔ E2 and vR
1 ↔ vR

2 .

When the parameter λ(t) changes slowly enough in the latter case, each

eigenstate of vR
1 and vR

2 evolves into the other. This flip is caused by the

singularity of ∆(λ), which is an exceptional point. This is a unique effect

of encircling an exceptional point and is called the flip or the adiabatic flip

[10, 13].
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The geometric phase with encircling an exceptional point is experimen-

tally measured in a microwave-cavity system [11]. However, it is always

difficult to achieve the complete adiabaticity in experiments [13]. It is not

only interesting but also necessary to investigate non-adiabatic effects in en-

circling an exceptional point.

4 Non-adiabatic process around an exceptional

point

Suppose that we move the parameter λ around an exceptional point in the

parameter space. As we explained in the previous section, the eigenstates

are swapped when we move the parameter λ adiabatically. However, Gilary

et al. [13–15] numerically demonstrated that any states collapsed to one of

the eigenstates when we move it non-adiabatically.

In the present section, we discuss this non-adiabatic process. We theoreti-

cally show the state collapse, exactly solving the non-adiabatic time-evolution

of a model system.
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4.1 Numerical discussion

Uzdin et al. [13] and Gilary et al. [14, 15] discussed non-adiabatic effects by

varying the parameter λ around an exceptional point. When the parameter

moves slowly enough, we have

|ψj(t)⟩ = eiθj(t)vj(t), |ψj(0)⟩ = vj(0) (76)

under the adiabatic approximation, which is good for Hermitian systems.

However, if we consider the non-adiabatic coupling, the solution of the time-

dependent Schrödinger equation is generally given by

|ψj(t)⟩ = α(t)v1(t) + β(t)v2(t), |ψj(0)⟩ = vj(0), (77)

which Uzdin et al. and Gilary et al. calculated |ψj(t)⟩ numerically.

In their papers, they showed two points about non-adiabatic effects. First,

the wave function was always the same for any initial wave functions after λ

encircled an exceptional point. Second, the wave function after one period

converged to one of the eigenvectors in the adiabatic limit.

They considered the Hamiltonian

Ĥ =

E1 + ℏω + i∆Γ
2

ϵ0d12
2

ϵ0d12
2

E2 − i∆Γ
2

− i
Γ1 + Γ2

2

1 0

0 1

 , (78)

where ∆Γ = Γ2 − Γ1. This non-Hermitian Hamiltonian is an effective

model of the ninth and tenth resonance states of the H+
2 molecule in a laser
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field [14, 15, 23]. For this setting, Γ1 and Γ2 are the decay rates of the ninth

and tenth resonance states, respectively. The parameter d12 is a complex

dipole transition-matrix element, while ϵ0 and ω are the amplitude and the

frequency of the laser field, respectively. The pair of these two parameters

corresponds to the complex parameter λ.

For the external parameter (ϵ0, ω), we can find an exceptional point as

follows [15]:

(ϵEP0 , ωEP) =

(
∆Γ

Re d12
,
E2 − E1 − Im d12ϵ

EP
0

ℏ

)
. (79)

We can encircle this exceptional point, for example, as in Fig. 1. When

the parameter encircles the exceptional point along the red broken line, the

quantities |α|/(|α|2 + |β|2) and |β|/(|α|2 + |β|2) evolve as shown in Fig. 2.

This result suggests that any states almost converge to ninth state if the

parameter moves clockwise while to the tenth state if the parameter moves

anti-clockwise. In this paper, we call this effect the collectivity.

Moreover, when the period Tloop of the parameter change becomes longer,

one of the absolute value of the coefficients α and β converges to zero; see

Fig. 3. The rate R = |α|/|β| converges to either infinity or zero. These mean

in the adiabatic limit, α → 0 or β → 0.

The results shown in Figs. 2 and 3 imply that the adiabatic approximation

may be no longer a good one. This is one of the important features of non-
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Figure 1: Loops in the parameter space of the laser intensity and wave-

length [15]. The horizontal axis is the laser intensity I0 and the vertical axis

is the wavelength λ, which correspond to ϵ0 and ω, respectively.

Hermitian systems.
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Figure 2: The time evolution of |α|/(|α|2 + |β|2)1/2 and |β|/(|α|2 + |β|2) [15].

The trajectory of the parameter is the red broken line in Fig. 1. (a) the case

when the parameter moves clockwise and (b) when it moves anti-clockwise.

