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Abstract

Entanglement is known to be a promising resource which enables us to execute various
quantum tasks. Its quantification has been successful for bipartite pure states. However,
the quantification of entanglement for multipartite states has been in a difficult situation.
The difficulty is due to the difference of structures between bipartite and multipartite
states. In the present thesis, we introduce a new approach for this problem. We give a
necessary and sufficient condition of the possibility of a deterministic LOCC transforma-
tion of three-qubit pure states. This condition is expressed as a transformation law of
six entanglement parameters jag, jac, jBc, jasc, Js and Qe, where jag, jac and jpc
are bipartite entanglements, japc is a tripartite entanglement, J; is a tripartite param-
eter which means a kind of phase, and Qe is a new tripartite parameter which means
a kind of charge. This fact shows that three-qubit pure states are a partially ordered
set parametrized by the six entanglement parameters. The order of the partially ordered
set is defined by the possibility of a deterministic LOCC transformation from a state to
another state. In this sense, the present condition is an extension of Nielsen’s work [14]
to three-qubit pure states. We also clarify the rules of transfer and dissipation of en-
tanglement. These rules guarantee that the tripartite entanglement can be transformed
into bipartite entanglements, but that the bipartite entanglements cannot be transformed
into the tripartite entanglement. This implies that the tripartite entanglement is a higher
entity than the bipartite entanglements. With a new combination of the six entanglement
parameters, the present condition can be simplified enough to determine easily whether
a deterministic LOCC transformation from an arbitrary state |¢)) to another arbitrary
state |1} is possible or not. Moreover, the minimum number of times of measurements to
reproduce an arbitrary deterministic LOCC transformation is given. This is an extension
of Horodecki et al.’s work [24] to three-qubit pure states.
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Chapter 1

Introduction

In recent years, a physical quantity called “entanglement” has become the center of atten-
tion in quantum physics. The entanglement is considered as an index of the nonlocality
of the system. The entanglement is also known to be a promising resource which enables
us to execute various quantum tasks such as quantum computing, teleportation, super-
dense coding etc. [1-4]. Thus, the quantification of the entanglement is a very important
subject.

The entanglement describes nonlocal features of the system, and thus the system’s
response to local operations is important in investigating the entanglement. Hence, the
operations called the local operations and classical communications (LOCC) play an im-
portant role in the research of the entanglement. The study of LOCC is also important
for quantum communication, because any processes of quantum communication is a kind
of the LOCC process. The research of the LOCC brought us the quantification of the
entanglement for bipartite pure states. Many indices such as the concurrence [5-7] and
the negativity [8] have been proposed. Bennett et al. [9] has proven that all of them can
be expressed by the set of the coefficients of the Schmidt decomposition [10-13]. Based
on the properties of this set, the following have been given:

(i) an explicit necessary and sufficient condition to determine whether an arbitrary bi-
partite state is an entangled state or a separable state;

(ii) an explicit necessary and sufficient condition to determine whether a deterministic
LOCC transformation from an arbitrary bipartite pure state to another arbitrary
bipartite pure state is executable or not [14];

(ii) an explicit necessary and sufficient condition to determine whether a stochastic
LOCC transformation from an arbitrary bipartite pure state to an arbitrary set
of bipartite pure states with arbitrary probability is executable or not [15];

(iv) the fact that copies of an arbitrary partially entangled pure state can be distilled to
the Bell states by an LOCC transformation, where the ratio between the copies and
the Bell states is proportional to the entanglement entropy of the partially entangled
state [9];

(v) the fact that copies of an arbitrary partially entangled pure state can be reduced from
the Bell states by an LOCC transformation, where the ratio between the copies and



the Bell states is inversely proportional to the entanglement entropy of the partially
entangled state [9].

These results suggested the relation among the entanglement, the entropy and informa-
tion, and thus the research of entanglement became important not only for the field of
quantum information, but also for other various fields.

Extension of the above to multipartite states has been vigorously sought, but albeit
it is a hard problem. It has been shown that the entanglement of three-qubit pure states
is expressed by five parameters [16,17]. The tangle has been defined [18], which together
with the concurrences gives a solution to (i) for three-qubit pure states. The tangle
Tapc has an important property that C’i(BC) = (%5 + C%c + Tapc, where Cap is the
concurrence between the qubits A and B, Cs¢ is the concurrence between the qubits A
and C, and Cy(pc) is the concurrence between the qubit A and the set of the qubits B and
C'. This property implies that the tangle is an index of the tripartite entanglement. The
tangle can be expressed by the hyper-determinant [19]. The tangle and the concurrences
between the qubits A and B, A and C, and B and C can be expressed by the coefficients
of the generalized Schmidt decomposition [20,21]. These facts imply that for three-qubit
states, the concurrences and the tangle play the role which the Schmidt coefficients play
for bipartite states. However, the results corresponding to (ii)—(v) have not been provided
yet. The reason of the difficulty is as follows: there is a difference between the structure
of bipartite pure states and that of multipartite pure states, and thus the approach which
was used in quantification of entanglement of bipartite pure states cannot be applied to
multipartite.

In the present thesis, we give a new approach for this problem. With this approach,
we obtain the following four results. First, a complete solution corresponding to (i) for
three-qubit pure states is given. To be precise, we give an explicit necessary and sufficient
condition to determine whether a deterministic LOCC transformation from an arbitrary
three-qubit pure state |¢) to another arbitrary state [1)') is executable or not. We express
the present condition in terms of the tangle, the concurrence between A and B, the
concurrence between A and C', the concurrence between B and C', J;, which is a kind of
phase, and a new parameter (Je, which means a kind of charge. We thereby clarify the
rules of conversion of the entanglement by arbitrary deterministic LOCC transformations.
Thus, defining the order between two states |¢)') < |¢) by the existence of an executable
deterministic LOCC transformation from [¢) to [¢)'), we can make the whole set of three-
qubit pure states a partially ordered set. To summarize the above, we find that three-qubit
pure states are a partially ordered set parametrized by the six entanglement parameters.
This is an extension of Nielsen’s work [14] to three-qubit pure states.

Second, as we already mentioned above we find a new entanglement parameter Qe.
The new parameter has the following three features:

e . Arbitrary three-qubit pure states are LU-equivalent if and only if their entangle-
ment parameters (Tapc, Cap, Cac, Cpc, Js, Qe) are the same.

e The parameter QQe has a discrete value: —1, 0 or 1.

e The complex conjugate transformation on [¢)) reverses the sign of Qe.



Third, we clarify the rules of conversion of the entanglement by deterministic LOCC
transformations. We also find that we can interpret the conversion as the transfer and
dissipation of the entanglement.

Fourth, we obtain the minimum number of times of measurements to reproduce an
arbitrary deterministic LOCC transformation. The minimum number of times depends on
the set of the initial and the final states of the deterministic LOCC transformation; we will
list up the dependence in Table 3.1 below. We also show that the order of measurements
are commutable; we can choose which qubit is measured first, second and third. This is
an extension of Horodecki et al.’s work [24] to three-qubit pure states.

After completing the present work, we noticed other important results [25-33] which
give partial solutions to (i) for three qubits. In particular, two recent studies [28] and [33]
are remarkable. The former [28] gives a necessary and sufficient condition of the possibility
of a deterministic LOCC transformation of truly multipartite states whose tensor rank
is two; the latter [33] gives a necessary and sufficient condition of the possibility of a
deterministic LOCC transformation of W-type states, both using approaches different
from the present thesis. However, these studies have not achieved the complete solution to
(i) for three-qubit pure states. Specifically, they cannot determine whether a deterministic
LOCC transformation from an arbitrary GHZ-type truly tripartite state to an arbitrary
bipartite state is possible or not. Rules of conversion of entanglement have been provided
only in implicit forms and explicit forms of the rules are yet to be given.

Let us overview the structure of the present thesis. In section 2.1, we define LOCC
protocols. In section 2.2, we review how to perform the quantification of the entanglement
for bipartite pure states. In section 2.3, we see what hinders the quantification of the
entanglement for multipartite pure states. In section 3.1, we define the parameters which
are used in the new approach and examine how an arbitrary measurement changes the
parameters. In section 3.2, we present Main Theorems of the present thesis. In section
3.3, we overview the proofs of the Main Theorems. In section 3.4, we prove three Lemmas
which are often used in the present thesis. In section 3.5, we prove Main Theorems. In
this section, we furthermore obtain rules of the entanglement transfer. The rules appear
in sections 3.5, 3.6.1.1, 3.6.1.5 and 3.6.3.2. In section 3.6, we present an explicit protocol
of determining whether a deterministic LOCC transformation from an arbitrary three-
qubit pure state to an another arbitrary three-qubit pure state is executable or not. In
Appendix, we summarize expressions which are often used throughout the present thesis.



Chapter 2

Review of Previous Studies

2.1 LOCC and d-LOCC

The entanglement describes nonlocal features of the system, and thus the system’s re-
sponse to local operations is important in investigating the entanglement. Hence, the
operations called local operations and classical communications (LOCC) play an impor-
tant role in the research of the entanglement. The research of the LOCC is also important
for quantum communication, because any processes of quantum communication is a kind
of the LOCC process.

Let us show the definition of the LOCC. We consider n sets of a particle and an
operator which are separate from each other (Fig.2.1). Each particle has spin (D — 1)/2,
and thus an operation on the total system can be described as a linear transformation of
a D"-dimensional linear space. Each operator can perform the following three kinds of
operations:

e Local unitary operations on his/her own particle,
e Local measurements on his/her own particle,

e Telling to other operators what kinds of local unitary operators and local mea-
surements he/she performed on his/her own particle as well as the results of the
measurements.

Each operator cannot perform global unitary transformations nor global measurements.
Let us present an example of the LOCC process (Fig.2.2). For simplicity, we consider
a two-qubit system.

Step 1 The operator A performs a measurement {M)|i = 0,1} on the qubit A. If the
result of the measurement is ¢ = 0, proceed to Step 2-0. If the result is ¢ = 1,
proceed to Step 2-1.

Step 2-0 The operator A performs a unitary transformation U, on the qubit A. The
operator B performs a measurement {N(;|i = 0,1} on the qubit B. If the result of
the measurement {N(;|i = 0,1} is ¢ = 0, proceed to Step 3-0. If the result is i =1,
proceed to Step 3-1.

Step 2-1 The operator B performs a unitary transformation U; on the qubit B.
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Figure 2.2: A schematic diagram of an example LOCC.



Step 3-0 The operator B performs a unitary transformation U, on the qubit B.

Step 3-1 The operator A performs a unitary transformation Us on the qubit A.

As in the above example, an LOCC protocol can have branches. The final states of
the branches are generally different from each other. However, there are LOCC protocols
where the final states of all the branches are the same. Such an LOCC protocol is called a
deterministic LOCC (d-LOCC). A necessary and sufficient condition of the possibility of
a deterministic LOCC transformation was given by Nielsen [14] for bipartite pure states.
The quantification of the bipartite entanglement is performed by using this condition [4].
We review the quantification in the next section.

2.2 Quantification of bipartite entanglement

The present Section is composed of four subsections. In the first subsection, we review the
theorem called the quantification of the bipartite entanglement and show the points of the
theorem. In the second subsection, we introduce some knowledge of classical information
theory which is necessary for the proof of the theorem. In the third subsection, we give a
necessary and sufficient condition of the possibility of a d-LOCC of bipartite pure states.
In the fourth subsection, we present the proof of the theorem by using the results of the
second and third subsections. The proofs in the present Section are based on the proofs
in Ref. [4].

2.2.1 Theorem

Theorem lpre Let the notation [Yap) and |pap) stand for pure states of two (D —1)/2-
spin particles. The reduced density matrices pya and pya are defined as

ppa = trp{|ap) (Yasl}, pea = tre{|das) (Panl}- (2.1)

Then the following d-LOCC transformation is executable in the limit of N, M — oo with
N/M = SP¢A/SP¢A"
d—LOCC : [pap)®" = |dap)®", (2:2)

and S,,, are the von Neumann entropies of pya and pya, respectively.

where S oA

PpA

This theorem has the two significant points:

Entanglement quantification: The entanglement of a bipartite pure state can be mea-
sured by the von Neumann entropy of the reduced density matrix of one particle.
Under the measure, we can treat the entanglement as an extensive quantity; we can
gather the entanglement from many states to a few states or distribute the entan-
glement to many states from a few states, without loss of the total entanglement
(Fig.2.3). Note that the dimensionality D is arbitrary. In fact, this equivalence
between the entanglement and the entropy suggests the following two statements:

e An arbitrary system’s entropy is equal to the entanglement between the system
and the environment of the system. This statement follows from the fact that
we can regard the system as one particle and the environment as the other
particle.
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Figure 2.3: A schematic diagram of gathering and distributing of entanglement.

e The entanglement is quantification of the information. This statement follows
from the fact that we can regard one particle as the memory of the other
particle.

Restoration of entanglement Theorem 1pre also gives a method of making a few max-
imally entangled states from many non-maximal states. This contributes much to
the field of quantum communication. In a quantum communication protocol, we
often send out one particle of an entangled pair and the entanglement of the pair is
often damaged by noise. The method enables us to restore the damaged entangle-
ment from the other particle.

2.2.2 Theorem of typical sequences

In the present subsection, we introduce a theorem of classical information theory called
the theorem of typical sequences. This theorem is necessary for the proof of Theorem
Ipre. First, we define the e-typical sequences.

e-typical sequence: Consider a sequence of random variables {Xj, ..., X,,;}. Each ran-
dom variable is equal to ¢ with probability p;, where 7 is a natural number from 1
to d. The random variables are independent of each other, and thus the following
equation holds:

p({ X1, .., Xu} = {x1, .., }) = p(Xy = 21)p( X = x9)..p(X,, = ). (2.3)

Then, if a sequence of natural numbers {1, ..., x,, } satisfies the following inequalities,
we refer to the sequence x4, ..., x, as an e-typical sequence:

e M) < p({Xy, 0 X} = {2y, oy wn}) < e PI=9) (2.4)

where H{p;} = — S>%, p;log p;.

The following theorem, which is called the theorem of typical sequences, holds for the
e-typical sequences.

Theorem 2pre (i) Take two arbitrary real numbers € > 0 and 0 < 0 < 1. Then, there
s a natural number N for which

n>N= P.({z1,...,2,}) >1-9 (2.5)

holds, where P.({x1,...,x,}) is the probability that the sequence {x1,...,x,} is an
e-typical sequence.



(ii) Take two arbitrary real numbers € > 0 and 0 < § < 1. Then,
(1 — §)e"HP}=9 < |T(n,€)| < " Hpitte) (2.6)
holds for n > N, where T'(n,€) is the set of the e-typical sequences {x1,...,z,} and
|T'(n,€)| is the number of elements of T'(n,€).

Proof
First we prove (i). Because of the law of large numbers,

Z?:1 lng(Xi)

n

~ (logp(X)| > ) 0 (2.7)

n—oo

lim Prob (‘

holds, where (...) denotes the average with respect to the random variables. Because of
(logp(X1)) = H{p;} and [];_, p(Xi) = p(X1, ..., X;), we can reduce the equation (2.7) to

1 X, X
hm PrOb ( ng( 17 ) TL)
n

n—oo

- H{pi}

> e) = 0. (2.8)

Thus, for arbitrary € > 0 and 0 < § < 1, there is a natural number N which satisfies

n > N = Prob ( Ing(X;’ o Xn) H{p;}| > 6) < 0. (2.9)
Note that
P.({zy,...,x,}) =1 — Prob ( log p(X1 = xlr; woXn =) _ H{p:}| > e) : (2.10)
Thus, Eq. (2.9) is equivalent to (2.5).
Second, we prove (ii). Because of (2.5),
1—6 < P.({xy,....,z,}) = Yoo X=Xy =1,) <1 (2.11)

holds for n > N. Because of the definition of e-typical sequences,

T(n, o)l < N p(X) =, Xy = @) < [T, €)=

(2.12)
holds for n > N. Because of (2.11) and (2.12), the inequalities (2.6) holds.O

2.2.3 A necessary and sufficient condition of the possibility of
d-LOCC of bipartite pure states
In the present subsection, we give a necessary and sufficient condition of the possibility

of d-LOCC of bipartite pure states. First, we prove three lemmas which are necessary to
obtain the condition.



Lemma 1pre For an arbitrary matriz G, there is a unitary matriz U which satisfies

G = UVGIG = VGGU. (2.13)

Proof

We prove this lemma by writing down the matrix U. Because the matrix VGG is
a positive matrix, we can diagonalize the matrix vVGTG to obtain nonnegative eigenval-
ues. Let the notations {\;|i = 1,...,n} and {|i) |i = 1,...,n} stand for the nonnegative
eigenvalues and the corresponding eigenvectors of VGIG, respectively. Without losing
generality, we can assume that {);} is in a non-increasing order. Let us assume that the
eigenvalues for ¢ < n, are positive and the rest are zero. If all of {\;} are positive, the
number ny is equal to n. We then give the matrix U in terms of G, {\;|i = 1,...,n} and

{li)|i=1,...,n} as :
U=y )\%G 1) (il + Z (i = Z le:) (il (2.14)

i=n4+1
where
LG i) (1< ny)
Ly = >\i - +/
e = { B =), (2.15)

The set of the vectors {|e;) } constitutes a complete orthonormal basis. The orthonormality
is explicitly shown as

GIGIE LGy =0 (1<ij<ny),
(JI +Gli)y =0 (1<i<ng,1<j<n,+1),
Te) — i 2.1
teslead <9|G%Iz> 0 (e +1<i<n1<j<ny) (2.16)
(li) = 6y (ny +1<i.j <n),

where for i > n, + 1, the equations G |i) = GT]i) = 0 hold because (i|G'G |i) =
(i| GG']i) = 0. Since the vectors exhaust the n-dimensional space, the set of {|e;)}
is also complete. Then, the matrix U is unitary because

UUt = 3D leah i) (el =3l el = 1 (2.17)

i=1 j=1

UtU = D) i) (eiles) (] = Zy (2.18)

i=1 j=1

10



The unitary matrix U then satisfies (2.13) because

n n ny N4
UVGIG = Y fes) (i1A]4) ¢ }:E: +G 1) (A1) (]
i=1 j=1 i=1 j=1 Ai
n4 n
= Y Gy =Y Gl (il =G, (2.19)
=1 i=1
n n ny N4
GUIGU" = > % Glij{eil Gli) (5] = D D G li) (e G1i) (el
=1 j=1 i=1 j=1
e 1 1
= Y ) Gl (il GG j) (| GT—
L £ by A
=1 j=1
n
= Y Gl (|G = }:G\ ) (i| GT = GGT, (2.20)
=1

GU' = VGGH, (2.21)
where we used the fact G |i) = GT|i) =0 fori >n, +1. O

Lemma 2pre For an arbitrary matriz G, there are two unitary matrices U and V which
satisfy
G=UDV, (2.22)

where D is a diagonal matriz whose elements are nonnegative. This is called the singular-
value decomposition.

Proof

We prove this lemma by writing down the matrices U, V and D. Because the matrix
VGG is a positive matrix, we can diagonalize the matrix VGG to obtain nonnegative
eigenvalues. Let the notations {\;|i = 1,...,n} and {|i)|i = 1,...,n} stand for the non-
negative eigenvalues and the corresponding eigenvectors of VGG, respectively. There is
a unitary matrix Uy which diagonalizes the matrix VGG as

A1
UpVGIGU] = " . (2.23)
An

We then give the matrices U, V and D in terms of G, {\;|i = 1,...,n}, {|i)|i = 1,...,n}
and Uy:

U= Z le;) (i U, (2.24)

V=1, (2.25)
A1
: (2.26)

11



where {|e;)} are defined in (2.15). We can reduce (2.24)—(2.26) to (2.22) as follows:

At

> len) (iU Uo
i=1 A,

UDVvV

n

= Y le) (iIVGIG

=1

- Y56 (@\ZAJ- |j>> U=y 3Gl =6 @

O

Lemma 2pre guarantees that for an arbitrary bipartite pure state there is a unitary
transformation Uy on the particle A and a unitary transformation Up on the particle B
which satisfy the following equation:

Us®@Ug |tap) = Z Ailiain) (2.28)
=1

where |iaip) is an abbreviation of |is) ® |ig) with |i4) and |ig) the eigenstates of the
particle A and B, respectively. This is given by Lemma 2pre and the following equation:

Ua® Up ltha) = Zugﬁ))\kzul(f) |ta7B) (2.29)
Y
where
ul) = (ia| Ualja). (2.30)
u§f’ = (ig|Ug|jB) (2.31)
Nij = (tajBlYaB) - (2.32)

The decomposition (2.28) is achieved when uz(f) and ugf) are the matrices which transform

the matrix \;; in the singular-value decomposition. The decomposition (2.28) is called

the Schmidt decomposition. The coefficients {\;} are called the Schmidt coefficients.
The next lemma performs ordering of Hermitian matrices with majorization theory.

Before showing the lemma, we introduce the majorization of vectors and matrices.

Majorization of normalized vectors : Let the notations 7 = (z1,...,x,) and ¢ =
(Y1, ..., yn) stand for vectors which satisfy z; > 0, y; > 0and > 2, => " v = L.
Let the notation # stand for the vector whose components are the same as those of
Z but ordered in the non-increasing order. We say that & is majorized by ¥ if and

only if Y28 af <3 yiforallk=1,..,n.

Majorization of normalized Hermitian matrices : Let the notation H and K stand

for Hermitian matrices whose eigenvalues are A#) = (A Ay and X®) =
()\gK), ...,A%K)). We assume that the matrices H and K are normalized so that

S A — S A — 1. We say that H is majorized by K if and only if X is

1=1"" i=1"%

majorized by X&),

12



Hereafter, we refer to a Hermitian matrix whose eigenvalues add up to unity as a
normalized Hermitian matrix.

Lemma 3pre Fix two arbitrary normalized Hermitian matrices H and K. Then H 1is
majorized by K if and only if there are a probability distribution {p,|pn =1,...,d} and a
set of unitary matrices {U,|pn =1, ...,d} which satisfy

d
H=> pUKU. (2.33)
pn=1
Proof
We prove this lemma with using the following statements:

Statement 1 A normalized vector ¥ is majorized by a normalized vector ¥ if and only
if there are a probability distribution {p,|p = 1,...,d} and a set of permutation
matrices {P,|p =1, ...,d} which satisfy

d
F=Y p.lg (2.34)
p=1

Statement 2 (Birkhoff’s Theorem) We refer to an n-by-n matrix G whose elements
G; are all nonnegative and satisfy > ;" | Gi; = 1 for any j and > 7, Gi; = 1 for any
1 as a doubly stochastic matrix. A matrix G is doubly stochastic if and only if there
are a probability distribution {p,|x = 1,...,d} and a set of permutation matrices
{P,|p=1,...,d} which satisty

d
G=> p.P. (2.35)
pn=1

We do not prove Birkhoft’s Theorem here for brevity.

By using Statements 1 and 2, we can prove Lemma 3pre. First, we prove that H
is majorized by K if there are a probability distribution {p,|px = 1,...,d} and a set of
unitary matrices {U,|p =1, ..., d} which satisfy (2.33). Because H and K are Hermitian,
there are two unitary matrices Uy and Uy which satisfy

A\
1
AH) = — Uy HU],, (2.36)
A
A
AK) = = Ux KU}, (2.37)
A
Because of (2.36) and (2.37), we reduce (2.33) to the following;:
d
AH) = Y pUnUULNE)ULUU, (2.38)
pn=1
d n
H K
M= 30Dl UnUUR)G P (2.39)
p=1 j=1

13



Because the matrix Uy U, U is unitary, the equations Yo (ULU, UL G2 =1 for any j
and 37, |(UgU,U})i;> = 1 for any i hold. Thus, a matrix G, which satisfies

(Gu)ij = (UrUUL) 51 (2.40)

is a doubly stochastic matrix Because of Birkhoff’s Theorem (Statement 2), there are a

probablhty distribution {p |V =1,...,d"™} and a set of permutation matrices {P,,(“ ) lv =
1,...,d"™} which satisfy
dr)

G, = Zp(“ p® (2.41)

for each u. Because of (2.41), we reduce (2.39) as follows:

d dw)

Zzpﬂpu I/’u))\ ) (242>

p=1 v=1

where X(H) = (A", A7) and X(K) = (AW, A). Note that {p,p!”} and {P}
are a probability distribution and a set of permutation matrices, respectively. Because of
Statement 1 and (2.42), therefore, the matrix H is majorized by the matrix K if there are
a probability distribution {p,|u =1, ...,d} and a set of unitary matrices {U,|p =1, ...,d}
which satisfy (2.33). This proves the necessity of Lemma 3pre.

Second, we prove the sufficiency, in other words, that if the matrix H is majorized
by the matrix K, then there are a probability distribution {p,|p = 1,...,d} and a set of
unitary matrices {U,|u = 1, ...,d} which satisfy (2.33). When the matrix H is majorized
by the matrix K, Statement 1 tells us that there are a probability distribution {p,|u =
1,...,d} and a set of permutation matrices {F,|n =1, ...,d} which satisfy

NH) =" p. LK), (2.43)

Because of (2.36), (2.37) and (2.43), we obtain (2.33) as follows:

d

A(H) = Y puPAK)F], (2.44)
a

H = Y pULPUcKULPIU. (2.45)
pn=1

Note that the matrix ULPQU k is unitary. Therefore, the matrices {U};PHU Kk} can be
regarded as the set of matrices {U,} which we want. Hence, if the matrix H is majorized
by the matrix K, then there are a probability distribution {p,|p = 1,...,d} and a set of
unitary matrices {U,|p = 1, ..., d} which satisfy (2.33). Now we have completed the proof
of Lemma 3pre with the use of Statements 1 and 2.

Thus, we only have to prove Statement 1 in order to prove Lemma 3pre. At first,
we prove the necessity; in other words, we prove that Z is majorized by ¥ if there are a

14



probability distribution {p;|i = 1, ..., d} and a set of permutation matrices { P;|i = 1, ..., d}
which satisfy (2.34). For the purpose, we only have to note that the vector P,/ is majorized
by 7 and that the set of vectors which are majorized by ¥ is convex.

Next, we prove the sufficiency: in other words, we prove that if ' is majorized by ¥,
there are a probability distribution {p;|i = 1,...,d} and a set of permutation matrices
{P;]i = 1,...,d} which satisfy (2.34). We perform the proof by mathematical induction
with respect to n, which is the dimensionality of Z. Statement 1 clearly holds for n = 1.
We prove Statement 1 for n = k + 1, assuming that the statement 1 is proved whenever
1 <n < k. Let us take a natural number ng which satisfies

Phos 2 24 2 4, (2.40
Then, we can take a real number 0 < ¢ < 1 which satisfies
xy =tyt, + (1= t)yi. (2.47)
Hence, we can take a permutation matrix P, which permutes y; and y,,:
P+ (L= 017 = (tyhy + (L= DU u3s s U1 (L= DY + 1L Yo y10 -0 U2)
= (:E{, y%, e yrim_l, (1-— t)y}m + ty%, y,imﬂ, ey y}hb) (2.48)

Note that the vector (z3,...,x}) is majorized by (ys, ..., (1 — t)yk, + tyi,...,ys). Thus,
because of the assumption for n = k, there are a probability distribution {p|i =1, ...,d}
and a set of permutation matrices {P/|i = 1, ...,d} which satisfy

d
# =) pP(tPG + (1 - t)I5). (2.49)
=1

Hence, {tp}, ..., tp},, 1=t)p}, ..., (1—t)p},} and { PP, ..., PP}, P|, ..., P} are the probability
distribution and the set of permutation matrices which we want, respectively. O

By using Lemmas lpre and 2pre, we now obtain a necessary and sufficient condition
of the possibility of d-LOCC of bipartite pure states.

Theorem 3pre Let the notations [Yap) and |{yg) stand for bipartite pure states. We
refer to the reduced density operators of the particle A of |Wag) and |y5) as pa and p'y,
respectively. Then, there is an executable d-LOCC transformation from |ag) to |¢yg) if
and only if pa is majorized by p'4.

Proof

First, we prove the necessity; in other words, we prove that there is an executable
d-LOCC transformation from [14p) to |¢,5) if pa is majorized by p/,. For the purpose,
we only have to obtain a measurement {M; } which satisfies

Pa=Y MupaM,. (2.50)

When py4 is majorized by p/y, there are a probability distribution {p;|i = 1,...,d} and a
set of unitary matrices {U;|i = 1, ..., d} which satisfy

d
pa=> pilipyUfl. (2.51)

i=1
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From (2.51), we obtain the set of matrices {M|i = 1,...,d} as

My/pa = /iy UL (2.52)

If p4 is a regular matrix, the set of matrices {M;|i = 1,...,d} is determined uniquely.
Because of (2.51) and (2.52), the set {M;|i = 1, ..., d} satisfies ), M(TZ.)M(i) = I, and thus
the set {M;)|i = 1,...,d} is a measurement. If p, is not regular, the set {M|i =1,...,d}
is not unique. Then we choose a set {M;)|i = 1,...,d} which satisfies ), M(TZ.)M@ = 1.
Because of (2.52), the measurement {M;|i = 1,...,d} satisfies (2.50).

Second, we prove the sufficiency; in other words, we prove that if there is an executable
d-LOCC transformation from [i4p5) to |1’y5), then p, is majorized by p/y. First, we prove
that if there is a measurement {M;|i = 1, ..., d} which satisfies

pipls = Muypa M

0 (2.53)

where

i = tr{M, Moo (25

pa is majorized by p’;. When there is a measurement {M;|i = 1,...,d} which satisfies
(2.53), the matrices {U;|i = 1, ...,d} which satisfy

Myy/pa = \/ My paM{,Us (2.55)
also satisfy

d
A= Z}%‘UJP’AU@- (2.56)
i=1

The existence of the matrices {U;} is guaranteed by Lemma lpre. Indeed, {U;} satisfy
(2.56) as follows:

d d
Y nUlpUs = Y UIMupaMy U, (2.57)
= i=1
d
= > UlUn/paM M) \/oaU Ui = pa. (2.58)
=1

Hence, if there is a measurement {My)|i = 1,...,d} which satisfies (2.53), then py is
majorized by p,.

Finally, we prove that if there is an executable d-LOCC transformation from |¢4p)
to |¢/,), then there is a measurement {Mg|i = 1,...,d} which satisfies (2.53). For the
purpose, we only have to prove that an arbitrary measurement on the particle B can
be reproduced by a measurement on the particle A and local unitary transformations.
Consider the situation in which we perform a measurement {N;} on the particle B of a
bipartite pure state |t45). With the Schmidt basis of the particle B, the measurement
N; is expressed as follows:

N; = Z Dk i) (ksl . (2.59)
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Then, a measurement {M;} which is expressed by the Schmidt basis of the particle A as

M; = Z i)j 17a) (kal (2.60)

reproduce the measurement {N;}. In order to prove this, we only have to prove that the
measurement operators M; and N; transform the Schmidt decomposition of [145) into
states whose Schmidt coefficients are the same. This is indeed done as follows:

Niz/\l”AlB) = ZZ ]kZ|]B (kp| Ai|lalp)
=1

]lkl =1

= ZZ i)jk e [kajs) , (2.61)

jlkl

M; Y "N flalp) = ZZ MZ\M (kal M Lalg)
=1

_]lkl =1

= ZZ i)ikAk |jaks) - (2.62)

7=1 k=1

Let the notations U4 and Upg stand for the local unitary transformation performed on the
particles A and B, respectively, which transforms the state »7_; >, (Ni);xAr |kasn)
into its Schmidt decomposition. Then, we can transform the state Z L ZkA(N )ik |JakB)
into the Schmidt decomposition of Y7 > /| (Ni);jx Ak [kajs) by performing Ua and Up
on the particles B and A, respectively, because the permutation of A and B applied on

the state >0, > p_ (I, )J kA [kajp) in (2.61) yields the state > ;. (N;)jxAg |jakp) in
(2.62). O

2.2.4 The proof of Theorem Ipre

In the present subsection, we finally prove Theorem 1pre, which we reproduce here.

Theorem lpre Let the notation [y ap) and |pap) stand for pure states of two (D —1)/2-
spin particles. The reduced density matrices pya and pya are defined as

pya = tre{[Yas) (Yasl}, pea = tre{|das) (Pasl}- (2.63)

Then, the following d-LOCC transformation is executable in the limit of N, M — oo with
N/M = Sﬂ¢A/Sp¢A:
d-LOCC: [ ap)*"  |¢ap)™ (2.64)

are the von Neumann entropies of pya and pya, respectively.

and S

where S pva

PpA

Proof
In order to prove the present theorem, we only have to prove the following statement:

Statement 1 Let the notation ‘¢XB> denote the maximally entanglemed pure states
of two (D — 1)/2-spin particles. Then, the following d-LOCC transformation is
executable in the limit of N, M+ — oo with N/MJr =logD/S,,,

®M+

d-LOCC : [am)® = [65) (2.65)
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where S, , is the von Neumann entropy of pya.

PyA

If the Statement 1 is true, Theorem 1pre is also true, because if N/M = S,,,/S,,, holds,
the equations N/M* = logD/S,, , and M/M* = logD/S,,, also hold, and thus the
transformation (2.64) can be realized as follows:

d-LOCC : [¢ap)™ < |65, o |oan)™™ . (2.66)

Let us prove Statement 1. At first, we introduce the notation of “e-typical states,”
which is necessary for the proof of Statement 1.

e-typical states: Let us express the state |¢p4p) in the Schmidt basis:

am) = 3 Aelwa) [es) = 3 V/p(@) [24) |2s) (2.67)

where p(z) = \2. Then,

[a5)” Z Vp(a1)..p(ay) [214.2xa) 21528 B) (2.68)

.....

holds. Then the e-typical state of |¢4p) is

t
’¢A}J;p> C Z VD xl xN |I1A INA |CC1B INB> (2.69)

z€T(N,e)

where C' = \/1/ > ver(N,) P(T1)-...p(zn) is the normalization constant. Note that

@al™ |0 ) =€ Y2 plan)nl > » o) (270)

z€T(N,e) x€T(N,e)

holds. Because of (i) of Theorem 2pre,

lim | Y p(z)..pley) =1 (2.71)

N—o00
€T (N,e)

holds. Thus, the state ’¢1t4};p> coincides with |¢45)®" in the limit of N — co.

We prove Statement 1 by using the e-typical states. First, we prove that we can per-
form the following transformation in the limit of N, M* — oo with N/M™ =log D/S,,,

®MJr

-LOCC : [fap) ™Y = |65 (2.72)

In the limit of N — o0, the e-typical state ‘zp%gp> coincides with |2/JAB)®N, and hence we

only have to prove that the following transformation is executable:

®M+

d-LOCC : (¢§1¥3p> 6% (2.73)
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Because {z1, ..., x,} is an e-typical sequence, Eq. (2.4) yields
e~ NH{p@)}+e) < p(x1)...p(xn) < e~ N(H{p(@)}+e) (2.74)

Theorem 2pre (i) also yields

_ 1 _ 1 1
tsC= \/EmeT(N,E)p(xl)....p(xN) = \/PE({xl, o V1o (2.75)

Combining the two, we obtain

e~ N(H{p(z)}—e)

Ve NHp@)}+) < Cy/p(xy)...plxN) < 5

(2.76)

Thus, the upper limit of the Schmidt coefficients of ‘wzgp> is /e~ NUHp@)}=9) /(1 — §). All

+ +

of the Schmidt coefficients of ‘¢XB>®M are equal to vV D=M  because |¢ZB>®M can be
seen as a maximally entangled state of two (DY —1)/2-spin particles. Therefore, because
of Theorem 3pre, the transformation (2.73) is executable if

e~ N(H{p(z)

T < v D (2.77)

holds. In order to show this, we only have to prove that the vector of the Schmidt
coefficients of ‘¢§§p> is mejorized by the vector of the Schmidt coefficients of |¢j B>®M

because the Schmidt coefficients are equal to the eigenvalues of the reduced dencity matrix.
Let us refer to the former and the latter as Z and ¥/, respectively. Because of the definition
of the majorization of vectors, & is majorized by ¢ if and only if

k k
> Z y! for all k. (2.78)
=1 =1

This condition (2.78) clearly holds because of (2.77). Thus, in the limit of N,M* —
oo with N/M* = logD/S,,,, the transformation (2.73) is executable, and thus the
transformation (2.72) is also executable.

Next, we prove that we can perform the following transformation in the limit of

N, M* — oo with N/M* =log D/S,,,

®MJr

4-LOCC : [ap)™  [64s) (2.79)

In the limit of N — oo, the e-typical state ’w A};p> coincides with |145)®", and thus we
only have to prove that the following transformation is executable:

®M+

d-LOCC : (¢3§p> |645) (2.80)

Because of (2.76), the lower limit of the Schmidt coefficients of ’w?;p> is Ve NH{p@)}+e),

On the other hand, all of the Schmidt coefficients of ‘¢JA§B>®M+ are equal to v DM,
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+
because }¢XB>®M is a maximally entangled state. Because of the same argument as
above, the transformation (2.80) is executable if

Ve NEp@I) > /DM (2.81)

holds. Thus, in the limit of N, M* — oo with N/M* =logD/S,,,, the transformation

wA)
(2.80) is executable, and hence the transformation (2.79) is also executable.O

2.3 Multipartite entanglement?

As we saw in the previous section, the quantification of the entanglement was successful
for bipartite pure states. Extension of the above to multipartite states has been vigorously
sought in vain. The difficulty is due to the difference between the structure of bipartite
pure states and that of multipartite pure states. In the quantification of the entanglement
of bipartite pure states, we used the majorization theory. The reason why we can apply
the majorization theory to the bipartite pure states is that there is a vector structure
in the bipartite pure states, nemely the Schmidt decomposition. However, the Schmidt
decomposition does not exist for multipartite pure states. For example, the state (]000) +
|101) + [110))/+/3 cannot be expressed in such a form as >, A, [i3i). Of course, there
are standard forms of decomposition for multipartite pure states, such as the generalized
Schmidt decomposition [20,21]. However, the sets of the coefficients of such standard
forms do not have vector structures, but have tensor structures. Thus, the majorization
theory cannot be applied to multipartite pure states. This is the reason why the extension
of the quantification of the entanglement to multipartite states was not successful.

The present author made a new approach for the problem. In the new approach, we
pay attention to the flow of the entanglement. With this approach, we give a necessary
and sufficient condition of the possibility of a deterministic LOCC transformation of three-
qubit pure states. In the next chapter, we will show the results of the new approach.
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Chapter 3

New Approach

3.1 Preparation

In the present section, we define the parameters that we use in my approach. We consider
only three-qubit pure states throughout the present paper. An arbitrary pure state |t)
of the three qubits A, B and C' is expressed in the form of the generalized Schmidt
decomposition

[9) = Ao [000) + A1 [100) + Mg [101) + Az [110) + A4 |111) (3.1)

with a proper basis set [20]. Each component of these ket vectors represents an eigenstate
of the corresponding qubit A, B or C. For example, in the case of |101), which is
abbreviation of |1) ® |0) ® |1), the qubit A is in the eigenstate |1), the qubit B is in
|0) and the qubit C is in |1). We will occasionally use the notation |1,051¢) hereafter.
The coefficients Ao, A1, A2, A3 and A4 in (3.1) are nonnegative real numbers and satisfy
that Z?:o A? = 1. Note that the phase ¢ can take any real value if one of the coefficients
{N\i|i =0, ...,4} is zero, in which case we define the phase ¢ to be zero in order to remove
the ambiguity.

Two different decompositions of the form (3.1) are possible for the same state |¢),
one with 0 < ¢ < 7 and the other with 7 < ¢ < 27. These two decompositions are
LU-equivalent; in other words, they can be transformed into each other by local unitary
(LU) transformations. Hereafter, we refer to the decomposition (3.1) with 0 < ¢ < 7 as
the positive decomposition and the one (3.1) with 7 < ¢ < 27 as the negative decompo-
sition. We also refer to the coefficients of the positive and negative decompositions as the
positive-decomposition coefficients and the negative-decomposition coefficients, respec-
tively. Therefore, a set of coefficients gives a unique set of states that are LU-equivalent
to each other, whereas such a set of states may give two possible sets of coefficients: for
v # 0, a set of positive-decomposition coefficients and a set of negative-decomposition co-
efficients are possible, while for ¢ = 0, only one set of positive-decomposition coefficients
is possible. A set of LU-equivalent states and a set of positive-decomposition coefficients
have a one-to-one correspondence.

We can use the coefficients of the generalized Schmidt decomposition in order to define
five entanglement parameters of |1)) as follows:

JaAB = AoAs, (3.2)
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Jac = oAz, (3.3

jBc = |A1hae™® — AgAs], (34
JaBc = Ao, (3.5

J5 = N (Tpe + A5 — ML), (3.6

where we can use either the positive-decomposition coefficients or the negative-decomposition
coefficients: both give the same values of (3.2)—(3.6). These parameters are real numbers;
the parameters jap, jac, jpc and japc are nonnegative, whereas the parameter J; can
take a negative value. The parameters jap, jac, jpc and japc are square roots of the
entanglement parameters Js, Jo, J; and J4 proposed in Ref. [20], respectively. The param-
eters jag, jac, jpc and j4po are also related to the concurrences Cap, Cac and Cye [6]
and the tangle Tapc [18] as follows:

. 1 . 1 . 1 , 1
Jjap = zCap, jac = 50,40, JBCc = ECBCa jaBe = ~TaBC- (3.7)

2 4
The parameter Js is equal to J5 in Ref. [20]. These five parameters are invariant with
respect to local unitary transformations. The two parameters jspc and J; are tripartite
parameters; these two parameters are invariant with respect to permutation of the qubits
A, B and C [20]. Hereafter, we refer to these five parameters as the J-parameters.
In order to express Main Theorems of the present paper in simpler forms, we define
three nonnegative real-valued parameters Kap, Kic and Kp¢ as follows:

Kap = jap + jaso
Kac = jac + jases (3.9
Kpc = jhe + Jasc- (3.10)

Then, the five parameters Kap, Kaic, Kpc, japc and Js are independent of each other
and are invariant with respect to local unitary operations. We can substitute these five
parameters as the entanglement parameters for the J-parameters (jag, jac, jBc, jaBc, Js)-
Let us refer to the new parameters (Kap, Kac, Kpc, jasc, Js) as the K-parameters. Note
that J-parameters and K-parameters have a one-to-one correspondence.

We also define three parameters in order to simplify expressions which often appear
in the present paper:

Jap = japiicive, Kap = KapKacKpe, Ks = jipe + Js, (3.11)

where the subscript ap is abbreviation of all pairs. Note that these parameters Jap, Kap
and K5 are not included in the J-parameters or the K-parameters; these are only for
simplicity. By definition, Jap, Kap and Kj are invariant with respect to local unitary
transformations as well as permutations of A, B and C.

The coefficients of the generalized Schmidt decomposition (3.1) give a unique set of
the J-parameters as in (3.2)—(3.6). However, when we specify the J-parameters, the
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decomposition coefficients still have the following ambiguity [22,23]:

_ Bt iase EVA; _ K5+ VA,

D)2 : : , 3.12
%) 2(jpc + Jagc) 2Kpc ( )
2
J
(A)* = (A%C)Q, (3.13)
e |
(A7) = Jasc (3.15)
G '
) ) 2
(V) = 1= ()2 - e e, (3.16)
+12(\£1\2 2\ E\2 2
+ (AP + (A (A3)7 — JBe
cosp— = ) (3.17)
EIEIETE:
where
0<p* <. (3.19)

Thus, there are four possible sets of coefficients for one set of J-parameters: the positive-
decomposition coefficients {\}, oT|i = 0,...,4} and {)\;, ¢ |i = 0,...,4} as well as the
negative-decomposition coefficients {\", i = 0,...,4} and {\;, ¢~ |i = 0,...,4}, where
¢t =21 — pF with 7 < o < 27, A state with {\, ¢"]i =0, ...,4} is LU-equivalent to
a state with {\;,¢7|i = 0,...,4}, while a state with {\,, ¢~ |i =0,...,4} is LU-equivalent
to a state with {\/, @*]i = 0,...,4} [22]. Therefore we can focus on two possible positive-
decomposition coefficients {\", o™i = 0,...,4} and {)\;, ¢ |i = 0,...,4} for a set of the
J-parameters.

To eliminate this ambiguity further, we define the following new parameter, which we

refer to as the entanglement charge:

9
! e )] { ( 2 ;. )}
= sgn |[sin P — : = sgn |sin S — , 3.20
Qe = sg { 90( 0T 2 T ) g 1 Gy v (3.20)

where sgn[z] is the sign function;

sgnlz| = { g/m Ei i 8;’ (3.21)

The entanglement charge Q)¢ is equal for the positive- and the negative-decomposition co-
efficients of a state. Therefore, the parameter Qe is invariant with respect to local unitary
transformations. The complex-conjugate transformation of a state does not change the
J-parameters nor A3, but reverses the sign of sin p. Thus, the complex-conjugate trans-
formation reverses the sign of Qe. As we have seen, the parameter Q)¢ has characters that
the electric charge has; hence, we refer to QQe as the entanglement charge.

As we show below, two states are LU-equivalent if and only if the J-parameters and the
entanglement charge Qe of the two states are the same. If Qe # 0, we can determine one
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. Same if Ay =10
{/\;rv ptli=0, 4} (A7 [i=0,...,4}

Same:if siti 0 = 0
LU-equivalent e

LU-equivalent

D51 = 0 A} 5 (N, G = 0, .4}

SameifAjz[)

Figure 3.1: The relation among the four sets of coefficients for Q)¢ = 0. The relations
indicated by solid lines are always valid, while those indicated by dotted lines are valid if
and only if the noted conditions are satisfied.

positive-decomposition coefficients and one negative-decomposition coefficients uniquely
from the J-parameters and the entanglement charge Qe as follows:

_ Js + japctQeVA; B Ks4QevA,

A5 : : = : 3.22
’ 2(jBc + Jinc) 2Kpc (3.22)
2
J
A2 = % (3.23)
0
> Jib
0
> _ Janc
0
2 2 2
Jap t+Jac tJ
A =1-—=E f;% ABC, (3.26)
ATAL + NSNS — Jbe
= 3.27
cos NSV (3.27)
where + is + or — when {\;, pli = 0,...,4} is positive-decomposition coefficients or

negative-decomposition coefficients, respectively. Thus, if Qe # 0, a set of the J-parameters
together with the entanglement charge Qe gives a unique set of LU-equivalent states.

If Qe = 0, at least one of sin p and A is zero because of (3.12) and (3.20). If sin ¢ is
zero, {\F, o*|i = 0,...,4} and {\F, §F|i =0, ..., 4} are the same. If A is zero, {\7, pF|i =
0,...,4} and {\/,@T|i = 0,...,4} are the same as {\;,p " |i = 0,...,4} and {)\;, ¢ |i =
0,...,4}, respectively, because of (3.12). Thus, if Qe is zero, the four sets of coefficients
(N ot i =0,.,4%, {0 |i =0,...,4}, {AF, @i = 0,...,4} and {\;, @ |i = 0,...,4}
are LU-equivalent (Fig. 3.1). Thus, if Qe = 0, a set of the J-parameters gives a unique set
of LU-equivalent states. Incidentally, a state is LU-equivalent to its complex conjugate
if and only if its entanglement charge Qe is zero. The complex conjugate transformation
of the state only changes the sign of ¢. Thus, a state is LU-equivalent to its complex
conjugate if and only if {\ ¢*|i = 0,...,4} are LU-equivalent to {\&, p*|i = 0, ...,4};

this LU-equivalence is illustrated in Fig. 3.1.
For the reasons stated above, a set of the J-parameters together with the entanglement
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Figure 3.2: A schematic diagram representing the entanglement parameters j2 5, jac, Joc
and jipc.

charge Qe gives a unique set of LU-equivalent states. In other words, two states are
LU-equivalent if and only if the J-parameters and the entanglement charge Qe of the
two states are the same. The J-parameters and the K-parameters have a one-to-one
correspondence, and thus it is also true that two states are LU-equivalent if and only if
the K-parameters and the entanglement charge Qe of the two states are the same. Note
that if Qe = 0, (3.22) may not hold; in fact, when sinp = 0 A A; # 0 holds, (3.22) is not
correct.

We can interpret the entanglement parameters j%5, j3o and j3o as indices of the
bipartite entanglements between the qubits A and B, A and C, and B and C, respectively,
while the parameter j2 . as an index of the tripartite entanglement among the qubits A,
B and C' (Fig. 3.2) [18]. The entanglement charge Qe is a tripartite parameter, because
Qe is invariant with respect to the permutation of the qubits A, B and C. This fact is
shown in Appendix B.

Then, what does the entanglement parameter J; mean? It is not clear what J5; means in
the expression (3.6), but in another expression, we find that the entanglement parameter
Js is a product of jag, jac, jc and a geometric phase. In order to show this, let us
rewrite J5 in the following form:

J5 = 2/\8)\2)\3()\2)\3—)\1/\4COS(,0>

= 2japjac(MaAs — A1 Ay cos @)
)\2)\3 — )\1)\4 COos @
|>\2>\3 — )\1)\46i‘p| '

Because A3 — A1\ cos o = Re(AaA3 — A\ \4e?), the following inequalities hold:

2jaBjacisc (3.28)

)\2)\3 — )\1/\4 COos ¢
< : <1 2
0= | A2z — ApAget?| | T (329

Hence, if japjacjpc = 0, then J; = 0. Inversely, if japjacipc # 0, then
J5 XAz — A cose
2iaBjaciBe | AaA3 — A\ger?]

(3.30)

Therefore, if japjacipc # 0, we can define a phase 0 < @5 < 7 as follows:
J.
—  — coss. (3.31)
2jaBjacibe
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Figure 3.3: A schematic diagram of an entanglement triangle (ET). The sign + is + or —
when {\;, p|i = 0,...,4} is positive-decomposition coefficients or negative-decomposition
coefficients, respectively.

Let us refer to the phase y5 as the entanglement phase (EP).

The entanglement phase 5 is invariant with respect to local unitary operations, be-
cause both of the parameters J5 and japjacipe are. If japjacisc = 0, the entanglement
phase o5 is indefinite. Hereafter, we refer to a state whose entanglement phase 5 is
definite as an EP-definite state and to a state whose entanglement phase 5 is indefinite
as an EP-indefinite state. For an EP-indefinite state, at least one of jap, jac and jpc is
ZEro.

The entanglement phase plays an important role in the present paper. We will see
that the necessary and sufficient condition of a deterministic LOCC transformation de-
pends on whether the initial and final states of the transformation are EP definite or
EP indefinite. The parameters J5 and jagpjacjpc are invariant with respect to permuta-
tions of A, B and C, and so is the entanglement phase 5. This is the reason why we
did not define the entanglement phase as (AaA3 — A Ay cos )| A A3 — A \e?| 71 actually,
(AaA3 — A Ay cos ) [ A3 — A \e™| ™1 is indefinite for jpc = 0, but not necessarily so for
Jap =0or jac = 0.

If the state [¢) is EP indefinite, its entanglement parameters J; and Qe are zero,
which we show below. Then, the number of the entanglement parameters of an EP-
indefinite state reduces to four; two EP-indefinite states are LU-equivalent if and only if
the sets of the four entanglement parameters (jag, jac, jBc, japc) of the states are equal
to each other. Now we show J; = Q¢ = 0 for an EP-indefinite state. If the state [¢)
is EP indefinite, jagpjacjpc = 0 holds. Thus, the entanglement parameter J; is also
zero because we have |J5| < 2japjacipc from (3.28) and (3.29). Next we show Qe = 0.
Because of jagjacipc = 0, at least one of jap, jac and jpc is zero. If jap = AgAz or
Jac = oAz is zero, there is a zero in {\?|i = 0,...,4}, and thus the phase ¢ is zero. If
JjBc = |[AMAae? — Ao)s3| is zero, the equation ¢ = 0 also has to hold, because A\; \se® has
to be a real number. Therefore, ¢ = 0 and hence Qe = 0 as can be seen in (A.19). Thus,
if the state |¢) is EP indefinite, the parameters J; and Qe are zero.

If the entanglement phase @5 is definite, we can express the relation among @5 and
the other parameters A\;, Ao, A3, Ay, ¢ and jpc as a triangle shown in Fig. 3.3. We can
derive this relation from (3.4), (3.28) and (3.31). This triangle plays a very important
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role in the present paper. Let us refer to this triangle as the entanglement triangle (ET).
The height of the entanglement triangle in Fig. 3.3 gives the following relation between
the entanglement phase 5 and the phase ¢:

JBC Sin @5 = +A M\ sin @, (3.32)

where the sign + is + or — when {)\;, p|i = 0, ..., 4} is positive-decomposition coefficients or
negative-decomposition coefficients, respectively. From (3.32), we can derive the following
useful relation:

sinps =0 < sing = 0. (3.33)

Let us show (3.33). Because now we have assumed that the entanglement phase 5 is
definite, the J-parameter jpc must not vanish. Thus, (3.32) is followed by the relation
sinps = 0 <= singp = 0. If sinps = 0, on the other hand, Fig. 3.3 implies that at least
one of A1, Ay and sin ¢ is zero. If A\; or A4 is zero, then one of {\;|i =0, ...,4} is zero, and
thus sin ¢ is also zero. Therefore, the relation (3.33) holds. Incidentally, the length of the
segment F'G in Fig. 3.3 gives another relation between the entanglement phase @5 and ¢:

JBC COS Y5 = Ag A3 — A1 A4 COS . (3.34)

Next, let us observe how a measurement changes the entanglement parameters. When
we perform a transformation which is expressed as

Moy My
M = . My, Moy, Myo, My, € C, 3.35
(Mlo Mll) 00 01 10 11 ( )

on the qubit A of a pure state (3.1), the state [¢) is transformed into

M |) = (AgMog |0) + XNoMig |1)  + A€ Moy [0) 4+ A1e My |1)) [00) + Ao Moy |0) + My |1))|01)
+ A3(Mo1 [0) + My [1)) [10) + Aa(Moq 0) + My [1)) [11) . (3.36)

Let us expand M [¢) in the form of the generalized Schmidt decomposition (3.1). First,
we define two pure states |1’y) and |04) as

1) = (M1 |0) + My [1))/+/| Mot |? + | M1 |2, (3.37)

004) = (M7 10) = Mgy 1))/ /[ Moa > + [ M2, (3.38)

where Mg, denotes the complex conjugate of Mj;, and so on. Then, we have

i i AO(MOOMH - M01M10)
<0/A’ ()\0M00 ’0> + )\QMlo |1> + )\1€Z¢M01 |0> + )\16“le1 ‘1)) = s
VMo 2 + [ My, 2

(3.39)

<]_£4| ()\OMOO |O> + )\0M10 |1> + /\1€in01 |O> + )\16W’M11 |1>)
_ Ao(Mog Mgy + MioMiy) + Me'(|Mor|* + [Mia[?) (3.40)
VMot 2 + [ My |2
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Hence we obtain the following equation:
_ )\0 det M /\O(MOOM& + MIOMﬁ) + )\16i¢<|M01‘2 + |M11|2)
VMo + [M]? VMo + [M]?
+ VMo |2 + | M1 ]2( Mg [1,01) + A3 [17,10) + Ay |1, 11B)41)

|1,00)

M ¢) |07400)

We can still change the phase of |0/;). Thus we define |0}) as follows:

dodet Mo VAN
A - A
VMo [? + [ My |2 VI Moi 2 + [ My |2

Because the states |0)) and |1’;) are orthogonal to each other, we obtain

o det VMM
M|y = —22° 000) +
VMo |2 + [ My, [2

00) . (3.42)

Ao(Moo Mgy + MigMy) + Mie (| Moy | + | My |?)
VI Mo1 |2 + | My 2
+ VMo |2+ [ M1 2(A2 |1,01) + Mg [1,10) + Ay |1, 113)43)

|1,00)

We thereby achieve the generalized Schmidt decomposition of M [¢)) except for normal-
ization.

We can express each coefficient of the generalized Schmidt decomposition (3.43) of
M |b) above solely by the components of MTM:

M, M Moy M,
MM = 00 10 00 01)
( Mg, My, ) ( Mo M

( |Moo|? + [Mio|> Mgy Moy + MMy ) .

3.44
Mg Moo + M Mg |Moi|* + | My |2 ( )

Thus we can define real parameters a,b, k and 6, which we refer to the measurement

parameters, as
a ke
MM = ( Lett b > )

ab — k*>0,a>0,b>0,k>0,0<6<2r, (3.45)
to express M ) in (3.43) as
/\0\/ ab — k2 Aokew + )\1€i(pb

Vb Vb
VD [15,01) + AsVD|1,10) + AgvV/b[1,11) . (3.46)

My) = |07,00) + [1,00)

Now, let us define a measurement { M |i = 1,...,n} to substitute for the above trans-
formation M, where the subscript (i) denotes the ith measurement result out of n possible
results. (Hereafter, all the superscripts and subscripts in parentheses will indicate the or-
der in the observational result.) We can define the measurement parameters ay, by, ks
and ;) for the measurement Mg as in (3.45) for the measurement M. Besides, the
probability p) that the result ¢ comes out from the measurement {M)} is given by

pey = (] MM [v)
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Therefore, we can define the normalized states {’¢(1)>} as

o) = 2L (345

Let the notations )\g), )\gi), )\g), )xéi), Afli) and ¢ denote the coefficients of the generalized
Schmidt decomposition of [1/®) after the normalization (3.48). From (3.46) and (3.48),

we have
o Moy/awbe — kG 5.19)
AOZ = ; 349
VPV b

Ao k(i) el + Alei@b(i)

Al e — : (3.50)
P@) v/ by
NN
A = 2V (3.51)
V240
o As/bg
A = BV 6 (3.52)
VPG)
o An/ba
A = 2V 0 (3.53)

VPG

The equations (3.49)—(3.53) give how the entanglement parameters jag, jac, jsc,
Japc and Js change when a measurement M;) is performed on the qubit A. First, we
show the change of the entanglement parameters jap, jac and japc. They are only
multiplied with the same constant when a measurement M; is performed on the qubit

A:

79 = a4, (3.54)
G0 = a@jac, (3.55)
ie = ajape, (3.56)

where the multiplication factor a(; is defined by

. agybay — Kk,
¥ = . (3.57)
PG

From (3.54)—(3.56), we can also obtain the change of K-parameters
K = (@) Kap, K4 = (a")Kac. (3.58)

Second, we also express the change of the entanglement parameter jpc as follows:

Paise = [Aodak@e®D — (Mg — A Ase™)bg|
= |kwjapce®® — jpcbue |
= |kwiapce PO — jpobe|, (3.59)

29



PN\ 3=b(i)h2h3

Figure 3.4: Entanglement triangle of M® |¢)).

where the real number @5 is defined as

i )\2)\3 — )\1)\4€i<’0
s _ 3.60
¢ Dads — AAgei| (3.60)

The inequalities 0 < ¢ < 7 give 0 < p5 < m. Thus, if the entanglement phase 5 defined
in (3.31) is definite, @5 = +p5 holds, where the sign + is + or — when {\;, p|i =0, ..., 4}
is positive-decomposition coefficients or negative-decomposition coefficients, respectively.