The thin black line and broken black line indicate |α|/(|α|2 + |β|2)1/2 and

|β|/(|α|2 + |β|2)1/2, respectively, where initially α = 1 and β = 0. The thick

red line and broken red line indicate |β|/(|α|2+|β|2)1/2 and |α|/(|α|2+|β|2)1/2,

where initially β = 1 and α = 0.

4.2 Normalized representation of a general time-evolution

operator

The solution of the Schrödingier equation with a time-dependent Hamilto-

nian,

iℏ
d

dt
|ψ(t)⟩ = Ĥ(λ(t)) |ψ(t)⟩ , (80)
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Figure 3: The population Pj of the ninth (black) and tenth (red) resonance

states [15]. The trajectories are the blue solid line and the red dashed line

in Fig. 1. (a) the case when the parameter moves clockwise and (b) when

it moves anti-clockwise. The solid line have corresponds to the solid loop in

Fig. 2 and the broken line have corresponds to the broken loop there.

is given by

|ψ(t)⟩ = ÛT |ψ(t)⟩ (81)

with the time-evolution operator

ÛT = T exp

[
− i

ℏ

∫ T

0

dt Ĥ(λ(t))

]
, (82)

where T is the time-ordering operator defined as

T Â(t1)Â(t2) · · · Â(tn) ≡ Â(tN1)Â(tN2) · · · Â(tNn) (83)
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with tN1 > tN2 > · · · > tNn . Specifically, let us consider a two-by-two

Hamiltonian of the form

Ĥ(λ) =

E0(λ) + ia(λ) b(λ)

b(λ) E0(λ)− ia(λ)

 , (84)

where a, b and E0 are complex functions of a complex variable λ. When a, b

and E0 are real, this Hamiltonian has the PT symmetry [9].

The secular equation is given by

0 =
∣∣∣E1̂2 − Ĥ

∣∣∣ = (E − E0)
2 + a2 − b2, (85)

where 1̂2 is the two-by-two identity matrix. The eigenenergies are

E1 = E0 +
√
b2 − a2, (86)

E2 = E0 −
√
b2 − a2. (87)

The right eigenvectors defined by

Ĥ vR
n = Env

R
n (88)

for n = 1 and 2 are given by

vR
1 =

C1√
2


− b

a

c1
a

 , (89)

vR
2 =

C2√
2


− b

a

c2
a

 , (90)
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where

c1 = ia−∆, (91)

c2 = ia+∆ (92)

with

∆ = b2 − a2. (93)

Conventionally, the normalization constants C1 and C2 in Eqs. (89) and (90)

are chosen so as to obey the following conditions:

TvR
1 v

R
1 = 1, (94)

TvR
2 v

R
2 = 1. (95)

These conditions decide the constants as

C1 =

√
a2

−c1∆
, (96)

C2 =

√
a2

c2∆
. (97)

However, in this thesis we use

C1 = 1, (98)

C2 = 1 (99)

instead, because the constants (96) and (97) diverge at the exceptional points.

In order to construct the Hashimoto form, we need finite vectors of vR
1 , v

R
2 ,

vL
1 and vL

2 .
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We can find the left eigenvectors easily. Since the Hamiltonian (84) is

symmetric, the transpose of Eq. (88) gives us

TvR
n Ĥ = En

TvR
n (100)

for n = 1 and 2, which yields the left eigenvectors as

vL
1 =TvR

1 =
1√
2

(
− b

a

c1
a

)
, (101)

vL
2 =TvR

2 =
1√
2

(
− b

a

c2
a

)
. (102)

As discussed previously in Section 2, the exceptional points λEP are de-

fined by the points in the parameter space where the two eigenvectors vR
1

and vR
2 coalesce. In other words, λEP is given by

∆(λEP) = 0, (103)

at which we have

∆(λEP) ≡ b(λEP)
2 − a(λEP)

2 = 0. (104)

In order to obtain the exact representation of the time-evolution operator,

we utilize the Hashimoto form of the Hamiltonian [16]. Let us first derive the

Jordan form at the exceptional point. For λ = λEP, we have a = ±b because

of Eq. (104). In the following discussion, we focus on the exceptional point

with a = b for simplicity. The solution for a = −b is obtained parallel by.