Finally, we analyze the change of the entanglement parameter J;. We have shown
in (3.28) that the entanglement parameter Js can be expressed as J5 = 2japjac(Aads —
A1 cos p). We already know that the entanglement parameters jap and jac change as in
(3.54) and (3.55). We only have to examine how the quantity AoAs — A A4 cos ¢ changes.
From (3.50)—(3.53), we have the following equation:

Py AYAY = AIAD cos @) = by (Aadg — Mg cos ) — ki Aoda cos 0. (3.61)

If the state [¢)) is EP definite, the equations (3.5) and (3.34) enable us to rewrite (3.61)
as the transformation of the entanglement phase s:

P)Jpe 08 98 = by jne cos g5 — ki japc cos ). (3.62)
We thereby find how the entanglement parameter J; changes.

We can summarize the equations (3.50)—(3.52), (3.59) and (3.62) as a transformation
of the entanglement triangle (Fig. 3.4). From this figure, we find that k(i)e“’(i) japc can
be interpreted as a vector. Hereafter, the notation l;(i) stands for k(i)ew(“.

We can also express the change of the average of jpc cos 5. Because {My|i = 1,...,n}
is a measurement, we have

> M Mg =1, (3.63)
i=1
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where [ is the identity matrix. From (3.63), we have equations that the measurement
parameters k: (i), @) and b must satisfy:

> ki =10. (3.64)
i=1

n n

Z a(i) = Z b(i) =1. (365)
i=1 i=1
From (3.61), (3.64) and (3.65), we obtain
Zp(i)()‘g))‘(Z )‘( )‘51 cos @) = Apdg — A Ay cos p. (3.66)
=1

If the state |¢) is EP definite, from (3.34) we obtain

Zp(i)jg)c cos 0y = jpc cos gs. (3.67)

=1

The equation (3.64) gives another useful equation:
Z Zb kA AL sin ) = A Ay si
120 1 4 ) sin 1 4 ) sin ) + 4 sinfiy = MAgsing.  (3.68)

Incidentally, since each of M, (TZ.)M@-) is a positive operator, the measurement parameters
agy, by, E(i) must satisfy

2

and
b(i) > 0. (3.70)

Note that M(Ti)M(i) are positive operators if and only if (3.69) and (3.70) holds. In order to
show this, we only have to see that we can reduce (3.69) and (3.70) into a(; > 0 and that
the inequalities a;) > 0, (3.69) and (3.70) hold if and only if the eigenvalues of M(Ti)M(Z-)
are positive, namely M(Ti)M(i) is a positive operator.

Finally, we define the names of types of states. We refer to a state whose japc is
nonzero or whose jag, jac and jpc are all nonzero as a truly tripartite state. We refer
to a state which has only a single kind of the bipartite entanglement as a biseparable
state (Fig. 3.5(a)). Note that there is no state which has only two kinds of the bipartite
entanglement (Fig. 3.5(b)). If there were such a state as in Fig. 3.5(b), the coefficients
{A\i,0li =0, ...,4} of the state would satisfy

/\0)\2 7é 0, )\0)\3 7é O, /\0)\4 = 07 ‘)\1)\46i¢ - )\2)\3|, (371)

but (3.71) is impossible. An EP-indefinite state with jipc # 0 and an EP-definite state
are truly tripartite states. A truly tripartite state is an EP-indefinite state with japc # 0
or an EP-definite state. A biseparable state is EP indefinite with jipc = 0. An EP-
indefinite state with jigc = 0 is a biseparable state.
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Particle A Particle A
[ J

. 52
‘]/Z\B Jac

o 5 —®
Paticle B Jac Particle C Paticle B Particle C

(a) (b)

Figure 3.5: The concept of (a) a biseparable state. There is no state such as (b).

3.2 Main Theorems

There are two Main Theorems in the present paper.

First, we define terms which are often used in the present paper. Hereafter, we refer
to a measurement which produces n possible results as an n-choice measurement. We
refer to an LOCC transformation whose results can be transformed into a unique state
by local unitary operations without exception, as a deterministic LOCC transformation.
Similarly, we refer to a local measurement {M;)} whose results can be transformed into
a unique state by local unitary operations without exception, as a deterministic mea-
surement (DM). We refer to a transformation from a state to another state with the
probability one by a single DM on a single qubit followed by local unitary transforma-
tions, as a deterministic measurement transformation (DMT). We refer to a DMT whose
DM is a two-choice measurement, as a two-choice DMT. Let us label DMTs by the qubit
on which the corresponding DM is performed. For example, we refer to a DMT whose
DM is performed on the qubit A, as an A-DMT. Moreover, we refer to a transformation
which transforms a state to another state with the probability one by sequential operation
of two-choice DMTs, as a constraint LOCC transformation (C-LOCC transformation).

Next, we introduce Main Theorems in the present section. Main Theorem 1 is written
in terms of the K-parameters and Qe as follows:

Main Theorem 1 Let the notations |¢) and |¢)') stand for three-qubit pure states. We
refer to the sets of the K -parameters of |¢) and |¢") as (Kap, Kac, Kpc, jasc, Js, Qe) and
(K'ygy Koy Koy Gapes I, Q) respectively. Then, a necessary and sufficient condition
of the possibility of a deterministic LOCC transformation from [1) to |¢') is that the
following two conditions are satisfied:

Condition 1: There are real numbers 0 < (4 < 1,0 < (3 < 1,0 < (¢ <1 and

Clower < ¢ < 1 which satisfy the following equation:
Kyp CaCB Kap
K)o Cale Kac
Kpe | =¢ CBCc Kpe |, (3.72)
e CalBGe Jasc
J3 CaCrCe Js
where 7
a
Clower = 5 (3.73)

(Kap — Cojipe) Eac — Ceiipe) (Ko — Cajipe)’
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and we refer to C, Ca, (g and (¢ as the sub parameter and the main parameters of A, B
and C, respectively.
Condition 2: If the state |[¢') is EP definite, we check whether

(A =0)A (4Jap — J2 =0) (3.74)
holds or not. When (3.74) does not hold, the condition is
Qe=Qf and { =, (3.75)
where
. Kap(4Jap — J2) + Ay J,
i= ap(4Jap — J35) JJap (3.76)

Kap(4Jap — J2) + Aj(Kap — Cedipe) K ac — (Biasc) EKbe — Ceiipe)

We refer to the pammeter(~ as the (-specifying parameter. When (3.74) holds, the condi-
tion s

|Q/6| = Sgn[(l - C) (C - CZO’IUGT’)]’ (377>
or in other expressions,
, =0 ((=1o0r(=¢ );
Qe{ #0 (otherwise). fower (3.78)

Hereafter, we refer to a state which satisfies (3.74) as (-indefinite and refer to a state
which does not satisfy (3.74) as (-definite. The following statements hold:

Statement (-1 Any biseparable state is also a (-indefinite state.
Statement (-2 Any (-indefinite state satisfies Qe = 0.

Statement (-3 A deterministic LOCC transformation from an EP-indefinite state to an
EP-definite state is executable if and only if the initial state is (-indefinite.

Statement 5:4 Among truly multipartite states, a deterministic LOCC transformation
from a (-indefinite state to a (-definite state is executable, but the contrary is not
executable.

Statement (-5 When the initial state is (-definite, the deterministic LOCC transforma-
tion conserves the entanglement charge Qe.

Because of the above five statements, the 5—deﬁnite state can be considered as a “charge-
definite state.” When we transform a (-indefinite state into a (-definite state, we can
choose the value of the entanglement charge QQe; once the value is determined, we cannot
change it anymore with a deterministic LOCC transformation (Fig. 3.6).

Main Theorem 1 and its proof give the rules of the entanglement change by an arbitrary
deterministic LOCC transformation. Main Theorem 1 also gives an explicit protocol of
determining whether there is an executable deterministic LOCC transformation from an
arbitrary three-qubit pure state to another arbitrary three-qubit pure state.

Main Theorem 2 shows that we can reproduce an executable deterministic LOCC
transformation from an arbitrary state to another arbitrary state by performing deter-
ministic measurements three times at most.
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Z -definite

Z-indefinite —7 6
G=a < (@075
@)Y

Figure 3.6: The entanglement charge Qe for (-definite states and ¢-definite states. The
arrows express the executable deterministic LOCC transformations among truly multi-
partite states. We can not execute deterministic LOCC transformations which are not
expressed in this figure. For example, we cannot transform a (-definite state whose Qe is
1 into another (-definite state whose Qe is 0.

Table 3.1: The minimum number of times of measurements to reproduce an arbitrary
deterministic LOCC transformation. For the terminology, see the last paragraph of section
3.1.

Initial state Final state Times
Truly tripartite state Truly tripartite state 3
Truly tripartite state Biseparable state or full-separable state 2
Biseparable state Biseparable state or full-separable state 1
Full-separable state ~ Full-separable state 0

Main Theorem 2 If a deterministic LOCC transformation is executable, we can repro-
duce it by performing local unitary operations, a deterministic measurement on the qubit
A, one on the qubit B and one on the qubit C.

Main Theorem 2 and the proof of Main Theorem 1 give the minimum number of
necessary times of measurements to reproduce an arbitrary deterministic LOCC transfor-
mation, as listed in Table 3.1.

3.3 The Summary of the Proofs

In this section, we overview the structure of the proofs of the Main Theorems. We prove
Main Theorems 1 and 2 simultaneously in the section 6 in the following three steps:

Step 1 We give a necessary and sufficient condition of the possibility of a two-choice
DMT which transforms an arbitrary state |¢)) to another arbitrary state |¢').

Step 2 We give a necessary and sufficient condition of the possibility of a C-LOCC
transformation from an arbitrary state |¢)) to another arbitrary state |¢). We also
prove that we can reproduce an arbitrary C-LOCC transformation by performing
an A-DMT, a B-DMT and a C-DMT, successively.
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Table 3.2: The correspondence between the proofs and the sections.

Case Step Section
Case 2l Step 1 6.1.1
Step 2 6.1.2
Step 3 6.1.3
Case B - 6.2
Case €  Substitution for Step 1 6.1.1 and 6.3.1
Step 2 6.3.2
Step 3 6.3.3
Case ©® Steps 1-3 6.4

Step 3 We show that we can reproduce an executable deterministic LOCC transforma-
tion from an arbitrary state [¢) to an arbitrary state [¢') by a C-LOCC transfor-
mation. Conversely, we can reproduce a C-LOCC transformation by a deterministic
LOCC transformation, because a C-LOCC transformation is also a deterministic
LOCC transformation. Then, we find that the condition given in Step 2 is also a
necessary and sufficient condition of the possibility of a deterministic LOCC trans-

formation and that we can reproduce an arbitrary deterministic LOCC transforma-
tion by performing an A-DMT, a B-DMT and a C-DMT, successively.

All the deterministic LOCC transformations are categorized into any of the following
cases determined by the initial and final states:

Case 2: Both of the initial and final states are EP definite and the parameter jspc of
the initial state is not zero.

Case B: The initial state is EP definite and the final state is EP indefinite.

Case €: The initial state is EP indefinite and the parameter jspc of the initial state is
not zero.

Case ©: The parameter jspc of the initial state is zero.

We carry out the proof by performing the above three Steps in Cases 2 and ®. In Case
B, we can prove Main Theorems 1 and 2 directly, not following the three Steps. In Case
¢, we go to Step 2 directly before Step 3.

The correspondence between the proofs and the sections is shown in Table 3.2.

3.4 Five useful lemmas

In this section, we prove five lemmas which we use to show Main Theorems.

Lemma 1 An arbitrary n-choice measurement { My)|i = 1,...,n} which is operated on the
qubit A of an arbitrary three-qubit pure state |apc) can be reproduced by local unitary
operations and two-choice measurements such as {M{,|i = 1,2}.
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Proof: We show the present Lemma by mathematical induction with respect to n. If
n = 2, this Lemma clearly holds. We prove the present Lemma for n = k£ 4 1, assuming
that the present Lemma holds whenever 2 < n < k. It suffices to prove that we can
reproduce a (k + 1)-choice measurement {Mli =1,...,k + 1} by performing a k-choice
measurement {My, ...Mgy_1y, M)}, a two-choice measurement {N|l = k,k + 1} and
local unitary operations successwely In other words, it suffices to define the matrices
]\;[(k), Ny and N1y which satisfy the following equations:

M Moy + 4 M Mg—ay + M Moy = 1, (3.79)
Nl Nay + Ny Nesyy = 1, (3.80)

My Nby Now My = My Mg, (3.81)

M(T N(k+1)N(k+1)M(k) M(k+1)M(k+1)‘ (3.82)

Incidentally, it is correct that (3.81) and (3.82) are not in the forms of NyyMp) = M),
but in the above forms. The reason is that the change of the coefficients of the general
Schmidt decomposition {\;, p|i = 0,...,4} depends only on the components of M(Ti)M(i)
and that it is possible to transform to each other two states with the same entanglement
parameters by local unitary transformations.

Henceforth, we explicitly give the matrices M(k), Ny and Ni11y which satisfy (3.79)—
(3.82). First, we define a matrix My as follows:

= /My My + M, My, (3.83)

It is clear that this matrix M satisfies (3.79) because {M( )i =1,...,k + 1} is a mea-
surement. We can take the square root of the matrix M( Mgy + M(k+1)M(k+1) in (3.83),
because M(k)]\/[( k) + M(k+1)M(k+1) is a positive operator.

Next, in order to give the expressions of the measurements Ny and N1y, we define
V as a subspace spanned by the basis of the eigenspaces of the matrlx M (k) With posmve
eigenvalues. Because the matrix M( k) is a positive operator, the equation V' = Vak
holds, where V' is the total space and K is the kernel of M(k). If a vector # € V satisfies

M2 # 0, then 7 € V. (Proof: Let us assume ¥ ¢ V V. Then @ € K , and hence

Zt (M(T)M( )+M(k+1)M(k+1)> Z = 0. Therefore, ¥ M(T)M( kT = 0. This means that

MyyZ = O and thus we have shown the contrapos1t10n) In the same manner, if the
vector T € V satisfies MkH)x #0, then T € V.

Now, we define a matrix M L by restricting the matrix M(k) to the subspace V. The
matrix M} (k) Is a regular matrix, and hence it has the inverse matrix (M. (rk)) 1. Similarly, we
define the matrices (M(Tk)M(k))r and (M(HI)M(kH))r by restricting the matrices M(Tk)M(k)

and JW(,CJrl

Let the notation (€, ...,€;) stand for the eigenvectors of M(k) which constitute an

M 141y to the subspace v, respectively.

orthonormal basis set of the subspace V and let the notation (€141, ..., €,) stand for an
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orthonormal basis set of the kernel K. Then, the set of (€1, ..., €}, €11, ...,€,) is an or-
thonormal basis set of the total space V. Hereafter, we carry out the present Lemma’s
proof in the representation of this basis set.

Let the notation (7, ...,n;) stand for the set of the nonzero eigenvalues of the matrix
M My + M, ;M1 Then we have

(k) (k+1)
Jmo 0
~ : .0 0O
Mgy = , (3.84)
(k) 0 S
@) @)
M Mg)* O
MMy = ( ( 5 ®) O ) : (3.85)
M Mg)" O
M(Tk—l-l)M(k—l-l) = < ( (k+1)O (kJFl)) O ) : (386>
We define the matrices Ny and N11) as
T r(asr -1
Ny = ( (Mw)M(g)) (M) ?) (3.87)
T T -1
N1y = ( V <M<k+1>M<g+1>>r<M<k>> ? ) . (3.88)

It follows that

~ i ~ -1
r -1 T r ] r r
@) I
(3.89)
In the present representation, we have from (3.85)
V!
(M) Hf = , (3.90)
o
Ui
(M(Tkﬂ)M(kH))r + (M(Tk)M(k))r = ; (3.91)
Yl
Vo
(M) ™) = . (3.92)

Vo

Then (3.89) reduces to (3.80). We can also prove the equations (3.81) and (3.82) by
straightforward algebra.O
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Figure 3.7: A geometric interpretation of the change of jpc.

Thanks to this Lemma, it is possible to substitute two-choice measurements for any
measurements of an LOCC transformation on a three-qubit pure state. Hereafter, unless
specified otherwise, measurements of LOCC transformations will be two-choice measure-
ments. We will also refer to a two-choice measurement, a two-choice DM and a two-choice
DMT simply as a measurement, a DM and a DMT, respectively. Similarly, unless speci-
fied otherwise, the notation {M;)} expresses a two-choice measurement. We then express

1 T
M(O)M and M(l)M( 1) as

—10 —if
t _ ap)  koe O\ _ [ a ke
M(O) M(O) - ( k(O) ez0(0> b(O) - kele b 5 (393)
—i6 —if
t . a) k(l)e &) . 1— a —ke
M(l)M(l) - < k(l)ele(l) b(l) - _kezQ 1 - b (394)

in the same manner as in (A.31).

Lemma 2 Let the notation { M|t = 1,2} stand for an arbitrary two-choice measurement
which is operated on the qubit A of a three-qubit pure state |Yapc). We refer to each result

of the measurements { M|t = 1,2} as ‘@Z)ch>. Let the notations (jap,jac,iBc,jasc,Js,Qe)

and (jAB,jA)C,j(B)C,jABC,J QZ) stand for the sets of the J-parameters of the states

|Wapc) and ‘¢ABC>, respectively. Then, the following inequalities hold:

1 2
jpe < Zp LS |dhet |1 (Zp@a(")) Japcs (3.95)

k=0

where the probability py and the multiplication factor o'V are defined in (A.34) and (A.45),

respectively.
Proof: The average Zi:o p(i)jg)c is equal to the length of the heavy line in Fig. 3.7,
because we can interpret (A.44) as the cosine theorem and because by + bq) = 1 and

> E(Z-) = 0. The end points of the heavy line have to coincide with the end points of

38



Figure 3.8: Simplification of Fig. 3.7.

the segment RS because ) . lg(i) = 0. Then, the left inequality jpc < Z?:1 i jg)c clearly
holds, since a polygonal line is longer than a straight line.
To prove the right inequality of this Lemma, it suffices to show the inequality

\/(bch + kcosOjapc)? + (ksinbjapc)? + \/[(1 —b)jpc — kcosOjapc)? + (ksinbjapc)?
< Ve + (1= Wab— 12 + VT — )1 = 8) = 2P} % o (3.96)

under the conditions ab— k%> >0, (1 —a)(1—0) —k*>0,0<60 <21, 0<a <1 and
0 < b < 1, where we used the substitutions of the measurement parameters in (A.32) and

(A.33):

)y = a, aq) = 1—a, b(o) =b, b(i) =1-0, (9(0) + @5 =m—0. (3.97)
The fact that 6 can take any value guarantees the last substitution.
Let us find the value of # which maximizes the left-hand side of (3.96) with the values

of the measurement parameters a, b and k fixed. For this purpose, we find the value of
the measurement parameter ¢ which maximizes the length of the heavy line in Fig. 3.8,

f(0) = Vu? 4+ w? 4 2uw cos 0 + Vv? + w? — 2vw cos b, (3.98)

with the values of u, v and w fixed. Differentiating (3.98) with respect to 6 gives the
following equation:

af —uw sin @ N vw sin 6
00 VuZ w2+ 2uwcosh o+ w? — 2owecosh

(3.99)

The equation (3.99) is equal to zero only if § = 0 or 7, or cos § = w(u—v)/2uv. The length
of the heavy line for § = 7/2 is longer than that for # = 0 and 7. Thus, when cosf =
w(u — v)/2uv, the function f is maximized to be (u + v)y/1 + w?/(uv). Substituting
u="bjpc,v=(1—-0)jpc and w = kjapc give that

L2 2
the maximum of the left-hand side of (3.96) = \/j?go + ﬁ. (3.100)
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Hence, in order to prove Lemma 2, it suffices to show

(the right-hand side of (3.96))* — (the maximum of the left-hand side of (3.96))?
2.2
— {1 - [ab—kz2+(1—a)(1—b) k4 2vab— /(1 —a)(1 ) —kQ]}jZ K Japc

ABC_b(l_b)
k,2
— {a—i—b— 2ab + 2k* — e 2vVab — k2/(1 —a)(1 — b) — k:2] japc >0, (3.101)
or to show
k
a+b—2ab+ 2k* — ) > 2vab — k2y/(1 — a)(1 — b) — k2. (3.102)
We can rewrite the left-hand side of (3.102) as
k? 202 —2b+ 1
b — 2ab + 2k* — = a(l-b)+b(1-a) - ———k
a+ ab + b1 =1) a( ) +0(1 —a) i —0)
b 1-b
= — l—a)— | —+ " | k?
a(l=0)+b(1 —a) <1—b+ 2 )k
1—a)(l—0)—k? b— k?
_ a)i_b) +(1-0)" . (3.103)

Because ab—k? > 0 and (1 —a)(1—0) —k? > 0, we find that the left-hand side of (3.102)
is nonnegative. The right-hand side of (3.102) is clearly nonnegative. Therefore, (3.102)
is equivalent to g > 0, where

g = (the left-hand side of (3.102))? — (the right-hand side of (3.102)). (3.104)

We can simplify the expression of g as follows:

g = la(l=0)+0b(1 —a)]* —2[a(1~b) +b(1 — a) %kz L b-;(il_—bg)z Y
= fa(1 = 6) = b1~ @)+ 2laf1 — ) = b1 - ) e e
= [(a—b)+ K ¢ - -]’ (3.105)

b(1—b)

Thus, the quantity ¢ is nonnegative. Hence we have proved the right inequality of (3.95)
and thereby completed the proof of Lemma 2.0
Lemma 2 has the following corollary:

Corollary 1 Let the notations |¢) and |[¢') stand for three-qubit pure states. We re-

fer to the sets of the J-parameters of |1) and |¢') as (jap, jac,isc,jasc, Js, Qe) and
(Iuss Tacs 50y Japes 5. Qe), respectively. If a two-choice A-DMT transformation from
the state |1) to the state |1)") is possible, the following three inequalities hold:

Jpesin gy > jEosin® gs, (3.106)
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Jbe < Kpe = jhe + Jape < Ko = jhe + Japes (3.107)
A/
Ahorm = a_‘{ = Ki —4KapKacKpo > Ay, (3.108)

where (3.106) holds only when both of the states |1) and ') are EP definite, and where
a = jhpo/iasc. The symbol Ny orm refers to a normalized value of A

Proof: Because of Lemma 2, (A.40)-(A.42) and because the entanglement parameters
of the final states of a DMT are the same, the expressions

Jec < jpe < \/ﬁ?c + (1 —a?)j3ze, (3.109)
jip = *jap, (3.110)
jhe = ?jac (3.111)

hold, where o = j'y s/ Japc- Because of (A.48) and because the entanglement parameters
of the final states of a DMT are the same, we have

JBC COS 5 = Jpe COS Y. (3.112)

From (3.109) and (3.112), we can derive (3.106) and (3.107) as follows:

T sin® @5 = jio — jio cos’ ¥ > jpo — Jhe cos® g5 = jposin’ s, (3.113)
b < Jpe < e+ iise = Kpo < Jpo + (1= a®)jape + @?fape
= jio + Janc = Kge. (3.114)

Because of J5 = 2japjacipe cos s and (3.109)—(3.112), we obtain
Jt = a?Js. (3.115)
From (3.110), (3.111), (3.115) and definition of the a, we obtain
K'Yy =a*Kap, K)o = * Ko, K, = o* K. (3.116)
From (3.114) and (3.116), we obtain (3.108):

/ 12 !/ ! /
A — A _ K5 — 4K, p K)o Kpe
norm = "

a2

= K2 —AKapKacKpe > K2 — 4Kap = A (3.117)
This completes the proof of Corollary 1. O

Lemma 3 For an arbitrary two-choice measurement {My|i = 0,1}, the following in-
equality holds:

1
> paa® <1, (3.118)
k=0

where p(;y and o are defined by (A.34) and (A.45), respectively.
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Proof: Since the measurement {M;|i = 0,1} is a two-choice measurement, we use
the measurement parameters a, b, k and 6 defined in (A.32) and (A.33). Using these
parameters, we can express (3.118) to be proved as follows:

Vab— k2 ++/(1 —a)(1 —b) — k2 < 1. (3.119)

In order to prove (3.119), it suffices to show the following inequality because k% is non-

negative:
: Vab++/(1—a)(1—1b) <1, (3.120)

which is followed by

ab+ (1 —a)(1 —b) +2y/ab(1 —a)(1 —b) <1,
2¢v/ab(1 —a)(1 —b) <1—ab— (1 —a)(1 —b) =a(l —b) +b(1—a). (3.121)

The both sides of (3.121) are nonnegative, and thus it suffices to show
(a + b — 2ab)* > 4ab(1 — a)(1 — b) (3.122)
in order to prove the present Lemma, which can be achieved as follows:
(a+ b — 2ab)* — 4ab(1 — a)(1 —b)

= a4+ 0>+ 2ab + 4a*b® — 4a%b — 4ab® — 4ab + 4a’b + 4ab® — 4a>b?
= (a—10b)*>0. (3.123)

Thus, (3.122) holds, so does (3.118).0

Lemma 4 Let the notations (jag, jac, jBcs jasc, Js, Qe) and (jg, Jacs Jres Japes J5, Q)
stand for the sets of the J-parameters of arbitrary three-qubit pure states |¢) and |¢'), re-
spectively. If Aj = 0ANQe =0 or|¢') is EP-indefinite and if there is a parameter o which
satisfies 0 < a <1 and

j%B o , jsz
iy )
JAc « Jac
jgc = 1 1-a? j%c ) (3'124)
J4Be o JaBc
Jé 0z2 J5

then we can carry out an A-DMT from the pure state |¢) to the pure state |¢') by the
following measurement:

—i6 —if
1 . a(o) k(g)e (0) . a ke
M(O)M(O) - ( k(o)e’Le(O) b(O) - keie b B (3125)
—if —if
t . a() l{:(l)e (©) o 1—a —ke
M(]_)M(l) - ( k(l)ele(l) b(l) - _keie 1 . b 3 (3126)

where the measurement parameters a, b, k and 0 are defined as follows:

1 (1 —2a2)\; sin g (3.127)
2 2/ Nsin® o+ A2 (1 —a?)
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A two-choice DM is performed

qubit A

2
.2 2

. .2
]BZC +(]-(12) Jasc
qubit B qubit C

Figure 3.9: Dissipationless entanglement transfer.

1 A1 sin g

b= -+ , 3.128
2 2\/)\%sin2cp+)\g(1—oz2) ( )
Mo(1 — a2
— o(1 — ) , (3.129)
2¢/A?sin? o + A2(1 — a?)
T
S 1
0= (3.130)

If M sin® o + A3(1 — a?) = 0, the parameters a, b and k are defined by a = b = 1/2 and

k=+v1-a2/2.

Comment: We can interpret the above as the rule that describes how a DMT changes
the entanglement. When we perform an A-DMT which satisfies the condition of Lemma
4, the change of the entanglement is given by (3.124). We can express this change as in
Fig. 3.9. After an A-DMT, the four entanglement parameters, jAB, 740 J4pe and Js,
the last of which does not appear in Fig. 3.9, are multiplied by o?. Note that these four
entanglement parameters are related to the qubit A, which is the measured qubit in the
A-DMT. The quantity (1—a?)j% e, which is the entanglement lost from j% g, is added to
J%0, which is the only entanglement parameter that is not related to the measured qubit
A. We call this phenomenon the dissipationless entanglement transfer and call the DMT
which gives rise to the dissipationless entanglement transfer as a disspationless DMT.
(We will present the dissipative entanglement transfer in section 6.1.1 below.) Note that
Lemma 4 holds even if japc = 0.

Proof: We prove the present Lemma by calculating the change of the J-parameters
due to the measurement which satisfies (3.125)—(3.130), and showing that the change is
expressed as (3.124). We define the normalized states {|¢)} as |¢(i)> = Mgy |9) //PGi)

and let the notation (jl(dg, ]1(4)0, jj(g)c, jABC, Jél : )) stand for the set of the J-parameters of

|¢™). From (A.34)—(A.36) and (A.40)—(A.46), we derive expressions of the J-parameters

(Jﬁffg,jﬁl)cdé)c,ﬂﬁf}gc, J(z) g)) in terms of the J—parameters (jassjac,jBc, jasc, Js, Qei )

0) (0 (1) (1)
and o). We then show that (j{p., jie- die e 5+ Qe”) and (7. d4é dpes dapes 73 Q6)
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are equal to (jup,Jac,ipes Japos J5: Qe), which is related to (jag,jac,jBc, jasc, Js, Qe)
as in (3.124).