34



We then have

ĤEP =

E0 + ia a

a E0 − ia

 (105)

and the two eigenvectors coalesce into one:

vR
1 = vR

2 = vR
EP ≡ 1√

2

−1

i

 , (106)

vL
1 = vL

2 = vL
EP ≡ 1√

2

(
−1 i

)
, (107)

for which we define the co-vector

wR
EP =

1√
2

−1

−i

 , (108)

wL
EP =

1√
2

(
−1 −i

)
. (109)

Indeed, vR
EP and wR

EP satisfy (35). The similarity transformation,

ŜEP =

(
vR
EP wR

EP

)
=

1√
2

−1 −1

i −i

 , (110)

Ŝ−1
EP =

wL
EP

vL
EP

 =
1√
2

−1 −i

−1 i

 , (111)

brings the Hamiltonian (105) to the Jordan form:

N̂EP = Ŝ−1
EPĤEPŜEP =

E0 2ia

0 E0

 . (112)
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Let us now derive the Hashimoto form [16] around the exceptional point.

As we discussed in Section 2, we defined the generalized co-vectors as

wL
1 · vR

1 = 1,

wL
1 Ĥ = E1w

L
1 + 2iavL

2 (113)

and

vL
2 ·wR

2 = 1,

ĤwR
2 = 2iavR

1 + E2 w
R
2 . (114)

We can indeed find the following vectors uniquely:

wL
1 =

(
ic2
b

−i
)
, (115)

wR
2 =


ic1
b

−i

 . (116)

The orthogonal matrices

Ŝ =

(
vR
1 wR

2

)
=


− b

a

ic1
b

c1
a

−i

 , (117)

Ŝ−1 =


wL

1

vL
2

 =


ic2
b

−i

− b

a

c2
a

 (118)
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constitute a similarity transformation which brings the Hamiltonian (84) to

the Hashimoto form

N̂ = Ŝ−1ĤŜ =

E1 2ia

0 E2

 . (119)

As discussed in Section 2, both Ŝ and N̂ are continuous around an exceptional

point. We thereby expect that the Hashimoto form is more useful than the

diagonalization for the analysis of the evolution around the exceptional point.

Let us assume a cyclic dynamics with λ(T ) = λ(0). The time-evolution

operator (82) is then given by

ÛT = T exp

[
− i

ℏ

∫ T

0

dt Ŝ(λ(t)) N̂(λ(t)) Ŝ−1(λ(t))

]
. (120)

Its Trotter decomposition produces

ÛT = lim
N→∞

{
exp

[
− i

ℏ
∆t ŜNN̂N Ŝ

−1
N

]

× exp

[
− i

ℏ
∆t ŜN−1N̂N−1Ŝ

−1
N−1

]
· · · exp

[
− i

ℏ
∆t Ŝ1N̂1Ŝ

−1
1

]}

= lim
N→∞

{
ŜN e−

i
ℏ ∆t N̂N Ŝ−1

N

× ŜN−1 e
− i
ℏ ∆t N̂N−1 Ŝ−1

N−1 × · · · × Ŝ1 e
− i
ℏ ∆t N̂1 Ŝ−1

1

}
, (121)

where ∆t = T/N , tn = n∆t, N̂n ≡ N̂(λ(tn)), and Ŝn ≡ Ŝ(λ(tn)). To

continue this calculation, we need to simplify Ŝ−1
n Ŝn−1:

Ŝ−1
n Ŝn−1 ≃ Ŝ−1

n

(
Ŝn −

dŜn

dλ

dλ

dt
∆t

)
= 1̂2 − Ŝ−1

n

dŜn

dt
∆t (122)
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with

dŜn

dt
=
dŜn

dλ

dλ

dt
. (123)

We can achieve the equality of Eq. (122) in the limit ∆t → 0. We thereby

have

ÛT = lim
N→∞

T

{
ŜN e−

i
ℏ ∆t N̂N

(
1̂ − Ŝ−1

N

dŜN

dt
∆t

)

× e−
i
ℏ ∆t N̂N−1

(
1̂ − Ŝ−1

N−1

dŜN−1

dt
∆t

)
× · · ·

× e−
i
ℏ ∆t N̂1

(
1̂ − Ŝ−1

1

dŜ1

dt
∆t

)
Ŝ−1
0

}

= Ŝ (λ(T )) lim
N→∞

T

{
exp

[
− i

ℏ
∆t

(
N̂N − iℏŜ−1

N

dŜN

dt

)]

× exp

[
− i

ℏ
∆t

(
N̂N−1 − iℏŜ−1

N−1

dŜN−1

dt

)]
× · · ·

× exp

[
− i

ℏ
∆t

(
N̂1 − iℏŜ−1

1

dŜ1

dt

)] }
Ŝ−1 (λ(0)) , (124)

or formally, with Ŝf = Ŝ(T ) and Ŝi = Ŝ(0),

ÛT = ŜfT exp

[
− i

ℏ

∫ T

0

dt

(
N̂(λ(t))− iℏŜ−1(λ(t))

dŜ

dt
(λ(t))

)]
Ŝ−1
i

= ŜfT exp

[
− i

ℏ

∫ T

0

dtĤ′(t)

]
Ŝ−1
i , (125)

where

Ĥ′(t) = N̂(λ(t))− iℏŜ−1(λ(t))
dŜ

dt
(λ(t)). (126)

We refer to this as the effective Hamiltonian hereafter.
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4.3 An exactly solvable model

In this subsection we construct a nontrivial model for which we can exactly

calculate the time-evolution operator and compare the non-adiabatic time-

evolution with the adiabatic one. The discussion in the present subsection is

based on Eq. (125).

Before deriving our model, we remark that we hereafter use the notations

a(t), b(t), Ŝ(t) and so on instead of a(λ(t)), b(λ(t)), Ŝ(λ(t)) and so on,

respectively.

Our method consists of three steps:

1. We derive an exact form of the time-evolution operator in terms of a(t),

b(t) and E0(t).

2. We find a(t), b(t) and E0(t) so that the time-evolution operator may

be easy to calculate and at the same time the flip of the eigenstates

may occur.

3. We finally find a(λ), b(λ) and E0(λ) as the functions of λ by solving

the following equations about a(λ), b(λ), E0(λ) and λ(t):

a(λ(t)) = a(t), (127)

b(λ(t)) = b(t), (128)

E0(λ(t)) = E0(t). (129)
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Since the step 3 is difficult to treat generally, we assume that there exist the

solutions of Eqs. (127)–(129). In other words, we concentrate on deriving

a(t), b(t) and E0(t) in the present thesis.

To derive our model, we first compute the effective Hamiltonian (126)

explicitly. For simplicity, we set E0(t) ≡ 0. Using the fact

d

dt
(wL

1 · vR
1 ) = 0, (130)

we obtain

Ŝ−1(t)
˙̂
S(t) =


wL

1 (t) · v̇R
1 (t) wL

1 (t) · ẇR
2 (t)

vL
2 (t) · v̇R

1 (t) vL
2 (t) · ẇR

2 (t)



=


−ẇL

1 (t) · vR
1 (t) wL

1 (t) · ẇR
2 (t)

vL
2 (t) · v̇R

1 (t) vL
2 (t) · ẇR

2 (t)

 . (131)

The time derivatives are

ẇL
1 (t) =

1√
2

(
ic2(t)

b(t)

(
ċ2(t)

c2(t)
− ḃ(t)

b(t)

)
0

)

=
1√
2

(
−
(

1

b(t)
+

ia(t)

b(t)∆(t)

)
ȧ(t) +

(
i

∆(t)
− ic2(t)

b(t)2

)
ḃ(t) 0

)
,

(132)
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ẇR
2 (t) =

1√
2


ic1(t)

b(t)

(
ċ1(t)

c1(t)
− ḃ(t)

b(t)

)

0



=
1√
2


−
(

1

b(t)
− ia(t)

b(t)∆(t)

)
ȧ(t) +

(
− i

∆(t)
+
ic1(t)

b(t)2

)
ḃ(t)

0

 ,

(133)

and

v̇R
1 (t) =

1√
2


− b(t)

a(t)

(
ḃ(t)

b(t)
− ȧ(t)

a(t)

)

c1(t)

a(t)

(
ċ1(t)

c1(t)
− ȧ(t)

a(t)

)


=
1√
2


− b(t)

a(t)

(
ḃ(t)

b(t)
− ȧ(t)

a(t)

)
(

1

∆(t)
+

∆(t)

a(t)2

)
ȧ(t)− b(t)

a(t)∆(t)
ḃ(t)

 . (134)

Because c1(t) c2(t) = −b(t)2, we have

−ẇL
1 (t) · vR

1 (t) =
1

2

[
−
(

1

a(t)
+

i

∆(t)

)
ȧ(t)

+ i

(
b(t)

a(t)∆(t)
+

ic2(t)

a(t)b(t)

)
ḃ(t)

]

=
b(t)ȧ(t)− ḃ(t)a(t)

2 b(t)∆(t)

c2(t)

a(t)
, (135)
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wL
1 (t) · ẇR

2 (t) =
1

2

[
−
(
ic2(t)

b(t)2
+

ac2(t)

b(t)2∆(t)