First, let us derive the equation p) = bg;). For i = 0, we obtain the equation p() =
by =: b by substituting (3.127)—(3.130) in (A.34) and transforming it as follows:

2|1 (1 —2a*)\;sing

\ 1 A1 sin ¢
p =
© 12 2/ A2sin® o + A3(1 — a?)

4+
2 24/ Asin?p + A3(1 — a?)

+ (1= X9)

Ao(1 — a?)sing

+2X0A
’ 12\//\%sin2<,0+)\%(1—a2)
1 Arsing 22 2 2 2
= = —(1 —=2a7)A; + (1 = A5) +205(1 — «
5 2\/)\1$1n gp—}—)\%(l—a?)[ ( )AG + (1= A5) +2X5( )]
_ L, A1 Sing — b (3.131)
2 2\/)\15111 0+ M (1 —a?)

From the equations p«y +pa) = 1 and b + b1y = 1, we also find that p) = by = 1 —b.
Hence we obtain the following equation:

PGy = b (3.132)

Next, we derive the first, second and fourth rows of (3.124). Because of (A.40)—(A.42),
it suffices to prove that a” = a. The equation (A.45) gives

Py = 4/ amba) — k- (3.133)

For i = 0, we obtain the equation pf af, = a?b® by substituting (3.127)-(3.130) in (3.133)
and transforming it as follows:

p%())a?()) = )b _k(20)

1 N a®\; sin (1 =20+ a")A3 + (1 — 2a%)N?sin’ ¢
4 2/ Asin® o + A2(1 — a?) AN sin? p + A2 (1 — a?)]
a?\p sin a?(1 — a?)A2 + 2a2X\2sin?

+ :
2/ A2sin p + A2 (1 — a?) 4[A2sin? o + N3(1 — a?)]

5 |1 Arsing

2
_|_
2 2/ Nsin? o+ M1 — oﬂ)]

Thus, the equation py = bis followed by the equation o ) = a. The equations ap)+a) =
1 and b() + by = 1 then give that p%l)oc%l) = oz%%l) as follows:

= o’b%. (3.134)

2 2
Phety = ambay — Ky

= (1 -a@)(1 = b)) — kfy)
= 1—a@) — bo) + abo) —

2
202\ sin @ ) 1 A sing
p— —_— a -
2/ \sin? o + M (1 — ?) e (@)
2
1 A1 sin
? ! L 2 2 272
- YT — a2(1 - by)? = 2P, (3.135
2 2\/)\% sin? o + A2(1 — 042)] ( ©) (1) ( )
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Thus, from (3.132), the equation a1y = o holds. Hence, we obtain the equation o) = a.
Therefore, we have proven the first, second and fourth rows of (3.124).

Next, we derive the third row (j(é)c) = jBc = Jjico + (1 —a?)jipe. Fori =0, we
obtain the equation (j0)% = j2, 4 (1—a2)52 go by substituting (3.127)~(3.132) in (A.44)
and transforming it as follows:

(0) bl dne + AATKT — 2bw)k) AoAajse cos(bo) + &)
(Upe)® = :
P
bioy B + AoATKD) + 2bo)ko)AoAi AT sin

bQ

k; )AL smgo)

k
.2 .2
= Jho+7
BC ABC ( )\Ob(O)

2
~O
2
bio)
No(1 = a2) i 2 sin (1 — a?) W
‘ ‘ —« sinp(1 — «
= Jjac + Jasc [ s ] :

VAZsin? o + A2 (1 — a?) + A sing \/)\%sin2g0+)\2(1—a2)+Alsing0J
)2 +2(1 —a? )>\28111 @ + 2\ sin (1 — a?)y/A?sin? o + A2(1 — a?)
[V/A3sin? o 4+ A\2(1 — a2) + Ay sin ]2
2
VAZsin? o + A2 (1 — a2) + Ay sing
VAZsin? o + A2 (1 — a2) + Ay sing

= Jio+ j,%ch

= Jbo + Japc(l1—a?).  (3.13(

= Jjho +Jape(l—a?) [
We can also apply this procedure to the case of 1 = 1:

(1 — b(0)>2jéc —+ )‘g)‘?lk(QO) — 2(1 — b(0)>k(0)>\0)\4jBC COS(Q(l) -+ @5)

(1)
j =
( BC) (1 —P(o))2
(1 = b))

_ j2 +]2 k(zo) _ 2]{7(0))\1 sin<p

BC ABC (1 . b((]))2 )\0(1 B b((]))

Ao(1 — a?) 2\ sin (1 — a?)
VAZsin? o + A2 (1 — a2) — A\;sing VAsin? o + A2(1 — a2) — A sing
A2(1—a?)? 4+ 2(1 — a®)A2sin® o — 2);sin (1 — a?)\/A2sin? @ + A2(1 — a?)
[v/A2sin? o — A2(1 — a2) + A sin ¢]?
2

VAZsin® o + A2 (1 — a?) — Ay sing
VA2sin? o + A2(1 — a2) — Ay sing

= jBc+ Jasc [

= jpc+ Jasc

= Jjpc+iisc(l —a?) = jpo + Japc(l—a%).  (3.13

Thus the equation (j9%)% = 73 + (1 — a2)52 g holds. Hence, we obtain the third row of

(3124), (je)* = JBe = Jho + (1 = 0*)fipe-
Next, let us show the fifth row Jéz) = JL = o?Js5. From the equation J5 = 2japjac(Aad3—
A1 A4 cos ), we obtain the equation Jéz) = a?Js for i = 0 and 1 by using the equations
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(A.35)-(A.41), oD = o, () = by and ;) = £7/2 as follows:

JP = QJ(AZ)BjAC<)‘ IAD — ADND cos @)
= « Q]AB]A0<>\2)>\3 — /\f)/\ff) cos )
Aa( Aok cos Oy + Aibg) cos @)

b

= a*2japjac [AAs —

= a22jABjAc()\2)\3 — A A4 cos @)
= o, (3.138)

which is the proof of the fifth row of (3.124).

We have already seen that the measurement {M;} which satisfies (3.127)(3.130)
causes the change of the J-parameters (3.124). Finally, we prove that if A; = 0A Qe =0
or |¢') is EP-indefinite, the measurement {/(;) } transforms the state |¢) into the state |¢').
If the state |¢') is EP-indefinite, the state |¢') is determined uniquely only by determining
the J-parameters, because any EP-definite state has a zero entanglement charge. Thus, if
the state |¢') is EP-indefinite, the measurement {M(;)} transforms the state |¢) into the

state |¢'). If the expression A 7 =0A Qg = 0 holds, we only have to prove that Qei) =0,
because if the equation Qe = 0 holds J- parameters and entanglement charge of |q§ >

and |¢') are the same. Let us show the equation Qe = 0. Because of p;y = by, o' = a,
(3.124) and (A.35), the following equation holds:

biyorf K K
ORI _ { (2 5 )]
sin A . = sgn |sin p® A . (3.139
( pe 2K, 2K pe (8189)

If Ay =0, then \2 — K5/2Kpc = 0, and hence Q(ei) = 0 = Qp. Thus, if the expression
Ay =0A Qe = 0 holds, the measurement {M;} transforms the state |¢) into the state
9.

We have thus proven that an A-DMT which satisfies (3.124) can be performed by the
measurement { M |i = 0,1}. This completes the proof of Lemma 4.0

Lemma 4 guarantees that an arbitrary dissipationless DMT is executable. A dissipa-
tionless DMT has only a single parameter a. Hereafter, we refer to this parameter as the
transfer parameter.

Q¢ =sem

Lemma 5 Let the notation {M|i = 0,1} stand for an arbitrary two-choice measurement
which is operated on a qubit of a three-qubit pure state | apc). Note that we can operate
{Myli = 0,1} on any one of the qubits A, B and C of the state [1papc). We refer to

each result of {M|i = 0,1} as ’wABC> Let the notations (Kap,Kac,Kpc,jasc,Js,Qe)

and (KAB;KX)OKJ(B)CJABC;JéZ ,Q(l ) stand for the sets of the K-parameters of the states
|Yapc) and ‘@ZC(ZBC>7 respectively. Then, the following inequality holds:

Zp(i) KS)CS Kpc. (3.140)
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Proof: First, we prove (3.140) in the case of japc # 0. If the measurement {M(i)|i =
0,1} is performed on the qubit B or C, then jg)c = a®jpe and jl(jj)gc = a®jpe, where
o is the transfer paremter of the measurement {M;)|i = 0,1}. Thus, because of (A.50),
we can obtain (3.140) as follows:

1 1 1
Y oV Ko =Y pa \/(J'fé)c)z + (1552 =D e\ 3¢ + iise < VKse
i=0 i=0 i=0

(3.141)
Now, it suffices to prove (3.140) in the case that the first measurement is performed on the

qubit A. Let the notation f stand for the left-hand side of (3.140). In the same manner
as in Lemma 2, (A.42) and (A.44) give that

f = \/521125;0 + 2bk cos(m — 60 — Ps)jpcjasc + abjipe

+\/(1 —b)%jpe — 2(1 = b)kcos(m — 0 — @5)jpciape + (1 — a)(1 = b)jize-
(3.142)

We can substitute 6 for the phase m — 6§ — @5, because the range of the phase 6 is from 0
to 2m:

f = \/széc + 20k cos Ojpcjasc + abjipe

/(1= )220 — 2(1 — bk cosBipejanc + (1 - a)(1 - b)fpe.  (3.143)

In order to find the maximization condition of the quantity f, we differentiate f with
respect to k cos 6:

of B bjpcjasc
O(kcost) — \/b2j% + 20k cos Ojpcjanc + abjpe
(1 ="b)jpcjasc
VI =022 —2(1 = bk cos Ojpcjapc + (1 —a)(1—b) 250

(3.144)
We can transform the equation 0f/0(k cosf) = 0 as follows:
(1-10)2 B b?
(1 — b)Qj%C — 2(1 — b)k cos@ipciase + (1 — a)(l — b)j?ﬁxBC b2j1290 + 2bk cosOjpcjape + abjf‘BC’
2b(1 — b)*k cosOjpcjapc + ab(l — b)*jige = —2b°(1 —b)kcosbjpcjapc + (1 — a)(]

2k cosOjpcjapc = (b—a)jipe-

Thus, the quantity f becomes the extremum

f =\ KBC - \/j%c +j124BC (3146)
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if and only if (3.145) holds. This extremum is also the maximum because
ofr b*jBeiine
O(kcosh)? V2% + 2bk cos 0jpcjapc + abj31303
. (1 — b)zjécjiBC < 0.
V(1 =0)2j%c —2(1 — b)k cosOjpcjapc + (1 —a)(1 — b)j,24303 -
(3.147)

Hence, the quantity f becomes the maximum +/j%. + j4pc if 2k cosOjpcjapc = (b —
a)j4igc- The inequalities ab—k* > 0 and (1 —a)(1—b) — k? > 0 limit the range of k cos 0,
but this condition can only decrease the maximum of f because there is only one value of
k cos @ which satisfies the equation 0f/0(kcosf#) = 0 in —oo < kcosf < oo. Therefore,
we have proven (3.140) for japc # 0.

Second, we prove (3.140) in the case of japc = 0. In the same manner as in the case of
Jjapc # 0, it suffices to prove (3.140) in the case that the first measurement is performed
on the qubit A. Because of the equation (A.42), the equation jﬁf}gc = 0 holds. Thus, we
only have to prove the following inequality:

1
Zp(i)jg)c < JBo, (3.148)

=0

because Kg)c = (jg)c)2 + (jg)BC)z Substituting japc = 0 in (A.51), we find that (3.148)
clearly holds. Thus, the inequality f < \/j%. + j45c = VKpc holds. O

3.5 The Proof of Main Theorems

In this section, we prove Main Theorems, which we reproduce here:

Main Theorem 1 Let the notations |¢) and |¢') stand for three-qubit pure states. We
refer to the sets of the K-parameters of |¢) and |¢') as (Kap, Kac, Kpc, jasc, Js, Qe) and
(K g, Koy Koy Japos 5 Q), respectively. Then, a necessary and sufficient condition
of the possibility of a deterministic LOCC' transformation from |1) to |¢') is that the
following two conditions are satisfied:

Condition 1: There are real numbers 0 < (4 < 1,0 < (g < 1,0 < (¢ <1 and
Clower < ¢ < 1 which satisfy the following equation:

K1/4B CACB KAB

Ky Cale Kuc
Kpe [ =¢ CBGe Kge |, (3.149)

Jipe CalaCc JABe

Jg CalrCe Js
where ;

¢ = : P — 3.150
lower (Kap — Cejipe) K ac — Ceiape) (Ko — Cajipe) ( )
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and we refer to C, Ca, (g and (¢ as the sub parameter and the main parameters of A, B
and C, respectively.

Condition 2: If the state |¢') is EP definite, let us check whether the state |1) is
C-definite or not. When the state ) is C-definite, the condition is

Qe=Qp and (= (3.151)
When the state |1) is C-indefinite, the condition is
|Qel = sgnl(1 = C)(€ = Cpqper)]; (3.152)
or in the other words,
/ =0 (Czl or C:Clowe'r‘)?
Qe{ #0 (otherwise). (3.153)

Main Theorem 2 If a deterministic LOCC transformation is executable, then the LOCC
transformation can be reproduced by performing local unitary operation, a deterministic
measurement on the qubit A, one on the qubit B and one on the qubit C'.

3.5.1 Case 2

First, we prove Main Theorems in Case 2, where both of the initial and final states are EP
definite and the parameter japc of the initial state is not zero. In the present subsection,
we assume that japc # 0, unless specified otherwise.

Step 1 of Case 2

We here give a necessary and sufficient condition of the possibility of a two-choice deter-
ministic measurement transformation (DMT) on the qubit A in the case that the final
state is EP definite.

Theorem 1 Let the notations |1) and |¢') stand for three-qubit pure states. The entan-
glement parameters of the state |1)) are referred to as jap, jac, jsc, japc, Js and Qe,
while the entanglement parameters of the state |Y') are referred to as jsg, 'acs Jnes Japcs
JL and Q. We assume the state [{') to be EP definite. We also assume that japc # 0.
Then, a necessary and sufficient condition of the possibility of an A-DMT from the state
|Y) to the EP-definite state |¢)') whose DM is a two-choice DM is that the following two
conditions hold;

Condition 1 : there are real numbers aq and B4 which satisfy 0 < ay <1,0< 64 <1
and the following equation:

ng 0434 jElB
ite o Jac
jse | = 1 Ba(l—a3) ite | (3.154)
Jise % Jasc
JE/) 06124 J5
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qubit A

1-Ba)(1-0)jsne
is lost

Jie+Bal1-)sse
qubit B qubit C

Figure 3.10: Dissipative entanglement transfer

Condition 2: Let us check whether the state [1)) is C-definite or not. When the state [¢))
s (-definite, the condition is

Qe = Qf and Ba = fa, (3.155)

where Y
AK apK acjpe sin s

Aj+4KapKacjsesings’

B4 = (3.156)

where if |1)) is EP indefinite, then we define J% o sin s as zero. This parameter corresponds

to the (-specifying parameter ¢, and thus we refer to Ba as (3-specifying parameter.
When the state |1) is C-definite, then the condition is

|Qe| = sgn[(1 — Ba)Ba]- (3.157)

Comment 1: We can interpret the above as the rule how a DMT changes the en-
tanglement. When an A-DMT transforms a state |¢) into an EP-definite state |¢’), the
change of the entanglement is expressed by (3.154). We can express this change as in
Fig. 3.10. After an A-DMT, the four entanglement parameters, j2 5, jic, Jagc and Js,
the last of which does not appear in Fig. 3.10, are multiplied by a%. Note that these four
entanglement parameters are related to the qubit A, which is the measured qubit in the
A-DMT. The quantity S4(1 — @%)j%pc, which is a part of the entanglement lost from
JAgcs is added to j%., which is the only entanglement parameter that is not related to
the measured qubit A. The quantity (1 —84)(1— % )57 o, Which is the rest of the entan-
glement lost from j% 5 disappear. We call this phenomenon the dissipative entanglement
transfer, and call the DMT which gives rise to the dissipative entanglement transfer as a
dissipative DMT. A dissipative DMT has only two single parameters; the transfer param-
eter o and the other parameter 34. Hereafter, we refer to this new parameter G4 as the
dissipative parameter. Note that Theorem 1 guarantees only a necessary and sufficient
condition of an arbitrary DMT whose DM is a two-choice DM. However, this condition
holds not only for a two-choice DM but also for an n-choice DM. We prove this statement
in section 6.1.4.

Comment 2: Note that Theorem 1 includes not only Step 1 of Case 2, but also a
part of Step 1 of Case €. Indeed, we do not assume that the state [¢)) is EP definite in
Theorem 1; we only assume that the state |¢)') is EP definite. Note that if the state |1)) is
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EP indefinite, the DMT from the state [¢)) to the EP definite state |¢') is executable only
if [¢) is (-indefinite. Let us prove this statement by reduction to absurdity. Let us assume
that the DMT from the state |¢) to the EP definite state |1)') was possible when the state
1) was EP indefinite and (-definite. Because the state |t) is EP indefinite, at least one of
the entanglement parameters japg, jac and jpc would be zero. Because of (3.154), if jap
or jac was zero, then the state [1)') could not be EP definite, Thus, jpc would have to be
the only zero bipartite entanglement parameter in order for |¢)') to be EP definite. Because
of the assumption that |¢)) was (-definite, the equation j2, = j5o~+84(1—a%)j%pe would
hold. Note that 4 was zero, because of (3.156) and jpc. Thus, jpo would be zero. This
would contradict the assumption of Theorem 1 that the state |¢') is EP definite. Hence,
if the state [¢) is EP indefinite, the DMT from the state |¢)) to the EP definite state |¢)')
is executable only if the state |t) is C-indefinite.

Proof: Before we describe the proof, we review definitions that are necessary for
the proof. The notations Ay, A1, A2, A3, Ay and ¢ stand for the positive-decomposition
coefficients of the generalized Schmidt decomposition of [¢)). We define the measurement
parameters a, b, k and 6 for a measurement {M;|i = 0,1} as follows:

—10 —if
t _ ap) ke O\ _ [ a ke
M(O)M(O) - ( k(o)eze(o) b(O) - kjelg b 5 (3158)
—1i0 —if
1 o a) k:(l)e ) o 1-— a —ke
M(I)M(l) - ( k,(l)ele(l) b(l) - _kezg 1 . b ; (3159)

where we assume that sin @ > 0. We refer to the probability that the result ¢ comes out
from the measurement {M;)|i = 0,1} as p). We define the states {|¢()} as [¢@) =
My [¥) /\/Py- We refer to the probability pe) as p. We define the entanglement J-
parameters of the states {‘w(i)>} as (jﬁfj)g, jX)C, jg)c, jX}BC Jéi), Qg)). We can express the
probability p(;) as (A.34) with these parameters. We can express the generalized Schmidt
coefficients A%, AP AP AW AD and @ of the state |@) as in (A.35)—(A.39). Note
that we do not specify whether the coefficients {)\,(CO), 0Ok =0,...,4} and {A,gl), oWk =
0,...,4} are positive-decomposition coefficients or negative-decomposition coefficients. We
can also express the entanglement parameters jl(ﬁg, jg)c, jg)c, jﬁfgc and gpéi) as in (A.40)-
(A.44) and (A.46). Note that we have proven that jap # 0 and jac # 0 in Comment 2.
It follows that the state i) is (-definite, if and only if (A Agsin > 0) V (A, > 0). This
can be easily seen if we note that 4Jap — JZ = 454573 IA]sin® . Hereafter, we will
often use this condition (A;Agsing > 0) V (A > 0) in the present proof.

Next, we describe the structure of the proof. We divide the proof into two parts. In
the first part, we consider the case where the state |¢) is f—deﬁnite. In the second part,
we consider the case where tthe state [¢) is C-indefinite. In the first case, we prove the
present theorem in the following four steps:

1-1 We note that the two-choice measurement {M;|i = 0,1} is a DM if and only if the

ol



following equations are satisfied:

0< abp; K (3.160)
2
0< 1= a()l(l_;;) L (3.161)
0<b<1, (3.162)
i%h = 34, (3.163)
i = 5 (3.164)
iS5 = Gy (3.165)
Jﬁu)ac = 1511)307 (3.166)
JO = gt (3.167)
QY =W, (3.168)

In the above, (3.160)—(3.162) constitute a necessary and sufficient condition that

M(O)M and MT® My, are positive operators, whereas (3.163)—(3.168) constitute a
necessary and sufficient condition that the states W(O)> and W(l)> are LU-equivalent.
Note that the condition ) M&)M(i) = [ is included in the definition of the mea-

surement parameters a, b, k and 6 as in (3.158)—(3.159).

1-2 We derive Qg) = Qe from (3.160)—(3.168). The equation Qg) = Qe includes (3.168);
thus (3.160)-(3.167) with QY = Qe are equivalent to (3.160)—(3.168).

1-3-A In the steps 1-3-A and 1-4-A, We treat the case of Qe # 0. In the step 1-3-
A, we solve (3.160)—(3.167) and Qe Qe, and thereby derive the following five
expressions, which are equivalent to (3.160)—(3.167) and Qg) = Qe;

~ QeVAs /(1)

3.169
— QevVAy ( )
2 -1 VA ]
kcosf = Qe pp=1) J JBCCOSPs. (3.170)
2p—1 K5 —QevA; Japc
ksing= 2U=P) K5 jeosings (3.171)
2p—1 K5 —QevVA; Jasc
(2p — 1)(KZ — AJ)jase (2p — 1)(K5 + QevVAy)
1 A+ 4K s K ac i3~ sin®
J 2R apliacpe S s <p<l. (3.173)

1

+ = - - ;
2 2\/AJ+4KABKA0(]%CSIH2 ©s5 +JE\BC)
(

The equations (3.169)—(3.172) are expressions of a, b, k and 6 in terms of p, whereas
the inequality (3.173) gives the range of p. Because of the steps 1-1, 1-2 and 1-3-A,
we can show that {M|i = 0,1} is a DM if and only if a, b, k, 6§ and p satisfy
(3.169)—(3.173).
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1-4-A We prove that if {M;]i = 0,1} satisfies (3.169)—(3.173), the initial state [¢)) and
the final state [¢)') satisfy Conditions 1 and 2, and that the transfer parameter
a4 which satisfies 0 < a4 < 1 and p which satisfies (3.173) have a one-to-one
correspondence. Thus, the initial state |¢)) and the final state |¢)') of any executable
DMT satisfy Conditions 1 and 2. Inversely, we can take a set of the measurement
parameters (a, b, k, ) of an executable DM for any states |¢)) and [¢)") which satisfy
Conditions 1 and 2, because we can obtain the probability p from the transfer
parameter a4 by using the one-to-one correspondence and because we can obtain
the measurement parameters (a,b,k,#) from the probability p by using (3.169)—
(3.172). Thus, we will complete the proof of the present theorem in the case of
Qe # 0 in the step 1-4-A.

1-3-B In the steps 1-3-B and 1-4-B, we treat the case of Qe = 0. In the step 1-3-B, we
prove that if the measurement {M;|i = 0,1} is a DM, the initial state [¢)) and the
final state [¢)') of the DMT of the measurement { M |i = 0,1} satisfy Conditions 1
and 2.

1-4-B In the step 1-4-B, we prove that if the state |¢)) and the EP-definite state [¢)
satisfy Conditions 1 and 2, we can obtain a measurement which transforms the
state |¢) into the EP definite state [¢).

Note that we have completed the step 1-1. Thus, in the first case, where the state |¢) is
(-definite, we have only to perform the steps 1-2, 1-3-A, 1-3-B, 1-4-A and 1-4-B.

In the second case, where the state |¢) is f—indeﬁnite, we prove the present theorem
in the following two steps:

2-1 We prove that the state |¢)) and the EP-definite state |¢") satisfy Conditions 1 and
2, if it is possible to perform a DMT from [¢) to [¢).

2-2 We prove that if [¢)) and |¢") satisfy Conditions 1 and 2, we can find the measurement
parameters a, b, k and § whose {M;]i = 0,1} is the DM from the state |¢) to the
EP-definite state [¢').

In this paragraph and the next one, we prepare for performing the above steps. First,
we reduce (3.163)—(3.167) into the forms which are expressed in the measurement param-
eters a, b, k and 6 and the probability p. From (A.40)-(A.42) and (A.45), we see that the
equations (3.163), (3.164) and (3.166) are equivalent to

a® =, (3.174)
Because of (A.28) and (A.48), the equation (3.167) is equivalent to

Gt cos g = jiptcos ol = jipe cos gs. (3.175)

Owing to (3.175), the equation (3.165) is reduced to

NN sin ] = g sin g = jiplsinf) = INUAY sin®] = jhosingg. (3.176)
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Substituting (A.36), (A.39), (A.45), and (A.46) into (3.174), (3.175) and (3.176), we
obtain the equations to be satisfied:

ab—k2: (1—a)(1—0b)—k?

, (3.177)
p? (1-p)?
bj —kj 0 1—-10)7 ki 0
jBC COS 5 JABC COS :( )jBc €os ps + kjapc cos — pe oS s, (3.178)
p l—p
bjBCsing%—i-ijBcsinQ (1—b)jBCsing05—k;jABCsin9

(3.179)

p L=p
These three equations are expressed in the measurement parameters a, b, k, # and the
probability p, and are equivalent to (3.163)—(3.167).
Second, we show that if the measurement M;) is not equivalent to the identity trans-
formation, we can derive the following equations from (3.163)—(3.168):

sin p(© >0, (3.180)
sin oM < 0. (3.181)

The inequality (3.180) is clearly satisfied, because sinf > 0 and because {\x, p|k =
0,...,4} are positive-decomposition coefficients. In order to show (3.181), we show that
if sin 90(1) > 0, the measurement M; is equivalent to the identity transformation. If
sin o™ > 0, then both {)\,E;O),go(o)|k =0,...,4} and {)\,(Cl),@(l)|k = 0,...,4} are positive-
decomposition coefficients. Thus, if sin ") > 0, (3.163)(3.168) are equivalent to {A’(€0)7 eO |k =
0,...,4} = (A W[k = 0,....4}. From A = A" and (A.37), we obtain b = p. From
ADeie® = \Weie® p — p and (A.36), we obtain k = 0. From A =AY b =p, k=0
and (A.35), we obtain @ = b. From a = b, b = p, k = 0 and (A.35)—(A.39), we obtain
{A,go),g0(0)|k =0,..,4} = {)\,(gl),go(l)|k: =0,..,4} = { M\, ¢k = 0,...,4}. This means that
the measurement M;) is equivalent to the identity transformation. Hence, as a contrapo-
sition, if the measurement M; is not equivalent to the identity transformation, (3.180)
and (3.181) hold.

Let us perform the step 1-2. In other words, we derive Q(eo) = Q(el) = Qe from
(3.163)(3.168) in the case where the state |¢) is (-definite. In this step, we suppose
(3.163)-(3.168) to hold, and hence we refer to (jﬁfj)g, jfj)c, jg)c, jﬁfj)gc, JD QWY as (75,
Jacn dhes Japo: J5 Qe), ol as o and Kiip, Kip, Kio and K5 as K, K, Ko and
K.

First, we show Qp = Qe in the case of Qe # 0. There are three possible cases of Qf;
Qe = Qe, Qo = —Qe and Qp = 0. We show that the equations Qp = —Qe and Qp = 0
are false by reduction to absurdity.

Let us assume that the entanglement charge Qn were zero. Because of Qp = 0, (A.19)
and (A.11), at least one of the quantityies A’; and sin¢’ would be zero. Because of
(A.29), if sin ¢’ was zero, jpo sin s would be zero, where the entanglement phase ;5 is
definite because the state |¢)') is EP-definite. Thus, at least one of the quantities A’; and
Jpe sin gy would be zero. As we show below, this contradicts Qe # 0. Because of Qe # 0,
(A.19) and (A.11), none of the quantities A; and sin is zero. Because of A; > 0 [22],
Ay # 0 and (A.54), the inequality A’; > 0 holds. The other inequality sinp > 0 also
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holds, because sin ¢ is not zero and because we have assumed that {\;, p|i = 0,...,4}
are positive-decomposition coefficients. Thus, A\jAssing > 0 holds, because if one of
the coefficients {\;|i = 0,...,4} was zero, sinp = 0 would have to hold. Because of
AAgsing > 0 and (A.29), the inequality jpesin s > 0 holds. Because of jpesin s > 0
and (A.52), the inequality j sin 5 > 0 holds. Thus, none of A/, and jj sin ¢} is zero.
This is a contradiction, and hence @, # 0 holds.

Next, we prove Qs # —Qe in the case of Qe # 0 by reduction to absurdity. Let us
assume that Qp = —Qe was valid. Because the entanglement charge Qe is not zero and
because {\;, ¢|i = 0,...,4} are positive-decomposition coefficients, we can express A3 as
(A.20):

K5+ QevAy

=2 VT 3.182

0 2K pe ( )

Because the entanglement charge Q% was not zero, we could also express ()\(()0))2 and ()\(()1))2
as (A.20):

2 K5+ Qe/AY (e Ky — QevA)
(Ao")" = , ()= , (3.183)
2K 2Kpe

where we used the inequalities sin ¢(® > 0 and sin ") < 0, which we show below. We
have already proven (3.180) and (3.181). Thus, we only have to show that none of sin ¢(©)
and sin oM is zero. If sin (¥ was zero, the entanglement charge Qe would have to be
zero, but this contradicts the inequality Q% # 0. Thus, sin () would not be zero. In
the same manner, we could prove that sin (") would not be zero. Thus, sin ¢(® > 0 and
sin ¢ < 0 would be correct.

We could derive a contradiction from the assumption Qp = —Qe by using (3.182) and
(3.183). Because of (A.35), (3.182) and (3.183), we would obtain

OOy~ BT QeVAy b ooy P o K5+ Qeviy (3.184)
0 2K7,, b0 b 2Kpo '
oy = K5 = Qev/Ay _1opnys 12D 2 Kot Qevidy (3.185)
0 2K 1—-b "% 1—9 2Kpe '
Because of the expressions Kf = o?Kj5, A}, = o*Alorm and Kio/Kpe = (K2 —

Alorm)/ (K2 —Aj) and the assumption Qp = —Qe, we would reduce (3.184) and (3.185)
into

_ K5+ QevAs  Kpo pK5 + Qe v/ Anorm

K5 — Qe/Ahorm Kbe K5 —QevA; '

K5 + Qev AJ K/BC _ (1 B p) KE) - Qe\/ AInorrn (3 187)
K5 + Qer/Ahorm K BC K5 — QevAy

Substituting (3.186) into (3.187), we would obtain the probability

1— /A A
s/Bnorm (3.188)
2

On the other hand, from (A.49), sin p® > 0, sin ™ < 0 and (3.176), we would obtain

(3.186)

1=b=(1-p)

p:

Pipesings — (1 = p)jpesin s = jpesin ps. (3.189)
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Because of (3.188) and (3.189), we would obtain

1+ jposings/jpesingy 11— \/m. (3.190)

2 2

The equation holds only if jpe sin o5 = A; = 0. However, this contradicts our assumption
that the state [) is (-definite; note that A\?A2sin® ¢ = 52, sin® 5. Hence, Qp # —Qe.
Now, we complete the proof that Qp = Qe holds in the case Qe = £1.

Next, we show that Qp = Qe holds in the case of Qe = 0. We prove this by reduction
to absurdity. Let us assume that Qp # 0. We can use (3.183) again, because we can
derive sin ¢ > 0 and sin ™ < 0 from the assumption Q% # 0 in the same manner as
above. We cannot use (3.182) again, because now the entanglement charge Qe is zero,
but we can use the following equation which is similar to (3.182):

Ks++VA;

2\ =
0 2K po

(3.191)
Let us show that we can use (3.191). In the section 2, we proved that when the entan-
glement charge Qe is zero, the four sets of the coefficients of the general Schmidt decom-
position {\/, o"i =0,....,4}, {\ , 0o i =0,....4}, {\F,07|i =0,....,4} and {\;, o7 |i =
0,...,4} are LU-equivalent (Fig. 3.1). Thus, we can choose any one of the four under local
unitary transformations. Moreover, because of (A.11), at least one of the sets of positive-
decomposition coeffcients {\, T |i = 0,...,4} and {\;, " |i = 0,...,4} satisfies (3.191).
Thus, we can assume that the positive-decomposition coefficients {\;, ¢|i =0, ..., 4} satis-

fies (3.191) without losing generality. Let us derive a contradiction from the assumption
Qe # 0 by using (3.183) and (3.191). Because of (A.35), (3.183) and (3.191), we obtain

()\(0))2 _ Ké"‘Q/e\/ Al o K5 + VA,

p
== 3.192
- (3192)

()\(1))2 _ K _Q/e\/AfJ _ 1 —pang,-i- VA,
0 2K 1—b 2Kpe

In the same manner as we derived (3.188) from (3.184) and (3.185), we can obtain the

probability
1 o/ A /A

p= + Qe 2J/ norm. (3.194)
Let us prove that (3.194) and the assumption Qu # 0 contradict Qe = 0. Because
of Qe = 0, at least one of the quantities A; and siny is zero. Because the state [1)
is (-definite, at least one of the quantities A; and sin¢ is not zero. Thus, one of the
quantities A; and sin ¢ is zero, and the other is not zero. First, we consider the case of
(singp = 0) A (A #0). Because of sin g = 0, the equation (3.179) is equivalent to

(3.193)

ijBCsin9 . k‘jABCsiDQ
p l—p =

This equation means p = 1/2, but this contradicts (3.194), A; # 0 and Qg # 0. Thus,
the assumption @t # 0 leads us to a contradiction in the case of (sinyp = 0) A (A; # 0).

(3.195)
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Next, let us consider the case of (sin¢ # 0) A (A, = 0). In this case, (3.194) is reduced to
p = 1/2, because of Ay = 0. We can derive sin ¢ = 0, which contradicts sin ¢ # 0, from
p = 1/2. Let us perform this derivation. Because of sin p(® > 0, sin ™ < 0, (A.29) and
the fact that the state |¢) is EP definite, the following equations hold:

1 1
O3

AN gin @ = j1 singl, A sin 1) = — 7 sin L. (3.196)

From (3.196), (A.49) and p = 1/2, we obtain A\;A\ssinp = 0. Because of A\;A\ysinp = 0,
at least one of A\, A4 and sin ¢ is zero. If \; or )4 is zero, sin ¢ is also zero, because if
one of the coefficients {\;|i = 0, ...,4} is zero, sing is also zero. Thus, sin ¢ is zero, this
contradicts sin ¢ # 0. Thus, the assumption Q& # 0 also leads us to a contradiction in
the case of (singp # 0) A (A; = 0). Now, we complete the derivation of a contradiction
from the assumption @ # 0. Thus, the entanglement charge @y has to be zero, and thus
Qe = Qp holds in the case where the state [¢)) is (-definite.

Next, let us perform the step 1-3-A, where we assume Qe # 0. This is equivalent to
(singp > 0) A (A; > 0). We have derived the expressions of the measurement parameters
a, b, k and 6 in the probability p from (3.160)—(3.167) and Qg) = Qe in the case where
the state |¢) is (-definite and where Qe # 0. In order to perform the step 1-3-A, it is
useful to derive some equations which are equivalent to (3.163)—(3.167) and QY = Qe.
We have already derived the equations (3.177)—(3.179), which are equivalent to (3.163)—
(3.167). Let us derive two equations which are equivalent to Qg)) = Qe and Qg) = Qe,
respectively. We can derive these equations from (A.20), if we prove sin¢® > 0 and
sin o™ < 0. Thus, let us prove sin ¢® > 0 and sin ™ < 0 at first. In the present case,
(sinp > 0) A (A; > 0) holds, because of Q¢ = £1 and (A.19). The inequality sin ¢(®) > 0
holds, because of (A.36), sinf > 0 and sin ¢ > 0. Because of (3.176), (3.180) and (3.181),
the inequality sin o™ < 0 also holds. Thus, from Qe = Qg) and (A.20), we obtain

K(O) + Q /A(O)
(AP = (3.197)
2K

K(l) — Qe A(l)
)= —=— (3.198)
2Kpe

Because of (A.35), we can turn (3.197) and (3.198) into
K5 + Qevy A/normaz _ P2\ p Ks + Qev AJ&Q
= A e B LA

19
2K, b b 2Kpc ’ (3:199)
K5—Qe\/Ahorma2: 1_Pa2)\2: 1_pK5+QeVAJa2 (3.200)
2K 1-b " 1-b  2Kpe | ’

The equations (3.199) and (3.200) are what we want.

From (3.177)—(3.179), (3.199) and (3.200), we can express the measurement parameters
a, b, k, 0 and the quantity A} orm in the probability p. First, we obtain the forms
of b and Aoy which are expressed in the probability p. Because of K./ Kpc =
(K2 — Alorm)/ (K2 — Aj), we can transform (3.199) and (3.200) into

Ko K5+ QevAy _ K5 — Qer/Ahorm

b=p p ;
Ks + Qe\/m Kpe K5 — QevA,

(3.201)
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L—b—(1 Ko K5+ QevA; K5 + Qev/Ahorm 902
—b=(-p) : = = (1-p)=" T (3.202)
5 Qe\/ Anorm BC 5 Qe\/ J

We obtain the expression of Al oy by substituting (3.201) into (3.202) and transforming

it as follows:
1— pK5 - Qe\/ Ahorm _ (1 N )K5 + Qe\/ Ahorm

b )
K5 — QevAy K5 — QevAy
Ks — Qe Ay = Ks + Qev/Anorm — @Qe2pv/ Anorms
A !
_2Vp —J1 = /Dhorm- (3.203)

We obtain the expression of b by substituting (3.203) into (3.201):
Ks — QevA;/(2p—1
K5 — QevA,

We obtain the expression of k cos by substituting (3.204) into (3.178) and transforming
it as follows:

(b—p)iBc cos s

, = kcos®,
JAaBC

K5 — QevA;/(2p—1) JBC COS Q5

D — 1) =——— = kcos#,
Ks — QevAy JABC
2p(p — 1 VA '
Qe pp—1) Z JBOCBP5 _ kcosd. (3.205)
2p— 1 K5—Qe\/AJ JABC

We obtain the expression of ksin 6 by substituting (3.204) into (3.179) and transforming
it as follows:

b

. . ) 1—-0b. . . )
—JBc SN Qs + —japcsing = — JBc S @5 + Jjapc sing,
p p I—p I—p
1—p)b+p(1—-56). . 2p—1 . .
( ) ( )]BC SN Y5 = kjapcsind,
p(1—p) p(1—p)
(L—=2p)b+p.

Jposings = kjapcosin,
2p—1
p (2p — 1) K5 — QevA, o , _
- +1 =k 0,
2p—1 ( Ks — Qev/A, JBC SM @5 JABC SIn
2p(1 — K ; :
p( p) 5 ]BC. sings — (3.206)
2p—1 Ks—QevA; Jasc

We obtain the expression of a by substituting (3.204), (3.205) and (3.206) into (3.177).
First, we express a in b, k, 6 and the probability p by transforming (3.177) as follows:

ab—k*> (1—a)(l—b)—k
I (1-p2
(1—2p)(ab—k*) = 6p*(1—a—D),
(1 —2p)k* +p°(1 — 1)
T (3.207)

a =
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Second, we substitute (3.204), (3.205) and (3.206) into (3.207).

_ —Ap(1 = p)ipo(KEsin® o5 + Aycos® ps) | p{(2p — 1) K5 + QeVAs}

(2p — 1)(K3 — AJ)ihse (2p — 1) (K5 + QevVAy)

Now, we have obtained the expressions of a, b, k and §. We can obtain a measurement

M(;y which satisfies (3.163)-(3.168) by defining a, b, k and 6 as (3.208), (3.204), (3.205)
and (3.206).

Next, we restrict the range of p from (3.160)—(3.162). Because (3.177) is satisfied, the

inequality (3.160) is equivalent to (3.161). We derive the range of the probability p from
(3.160) and (3.162). First, we substitute (3.207) into (3.160) and transform it as follows:

W2 (1 —2p)k?b+ p*b(1 —b) — K*(1 — 2p)b — k*p?
(1 —2p)b+ p?
b(1 —b) — k?

= Ao (3.209)

Next, we substitute (3.204), (3.205) and (3.206) into (3.209) and transform (3.209) as
follows:

2 {pg _ p(2p — 1) K5 — er\/A_J}_l

(3.208)

T ~QevA;
{P((2p— DEs = QevVA)(1=p)((2p — DK5 + QevA;)  4p*(1 = p)*ipo (K3 sin® p5 + Ay ¢
(2p — 1)2(K;5 — QevVA,)? (2p — 1)%(Ks — QevVAy)254
{p(l— )(K5+Qe\/_} - 1— p)
QevVA, (2p — 1) Qe\/_)
{(Qp— 1)2K2 - AJ— p(1 — ijC(K sin QD5+AJCOS g05)}
JABC

{(2p = 1)°KZ — As}iipe +{(2p = 1)° = 1}jho(KE sin® g5 + A cos® ps)
(2p — 1)2(K3 — AJ)jipe 7
2p — D(KF - A)Pfape — Kijipe — jpo (K5 sin o5 + A cos® @)}
= —Ayfipe — Jpe(K3sin® o5 + Ay cos? ps),
(2p— 172 = Ay + 4KABKAC]%0 sin” ¢ |
Aj+4KapKac(j30sin® o5 + (1 — a?)5250)-

The equation (3.210) expresses (2p — 1)? as a monotonically decreasing function of o?.
Thus, from (3.160), we obtain

Ay + 4KABKACj1230 sin? g5
T Ay +AKupKac(jEosin® s + jAgc)

(2p—1)* > (3.211)

Because of the expressions (3.203), (3.211) and A} orm > Ay, the expression 1 > p > 1/2
holds. Thus, (3.211) is equivalent to

<p<Ll (3.212)

1 1 \/ Ay +4KapKacize sin? o5
2 2

+ = - - -
Ay + 4KABKAC(]%C sin® Y5 + ]/2430)
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Now, we have restricted the range of the probability p from (3.160). Next, let us show
that (3.212) satisfies (3.162). Because of (3.204), we obtain

db K, 1 VA
R B N - L (3.213)
dp K5 — QevVAy (2p — 1) K5 — QevVA,
Because of (3.213), if Qe = 1, b is a monotonically increasing function of the probability
p. If Qe = —1, we can derive the following expression from (3.213):
db 1 Ay
— =0 =—1—-Qe— ). 3.214
- PTa ( @e K5) (3.214)

Because of (3.204), we have

blp—1 = 1,
b|p:%<1*Qe%§) =0 (lf Qe = —1)

’p:l_’_l AJ+4KABKACJ'%C sin2 @5
272\ A HaK A pKac (G o sin? 5452 o)

(3.215)
(3.216)

Aj+4K oK 2, sin? 5+52
K5 _Qe\/A_J\/ J AB AC’(]BC 1N~ @5 JABC)

Aj+4KapKacjd o sin? o5

B 1 n 1 Ay + 4KABKAC]%C sin’ ©s
2 2\ Ay +4KapKac (530 sin® o5 + 13 50) K5 — QevAy

K2
> (1 1\/ AJ+4KABKACJ%CSIH2¢5 ) K5—Qey/AJ1/A_‘5]
o 2

+ ; ; -
2 AJ+4KABKAC(]%CSIHQ )

> 0.
K5 — QevAy

Because of (3.213)—(3.217), the inequalities 0 < b < 1 hold. Now, we have obtained the
equations which are equivalent to (3.160)—(3.168): (3.204)—(3.206), (3.208) and (3.212).
In other words, we have completed the step 1-3-A.

Next, let us perform the step 1-4-A. First, let us prove that if the measurement
{M;|i = 0,1} satisfies (3.204)-(3.206), (3.208) and (3.212), then Condition 1 is satisfied.
The expressions (3.204)—(3.206), (3.208) and (3.212) are equivalent to (3.160)—(3.168),
and thus the entanglement parameters of the states [¢) and [¢)') are the same. Thus, if
the measurement {M;|i = 0,1} satisfies (3.204)-(3.206), (3.208) and (3.212), there are
the transfer parameter auy and the dissipation parameter 34 which satisfy Condition 1
because of Lemma 2, (3.163)—(3.167), (A.40)—(A.42) and (A.46). Second, we prove that
if the measurement {M|i = 0,1} satisfies (3.204)(3.206), (3.208) and (3.212), then

Condition 2 is satisfied. We have already proven that Qg) = e, and thus we only have
to show that if the measurement parameters a, b, k and 6 satisfy (3.204)—(3.206), (3.208)
and (3.212), then 34 = (4 holds. Because of Lemma 2, (3.165) and a(® = o™, we can
take 0 < 84 < 1 which satisfies that j2, = j3¢ + Ba(1 — 03)j%pc. We obtain f4 = 84
by substituting the dissipation parameter 54 and (3.203) into (3.210) and transforming
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it as follows:

A (2p—1)? = Ay +4KapKacjposin® g5
Ahorm Aj+ 4KABKAC(j1230 sin” ws + (1 — 042)3330)’

A B A+ 4K apKacihesin® s
Aj+4KapKaciipo(l = Ba)(1—0a) Ay +4KapKac(jhesin® s + (1 —a?)j%50)

AJ4KABKACJ%BC(1 - 0624)
AJ + 4KABKAC]%C sin2 23 ’
AK apKacjbe sin® s =

ba Ay + 4K apKacj? o sin® o5 ba ( )

(1 — Ba)AKapKacjipe(l —a%) =

Finally, we prove that the transfer parameter a4 and the probability p have a one-to-one
correspondence. Because of (3.210), the quantity (2p — 1)? is a monotonic function of the
transfer parameter ae. Moreover, if p = 1, the equation @ = 1 holds, and if the probability
p takes the lower limit of (3.212), the equation aw = 0 holds. Thus, the transfer parameter
« and the probability p have a one-to-one correspondence. Now, we have completed the
proof in the case of Q¢ = £1; when the measurement parameters a, b, k and 6 are defined
as (3.204)-(3.206) and (3.208), the equations (3.154), Qe = Qb and B4 = (4 are satisfied,
and the transfer parameter a4 can take any value from 0 to 1. Inversely, if Conditions
1 and 2 of Theorem 1 are satisfied, we can take the probability p which corresponds
to the transfer parameter oy and take a measurement which executes the deterministic
transformation from the state 1) to the EP-definite state |¢/"). Hence, we have proven
the present theorem in the case of Qe = £1.

Next, we perform the step 1-3-B, where we assume Q¢ = 0. We prove that if a
measurement satisfies (3.160)—(3.168) and Qg) = Qe = 0, Conditions 1 and 2 are satisfied.
Hereafter, in the steps 1-3-B and 1-4-B, we assume that the state [¢) is (-definite and that
(3.160)~(3.168) and QY = Qe = 0 hold. Because of Lemma 2, (3.163)—(3.167), (A.40)-
(A.42) and (A.46), there are the transfer parameter a4 and the dissipation parameter (54
which satisfy Condition 1. In the step 1-2, we have already proven Qe = Qp. Thus, we
only have to prove 84 = 4. Because of Qe = 0, (A.19) and (A.30), at least one of A/,
and sin ¢t is zero. First, we prove B4 = B4 in the case where A’} is zero. Because of
(A.54), the expression A, = 0 = A; = 0 holds. The equation A; = Al qpm holds if
and only if 54 = 1 holds, because of the equation Ajjorm — Ay = 4(1 — ﬁA)Kap. Thus,
if A} is zero, the dissipation parameter (34 is one. As we show below, if A’} is zero, the
(-specifying parameter 3,4 is one. Let us show this. Because the the state |1/1> is C definite,
Ay =0= AAssing = jpcsings > 0 has to hold. Thus if A’; =0, then 84 = 1. Thus, if
A’} is zero, B4 = 34 holds. Next, let us prove B4 = B4 in the case where A’} is not zero.
If A’} is not zero, then sin ¢f must be zero, because at least one of A’; and sin ¢} is zero.
Because of sin ¢f = 0 and (A.52), jpc sin s = 0 holds. Thus, jpe sin p; = jpesingr = 0.
This means jpc = jpo, because jpo cos ¢y = jpe cos s also holds. Thus, 54 = 0 has to
hold, because of (3.154). Incidentally, the F-specifying parameter B 4 is equal to 0, because
of sin 5 = 0 and the definition of the 3-specifying parameter B4. Thus, B4 = fBa.

Next, let us perform the step 1-4-B. In other words, we prove that if the state [¢) and
the EP-definite state |¢') satisfy Conditions 1 and 2, we can take a measurement which
transforms the state |¢)) into the EP-definite state |¢'). Because of the assumption that
Qe = 0, the expression A; = 0Vsinp = 0 holds. If A; = 0, Lemma 4 guarantees that we
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can take the measurement which transforms the state 1)) to the EP-definite state [¢'),
because of 0 = Qe = Qp. If siny = 0, as we show below, the measurement transforms
the state |1) into the EP-definite state [¢)') is a measurement M whose measurement
parameters a, b, k and 6 satisfy (3.204)—(3.206) and (3.208), whose entanglement charge
Qe is substituted by unity and where the probability p satisfies (3.210) and p > 1/2. We
have already shown that (3.204)—(3.206), (3.208), (3.210) and p > 1/2 satisfy (3.177)—
(3.179), (3.199), (3.200), (3.218), (3.160) and (3.162). Because of (3.177)—(3.179), the
measurement M satisfies (3.163)—(3.167). Because of (3.179), (3.206) and siny = 0,
the equations j(© sin gpéo) = jgé sin goél) = 0 hold. The equation j© sin goéo) = 0 holds
only if sinp® = 0 or the state [¢®) is EP indefinite. Thus, Qéo) = 0. In the same

manner, Q(el) = 0 has to hold, and thus, the measurement M satisfies (3.168). Because the
measurement M satisfies (3.177) and (3.160), the measurement M satisfies (3.161). Thus,
the measurement M satisfies (3.163)—(3.162). Hence, the measurement M transforms the
state [¢) to the EP-definite state [¢)') because the measurement M satisfies (3.160)—

(3.167), Qe = Qg), (3.218) and (3.210). Now we have shown Theorem 1 in the case of
Qe = 0 A (the state [1) is (-definite).

Finally, we perform the steps 2-1 and 2-2. Because the state |¢) is (-indefinite if and
only if Ay and A\, sin ¢ are zero, we assume that A; = 0 and A\ A4 sin ¢ = 0 in the steps
2-1 and 2-2. First, we perform the step 2-1. Namely, we show that Conditions 1 and 2
are necessary conditions. Because of Lemma 2, (A.40)—(A.42) and (A.46), Condition 1 is
necessary. Let us show that Condition 2 is necessary. Because of Lemma 2, we can take
0 < fBa < 1 which satisfies that j5o = jzo + 6a(1 — %)jipe. I 0 < 4 < 1 holds, then
we have

Jee > Jke (3.219)
Kpe = Kpe—(1—84)(1 —a})jape < Kpe, (3.220)
NN sin® o' = jEesin® of = jie — jpe cos® oy
= Jpo — JBc €S’ 5 > Jhe — Jho cos” vy
= Jjposin® o5 = A\ sin® ¢, (3.221)
Anorm = g_é] = K52 —AK g KacKpe > K§ —4Kap = Ay (3.222)

Thus, if 0 < B4 < 1, then M)A sing¢’ > 0 and A’; > 0 hold. Hence, if 0 < 54 < 1, then
Qe = 1. If B4 = 1, we have

Kpe = jpo + (1= a2)jipe + a4dipe = Jpe + Jase = Kao, (3.223)
Aporm = K2 — AKapKacKpe = K3 — 4Kap = Ay = 0. (3.224)

Thus, if 54 = 1, A/, = 0 holds. Hence, if 4 = 1, then Q¢ = 0. If 84 = 0, we have

jEe = Jpes (3.225)
NENEsin? ¢ = jgc sin? 5 = ch - jgc cos? Ps
o -2 -2 2 2 -2 2 2 2
= Jpc — JBcCOS ¥5 = Jpc — JBc COS ¥5 = Jpc S Ps
= Msin®p =0. (3.226)
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Thus, if B4 = 0, M} A sin¢’ = 0 holds. Note that sin¢’ = 0 follows from A\ sin¢’ = 0:
if A} or N} is zero, then sin ¢’ is also zero, because then there is a zero in {\}|i =0, ...,4}.
Hence, if f4 = 0, then Qp = 0. Hence, |Qp| = sgn[5a(1 — [4)] has to hold.

Next, let us perform the step 2-2. In other words, we prove that Conditions 1 and 2
are sufficient conditions. To show this, we only have to show that if Conditions 1 and 2
are satisfied, there is a measurement which transforms the state |¢)) into the EP-definite
state [¢)'). We define the measurement parameters a, b, k and 6 as follows:

1 AK sg K acj? 1—a%)(1—
2 2K
1 AK ApK acj? (1 —a?)(1 —
2K
4K g K 1—a?)(1—- '
2K JABC
1— 2
ksin = M (3.230)
These four parameters satisfy the following equations:
= 1-b, (3.231)
p = Aa+ (1 —=X)b+ 2 \kcos(f — @) = A2+ (1 —2X5)b + 2)\0/\1k: cos 6 cos
~ oo VAKaKacipc(1 — Ba)(1 — o) (1 Ks o —>\1A4 o 7€ < 905)
2 2K JABC
1 4K pK 1—04)(1—0a? )\2
= 57 Qe ViKap AC]ABQ%( Pa)l 4 (1 (A2A3 — Jjipc cos p5)jpo cos 905)
5 Kpc jABC
1 4K 5K ac 73 (1-— 1 K 1
_ 1 g /*HanKaciine(l = Ba)l ~ o) (1 (Js = Jpose— )) =5 (3.232)
2 2K KBC JAsc Kpe 2
where we use A2 = K5/Kpc and (A.29). From (3.232) and a = 1 — b, we obtain (3.174).

From (3.232) and (3.227)—(3.230), we obtain

ab—k2 1 4KABKAC(1_05A)(1_ﬁA) ﬁA(l—OéQ)
2 =4 (Z - AK? (jasc + Jzc) — TA = a3,
(3.233)

where we used A; = K2 — 4Kap = 0. Now, we have shown (3.154) without its fourth
column. Next, we obtain j3. sin® o} = j% sin? ps5+84(1—a?)j4zc by using j3. sin® g5 =
0:

MM sin g0 = £7 2 — /341~ 03) e (3.234)
(ib)?sin® o = AYAY sin )2 = B4(1 — 02) %5, (3.235)

where the double sign + takes + if ¢ = 0 and takes — if ¢ = 1. Now, we have shown that
the measurement whose the measurement parameters a, b, k and 6 satisfy (3.227)-(3.230)
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satisfies Condition 1. Let us show that the measurement realizes Condition 2:

ine _ Po) o Ks o K
()\0 ) - aA 5 5
bay “2Kpc 2Kpc(Ks F Qe/AKapKaciigo(l — Ba)(1 — a?))
K202 (K5 + Qe/AKapK aciipc(1 — Ba)(1 — o))
2Kpc(K2 — 4K apKacjipe(1 — Ba)(1 —a?))
o (K5 £ Qen/AKapK acjipe (1 — Ba)(1 — a?))
2(KBC — (1= Ba)(1— O‘i)ﬁBc)
KL+ Qen/AK apKacjipc(1 — B4)(1 —a?)

_ 23
T . (3:230)

where if ¢+ = 0, the double sign 4+ is + , and if ¢ = 1, the double sign + is —. From the

definition of the entanglement charge QQ), (3.234) and (3.236), we obtain Q(eo) = Q(el) and

|Q6| = sgn[Ba(1 — Ba)]. Thus, the measurement satisfies Condition 2. Thus, we have

completed the seventh step. Hence, we have completed the proof of Theorem 1. O
Theorem 1 can be expressed in K-parameters as follows.

Theorem 1’ Let the notations |¢) and |¢') stand for three-qubit pure states. We re-
fer to the sets of the K-entanglement parameters of the state |1) and the state |¢)') as
(Kap, Kac, Kpc, jape, J5, Qe) and (Kyp, Ko, Koy Iapes J5, Q). respectively. We as-
sume the state |1)") to be EP definite. We also assume that japc # 0. Then, a necessary
and sufficient condition of the possibility of an A-DMT from the state 1)) to the EP-
definite state ') is that the following two conditions are satisfied:

Condition 1: There are real numbers 0 < (4 <1 and ngzuer < (W <1 which satisfy the
following equation:

K)yp Ca Kap
Ky Ca Kac
Ko | =¢W 1 Kpe |, (3.237)
ngC’ CA j124BC
J Ca Js
where
-2
CEA) _ JBC (3.238)

ower — (Kpc — Cajape)
If (4 =1 and jpc = 0 hold, we define the lower bound Cégzuer to be unity.
Condition 2: Let us check whether the state [1)) is C-definite or not. When the state [¢)
1s (-definite, the condition is
Qe = Qp and (W =W, (3.239)
where ‘ L
) — Iy + 4K gpsin® ¢5)

AK apjhesin® o5 + Ay (Kpe — Cajipe)’
where if the state |) is EP indefinite, then we define J%csin® s as zero. When the state
|1) is (-indefinite, the condition is

Q| — sgn[(1 — (W) (A — ¢ ), (3.241)

lower

(3.240)
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or in other words,
Q/e =0 fO'I" C(A) =1 or C(A) — g;;‘{?yer’ (3242)
Qe # 0 otherwise. (3.243)

Comment:Theorem 1' guarantees that we can specify an A-DMT by determining
its parameters () and (4. Hereafter we refer to (4 and (Y as the main parameter of
A and sub parameter of A, respectively. Note that if the state [¢)) is (-definite, we only
have to determine the main parameter of A (4 in order to specify an A-DMT. This is the
reason why (4 is refferred to as “main.”