)
ȧ(t)

+

(
c2(t)

b(t)∆(t)
+

1

b(t)

)
ḃ(t)

]

=
b(t)ȧ(t)− ḃ(t)a(t)

2 b(t)∆(t)
(−i), (136)

vL
2 (t) · v̇R

1 (t) =
1

2

[(
b(t)

a(t)

)2
(
ḃ(t)

b(t)
− ȧ(t)

a(t)

)

+

(
c2(t)

a(t)∆(t)
+
c2(t)∆(t)

a(t)3

)
ȧ(t)− c2(t)b(t)

a(t)2∆(t)
ḃ(t)

]

=
b(t)ȧ(t)− ḃ(t)a(t)

2 b(t)∆(t)
i

(
b(t)

a(t)

)2

, (137)

vL
2 (t) · ẇR

2 (t) =
1

2

[
−
(

1

a(t)
− i

∆(t)

)
ȧ(t)

− i

(
b(t)

a(t)∆(t)
+

ic1(t)

a(t)b(t)

)
ḃ(t)

]

= −b(t)ȧ(t)− ḃ(t)a(t)

2 b(t)∆(t)

c1(t)

a(t)
. (138)

Inserting Eqs. (135)–(138) into Eq. (131), we arrive at

Ŝ−1(t)
˙̂
S(t) =

b(t)ȧ(t)− ḃ(t)a(t)

2 b(t)∆(t)


c2(t)

a(t)
−i

i

(
b(t)

a(t)

)2

−c1(t)
a(t)

 , (139)

which is followed by the effective Hamiltonian

Ĥ′ =

∆ 2ia

0 −∆

− iℏ
bȧ− ḃa

2b∆


c2
a

−i

i

(
b

a

)2

−c1
a

 . (140)
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In the following, we look for an exactly solvable non-adiabatic and yet

nontrivial model. For the purpose, we set the (1,2) element of Eq. (140) to

zero so that Ĥ′ may be a lower triangular matrix. The condition is given by

bȧ− ḃa

ab
= − i

ℏ
4∆. (141)

Because

d

dt

a

b
=
a

b

(
ȧ

a
− ḃ

b

)
=
a

b

bȧ− ḃa

ab
, (142)

Eq. (141) reduces to

ṙ

r
= − i

ℏ
4∆ (143)

with r = a/b. By solving this, we have

r(t) = r0 exp

[
− i

ℏ
4

∫ t

0

dt′∆(t′)

]
. (144)

This result indicates that r(t) is given by ∆(t) in our condition. We can also

express a(t) and b(t) in terms of ∆(t). Since

∆2 = b2 − a2 = b2
(
1− r2

)
, (145)

we have

b(t) =
∆(t)√
1− r(t)2

(146)

and then

a(t) = r(t)b(t). (147)

43



Let us find a function ∆(t) that achieves our aim. Our task here is to see

the breaking of the adiabatic flip in our non-adiabatic process. We therefore

set λ(T ) = λ(0) and ∆(T ) = −∆(0). The former condition means that

the Hamiltonian is periodic with period T and the latter means that the

system must exhibit the flip if the motion of λ is adiabatic. Under these

extra conditions,

a(T ) = a(0), (148)

b(T ) = b(0), (149)

r(T ) = r(0), (150)

∆(T ) = −∆(0) (151)

should be satisfied.

Equations (148)–(150) are obviously consistent with Eq. (147). Compar-

ing Eqs. (146), (149) and (151), on the other hand, we realize that
√

1− r(t)2

must be anti-periodic as

√
1− r(T )2 = −

√
1− r(0)2, (152)

although r(t) itself must be periodic. Therefore ∆(t) must be given so that

r(t)2 may go around the origin in the complex plane even times and around

the point r2 = 1 in the complex plane odd times. Because of Eq. (144), the
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periodicity of r(t) gives

∫ T

0

dt′∆(t′) =
ℏ
4
2nπ (153)

with integer n. For simplicity, let us choose n = 0. Equation (144) dictates

that the real part of ∆ contributes to the phase of r(t) and the imaginary

part does to the amplitude. Thus the conditions Im∆(T ) = Im∆(0) = 0,

Re∆(T ) ̸= 0 and Re∆(0) ̸= 0 are reasonable. Taken together, the conditions

for our model are

Re∆(T ) ̸= 0, (154)

Re∆(0) ̸= 0, (155)∫ T

0

dt′ Re∆(t′) = 0, (156)

Im∆(T ) = Im∆(0) = 0, (157)∫ T

0

dt′ Im∆(t′) = 0. (158)

Equations (154)–(156) are easily satisfied by a cosine function. Equa-

tions (157) and (158) are satisfied by a sine function but it does not produce

r(t)2 that goes around the point r2 = 1. We here propose the following

model:

∆(t) = ℏω

{
cos

(
πt

T

)
+ i

α

T 4

[
−
(
t− T

2

)4

+
3T 2

10

(
t− T

2

)2

− T 4

80

]}
,

(159)
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Figure 4: The time dependence of ∆(t) for our model (159) plotted in the

complex plane. Parameters are set to α = 100 and ℏω = 1.

where ω and α are real constants. Figure 4 shows the plot of ∆(t) with

parameters α = 100 and ℏω = 1. Equation (144) then gives

r(t) = r0 exp

{
−Tω

[
4α

5

(
t

T

)2(
t

T
− 1

)2(
t

T
− 1

2

)
+ i

4

π
sin
(π
T
t
)]}

.

(160)

We also have b(t) and a(t) from Eqs. (146) and (147). We plot r(t), b(t) and

a(t) in Fig. 5 with the parameters α = 100, ω = 1, r0 = exp (i2π/3) and

assuming ℏ = T = 1 We can see that r(t)2 goes around the point r2 = 1

once.
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Figure 5: The time dependence of (a) r(t) (blue curve at the left of (a)) and

r(t)2 (red curve at the right of (a)) and (b) b(t) (blue curve at the left-top

of (b)) and b(t) (red curve at the right-bottom of (b)) for our model (159)

plotted in the complex plane. The parameters are set to α = 100, ω = 1,

r0 = exp (i2π/3) and ℏ = T = 1. The exceptional point exists at 1 in the

panel (a).
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Calculation of the time-evolution and comparing with the adiabatic

result

In order to calculate the time-evolution operator of our model, we first sim-

plify Ĥ′ by applying Eq. (141) to Ŝ−1 ˙̂S. We have

Ĥ′ =

∆ 2ia

0 −∆

+ 2a


c2
a

−i

i

(
b

a

)2

−c1
a



=


2i+∆ 0

2ia

(
b

a

)2

−2i− 3∆



=


2ia+ E1 0

2ia

(
b

a

)2

−2ia+ 3E2

 , (161)

which is followed by

exp

(
− i

ℏ
Ĥ′∆t

)
=


e

2
ℏa∆t e−

i
ℏE1∆t 0

β(t; ∆t) e−
2
ℏa∆t e−

i
ℏ 3E2∆t

 (162)

with

β(t; ∆t) ≡ b

4 (ia+∆)

(
e−

i
ℏ (2 i a+E1)∆t − e−

i
ℏ (−2 i a+3E2)∆t

)
. (163)
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The Trotter decomposition (121) therefore yields

ÛT = Ŝf


e

2
ℏ
∫ T
0 dt a(t) e−

i
ℏ
∫ T
0 dtE1(t) 0

B(T ) e−
2
ℏ
∫ T
0 dt a(t) e−

i
ℏ 3

∫ T
0 dtE2(t)

 Ŝ−1
i

= Ŝf


e

2
ℏ
∫ T
0 dt a(t) 0

B(T ) e−
2
ℏ
∫ T
0 dt a(t)

 Ŝ−1
i (164)

with

B(T ) = lim
N→∞

N∑
m=1

bNbN−1 · · · bm+1cmam−1am−2 · · · a1, (165)

where

an = e
2
ℏa(tn)∆t e−

i
ℏE1(tn)∆t, (166)

bn = e−
2
ℏa(tn)∆t e−

i
ℏ 3E2(tn)∆t, (167)

cn = β(tn; ∆t) =
b(tn)

4(ia(tn) + ∆(tn))
(an − bn) . (168)

Note that we used the conditions (156) and (158) here.