Proof: First, we show that Condition 1 of Theorem 1 is equivalent to Condition 1
of Theorem 1' . Using Kpc = j3e + j4gc and Condition 1 of Theorem 1, we have the
following equations:

oy = (W, (3.244)
Kpe = (WKpo = Kpe — (1 - Ba)(1 — a2)5%pc- (3.245)

From these equations, we obtain the expression of the main parameter of A (4 in terms
of the transfer parameter avy and the dissipation parameter 34:

KBcoéi
Ca= —. 3.246
Kpe — (1= 64)(1 — a%)jipe ( )
Thus, if 0 < ay <1 and 0 < 84 <1 hold, then
12
0<Ca Kpo = (1 —0d)Kpe (3.247)

B Kpo — (1= Ba)(1 = a%)iipe ~
where (4 = 0 when ooy = 0, while (4 = 1 when a4 = 1. From (3.244) and (3.245), we also
obtain the expression of sub parameter of A (Y in terms of the dissipation parameter (4
and the main parameter (4:

(WKpe = Kpe — (1= Ba) (1 = (W) iAse, (3.248)
Kpe — (1 = Ba)j3
(4) - B¢ A/JABC 3.249
¢ Kpe — (1= Ba)Cadine ( )
Thus, if 0 < ay <1 and 0 < (G4 <1 hold, then

jJQBC _ A (A)
Koo - oo glower < (W <1 (3.250)
holds, where ¢4 = Cl(sxzver holds, while 4 = 0 and (Y = 1 holds when 84 = 1. Hence,
Condition 1 of Theorem 1 is equivalent to Condition 1 of Theorem 1 .

Second, we show that Condition 2 of Theorem 1 is equivalent to Condition 2 of Theo-
rem 1' . We prove that if the state |¢) is (-definite, ¢4 = ¢ holds. Because of (3.249)
and because 4 = B 4 as shown in Theorem 1,

Kpc — = 74
(= Ay + 4K apKaci}csin® o375
— A
Kpc — CE Caj’
Ay + 4K apKacj3o sin® s ABC
j%c(AJ + 4Kap sin2 905)

— _JBC : =_. 3.251
AKapjtesin® o5 + A (Kpe — Cajipe) ( )
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Thus, if the state [¢) is (-definite, ¢ = ¢ holds, and thus Condition 2 of Theorem 1
is equivalent to Condition 2 of Theorem 1" . Next, we treat the case where the the state
|1) is (-indefinite. As we proved in the previous paragraph, the conditions ¢ 4 = Cl((l)qxzver

and () = 1 are equivalent to the conditions 34 = 0 and $4 = 1, respectively. Thus,

|Qu| = sgn[(1 — ¢A)(¢W — Cl(g‘éver)] is equivalent to |Qp| = sgn[Ba(1 — Ba)]. Thus,

Condition 2 of Theorem 1 is equivalent to Condition 2 of Theorem 1’ . O

Step 2 of Case 2

In the present section 6.1.2, we obtain a necessary and sufficient condition of the possibility
of a C-LOCC transformation from [¢) to [¢)'), where |¢)) and |¢)') are EP definite. This
corresponds to Step 2 of Case 2.

Lemma 6 Let the notations |¢) and [{') stand for three-qubit pure states. We refer to the

sets of the entanglement parameters of the states |¢) and |¢') as (Kap, Kac, Ko, jasc, Js, Qe)
and (K5, Ky, Ko Japes J5, Q). respectively. We assume that both states [¢) and i)

are EP definite. We also assume that japc # 0. Then, a necessary and sufficient condi-
tion of the possibility of a C-LOCC transformation from the state |1) to the state |¢)') is
that the following two conditions are satisfied:

Condition 1: There are real numbers 0 < (4 < 1,0 < (g < 1,0 < (¢ <1 and

Clower < ¢ < 1 which satisfy the following equation:
Kyp Cala Kap
Ko Cale Kac
Ko | =¢ (o Kpe |, (3.252)
Jisc CaCBGe Japc
J5 V1§16 J5
where o o
JABJAc)BC
Clower = (3.253)

(Kap — CCjch)(KAC - CB]E&BC)(KBC - CAJE!BC)’

and we refer to ¢, Ca, (g and (o as the sub parameter and the main parameters of A, B
and C, respectively.

Condition 2: let us check whether the state ) is C-definite or not. When the state |¢))
18 5—deﬁmte, the condition is

Qe=Qp and (=, (3.254)
where
(= Jap(&; + 4K apsin o) (3.255)
AK gpJapsin® o5 + Aj(Kap — Ceiipe) (Kac — CBidpe)(Kse — Cajipe)
When the state ) is C-indefinite, the condition is
or in the other words,
;=0 (C=1 or ¢=Cpyper)
Qe{ #0 (otherwise). (3.257)
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Proof: We first describe the structure of the proof. We divide the proof in two parts.
In the first part, we consider the case where the the state [¢) is (-definite. In the second
part, we consider the case where the state |¢) is 5—indeﬁnite. In the first case, we prove
the present Lemma in the following three steps:

1-1 We prove that if we can transform the state |¢) into the state |¢)') by performing
an A-DMT and a B-DMT successively, we can also transform |[¢) into [¢)') by
performing another B-DMT and another A-DMT successively. This holds not only
for an A-DMT and a B-DMT, but also a B-DMT and a C-DMT, or an A-DMT
and a C-DMT. Thus, we can reproduce an arbitrary C-LOCC by performing the
following: we perform first A-DMTs, second B-DMTs, and third C-DMTs.

1-2 We prove that if we can transform the state |¢) into the state |¢)') by performing
two A-DMTs successively, we can also transform the state |¢) into the state ") by
performing an A-DMT. This statement means that we can reproduce an arbitrary
C-LOCC by performing an A-DMT, a B-DMT and a C-DMT successively. Thus,
a C-LOCC transformation from the state |¢) to the state |¢’) is executable if and
only if we can transform the state [¢)) into the state [¢)') by performing an A-DMT,
a B-DMT and a C-DMT successively.

1-3 We prove that a necessary and sufficient condition of the possibility of the transfor-
mation which is constituted by an A-DMT, a B-DMT and a C-DMT is Conditions
1 and 2 of the present Lemma.

In the second case where the state [¢)) is f—indeﬁnite, we prove the present Lemma in
the following four steps:

2-1 We prove that if a DMT from an EP-definite state which is -indefinite to another
EP-definite state is executable, then the final state is (-definite. Because of this
statement, the final state of the first DMT of an arbitrary C-LOCC transformation
between EP-definite states is (-definite. Thus, an arbitrary C-LOCC transformation
can be reproduced by performing four DMTs successively: the first DMT of the C-
LOCC T¢, an A-DMT T4, a B-DMT T and a C-DMT T¢. The first DMT may be
either an A-, a B- or a C-DMT. We can assume that the first DMT T¢ is an A-DMT
without losing generality.

2-2 We prove that a necessary and sufficient condition of the possibility of the transfor-
mation which is constituted by the DMTs T¢, T\, T and T is Conditions 1 and 2
of the present Lemma.

Now, let us perform the step 1-1. We perform this by showing a necessary and sufficient
condition of the possibility of performing an A-DMT and a B-DMT successively and
that of the possibility of performing a B-DMT and an A-DMT successively are the same.
Because of Theorem 1’ , we can realize the transformation [¢) — |¢") — [¢) by operating
an A-DMT and a B-DMT successively if and only if Qp = Qe and there are 0 < (4 <1
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and 0 < (g < 1 which satisfy the following equation:

Kyp (B Ca Kap
K./AC’ " 1 CA KAC
Kpo | =¢W¢® CB 1 Kpe |,
e (B Ca JaBc
Jg ¢B Ca J5
(3.258)
where the sub parameter of A ((4) and the sub parameter of B are given by
¢ = Jic(8s & Kapsin’ os) (3.259)
453 Kapsin® g5 + Ay (Kpe — Cajipe)’

4(ac P Kl p Kl K sin® of + Aj(Kje — Ca(iape)?)
and where j’i~, K'ip, etc. are the entanglement parameters of the state |¢)”). On the
other hand, we can realize the transformation the |[¢)) — |[¢") — [¢') by operating a
B-DMT and an A-DMT successively if and only if Q% = Qe and there are 0 < (4 <1
and 0 < (g < 1 which satisfy the following equation:

Kyp Ca CB Kap
Ky Ca 1 Kuc
Kﬁgc = (B¢ 1 (B KBC ;
Jise Ca (B JaBc
J Ca (B J5
(3.261)
where
(P = Jio(Qy + 4Kapsin ¢,) (3.262)
453 o Kap sin® o5 + Ay (Kac — Caiipe)

CI(A) — (],B//C> (A/,/ + 4K1/4,BK.Z,C'K”C Sln gpg,) (3263)

a 4(]%0)2KZ/BKZICK”031H 05" + AT (Ko — Calihpe)? )

and where j’{~, K5, etc. are the entanglement parameters of [¢").

Note that (3.261)—-(3.263) are equivalent to (3.258)—(3.260) with the labels A and B
are exchanged. Hence, in order to perform the step 1-1, we only have to show that (Y ¢/(B)
is symmetric with respect to the labels A and B. Because of (A.40)—(A.42) and (A.43),
the equation (3.260) can be transformed as follows:

B — Jac(Aform + 4KABKACKBC sin? ¢f)
452 KapKac Ko sin® o + A orm (Kac — (Bj,zach)
Jac(Ahorm + 4K apKac Kje sin® of)
Fic(Ahorm + 4K apKac K sin? of) + Afjorm (1 — C8) 45

_ - jf},o . (3.264)
]AC + Aform(1 — CB)]ABC/(Anorm + 4K apKac Ko sin ©5)

where A orm = A/ (Ca¢™)2. Let us express Af)orm and A’l’mrm—l—llKABKACKBC sin? @
in terms of KAB7 KAC; KBC; ]ABC and J5. From Anorm = K - 4KABKACKBC and
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(3.259), we obtain

Aform = Ay + 4Kap(1 — (W)
A;(1 = Ca)japo
Kap sin® o5 + Aj(Kpe — Cajipe)
4580 Kap sin? @5 + AJ(KBC — Cajipe) + 4Kap(l — Ca)jipe
452 Kap sin® o5 + Ay (Kpe — Cajipe) '

= A +4Kap
BC

=Ay

(3.265)

On the other hand, from sin? 5 = 1 — J2/45% ;7% 7%c, We obtain

J//2
= Ay +4Kap(1 — (W) + 4Kap¢™@ ( 4;,, )
ap

2 SN2 12 cOS 72 COS2

= Ay +4Kap <1 — (W IABlACTEC ¢5> = A+ 4Kap (1 - e 2 )
JABIAc)BC Kpc — CaJape
_ 4JBcKap sin’ o5 + Aj(Kpe — CAJABC) + 4Kap(1 - CA)JABC (3.266)
Kpc = Cajipe
Substituting (3.265) and (3.266) into (3.264) and using (3.259) with it, we obtain
2 2 2
B Jacipe(Ag + 4Kap sin” p5) (3.267)

JacipodKap sin® s + Ay (Kpe — Cajhpe) (Kac — (ikpe)

Thus, (4 ¢B) is symmetric with respect to the exchange of the labels A and B. Hence,
if we can transform the state |¢) into the state |¢)') by performing an A-DMT and a B-
DMT successively, we can also transform the state |¢)) into the state |¢)') by performing
another B-DMT and another A-DMT successively. This holds not only for an A-DMT
and a B-DMT, but also a B-DMT and a C-DMT, or an A-DMT and a C-DMT. Thus, we
can reproduce an arbitrary C-LOCC by performing as follows: we perform first A-DMTs,
second B-DMTs and third C-DMTs.

Next, we perform the step 1-2. We perform this by obtaining specifically the A-
DMT which can be substituted for two A-DMTs. When we operate the transformation
|) — [¢") — |¢') by operating two A-DMTs T4 and T, whose main parameters are (4
and 'y, respectively, the entanglement parameters change as follows:

Kyp Ch Ca Kap
K)o Ca Ca Kac
Koo | =¢W¢@ 1 1 Kge |,
Jiso Ca Ca JiBo
J Ca Ca J5
(3.268)

where () and ¢/, which are the sub parameters of A of DMTs T4 and 7T; £, are given

C(A) o ]%C(AJ +4Kap Sirl2 Q05)

L . I 3.269
453 Kap sin® o5 + Ay (Kpe — Cajipe) ( )
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KK Ko sind 7 + Ny — o)

In the same manner as in deriving (3.264), we obtain

C/(A) 756 (Aform + 4KapKacKpe sin® ¢f)
! 212

a 4512 KapKac Ko sin® o + Alyorm (Ko — Chilise)
1

1+ Aform (1 - C)ixselite(Dhorm + 4K apKac Kpe sin f)
Substituting (3.265) and (3.266) into (3.271) and using (3.269) with it, we obtain

(3.271)

A = JBc(Ay + 4Kap sin® @)

__ _ . 3.272
453 Kap sin® o5 + Ay (Kpe — CaChjine) ( )

Thus, the successive operation of the DMTs T4 and 7% can be reproduced by an A-DMT
whose transfer parameter is (4. Hence, an arbitrary C-LOCC transformation from a
(-definite state can be reproduced by performing an A-DMT, a B-DMT and a C-DMT
successively. The converse also holds, because successive operation of an A-DMT, a B-
DMT and a C-DMTs is a C-LOCC transformation.

Next, we perform the step 1-3. We can realize the transformation |¢)) — [¢") —
|") — [¢") by operating an A-DMT, a B-DMT and a C-DMT successively if and only
if Qe = Qe and there are 0 < (4 < 1,0 < (p < 1 and 0 < (¢ < 1 which satisfy the
following equation:

K)yp Caln Kap
K)o Cale Kac
Kie | = ¢W¢B@ §:1¢; Kpc |,
Jise CaCBGe JaBe
I Ca6aCc Js
(3.273)
where
j%C<AJ + 4Kap sin2 Q05)
¢ (3.274)

452 Kapsin® s + Ay (Kpe — Cajipe)
4% )P KA Ko K e sin” o5 + A (Ko — C8(Jhpe)?) ’
JUB(AY + AR K K sin? o)
IBR KK e sin® o+ N (K — Colne)?)
Thus, in order to perform the step 1-3, we prove that CAWBICME) i equal to the (-
specifying parameter ¢ of Condition 2 of the present Lemma. We have already shown
that ¢(¢"B) follows (3.267). In the same manner as in deriving (3.264), we obtain

¢"O = (3.276)

j1243 + A/Ilﬁorm<1 - Cc)jz&BC/(A%,OI'm + 4KapC(A)C/(B) Sin2 (70/5”)

where
Allorm = K2 — 4Kap(W'™®). (3.278)
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In the same manner as in deriving (3.265) and (3.266), we obtain

A,nl/orm =A;+ 4Kap(1 _ C(A)CI(B))
A {(Kac = Cajape)(Kpo — Cajape) — Japiic)
=A;+4Kap— o) >
JAc]Bc4Kap sin® 5 + Ay (Kpe — Cajipe) (Kac — Csiigc)
JhciBcAKap sin® s + KQ(KBC Cajase)Eac — Ciape) — 4Kapiisiic

— A ; ;
JAcibcAKap sin® o5 + A (Kpe — Cajipe) Kac — CBiise)
(3.279)
and
-2 <2 2
Jac)Bc €O8” ¥s
AP e + 4K ap sin? o (VB = A 4 4K (1 + : : )
notm b ap (Kac — CBiapc) (Ko — Cajipe)

_ JAcitcAKap sin® g5 + K2(Kpe — Cajipe) Kac — Ceiipe) — 4Kapiipiic
(KAC - CBj,%lBC)(KBC - CAjElBC)

(3.280)

From (3.277), (3.279), (3.280) and (3.267), we obtain

A B @) Jap(Aj + 4Kap sin® ¢5)
4iapJap sin’ s+ Ay (Kap — CCJE!BC)(KAC - CBj,%\Bc)<KBC’ - QAJ%BC)
= ¢ (3.281)

Hence, we have performed the step 1-3, and thus have shown the present Lemma in the
case where the state [¢) is (-definite.

Next, we perform the step 2-1, where the state |¢) is (-indefinite. Because of Theorem
1, the following relation among the entanglement parameters of the initial state |¢)) and
the final state [¢)') of an A-DMT holds:

JBosin® of = JjEc — jBccos’ o5 = jpo + Ba(l — &%) jipe — Jhe cos® @5
= Jhesin® @5 + Ba(l — o) j4pe, (3.282)
A, = OzA(K — 4KapKacKpe) = oy (K5 — AKapKac (e + janc))
oy (K3 — AK apKac (e + Ba(1 — o) iAo + a4dase))
(K2 — 4KapKac(Kpo — (1= B4)(1 — 02)jape + @4dase))
(AJ + (1= Ba)(1 — %) japc KapKac), (3.283)

where jpo and Kpe ete. and jpo and Kp. etc. are the entanglement parameters of
the EP-definite states 1)) and |¢’) respectively. Because the EP-definite state |¢) is ¢-
indefinite, both of A; and jgc sin s are zero. Substituting A; = 0 and jgesings = 0
into (3.282) and (3.283), we can see that both of A’; and ji.singl are zero only if
the transfer parameter a4 is one. The equation ay = 1 means that the A-DMT is the
identity transformation. Thus, we have completed the step 2-1. Thus, an arbitrary C-
LOCC transformation can be reproduced by performing four DMTs successively: the
first DMT of the C-LOCC Tf7 an A-DMT Ty, a B-DMT Ty and a C-DMT T,. The first
DMT can be either an A-, a B- or a C-DMT. We can assume that the first DMT 7tis
an A-DMT without losing generality.
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Next, we perform the step 2-2. We refer to the final state after the first DMT 7t as |¥")
and refer to the entanglement K-parameters of the state [¢") as (K5, K'ic» KB, Jape, J2
A necessary and sufficient condition of the possibility of the C-LOCC transformation is
the existence of the parameters 0 < (40 < 1,0< (1 <1,0< (3 <1,0< (¢ <1and
J5o/(Kpe — Caojipe) < Co < 1 which satisfy the following equation:

Kiyp Ca0CaCB Kag
K)ye 3 Ca0Calc Kac
ngc = ('Go ¢Cc K&32 4)
Jxse Ca0CaCBCC JaBc
J Ca0€alaCe Js
9
JBC
OLl = sen|(1— _ , , 3.285
Gl = s (1= GG - 2B (3.355)
where
- h
R s 7+ MKy — G ) (K — G o) (Ko — Ca )

(3.286)
Let us prove that these conditions are equivalent to Conditions 1 and 2 of the present
Lemma. In other words, we prove the following statements:

Statement 1 The following inequality holds:

.2 .2 .2
JaBlAc)BC e
. ) ‘ < (¢’ <1, 3.287
(Kag — Cedbipe) (Kac — CiAse) (Ko — CaCaodine) ’ ( )

where the left equality of (3.287) holds if and only if (j is equal to j%./(Kpc —
Ca0j4pc), while the right equality of (3.287) holds if and only if (y is equal to 1.

Statement 2 The equation (3.285) is equivalent to

- s Jipdicibe
Q5| = sgn[(1 — ) (GC (Kag — Cciipe)(Kac — CBi4pe) (Kpo — CACAO]%?I?%)S)S];
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First, we prove Statement 1. In order to perform the proof, we use the following
equations which hold because [¢) is (-indefinite if and only if A; = 0 and sin @5 = 0:

K = A;+4Kap = 4Kap, (3.289)
Ay + 4Kap(1 — () = 4Kap(1 — (o), (3.290)
J//2 j2 (3082 ('05 j2
sinpfl =1——>5 - = 1— BC , =1- BC 3,291)
° 4§ i T Co(Kpe — Caodine) Co(Kpe — CAOJABCy
A//
Alorm = W = K? — 4Kap(o = 4Kap — 4Kap(o, (3.292)
A0S0
A” +4K C <2 N A” +4K C ( ]129(} )
sm” @y = -
norm ap>o > CAoCo AP0 Co(K e — Caodipe)
2
JBC
= K?—-4K + 4K (1— . )
> apCo apCo CO(KBO - CAOJch)
-2
JBC
— 4K —4K§+4K§(1— : )
ap ap>o ap>o CO(KBC - CAO]%BC)
= 4Kap (1= Cao)fispo (3.293)

Kpe — Caodipe

Because of these equations, (A.40)—(A.43) and j%. = C(o(Kpc — Ca0jipe), (3.286) can be
transformed as follows: Substituting (A.40)-(A.43) and K}, = (oK pc into (3.286), we
obtain

5 ]ABJAngC(A%OI"m + 4KapCO sin® ©5)

4C0Kap]AB]AC]g2C sm 805 A/I,lorm<KAB - chszc)(KAC - CBJQQBCKO(KBC - CACAO]E&BC)‘
(3.294)

Substituting (3.291)—(3.293) into (3.294), we obtain
G- (3.295
Japiac(l — Cao)fanc
j,QABjExC(CO(KBC - CAszlBC) - j1230) + (1 - CO)(KAB - CC]E}BC)(KAC - CBjElBC)(KBC - CACAO]%BC)

Note that we can express the denominater of (3.295) as

Co(iApiac(Kpc—Caojane)—(Kap—Cejipe) (Kac—Csiipe) (Kpc—CaCaojance))+(the part irrelevant to
(3.296)
Because of

Japiac(Kpc = Caodape) — (Kap = Cedane) (Kac — Coiipe) (Kpe — CaCaofapc) <0,
) (3.297)
(3.295) and (3.296), the denominator of ¢’ is a monotonically decreasing function of (.
Thus, the quantity (’ is a monotonically increasing function of (3. Additionally, from
(3.295), we obtain

COC?/‘C():l = 1 (3298)

.2 .2 42
~/ . . — ]AB]ACJBC (9 :)99
G0 keo=ste/ (oo~ a07mc) (Kag — Codipe) (Kac — (854 pe) (Ko — CaCaodipe )
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Thus,

(Kap — Ccjipe)(Kac — Ceiipe) (Kpe — CaCaodipe)

<G <1 (3.300)

holds, where the left equality of (3.300) holds if and only if (j is equal to j3./(Kpc —
Ca0jipc), while the right equality of (3.300) holds if and only if ¢ is equal to one. Now
we have completed the proof of Statement 1.

Next, we prove Statement 2. Note that the left equality of (3.300) holds if and only
if (o is equal to j3./(Kpc — Ca0j4pe), and that the right equality of (3.300) holds if and
only if (p is equal to one. Thus, (3.285) is equivalent to (3.288).

Hence, Conditions 1 and 2 of the present Lemma is a necessary and sufficient condi-
tion even if |¢) is (-indefinite. Because of (3.291), (3.298), (3.299) and (3.288), we can

reproduce the sequence of operations Tt Ty — Tg — T by the following three DMTs:
an A-DMT whose main and sub parameters are (4(40 and (y, respectively, a B-DMT
whose main parameter is (g, and a C-DMT whose main parameter is (¢. O

Note that the proof of Lemma 6 guarantees that an arbitrary C-LOCC can be repro-
duced by performing an A-DMT, a B-DMT and a C-DMT.

Step 3 of Case 2

Conditions 1 and 2 of Lemma 6 is necessary and sufficient not only for a C-LOCC trans-
formation between EP-definite states but also for a deterministic LOCC transformation
between EP-definite states. We show this statement in the following theorem. This
corresponds to Step 3 of Case 2.

Theorem 2 Let the notations 1) and |[¢') stand for three-qubit pure states. We refer to

the sets of the entanglement K -parameters of the states 1) and |') as (Kap, Kac, Kpc, jasc, Js, Qe)
and (K'yg, Kyoy Kisey Japos I, Qle), respectively. We assume both |¢) and |¢') to be EP-

definite. We also assume that japc # 0. Then, a necessary and sufficient condition of

the possibility of a deterministic LOCC transformation from the state 1) to the state |¢')

is that the following two conditions are satisfied:

Condition 1: There are real numbers 0 < (4 < 1, 0 < (g < 1,0 < (¢ <1 and

Clower < ¢ < 1 which satisfy the following equation:

K1/4B CACB KAB
K¢ Cale Kac
Kpe | =¢ ¢slc Kpe |, (3.301)
JABe Ca¢aCc JaBc
J ¢alrCe Js
where J
ap
q = . . , , 3.302
lower = (K ap — Colpe) Kac — Cohno) (Koo — Gaftpe) 002

and we refer to C, Ca, (g and (¢ as the sub parameter and the main parameters of A, B
and C', respectively.
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Condition 2: Let us check whether the state [1)) is (-definite or not. When the state |¢))
1s (-definite, the condition is

Qe=Qf and { =, (3.303)
where
éﬁ . Jap(AJ + 4Kap SiIl2 @5) (3 304>
AK gpJapsin® o5 + Aj(Kap — Ceiipe) (Kac — CBiape)(Ke — Cajipe)
When the state |1) is C-indefinite, the condition is
Q| = sgn[(1 = O)(C = Croer))s (3.305)
or in the other words,
/ =0 (C:l or C:Clow@r)7
Qe{ #0 (otherwise). (3.306)

Proof: To prove the present Theorem, it suffices to prove the following statement
S: “An arbitrary deterministic LOCC transformation can be reproduced by a C-LOCC
transformation.” Once we prove this statement, we can use Lemma 6 in the section 6.1.2
to prove Theorem 2. We prove the statement S by mathematical induction with respect to
N, which is the number of times measurement are performed in the deterministic LOCC
transformation.

First, we define how to count the number of times of the measurement. Let the nota-
tion T stands for an arbitrary LOCC transformation. We fix the order of measurements
in the LOCC transformation T cyclically: If the first measurement of the LOCC transfor-
mation T is performed on the qubit A, the second one is on the qubit B, the third one is
on the qubit C, the fourth one returns to the qubit A, and so on. If the first measurement
is performed on the qubit B, the second one is on the qubit C, and so on. We can attain
such a fixed order by inserting the identity transformation as a measurement. The LOCC
transformation T may have branches and the numbers of times the measurements are
performed may be different in different branches. We refer to the largest of the numbers
as the number N. We can make the number of each branch equal to N by inserting
the identity transformations. An example is given in Fig. 3.11. We use this counting
procedure in the proofs of other theorems, too.

Next, let us prove Theorem 2 by mathematical induction with respect to the number
N. An arbitrary deterministic LOCC transformation with N = 1 is also a C-LOCC
transformation. Thus the statement S clearly holds for N = 1. We prove the statement
S for N = k + 1, assuming that the statement S is proved whenever 1 < N < k.

Let the notation T stand for a deterministic LOCC transformation with N = k + 1.
We can assume that the first measurement of the deterministic LOCC transformation
T is performed on the qubit A without loss of generality, because the state |¢) is an
arbitrary EP-definite state. We define states {‘w(i)>} as results of the first measurement
{Myli = 0,1} (Fig. 3.12). For M(;), we define the measurement parameters a, bu, kg
and 6;) as follows:

—i0,.
sl L ag) ke o
(i)M(Z) - ( k(i)eie(i) by : (3.307)
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final
result

M> on B
result () .
result final

Mi onA
final

. result 0
result 1 Ms on C
result 1 final
‘ Insert identity transformations

fon C ——% final

result 0

M2 on B
result 0 result 1
IonC %final
Mion A
result result Q> final
ITon B ————> M3 on C<
result 1 final

Figure 3.11: The method of counting the number N. In this figure, M;, M, and Mj
denote measurements and I denotes the identity transformation. The number N is 3 in
this example.

We can assume that sin 6y > 0 without losing generality. Because of the assumption for
N = k, a deterministic LOCC transformation with N = k from the state ‘@/J(i)> to the
final state |¢)') can be reproduced by a C-LOCC transformation T(;). Lemma 6 tells us
that, we can express the C-LOCC transformation 7{; in terms of DMTs Tfli), Tg) and
Tg), whose DMs are performed on the qubits A B and C, respectively (Fig. 3.12).

Let the notation (KXQKX)C,K}(;)C, AlBC, J QY o) stand for the set of the entangle-
ment K-parameters of the state [¢)®). Lemma 6 and (A.43) give that the C-LOCC
transformation T{; changes the entanglement parameters as follows:

Ky ey (a2 K ap
KAC A c CX) C(Cz) (Oz(l) )?-f(AC
1) ~B(1 % 7 % 7
/%C — (AW BO) CO) ¢t - .Kgg
Japo CX) f;k*é” () JABC
J! (i) +0) () Ji
Ca'CpCe 5
(3.308)

where (¢, ¢AW), (C W ¢B®Y and (¢, ¢°®) are the sets of the main and sub parameters
of the DMTs T(z), T and T, C), respectlvely

Here, the product (a( )2 C(l (p ZC J¢ADBE C6) must be independent of i because
PseliAse = (@®)2¢P¢H ¢ ¢AOCEO 00 Similarly, the product (a®)?¢{ ¢ ¢ADBOCH
must be independent of i because K'j/Kac = (a(?)? Cﬁf C(;)CA DCBOCCH | Hence, the
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0)

7Y
(0)
M(O) v > TO)

|w>

M T¢)
(1) m)(/)> T(I)

Figure 3.12: The deterministic transformation from the state ‘w(i)> to the state [¢') is
reproduced by a C-LOCC transformation. We refer to the transformation from the state
[4@) to state [¢') as T(y).

main parameter Cg) must be independent of 7. In the same manner, we can show that

the main parameter Cg) must be also independent of i. Note that the DMT TX) is a
DMT between EP-definite states and that the step 2-1 of Lemma 6, (A.52) and (A.54)
guarantees that the ﬁnal state of a DMT between EP-definite states is (- deﬁmte Thus,
the states after DMTs 7" "4/ and T are ( definite. Thus, the sub parameter (¢® is equal

to the (-specifying parameter of the state after each DMT T . Hence, the sub param-

eter (¢ is a monotonously increasing function of the main parameter (C , because the

(-specifying parameter of the state after each DMT Tg) is a monotonously increasing

function of Cg). Thus, the quantity ¢ C<i>g(c") is a monotonously increasing function of the

main parameter Ccf This means that if the main parameter (Ci is specified, (¢@¢5 © s

also determined uniequly. Thus, ¢¢® C D s independent of ¢ because the main parameter
Cg) is independent of ¢. Hence, the entanglement parameters of the initial state of each
DMT Tg) is independent of 7, because Cg), CC(i)C(Ci) and the state [¢)") are independent
of 7. In the same manner, the entanglement parameters of the initial state of each DMT
T };) are independent of i. Let us refer to the initial EP-definite state as [¢)”) (Fig. 3.13).