Equation (164) is the propagator from t = 0 to t = T in a representation

given by Ŝ−1
i at t = 0 and Ŝf at t = T . Let p and q denote the (1, 1) and

(2, 1) elements of Eq. (164), respectively. For example, suppose that the

state |ψ(t)⟩ is initially the eigenstate of the Hamiltonian:

|ψ(t = 0)⟩ = vR
1 (0). (169)
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Since

Ŝ−1
i =

wL
1 (0)

vL
2 (0)

 (170)

and

wL
1 (0) · vR

1 (0) = 1, (171)

vL
2 (0) · vR

1 (0) = 0, (172)

we have

Ŝ−1
i |ψ(t = 0)⟩ =

1

0

 , (173)

and hence our state at t = T is represented by

|ψ(t = T )⟩ = Ŝf

p
q

 = pvR
1 (T ) + qwR

2 (T ) = pvR
2 (0) + qwR

1 (0), (174)

where

p = e
2
ℏ
∫ T
0 dt a(t), (175)

q = B(T ), (176)

50



We can also calculate B(T ). Using Eqs. (165-168), we have

B(T ) = lim
N→∞

N∑
m=1

bNbN−1 · · · bm+1am−1am−2 · · · a1

× b(tm)

4c2(tm)

4

ℏ
(a(tm)− i∆(tm))∆t

= lim
N→∞

N∑
m=1

exp

[
N∑

n=m+1

(
2

ℏ
a(tn)−

i

ℏ
∆(tm)

)
∆t

−
m∑

n=1

(
2

ℏ
a(tn)− 3∆(tn)

)
∆t

]
× −i

ℏ
4b(tm)∆t

=

∫ T

0

dt exp

[
−4

ℏ

∫ t

0

dt′ (a(t′)− i∆(t′))

]
b(t)

=

∫ T

0

dt
exp

[
−i4ℏ

∫ t

0
dt′∆(t′)

]
a(t)

exp
[
4
ℏ

∫ t

0
dt′a(t′)

]
r(t)

. (177)

vR
2 (0) =

TvL
2 (0), and wR

1 (0) =
TwL

1 (0). We thereby conclude that |p|2 and

|q|2 are the rate of propagation to the states vR
2 and wR

1 , respectively.

The eigenstate vR
1 therefore flips to the other eigenstate vR

2 with the rate

|p|2 = exp

[
4

ℏ
Re

∫ T

0

dt a(t)

]
. (178)

For example, numerically exact calculation with α = 100, ω = 1, r0 =

exp (i2π/3) and ℏ = T = 1 gives

|p|2 ≈ 0.189914 (179)

and

|q|2 ≈ 456.195 . (180)
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This result means that if the process is non-adiabatic, we find that make the

flipping of the eigenstate incomplete.

We now show that |p|2 in Eq. (178) converges to 1 in the limit T → ∞.

For the purpose, we will hereafter show

θT ≡ Re

∫ T

0

dt a(t) → 0 (181)

as T → ∞. Using the definitions of our model, we obtain

θT = Re

∫ T

0

∆(t)

√
r(t)2

1− r(t)2
dt

= ReT

∫ 1

0

∆(Ts)

√
r(Ts)2

1− r(Ts)2
ds, (182)

where we made the transformation t = Ts. Because ∆(t) = f(t/T ) with a

function f independent of T , ∆(Ts) is independent of T . We therefore have

θT = Re

∫ 1

0

f(s)K(s;T )ds, (183)

where

K(s;T ) = T

√
r(Ts)2

1− r(Ts)2
. (184)

Using the conditions (156) and (158), we can find

∫ 1

0

f(s)ds = 0. (185)

The central problem is therefore the evaluation of K(s;T ) in the limit T →
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∞. We can rewrite it in the form

[K(s;T )]2 = T 2 r20 exp[2TCg(s)]

1− r20 exp[2TCg(s)]
(186)

= T 2 1

r−2
0 exp[−2TCg(s)]− 1

, (187)

where

C =
8

ℏ
, g(s) = −i

∫ s

0

ds′ f(s′). (188)

If Re g(s) > 0, the term r−2
0 e−2Cg(s)T in the denominator of (187) is negligible

for sufficiently large T and hence

[K(s;T )]2 ≃ −T 2. (189)

If Re g(s) < 0, the factor r20e
2TCg(s) in (186) is negligible for sufficiently large

T and hence

[K(s;T )]2 ≃ 0. (190)

We therefore conclude that

K(s;T ) ≃ ±iTΘ(Re g(s)) (191)

for sufficient large T , where Θ is the Heaviside step function:

Θ(x) =


1 if x > 0,

0 if x < 0.

(192)
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This result gives

θT =

∫ 1

0

ds [Re f(s) ReK(s;T )− Im f(s) ImK(s;T )]

≃ ∓T
∫ 1

0

Im f(s)Θ(Re g(s))ds. (193)

Note that

Re g(s) = Re

(
−i
∫ s

0

ds′f(s′)

)
= I(s), (194)

where

I(s) = Im

∫ s

0

ds′f(s′). (195)

Equation (193) thereby reduces to

θT ≃ ∓T
∫ 1

0

I ′(s)Θ(I(s))ds (196)

under the conditions I(0) = I(1) = 0, the latter of which is due to Eq. (185).

We finally evaluate Eq. (196). Suppose that I(s) behaves as shown in

Fig. 6. We then have

θT ≃ ∓
(
Im

∫ e1

s1

dsf(s) + Im

∫ e2

s2

dsf(s) + · · ·+ Im

∫ en

sn

dsf(s)

)
= ∓ [(I(e1)− I(s1)) + (I(e2)− I(s2)) + · · ·+ (I(en)− I(sn))]

= 0. (197)

We can also have |B(T )|2 → 0 as T → ∞ with similar techniques.
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Figure 6: Schematic image of I(s). I(s) is positive for si < s < ei with

i = 1, 2, . . . , n.

4.4 Compairing our results and the previous results

For our model with the parameters set to α = 100, ω = 1, r0 = exp (i2π/3)

and ℏ = T = 1, we can have the time evolution of αi(t) and βi(t) defined by

Ûtvj(0) = αj(t)v1(t) + βj(t)v2(t), j = 1, 2. (198)

The plot of α̂i(t) = αi(t)/Ci(t) and β̂i(t) = βi(t)/Ci(t) with Ci(t) =
√
αi(t)2 + βi(t)2

are indicated in Fig. 7. The figure implies that any initial state evolves to

the state having a similar superposition rate. Comparing to Fig. 2, we can

find the following:

1. Our results in Fig. 7 are similar to Fig. 2(b). In the both cases, we find

β̂i(T ) > α̂i(T ). This means that our case in Fig. 7 corresponds to the

anti-clockwise case in Gilary et al.
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Figure 7: Time evolution of (a) α̂1(t) and β̂1(t) and (b) α̂2(t) and β̂2(t). The

blue lower curves indicate α̂i(t) and the upper red curves indicate β̂i(t).

2. In our results, β̂i(T ) is less than one and α̂i(T ) is more than zero, in

spite of β̂i(T ) ≈ 1 and α̂i(T ) ≈ 0 in Gilary et al.

Based on these points, we find that the second state in our example is

flipping, but the flip is far from complete. In other words, a part of the state

flips but the rest remains in the initial state.

This incomplete flip is due to the non-adiabatic coupling. In the cal-

culation under the adiabatic approximation, the state initially at a single

eigenstate evolves along with the eigenvector. If there is a non-adiabatic

coupling, however, a part of the state is transferred to the other eigenstate.

Our result is probably due to quicken motion of the parameter λ than in the

study by Gilary et al.
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5 Summary

We have proposed an exactly solvable model of the two-state non-Hermitian

quantum system which encircles an exceptional point and have observed the

breaking of the adiabatic flip. When the system encircles an exceptional

point adiabatically, each of the eigenstates is flipped to the other. In reality,

however, it is impossible to vary the parameter slowly enough in experiments.

According to the numerical studies by Gilary et al. [13–15], the adiabatic flip

breaks if the motion of the parameter is non-adiabatic. We have observed

the breaking exactly.

The evaluation of the breaking of the adiabatic flip is based on the exact

calculation of the time-evolution operator ÛT with a time-dependent Hamil-

tonian Ĥ(t). We used the Hashimoto form (119) and the Trotter decompo-

sition (121) for the calculation of the time-ordered product (82). We expect

that the Hashimoto form is more useful than the diagonalization for the

analysis of the evolution around the exceptional points.

We have an alternative form (126) of ÛT with the effective Hamiltonian

Ĥ′(t) in (125). We then derived an exactly solvable model so that Ĥ′(t) may

become a lower triangular matrix. This makes the exact calculation of ÛT

possible.

With our calculation, we exactly find the incompleteness of the flip of the
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second state due to the non-adiabatic effect. This is similar to the case of anti-

clockwise motion of parameter around an exceptional point in the numerical

study given by Gilary et al. [13–15]. For example, for α = 100, ω = 1,

r0 = exp (i2π/3) and ℏ = T = 1 in the model (159), the rates that the initial

state is flipped to the other flipping eigenstate is given by |p|2 ≈ 0.189914 and

|q|2 ≈ 456.195. Moreover, in the adiabatic limit T → ∞, we have |p|2 → 1

and |q|2 → 0 in our model. We also find that any states evolve to one state

after one cycle with incomplete flip. This incompleteness is a result from the

non-adiabatic effects.
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