Therefore, we only have to prove the following statement Sy: “A deterministic LOCC
transformation which consists of the measurement M;) and the DMT TX) can be repro-
duced by an A-DMT whose DM is a two-choice measurement.” The reason why we have
to prove the statement S5 is that a C-LOCC transformation consists of DMTs whose DMs
are two-choice measurements. We prove the statement S, by showing that an A-DMT
whose DM is a two-choice measurement can realize the change of the entanglement param-
eters which is caused by performing the measurement M;) and the DMT TX) successively.
We refer to the A-DMT as T4. Then, we can reproduce the deterministic LOCC T by
performing the DMTs T}y, T and T¢ successively (Fig. 3.13). The number of times of the
measurement of the transformation 7" is k 4 1, and thus if we have proven the statement
S, we can also prove Theorem 2 by completing mathematical induction.

We denote the set of entanglement J-parameters of the state [¢)”) in Fig. 3.13 by
(345 Thcs %oy Japes J2, Q). We prove the statement Sy by showing that the sets of
J-parameters (jap, jac, JBc, japcos Js Qe) and (jhg, ihcs Jhos e, JE, Q4) satisfy Con-
ditions 1 and 2 of Theorem 1.

Let us prove that the sets of J-parameters (jag, jac, jBc, japc, J5, Qe) and (345, Jac, Jhos Tape, I8 €
satisfy Condition 1 of Theorem 1 by examining the change of the J-parameters jag, jac,
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Figure 3.13: The concept of the statement S;. The Route Ss is realized by an A-DMT
whose DM is a two-choice measurement.

J1BC, jac and Js. First, we examine the change of the J-parameters jag, jac and japc.
From (A.40)-(A.42), we have the following three equations:

i = (a)a®)?%,, (3.309)
7z = (aPaD)242,, (3.310)
ii5e = (0 a2 e, (3.311)

where ag) is the transfer parameter of the transformation TX).

Second, we examine the change of the J-parameter J;. From J! = (oz(j))zjéi), it

follows that the product (« (i))Qjéi) must be independent of i. Note that the product
(o) must be independent of i because /2, = (o a®jape)?. Hence,. we have J& «
()2, Thus, we can take a constant y which satisfies the equation J&” = (a®)2J;.
The equations (A.28), (A.40) and (A.41) give that J\” = 2(a®)2japjaciin cos ol and

Js = 2jaBJjac)Be cos ps. Hence, we obtain the equation jj(g)c cos goé ) = = vjBc cos 5. This

equation and (A.48) give that v = 1. Then, the equations

Jecos @) = jpccosps and i) = (o)) (3.312)

hold. This means that we have obtained the change of the J-parameter J;5 in the form
J! = (D)2 J;. (3.313)

Third, we examine the change of the J-parameter jpc and prove that the sets of J-

parameters (jas,jac,Jjsc,jasc,Js) and (jag, Jacs Jpcs Jasc, J5) satisty Condition 1 of

Theorem 1. Because of Lemma 5, at least one of Kg)(); and Kgé is less than or equal to

Kpc. Because both of TX) are A-DMTs, the inequalities K7, < Kgé hold. Thus, we

obtain K}, < Kpc. Because of Lemma 2, at least one of jg)c is more than or equal to
jsc- Because both of T X) are A-DMTs, the inequalities jg)c < jpe hold. Thus, we obtain
Jjc < jhe- Because of K% < Kpe and jpe < jpe, we can find a parameter 0 < 84 <1

which satisfies

e = Jbe + Ba(l — (@Pal))j3pe. (3.314)
Note that (3.309)—(3.311), (3.312) and (3.314) mean that (jap,jac,JBc, jac,Js) and
(I4Bs Thcs I%es Japes JY) satisfy Condition 1 of Theorem 1.

NeXt? let us prove that (jAB; jAC7 jBCv .jABCa J57 Qe) and (jAB7 ]Ac, ]Bc, jABC’ N g)
satisfy Condition 2 of Theorem 1.
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First, we prove this in the case where the state |¢) is (-indefinite by examining the
change of the entanglement charge Q¢. In other words, we prove that the entanglement
charge Q¢ is zero if and only if the dissipation parameter (4 is zero or one. Because of
(A.19) and (A.30), Q¢ is zero if and only if at least one of A’} and sin ¢} is zero. First we
prove that sin ¢} > 0 if and only if 84 > 0. Because of (3.312) and because both of TX)
are A-DMTs, we obtain

JBe COS Qs = jpe COS Ps. (3.315)
From (3.314) and (3.315), we obtain

Jiesin® o = fhosin® s + Ba(1 = (aVal))jhpe = a1 — (@Pal)))fhpe.  (3.316)
Thus, jheosine? > 0 if and only if 54 > 0. Because the state [¢)") is EP-definite, 5%, > 0
holds, and thus sin ¢% > 0 if and only if 54 > 0. Next, we prove that A’ > 0 if and only
if 1 > 3. From (3.309)~(3.311), (3.312) and (3.314), we obtain

A
(aWaf))?
= K2 —4KapKac(j2e + Ba(l — (@PaP)?) 2 pe + (@) 50)

Aj+ 4K apKaciipe(1— Ba)(1 = (aPa)?)
= 4KapKaciipe(l— Ba)(1 — (aPaP)?), (3.317)

Thus, A’ > 0 if and only if 1 > 4. Hence, the entanglement charge Q¢ is zero if and
only if the dissipation parameter (4 is zero or one. Thus, the entanglement charge Q¢
and the dissipation parameter 34 satisfy Condition 2 of Theorem 1.

Now, we have proven that if the state [¢) is CN—indeﬁnite, the sets of J-parameters

(jaBsjac, JBc, japc, Js, Qe) and (jAp, Iacs JBes Japes Ji » Q) satisfy Conditions 1 and 2

of Theorem 1. Thus, we can reproduce the transformation from the state [¢) to the state
| by an A-DMT whose transfer parameter and dissipative parameter are a(i)ax) and
the dissipation parameter (34, respectively. Hence, we have completed the proof of the
statement S in the case where the state |¢) is (-indefinite.

Next, let us prove that (jap,jac,iBc,jasc, Js, Qe) and (jhg, Jic, Jpes Jases J5 > Q6)
satisfy Condition 2 of Theorem 1 in the case where he state |¢) is (-definite. In other
words, we prove the equations Qe = Q¢ and B4 = Ba.

First, we prove Qe = Q¢. We prove this equation by using the equations (3.322) and
(3.323), which we derive below. In order to derive (3.322) and (3.323), we first show that
the state () is (-definite by reduction to absurdity. Let us assume that the state @)

is f—indeﬁnite. Because ‘w(i)> is §~—indeﬁnite, both of sin goéi) and Ag) would be zero. We
could take a real number 3¢) which satisfies (j\0)? = 3 + BD(1 — ()2)52 5. Note
that the number 5 can be more than one or negative, which can differ from dissipation
parameter 34. Because of (3.312), we would obtain

A/Illorm - Ks2 - 4KABKACK1/E/30

(e sin@l)* = jhesin® o5 + 80 (1 — (a9)) A pc- (3.318)
Because of (3.318) and sin goéi) = 0, at least one of the following two expressions would
hold:

(@) >1)A (8D >0), (@) <1)A(BY <0). (3.319)
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On the other hand, we will later derive the following expression:
(@2 > DA BD <1), (aD?2<1)A (YD >1). (3.320)

The expressions (3.319) and (3.320) contradict each other; Because of Lemma 3, (a®)? <
1 holds for at least one of i. Thus, for at least one of 7, (5 @ < 0)A (B9 > 1) would hold.
This is a contradiction. Thus, if we derive (3.320) we complete the proof that the states
}¢(i)> are (-definite; if the states |1/)(i)> were (-indefinite, there would be a contradiction.

Let us derive (3.320). First, we transform Ag)orm = Af]i) /(a4 as follows:

i (4) (4) ;
A(z) _ AS) _ <K5 )2 — 4Kap _ (O_/(Z))4 K52 — 4KABKACK(B)C
horm = T0) T T (a0 (@)

1—

K2 — 4K opKacKY), = K2

— AKapKac(j3e + BO(1
K2 — 4Kap + 4K apKac(1 — 89)(1 -

(a (l)) )JABC

Ay + 4K apKac(1— )1 = (@))% 0
Because of (3.321) and AL(;) =0, (3.320) has to hold. Thus, the states }@Z)(i)> are (-definite.
Next, let us derive the following equations which we use to prove Qe = Qg;
_ Afiorm _ AEri)orm
i Aform + 4KapKac i sin of Aﬁérm + 4K K ac (j](gz)c)Q sin® gog)
= 1-% (3.322)
olVA;  jposings (3.323)

i
Anorm

o/ : "o
Jpc S Qg

where ﬁg), Al orm and Ag)orm are the 3-specifying parameter of the state }w(i) Y Miorm =

A/ (aWal))!

= K2~ AK 5 KooKl and Al = AD /(o)

— K2 — 4K pKac KU,

respectively, and where ¢ is determined as follows: If Qe = 1, tis +1. If Qe = —1, t is
—1. If Qe =0, t can be either +1 or —1. Because TX) is an A-DMT, we obtain

1-3",

A//

A+ AR s KN o J sin? ¥

AY + 4K K001 = 8 (1 — (af

©)?)

AF + 4K K (7o) (1~

()2) 4 4K.EXBKXC(]BC)2 sin’ 905
2

)% sin goé)

A AP I Gl )00l K K iy

AC(] ) sin

2()

A + 4KXLK§PC<]%C>2<1 -

Al

_ 30

AF + 4K (Te)?

st gDéZ) B A

The equation (3.324) can be transformed to (3.322) with

(jg)c) sin @gl) _ Agz)rm
]g?(] sin’ w5 Aform

30

<a<f>>2> + 4K§JB

(4)

Kl () sin® ¢

(3.324)

(3.325)

— (@) jhpc + (a1

JABC)

(3.321)



Because a DMT between states which are (-definite conserves the entanglement charge,

the expression Qéo) = Q(el) = Q% # 0 holds. Because we have assumed sin 0 > 0, the

equation Qg)) = (el) = Q¢ # 0 is equivalent to the following equations:

K + 4 )
A0y = s T ley A 2O (o (0))2:%((1(0))2M VA, (3.326)

2K\, 2Kpc '
AW A;
(A2 — K5 + Qes norm( D)2 = 1—p( ) R St 2 5 +1VA (3.327)
0 (1) - _ ) :
2K pt, 1-b 2Kpe

where s and t are determined as follows: if sin ™ >0, s is +1. If sinp® < 0, sis —1.
[fQe=1,tis+1. If Qe = —1,1t1is —1. If Qe = 0, t can be either +1 or —1. Because of
(3.326), (3.327) and K./ Kpe = (K2 —AV) 11)/(K2— Ay), we obtain the expression of
the probability p in terms of A; and Ag)orm:

t V IlOI'IIl

= (3.328)
/ A (0) N
Anorrn - Ang)rm
Because of (A.49),
piStsingl” + s(1 - p)j5lsin gl = jpe sinps. (3.329)
From (3.329), we obtain
) ()
_ jBesings — sjpesin gy (3:330)

Jbesingl) — il singl)
From (3.325), (3.328) and (3.330), we arrive at (3.323).
Let us prove Qe = Q¢ by using (3.322) and (3.323). We perform this proof in the
following three steps. First, we prove that if Qe # 0 holds, Q¢ # 0 also holds. Second,
we prove Qe = Q¢ = 0 in the case where Qe = 0. Finally, we prove Qe = Q¢ in the case
where Qe # 0.
Let us prove that if Qe # 0 holds, Q¢ # 0 also holds by reduction to absurdity. Let us
assume that Qe # 0 and Q¢ = 0 held. Because a DMT between (-definite states conserves

the entanglement charge, the expression Q Qe = Q¢4 = 0 would hold. Because of
Qe = (1) = 0, at least one of sin gpé) and A( would be zero. Thus, at least one of
(AY £ 0) A (sin ! = 0) (3.331)
and
(AY = 0) A (sin o # 0) (3.332)

would hold and at least one of

(Agl) # 0) A (sin goé ) =0) (3.333)
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and

(Agl) =0) A (sin gps )£ 0) (3.334)

would hold. Note that substitution of (3.331) and (3.334) in (3.325) makes a contradiction
and that substitution of (3.332) and (3.333) in (3.325) makes a contradiction. Thus,
there can be only two pairs which could be valid; ((3.331) and (3.333)) and ((3.332) and
(3.334)). Because of Qe 7£ 0, both of sin g05' and Ag) would be more than zero. If (3.331)
and (3.333) held, (sin <p5 = 0) A(sin 905 = 0) A (sin 5 # 0) would hold. This contradicts
(A.49). If (3.332) and (3.334) held, (AY = 0) A (A} = 0) A (A, = 0) would hold. This
contradicts Lemma 5, because

0= AS) = («a (i))4Ag)orm = (a(i))4(K52 - 4KABKACKS)C> <Aj;#0. (3.335)

Hence, if Qe # 0 and Q¢ = 0 held, there would be a contradiction, and thus if Qe # 0
holds, Q¢ # 0 also holds.

Next, we show that Qe = Q¢ in the case where Qe # 0. If Qe # 0 holds, A; > 0,
Jjposings > 0 and Q¢ # 0 hold. Because of Q¢ # 0, the equation (3.323) holds. Thus,
because of the definition of ¢ and the equation (3.323), if Qe # 0, then Qe = Q4 holds. If
Qe = 0, the expression A; = 0V jpe sin 5 = 0 holds. Because we assumed that the state
1) is C-definite, A; = 0 A jpesings = 0 does not hold. This contradicts (3.323). Thus,
if Qe = 0, Q¢ = 0 has to hold, because if Q¢ # 0 then (3.323) holds. Hence, Qe =
holds even if Qe = 0.

Next, we prove 34 = (4. In other words, we show that

i = be + Ba(l — (@Dal))j3pe (3.336)

First, we prove this in the case of Qe # 0. From (3.325), (3.323) and Qe = Q, we obtain
jJQBC sin® o5 Ay
Jhesin® @ Afiorm

Jhosin® s (Ay — AR apKac (i — jhe + (@0 = )53 p0)) = jie sin® giA,,

9

—4KABKACjJQBC sin” 9050%20 - j?ac) + 4KABKACJJQBC sin” es5(1 — (a ® (Z)) )jABC’ = (]Bc J%C)AJ?

JBe = o + AKapKacjposin® ¢s
pe —ane Ay + 4KABKch%C sin® 05

= j2c+ Ba(l — (@Pa'))?) 52 es

(1 - (@Pa$)?)52 5o

where we used

JBesin® 95 — jpesin® o5 = jie — jpe- (3.338)

Thus, if Qe # 0, we can reproduce the transformation from the state [¢) to the state [1)")
with an A-DMT whose transfer parameter is (a®a)2.

Second, we prove 34 = 34 in the case of Qe = 0. Because of Qe = Q%, then Q¢ =
has to hold. The equation Qe = 0 is equivalent to sin g05 =0V A; = 0. We have
already shown that Ao > Ay and j%-sin gl > %, sin? 5 hold. In the present case,
sins = 0 A Ay = 0 does not hold, because the state [¢)) is (-definite. Thus, if A; =0,
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Al orm = 0 has to hold. Hence, we can obtain j/2, = 2. + Ba(1 — (a®a'?)2)52 . as

follows:
Ay = K52 —4Kap = K — 4K apKacKpe = Aform = 0,
Kpe = Kpe,

AK s K acjbe sin® o5
Ay + 4K apKacjbe sin® s

G2 = e+ (1= (@D D)) 20 = 20+

(1 - (@Pa{)?) i pe
= Jhe+Bal = (@Da)?) i3 s (3.339)

Furthermore, if sin @5 = 0, sin ¢f = 0 has to hold. Hence, we can obtain as follows:

J’%c sin® 5 = je sin® ¢f =0,
. . 4K s K ac )% sin® S05 ;
112 2 BC (@) ¢ (1)\2
Jhe =Jpc =1 I —(« J
BC BC — BC AJ + 4KABKAC]BC sm ©s ( ( ) ) ABC

= jhe + Ba(l — (Oé(i)oé(j)y)jch. (3.340)

Thus, we have shown (3.340). Hence, if Qe = 0, we can reproduce the transformation from
the state |¢) to the state |¢”) with an A-DMT whose transfer parameter is (a(i)afj))?
Now, we have completed the proof of the statement S5. Namely, we have completed the
proof of Theorem 2. O

Thus, we have proven Main Theorem 1 in Case 2. Because of the statement S of
Theorem 2 and the fact that any C-LOCC can be reproduced by three DMTs, we have
also proven Main Theorem 2 in Case .

A necessary and sufficient condition of an n-choice DMT between EP-definite
states

Theorem 2 guarantees that the condition of Theorem 1 holds not only for an arbitrary
two-choice DM, but for an arbitrary n-choice DM.

Corollary 2 Let the notations |¢) and |¢)') stand for three-qubit pure states. We refer to
the sets of the K-parameters of the states 1) and |¢") as (Kap, Kac, Kpc, jasc, Js, Qe)
and (K'yg, Ko, Koy apes J5, Q%) respectively. We assume [¢') to be EP definite. We
also assume that japc # 0. Then, a necessary and sufficient condition of the possibility of
an n-choice A-DMT from the state |1)) to the state |1)') is that the following two conditions
are satisfied:

Condition 1: There are real numbers 0 < (4 < 1 and C%‘zuer < ¢ <1 which satisfy the
following equation:

Kyp Ca Kap

Ky Ca Kac
Kjgc =( 1 KBC ) (3.341)

]XBC’ Ca .712430

J Ca J5
where -
JBC

= - . 3.342
Clower (Kpe — Caj2ne) ( )
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If (4 =1 and jpc = 0 hold, we define the lower bound Cgﬁz)uer to be unity.
Condition 2: Let us check whether the state [1)) is C-definite or not. When the state |v)
1s (-definite, the condition is
Qe = Q' and (W =¢W. (3.343)
where \ L
) — Jpc(Ay + 4K gpsin® s)
4K gpjtesin® o5 + Ay (Kpe — Cajipe)’

(3.344)

where if the state |1) is EP indefinite, then we define j%csin? 5 as zero. When the state
|v) is (-indefinite, the condition is

Q| = sgnl(1 = ¢ (™ =) ), (3.345)

or in other words,

Q. =0 for (N =1 or (W= g};‘zm, (3.346)
Qe # 0 otherwise. (3.347)

Comment

This corollary guarantees that the condition of Theorem 1 holds for an arbitrary n-
choice measurement.

Proof: Lemma 1 guarantees that an n-choice measurement performed on the qubit
A is equivalent to a deterministic LOCC transformation whose measurements are per-
formed only on the qubit A. We refer to a deterministic LOCC transformation whose
measurements are performed only on the qubit A as T 4. We prove the statement Ss:
“The deterministic LOCC transformation 774 from the state |¢) to the state [¢') is ex-
ecutable if and only if Conditions of Theorem 2 whose (g = (¢ = 1 are satisfied.” If we
can prove the statement S3, we can also prove the present Corollary: Because Conditions
of Theorem 2 whose (g = (¢ = 1 are equivalent to Conditions of the present Corollary.

Theorem 2 guarantees that the deterministic LOCC transformation 77 4 is executable
if Conditions of Theorem 2 whose (5 and (¢ are equal to one are satisfied. Thus we only
have to prove that if T4 is executable then ag = a¢ = 1 holds, in order to prove the
statement Ss. If ag # 1 or a¢ # 1, then we have jap : jac : japc # jag : Jac : Japc-
However, the measurements of the deterministic transformation 774 are performed only
on the qubit A, and thus (A.40)—(A.42) give that Kap : Kac : jagec = Kug : Kie : iige-
Then, if the deterministic LOCC transformation T} 4 is executable, we have (g = (¢ = 1.
O

3.5.2 Case B

In this subsection, we consider an arbitrary deterministic LOCC transformation from an
arbitrary EP-definite state to an arbitrary EP-indefinite state (Case B). In this case,
we can prove Main Theorems directly, not following Steps 1-3. A deterministic LOCC
transformation from an EP-definite state to an EP-indefinite state is executable only if
the final state is biseparable or full-separable. We prove Theorem 3, which includes the
above statement. In this subsection, we prove theorems including the case of jipc = 0.

84



Theorem 3 Let the notation Tsy, stand for an LOCC transformation from an arbitrary
EP-definite state |1¢) to arbitrary EP-indefinite states {‘¢(i)>}. The subscript SL stands
for Stochastic LOCC. Then, if this LOCC transformation Tsy, is executable, there must
be full-separable states or biseparable states in the set {|w(i)>}.

Proof: In the same manner as Theorem 2, we prove the present theorem by mathematical
induction with respect to N, which is the number of times measurements are performed
in the LOCC transformation Tsr. Let the notations (jag,jac,jBc, jasc, Js, Qe) and
(]X}B,jg)c,j](g)c,jABc, JSl), & ) stand for the sets of the J-parameters of the EP-definite
state 1) and the EP-indefinite states ‘w(i)>, respectively.

First, we prove the present theorem for N = 1. Because of the arbitrariness of the state
1), we can assume that the first measurement {M(;)|i = 0, 1} of the LOCC transformation
Ty, is performed on the qubit A without loss of generality. Thus, the operator M(;) makes
jan, jac and japc evenly multiplied by a real number a. The state |t) is EP definite,
and hence jap, jac and jpc are all positive. Because the state |w(i)> is EP indefinite,

at least one of jﬁfg, jﬁf)c and jBfC has to be zero for all 7. When jgj)g or ji\i)o is zero,

()

the multiplication factor a(? must be zero, and therefore all of ;! AB, Jac and 5 ABC must

be zero. Then, the parameter J5 also must be zero because of the expressions (A.26),

(A.27) and jABjACj(B)C = 0. Thus, in the case of jAB =0 or jX)C = 0, the EP- indeﬁnite

state W( > is a full-separable state with jj(g)c = 0 or a biseparable state with j 7£ 0.

Hence, if there were neither a full-separable state nor a biseparable state in the set of
EP-indefinite states {|1/1(i)>}, the expressions jg% # 0, jxj)g # 0 and jg)c = 0 would hold
for all i. Because of Lemma 2, however, at least one of jg)é and jg()J would be greater
than or equal to jge, which is positive. This is a contradiction, and thus the expression
]g)c 0 has to hold for at least one of 7. We have thereby shown the present theorem for
N =1.

Now, we prove Theorem 3 for N = k + 1, assuming that Theorem 3 holds whenever
1 < N < k. Let us assume that the number of times of measurements in the LOCC
transformation T, from the EP-definite state [¢)) to the EP-indefinite states {|¢()} is
k+1. Because of the assumption for 1 < N < k, the situation before the last measurement
has to be either of the following two situations:

(i) All states are already EP indefinite, and there are full-separable states or biseparable
states among them.

(ii) Some states are EP definite.

In the case of (i), there are full-separable states or biseparable states in the final EP-
indefinite states {‘@Zz(i)>} because an arbitrary full-separable state or an arbitrary bisep-
arable state can be transformed only into full-separable states or biseparable states by a
measurement.

In the case of (ii), if there were neither a full-separable state nor a biseparable state
in the EP-indefinite states {}@Z)(i)>}, there would have to be a measurement which could
transform an EP-definite state to EP-indefinite states which are neither full-separable
states nor biseparable states. Because of the theorem for N = 1, this is impossible.

Therefore, there must be either full-separable states or biseparable states in the EP-
indefinite states {|¢V)} in the case (i) as well as in the case (i). This completes the
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proof of Theorem 3. O

The set of full-separable states and biseparable states which have the same kind of
bipartite entanglement is a totally ordered set [14]. In other words, if an EP-definite
state |¢) and an EP-indefinite state [¢)') belong to such a set, there is an executable
deterministic LOCC transformation from the EP-definite state |1) to the EP-indefinite
state |¢) if and only if the bipartite entanglement of the state |¢)) is greater than or
equal to that of the state [¢)"). Hence, for a deterministic LOCC transformation from an
EP-definite state |1)) to an EP-indefinite state |¢)’), if we can obtain the upper limit of the
bipartite entanglement of the EP-indefinite state|¢)’), we can reproduce the transformation
from the EP-definite state [¢) to the EP-indefinite state [¢)') in the following two steps:

Stepr:g 1 We carry out a deterministic LOCC transformation from an EP-definite state
|1)) to a biseparable state |¢)”) whose the bipartite entanglement is equal to the
upper limit of that of [¢).

Stepr:s 2 We carry out a deterministic LOCC transformation from the EP-definite state
|1} to the EP-indefinite state [¢).

The following Theorem 4 gives the upper limit of Stepr;p 1. In fact, this theorem holds
not only for LOCC transformations from an arbitrary EP-definite state, but for LOCC
transformations from a general state.

Theorem 4 Let the notation Ty, stand for an arbitrary LOCC transformation from an
arbitrary state 1) to arbitrary EP-indefinite states {!W(i >} We refer to the sets of the J-
parameters of the state |1) cmd the EP—mdeﬁmte states |1//( > as (jam, jac, jBc, jasc, Js, Qe)

and (]Ag,jﬁg,jgg,jﬁjgc, Qe ), respectively. We also assume that Q/(Z = 'ég =

jfc) = jﬁgc = J' D=0 for any i. Then, the mequahty Ise < \Vike + jAge holds, where
the notation jpe stands for the minimum of]BC

Proof: We prove the present theorem by mathematical induction with respect to IV,
which is the number of times measurements are performed in the LOCC transformation
Tr. For N = 1, the EP-indefinite states {‘1/1’(i)>} must be achieved by one measure-
ment. Then, as was shown in the proof of Theorem 3, the multiplication factors of
this measurement are equal to zero for any i. Thus, (A.51) with oY = 0 gives that
Jse < Vike + Jase

Next, we prove Theorem 4 for N = k + 1, assuming that Theorem 4 holds when-
ever 1 < N < k. Let the notion {‘¢(z)>} stand for results of the first measurement
of the LOCC transformation 77,. We refer to the set of the J-parameters of ‘w(i)> as

(]X}B,jg)c,];)c,jggc,jé )) The states {[1)())} are transformed to the EP-indefinite states
{‘@D’ D)} after k times of measurements. Because of the assumption for 1 < N < k, the
inequality j5- < \/ jg)c 24 ( jxgc)z holds for any i. Thus, for the failure of Theorem 4 in

the case of N =k + 1, the inequality \/ G902 + (59002 > /72 + Jage would hold for

every i. Hence, the inequality "1, pe \/(]1(3)0)2 - (]'Xj)gc)2 > \/j%e + Jisc would hold.
This contradicts Lemma 5. This means that (3.140) holds for all cases, which completes

the proof of Theorem 4.0
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In the above, we have found that the upper limit of the bipartite entanglement between
the qubits B and C'is \/j%5, + jipc. We can realize this upper limit by substituting o = 0
in Lemma 4. Therefore, we have proven that we can carry out the Stepr;p 1 and Steprp
2. Note that each of these two steps are realized by one DMT. Hence, we have also proven
that we can reproduce the deterministic transformation from an EP-definite state |¢) to
an EP-indefinite state by performing only two DMTs. This corresponds to the second
row of Table 3.1.

Next, let us see the relation between the result we have obtained and Main Theorem 1.
Because the state [¢)') is EP indefinite, we can leave out Condition 2 of Theorem 2. The
condition of Main Theorem 1 is the existence of real numbers Jap/(Kap—Cajipc)(Kac—
CBj,QélBC)(KBC — CAjiBC) S C S 1, 0 S (A S 1, 0 S CB S 1and 0 S CC S 1 which satisfy
that

KAB CACB KAB
Ke Cale Kac

e | =¢ ¢sCc Kpe |, (3.348)
Jisc CalaCo Jasc

J Ca¢BCe Js

where (Kap, Kac, Kpc, japc, Js) and (K5, K)o, Koy iapes J5) are the sets of the K-
parameters of the EP-definite state |¢)) and the EP-indefinite state |¢’), respectively.
Hence all of Kap, Kac and Kpc are greater than j%5. and at least one of K'y5, K/
and K} is equal to jZ5-. Therefore, at least one of the main parameters (4, (5 and (¢
must be zero, and thereby the EP-indefinite state |¢) must be a full-separable state or
a biseparable state whose bipartite entanglement is less than or equal to the upper limit.
These are equivalent to the result which we have obtained, and thus we have proven Main
Theorem 1 in Case B.

3.5.3 Case ¢

In this subsection, we prove Main Theorems in Case €.

Transferless DMT

In section 6.3.1, we show that if a state |¢)) has no bipartite entanglement between the
qubits B and C, an A-DMT can make all entanglement parameters of the state i)
multiplied by a real number « which is from zero to one. This Theorem and the next
Lemma are used instead of Step 1 of Case €.

Theorem 5 Let the notations |¢) and ') stand for three-qubit pure states. We refer to
the sets of the J-parameters of the states |¢) and V') as (jag,jac,jiBc,jasc, Js, Qe) and
(s> Jacs J5es Jape, J5, Qe ), Tespectively. The state |1) can be transformed into the state
|Y¥") by an A-DMT, if Q. = Qe = jpe = jsc = 0 and if there is a real number 0 < a < 1
which satisfies the equations j'yg = jap, jac = ajac and jype = Ajapc.

Proof: Let us define a measurement {M;)|i = 0,1} and its measurement parameters
a, b, k and 6 as in (A.32) and (A.33). Let the notation {|¢)} stand for the results
of performing the measurement {M|i = 0,1} on the qubit A. We refer to the set of
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the J-parameters of the state W( > as jABB,jA)C,j;)C,ngC, J(z) g)). Substituting the

equation jpc = 0 in (A.44), we find that if k) = k£ = 0, then jg)c = 0. Hence, in order
to prove Theorem 5, it suffices to show that there is a measurement {M)|i = 0,1} which
satisfies the expressions £ = 0 and 0 < o) = a(l) < 1, where a( is deﬁned in (A.45).
Notethatlijc—]g)C—jBC—O thenJ5—J5 = J! —OandQe—Qe =Qc =0
hold, because if a state is EP indefinite J; and Qe are zero.

From the equation (A.45) and k& = 0, it follows that the equation o) = aq) is
equivalent to the following equation:

ab  (1—a)(1—-0)

—_— = 3.349
P(o) (1 =p@)? ( )

Hence, in order to show the present Theorem, it suffices to show that (g can take any
value from zero to one under the condition of (3.349).
The equation (3.349) is equivalent to the following equation:

(1 —2pey)ab=(1—-a— b)p%o). (3.350)

We can interpret this equation as a relation between a and b which can be expressed as a
hyperbola and a straight line. To see this, we perform substitution of the equations k = 0
and (A.34) in the probability p( of (3. 350) and the following transformation:

[1—2(1 = A)b—2X\2alab = (1 —a—b)[(1—X\2)b+ \a)?,

= —ab+ (1 =222 + 2ga? +2(1 — M) \2ab + (1 — AD)2ab? —

0 = (b—a)[—(1—a)arg+b(1 —A2)* —b*(1 — A\2)?].

After the transformation of the expression in the last parentheses of (3.351), we obtain
the following equation:

0=(b—a) [Ag (a— %)2 — (1= \2)? <b— %)2+ ! _4%3] . (3.352)

Then, the condition «(g) = ay) is equivalent to that a = b or

1\? 1\> 1-—2\2
A <a—§) — (1= X2)? (b—i) S 2, (3.353)

In the former case, after substitution of the equations @ = b and £ = 0 and (A.34) in
(3.349), we find that the equation a = b is followed by o) = any = 1. In the latter case,
let us examine (3.353) in detail. Because 0 < Ay < 1, we examine (3.353) in the following
five cases: A\g=0,0< X <1/2, \g=1/2,1/2 <Xy <1and A\g=1.

First, if 0 < Ao < 1/4/2, (3.353) is equivalent to the following equation:

1\’ 1\* 1—2x2
(1—A2)? (b—é) - (a—§> i 2> 0. (3.354)

This is expressed as hyperbolas in Fig. 3.14(a). Note that o) = 1 at (a,b) = (1,1)
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Figure 3.14: The hyperbolas where the measurement parameters a and b satisfy o) = o)

(a) for Ao = 1/+/3 and (b) for \g = v/2/V/3.

and o) = 0 at (a,b) = (0,1). The multiplication factor o) is continuous with respect
to the measurement parameters a and b, unless b = —)\?O)a/ (1 — )\%0)). The line b =
—)\%O)a/(l — )‘?0)) does not cross the upper hyperbola. Thus, if we move (a,b) from (1,1)
to (0,1) along the upper hyperbola, o) = o) takes any value from one to zero. Then,
Theorem 5 holds for 0 < Ay < 1/v/2.

Second, if 1/v/2 < Ay < 1, (3.353) is equivalent to the following equation:

1\2 1\? 1 —2)\2
—(1-X3)? (b—§) + A (a—i) i 0 >0. (3.355)

This is expressed as hyperbolas in Fig. 3.14(b). In the same manner as in the case of
0 < X\ < 1/4/2, if we move (a,b) from (1,1) to (1,0) along the right hyperbola, then
a0y = a() takes any values from one to zero. Thus, Theorem 5 holds for 1/ V2 < X\ < 1.
Third, if \y = 0, we have jap = jac = japc = J5 = 0. In addition, Theorem 5
assumes the equation jpc = 0. In this case, therefore, the state |¢)) is full-separable.
Thus, an arbitrary measurement is sufficient for our perpose, because any measurement
on the qubit A leaves [¢)) full-separable. Therefore Theorem 5 also holds in this case.
Fourth, if \g = 1/v/2, (3.353) is equivalent to the equation (b — 1/2)? = (a — 1/2)2.
This is equivalent to that (a = b)V(a+b=1). If a =b, then oy = oy = 1. f a+b =1,
then A2 = 1/2. The equations a +b =1, k = 0, A2 = 1/2, (3.349) and (A.34) give that
o) = aq) = 2a(1 — a). Thus, in this case, the multiplication factor oo = o) can take
any values from zero to one. Thus, Theorem 5 also holds in this case.
Finally, if A\g = 1, then A\ = Ay = A3 = Ay = 0 because Ei:o A? = 1. Thus the state
|1) is full-separable, and Theorem 5 holds in the same manner as in the case of Ay = 0.
Hence, Theorem 5 holds in all cases of \q. O

Step 2 of Case ¢

The next Theorem 6 gives a necessary and sufficient condition of the possibility of a C-
LOCC transformation from an EP-indefinite state whose japc is not zero. In the proof of
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Theorem 6, we also prove that an arbitrary C-LOCC transformation can be reproduced
by three DMTs. This corresponds to Step 2 of Case €.

Theorem 6 Let the notations |1) and ') stand for three-qubit pure states. We refer to
the sets of the K-parameters of the states |1) and |¢)') as (Kap, Kac, Kpc, japc, Js, Qe)
and (K, Kyos Koy Japes J5 Qe), respectively. We assume that |¢) is EP indefinite.
We also assume that japc is not zero. Then, a necessary and sufficient condition of the
possibility of a C-LOCC transformation from the state |1) to the state |¢') is that the
following two conditions are satisfied:

Condition 1: There are real numbers 0 < (4 < 1,0 < (g < 1,0 < (¢ <1 and

Clower < ¢ < 1 which satisfy the following equation:
Kp Cala Kap
Ko Cale Kac
Kpe | =¢ (slc Kge |, (3.356)
e Calrle Jasc
J5 CaCrCe J5
where o o
¢ _ JaBJac)BC (3.357)
OWer (Kap — Cejipe)(Kac — CBidpe) (Ko — Cajape)’

and we refer to ¢, Ca, Cp and (o as the sub parameter and the main parameters of A, B
and C, respectively.

Condition 2: Let us check whether the state |1) is é-deﬁm’te or not. When the state
|0} is C-definite, the condition is

Qe=Qp and (= (3.358)
where
5 _ Kap(4Jap — J2) + AjJap (3.350)
~ Kap(dJap — J3) + Aj(Kap — Codiape) (Kac — CBiape) (Ko — Codape)
When the state ) is C-indefinite, the condition is
‘Qle‘ = Sgn[<1 - C)(C - Clowe’r)]? (336())
or in the other words,
’ =0 (C:l or C:Clow@r)7
Qe{ #0 (otherwise). (3.361)

Comment: Note that Condition 2 means that ifthe state |i) is (-definite and the
state 1) is EP definite, the C-LOCC transformation from the EP-indefinite state |¢) to
EP-definite state |¢)) is impossible. Because [¢)) is EP-indefinite, 4Jap = JZ. Thus, if
tthe state [¢) is (-definite, A; > 0 has to hold. Thus, ¢ = ¢ is equal to

JaBiaci?
(= ~ ABACBC . (3.362)
(Kap — Cejape) (Kac — (Biape) (Ko — Cajape)
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Because of (3.362), the equation (3.356) is equivalent to

2 CalBiApiacibo

JAaB = ; - , 3.363
AP (Kac — (Bi%pe) (KBe — Cadpe) ( )
o Calejapiicibo

Jac = 5 - , 3.364
ae (Kap — CC]E&BC’)(KBC - CAJ,%&BC) ( )
2 CBCciaBiicibe

J = 5 - . 3.365
BC T (Kap — Coddpe) (K ac — CBiAnc) ( )

Because of Kap — (cilipe > Jap: Kac — (silipe = Jic Kpe — Cajhpe = Jhe and
(3.363)—(3.365), if japjacipc = 0, at least one of jy5, jio and jjp is zero. Thus, if )
is EP-indefinite and (-definite, the state [¢/') has to be EP-indefinite.

Proof: First, we show that if the state |¢’) is EP indefinite, Condition 1 is a necessary
and sufficient condition for the possibility of a C-LOCC transformation from the state
|1)) to the state |¢'). In this case, we can neglect the entanglement charge Qe and the
J-parameter J5, because both of the states 1)) and |[¢’) are EP indefinite. The necessity of
Condition 1 is clear because of Lemma 2 and (A.40)—(A.42). Let us show the sufficiency.
At first, we show the sufficiency in the case that at least one of the main parameters (g4,
(p and (¢ is zero. We can assume that (¢ = 0 without loss of generality. In the present
case, we can reproduce the change of entanglement parameters (3.356) as follows:

1. We operate a dissipationless C-DMT whose transfer parameter is zero.

2. We operate an A-DMT whose transfer parameter is equal to K5/ Kap.

The first of the above is possible because of Lemma 4. The second of the above is possible
because of Ref [14]. Next, we show the sufficiency of Condition 1 in the case that none of
the main parameters (4, (g and (¢ is zero. The state [¢)') is EP indefinite, and thus at least
one of K'yp, Ky and K is equal to j%5.. Thus, at least one of (Kpc, Ca), (Kac, Cg)
and (Kag, (c) is equal to (j3p0, 1), because of jizc < Kap, jagc < Kac, jage < Kpe,
0<¢<1,0<¢g<land0 < <1. We can assume that (Kap,(c) = (j450,1)
without loss of generality. Now we can reproduce the change of entanglement parameters
(3.356) in the following three steps:

1. We operate an A-DMT whose main and sub parameters are (4 and one, respectively.
2. We operate a B-DMT whose main and sub parameters are (g and one, respectively.
3. We operate a C-DMT which makes all entanglement parameters multiplied by (.
The first and second of the above are possible because of Lemma 4. The third of the
above is possible because of Theorem 5.

Second, we prove the present theorem in the case where if the state |¢') is EP definite.
Because of Theorem 1, a DMT from an EP-indefinite state to an EP-definite state is
possible only if the EP-indefinite state is ¢-indefinite. Because of Corollary 1, a DMT from
a (-definite state to a (-indefinite state is impossible. Thus, a C-LOCC transformation
from an EP-indefinite state to an EP-definite state is possible only if the EP-indefinite
state is C-indefinite. Because (¢ < 1) = (Al orm > Ay) and (Qower <€) = jpcsinps >
Jpc sin s, the equation |Qe] = sgn[(1 — ¢)(¢ — (ower)] has to hold. Thus, if the state
|¢") is EP definite, Condition 2 is necessary. The necessity of Condition 1 is clear because
of Lemma 2. Lastly, we prove the sufficiency of Conditions 1 and 2. Let us assume that
the states |¢) and |¢’) satisfy Conditions 1 and 2 and that the state [¢)) is EP indefinite.
We can assume that j45 = 0 without losing generality. Then, we can reproduce the
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transformation from the state [1)) to the state [¢)) as follows:
1. We operate a dissipationless A-DMT whose transfer parameter is equal to /(4.
2. We then operate a dissipationless B-DMT whose transfer parameter is equal to 1/Cg.
3. We finally operate a C-DMT whose main and sub parameters are equal to (¢ and (,
respectively.
The first and second of the above are possible because of Lemma 5. The third of the
above is possible because of Theorem 1. Thus, if Conditions 1 and 2 are satisfied, the
C-LOCC transformation from the state |¢) to the state |¢)) is possible. O

Note that we have also proven in the above that an arbitrary C-LOCC can be repro-
duced by three DMTs.

Step 3 of Case €

In section 6.3.3, we show that a necessary and sufficient condition of the possibility of a
deterministic LOCC transformation from an EP-indefinite state is equivalent to that of a
C-LOCC transformation from an EP-indefinite state.

Theorem 7 Let the notations 1) and |¢') stand for three-qubit pure states. We refer to
the sets of the K-parameters of the states 1) and |¢") as (Kap, Kac, Kpc, japc, Js, Qe)
and (K5, Koo, Koy apes J%, @), respectively.  We assume that the state |¢) is EP
indefinite. We also assume that japc # 0. Then, a necessary and sufficient condition of
the possibility of a deterministic LOCC' transformation from the EP-indefinite state |1)
to the state |¢') is that the following two conditions are satisfied:

Condition 1: There are real numbers 0 < (4 < 1,0 < (g < 1,0 < (¢ < 1 and

Clower < ¢ < 1 which satisfy the following equation:

Kip Caln Kap

K¢ Cale Kac
Kpo | =¢ (slo Kpe |, (3.366)

Jise CaCBCe JaBc

J Ca¢BCe Js
where 7
ap

¢ = : . . : 3.367
lower ™ (|, — Cedape) Eac — (Biape) Kpe — Cajine) ( )

and we refer to ¢, Ca, (g and (¢ as the sub parameter and the main parameter A, B and
C, respectively.

Condition 2: Let us check whether the state |1) is C-definite or not. When the state
1)) is C-definite, the condition is

Qe=Q and (= (3.368)
where

Kap(4Jap — Jg) + AJJap

¢ : : S—
Kap(4Jap — J2) + A j(Kas — Cedipe) Kac — Csiape) Kse — Cciape)

(3.369)
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When the state ) is C-indefinite, the condition is

|Q/6| = Sgn[(l - C) (C - CZO’LUGT’)]’ (3370)
or in the other words,
, J =0 ((=1or(¢=( );
Qe{ #0 (otherwise). fower (3.371)

Comment1: In the same manner as Theorem 6, Condition 2 means that if the state
1) is C-definite and the state |¢’) is EP definite, the C-LOCC transformation from the
EP-indefinite state |1)) to the EP-definite state |¢’) is impossible.

Comment2: In general, if the state [1)) is (-definite, at least one of 4Jap > JZ and
Ay > 0 holds. In the present theorem, we have 4Jap = JZ = 0, because [¢) is EP-
indefinite. Thus, if the state |¢) is -definite, A; > 0 has to hold. We use this fact for
performing the proof of the present theorem.

Proof: To prove the present theorem, it suffices to show the following statement
S’: “An arbitrary deterministic LOCC transformation can be reproduced by a C-LOCC
transformation.” We show this statement by mathematical induction with respect to IV,
which is the number of times measurements are performed in the deterministic LOCC
transformation. If N = 1, the statement S’ clearly holds. We prove the statement S’ for
N = k + 1, assuming that the statement S’ holds whenever 1 < N < k.

Let the notation 77, stand for a deterministic LOCC transformation with N = k + 1.
Let the notation {‘w(i)>} stand for the results of the first measurement in the deterministic
LOCC transformation 77, which we refer to as the measurement {Mg|i = 0,1}. We can
assume that the operator M acts on the qubit A without loss of generality because
the EP-indefinite state [¢) is arbitrary except for its EP indefiniteness. Let the notation
(KXJ)B,KX)C, Kg)c,j%gc, Jéi)) stand for the set of K-parameters of the state [p®). We
define the measurement parameters a, b, k and 6 as (A.32) and (A.33) corresponding to
the measurement M ;). We also define multiplication factors {a?} as in (A.45). Because
of (A.40)—(A.42), the multiplication factor a(?) satisfies that

(1) (1) ()
a(z) — j.AB _ j'AC _ JABC (3372)

JAB  Jac  JjaBc

Because of the assumption for N = k, a C-LOCC transformation T(?) can reproduce
the transformation from the state [¢) to the state [¢’). The C-LOCC transformation
T(% consists of an A-DMT Tfli), a B-DMT Tg) and a C-DMT Tg) (Fig. 3.15). We refer
to the sets of the main parameter and the sub parameter of DMTs Tf(‘i), Tg ) and Tg) as
(Cﬁf), ¢A0), (Cg), ¢(B®) and (C(Ci), ¢¢0)), respectively. In the same manner as in Theorem
2, the following equation has to hold:

K wa (2K
Ky | e <a<z>>(2{(w
Ko | = ey Kf. (a7
i’ i) (i) (i )24
JABC C{E‘)C]g)(é) (al?) JABC
J! (i) (i) ~(3) J&
Ca'Cp'Co 5
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Figure 3.15: The deterministic transformations from the states {|4))} to the state |¢')
which are reproduced by C-LOCC transformations.

where,

(O = (A BOCE) (3.374)

First, let us show that J! = 0. Because the state |¢)) is EP indefinite, we have J5 = 0.
If we can prove Ji = 0, the last row of (3.366) obviously holds and hence we can leave J;
and J; out of the discussion. First, (3.373) gives that

Ty = ¢l (3.375)

On the other hand, the equation (A.26) gives that
5 = 2550 878 = AP cos o). (3.376)
Because of the equations jﬁ& = aj,5 and jg% = a®jac, we can transform (3.376) as

follows: , ' N N :
) =200 japjac08 ) = AN cos ). (3:377)

Then, (3.377) and (3.375) give the following equation:
Jo =T 2ja5iac AP AY — APAD cos @), (3.378)

where the product T' = (o®)2¢0¢P¢W ¢ is independent of i because T' = j25/72 se-
From (A.47) and (3.378), we obtain that

1
Jé = Zp(l)(]é =TI. 2jABjAC()\2)\3 — )\1/\4 COSs QO) = FJ5 (3379)

=0

Hence J! = 0 because J; = 0. We thereby leave the J-parameters J; and Jf out of the
discussion hereafter.
Second, we prove the statement S’ in the case of j’; 5~ = 0. In this case, the equation

0 = jhpc/iasc = a4/ g<i>g§f)(§"gg) holds. This equation means that at least one of a(¥,
< CX), g) and C(Ci) is zero for each i. Thus, substituting o? = 0, ¢®) = 0, CX) =0,
Cg) =0 or C(CZ) = 0 in (3.373), we find that if the deterministic LOCC transformation T},
is executable, the state |¢)) is a full-separable state or a biseparable state. Let us consider
the case where the remaining entanglement of the state [¢)') is j/, 5. This assumption means
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Figure 3.16: The concept of the proof of Theorem 7 in the case of jap = 0 A j5o # 0.
Either of Routes 0 or 1 can be realized by a C-LOCC transformation.

Jhe = Jse = Jape = Ji = 0. Note that j/y5 may be equal to zero. Then, Theorem 4 in
the section 6.2 guarantees that if the deterministic LOCC transformation 77, is executable,
the inequality 75 < v/ Kap must hold. We already know from Lemma 4 that if j/; <
v K ap, the deterministic LOCC transformation 77, can be reproduced by performing a C-
dissipationless DMT and an A-dissipationless DMT whose transfer parameters are equal
to zero and j'y5/v/Kap, respectively. This means that the deterministic transformation
Ty, is reproduced by a C-LOCC transformation, and thus we have proven the statement
S" in the case where the remaining entanglement of the state [¢)') is j/5. In the same
manner, we can prove the statement S’ in the case where the remaining entanglement is
Jhe or jpe. Therefore, we have proven the statement S’ in the case of j/y 5 = 0.

Third, we prove the statement S’ in the case of j4z- # 0. At least one of the J-
parameters jap, jac and jpc is zero because the state |¢) is EP indefinite. First, we prove
the statement S’ in the case of j/y 5o # 0 A jap = 0 by showing that the transformation

from the state |1} to a state [¢")), which is transformed from the state | by the DMT
TX) on the qubit A, can be reproduced by a DMT for at least one of i (Fig. 3.16). The sets
of the J-parameters of {|¢())};_q; are glven by (jAB =0, O)LyAC,jJ(Bé, 150, QY = 0)
and (jap = 0,aWjac, jj(gé, M jae, Qe = 0), respectively, because the first measure-

ment M;) is operated on the qubit A. Let (gAB,ij),ggg,jjgc, ) ) stand for the set of
the J-parameters of the state |z// > Because the state W’ > is transformed from the
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state ‘w(i)> by the C-LOCC transformation T/‘f’, the following equations hold:

A = @V2(iR)? = (aa)2j3, =0, (3.380)

(Ghe)? = (@P2(50)? = @V a )23, (3.381)

(hpe)? = (Oég))Z(J'XJ)BCP—(O‘S)O‘()) Jancs (3.382)
(Gae)? = (5 + 891 = (@) he)?

= <j§>c>2+m (@) ()23 e, (3.383)

Q) =0, (3.384)

where we used the fact jap = 0, while oz(j) and ﬂg) are the transfer and dissipation

parameters, respectively. Let us show that the changes of the entanglement parameters

(3.380)—(3.383) can be reproduced by a C-LOCC transformation for at least one of 7.
We prepare to prove this statement through (3.393). The inequality

(4)

jseiise = ipcajape < jhbiase (3.385)

holds for at least one of 4, because the expressions (A.50) and jpo < >, pij ch gives that

JBC Y Pli) aDjape < jape Y, pl)j(B)C On the other hand, the equations (3.382) and

(3.383) and the inequalities 0 < a(A) <1land0< ¥ <1 give the following inequality:

j6 3 \/(j]g)C)Q + BV = (@) (@250 D)

aDjape ~ Oé(i)ag)jABC Jégc

(3.386)

The inequalities (3.385) and (3.386) yield the following inequalities for at least one of i:
(1) /(1)

Jso o _Jpc o Jso (3.387)
jape ~ @Wjapc jégc

We show the right-hand side to be independent of ¢ as follows. We can reproduce the
transformation from the state W/(Z ) to the state |¢') by performing DMTs TB and T
successively, and thus the following equation holds:

Japc _ Jpc _ () () 3.388
G ) ‘B (3.588)
Japc  JBC

From this equation, we find that jgg / jggc = jpo/ e is independent of i. Thus,

. /(%)
JBC. < JBC (3.389)
JABC — ja%o

holds for both 4. On the other hand, the inequality (j\1)2 + (jhe)? < j2pc + 3¢ holds
for at least one of 7, which has been shown in the proof of Theorem 4. We can assume
that the inequality

G5+ ('0he)? < Fipe + 2 (3.390)
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holds without loss of generality. The transformation TX) is an A-dissipative C-LOCC
transformation, and hence

(o) + (@Pajasc)’ = (e + 05 [1 = (0] () fmo + (@70l jasc)
< (o)’ + (libo)’ (3:391)
holds for every i. Because of (3.390) and (3.391),

() + (@0l japc)? < jApe + ibo- (3.392)

The expressions (3.382), (3.389) and (3.392) give the following inequality:

(a2 (o + fhpe) < (Gpe) + (@0 janc)® < fipe + dhe- (3.393)
Now, we have completed the preparation for reproducing (3.380)—(3.383).
Let us show that the transformation from the state [¢) to the state W’ (0)> is reproduced
by performing the following two steps:
1. we multiply all entanglement parameters by a real number &;
2. we perform a dissipationless A-DMT whose transfer parameter is o/,
where the transfer parameters & and o’ are defined as follows:

0
57 Use) + Uiipe)”

_ , 3.394
JBe + JiBe ( )
(0) ,,(0)\2 -2 -2 7(0) 1\ 2
02— (aPay”) _ _ Jbc Tt Jasc Jasc | (3.395)
a2 (75e)? + (FApe)? \Jasc

Theorem 5 and Lemma 4 guarantee that these two steps are possible if the inequalities
0<a<1land0 <« <1 hold. Indeed, the inequalities (3.393) and (3.394) guarantee
the inequalities 0 < (0@a'?)2 < 2 < 1. The equation (3.395) and the inequalities
(a(o)af))Q < a? <1 also guarantee the inequalities 0 < o/ < 1. Therefore, the two steps
indeed reproduce the transformation from the state [¢) to the state ‘@Z)’(O)> because of
(3.380)—(3.382), (3.394), (3.395) and the following equations:

0
&*a” = (e 0)? = (“BC> : (3.396)
JABC
j/(O) 2
~9 . ~ . ~ . . . 1(0
04291290 +a*(1 - 0/2).712430 = 042(31290 + ]12430) - (ing) ]ElBC (]B((;) : (3.397)

We have proven that the two steps reproduce the change of the entanglement parameters
as well. To summarize the above, we reproduce Route 0 of Fig. 3.16 by the two steps.
We have thereby proven the statement S’ in the case of j4p = 0. In the same manner,
we can prove the statement S’ in the case of j4o = 0.

The rest is the case of jpc = 0 A jygo # 0. In this case, we can assume that jap # 0
and jac # 0; otherwise we can use the proofs above. The proof of the statement S’ in
this case is provided for the following two cases:
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Case 1 k #0;
Case 2 £ =0.

In the Case 1, the equations (A.44), japc # 0 and jpc = 0 give that the expression
jg)c # 0 holds for all i. Thus, the following equation holds:

Ky e (@)K 4
Kac A c CX) C(Cz) (Oz(l) )?-f(AC
i) ~B(i 7 7 % 7
e | =¢ (0)BO) ) W Kt
Jhpo e ()53 e
J! (i) +0) () Ji
Ca'CpCe 5
(3.398)

where (¢{), ¢A0), (¢, (B(’ ) and (¢, ¢°®) are the sets of main and sub parameters of
the DMTs TIE‘), Tr(a and T , respectiveiy

Here, the product (Oé( )2 C(l (p ZC J¢ADBE CE) must be independent of i because
i3scliAse = (@D)2 Q¢ ¢ A0 B0, Slmﬂarly, the product (a?)2¢) (¥ ¢AD (PO OO
must be independent of i because K'yr/Kac = (a?)? C(l Cl)CA D¢BOCCE - Hence, the
main parameter ( B must be independent of 7. In the same manner, we can show that the
main parameter Cc must be also independent of i. Note that the DMT T is a DMT
between EP-definite states and that the step 2-1 of Lemma 6, (A.52) and (A.54) guaran-
tees that the final state of a DMT between EP-definite states is (-definite. Thus, the final
states of Tff) are C-definite. Thus, the sub parameter (¢ is equal to the (-specifying ¢
of the final states of T’ g). Hence, the sub parameter (¢ is a monotonously increasing
function of the main parameter Cg), because the (-specifying parameter of the final states
of the DMT T](; Vis a monotonously increasing function of the main parameter Q?. Thus,
¢¢ i)C @ is a monotonously increasing function of the main parameter Cg). This means

@ is also determined uniequly. Thus,

that if the main parameter Cc is specified, (€0 Cor
¢¢ ”CC is independent of ¢ because the main parameter Cg) is independent of 7. Hence,
the entanglement pararneters of the initial state of the DMT T, g ) is independent of i, be-
cause Co e C ) and |t)") are independent of i. In the same manner, the entanglement
parameters of the initial state of the DMT Tl(g is independent of i. Let us refer to the
initial state of Tg) as |¢") (Fig. 3.17).

Therefore, we only have to prove the following statement Sy: “A deterministic LOCC
transformation which consists of the measurement Mg and the DMT TX) can be re-
produced by an A-DMT whose DM is a two-choice measurement.” The reason why
we have to prove the statement S, is that a C-LOCC transformation consists of DMTs
whose DMs are two-choice measurements. We prove the statement Sy by showing that
an A-DMT whose DM is a two-choice measurement can realize the change of the en-
tanglement parameters which is caused by performing the measurement M(;, and the
DMT T 151) successively. Let the notation [¢") stand for the state which is transformed
from the state }w(i)> by the DMT T X); we just proved that |¢"”) must be independent
of i (Fig. 3.17). We denote the set of entanglement parameters of the state [¢") in
Fig. 3.17 by (345, J4cs Ihes Japes J5, Q). We prove the statement Sy by showing that
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Figure 3.17: The concept of the statement S;. The Route Ss is realized by an A-DMT
whose DM is a two-choice measurement.

(jaBsjac, JBc, japc, Js, Qe) and (jap, Jacs JBes Japes Ji » Q) satisfy Conditions 1 and 2
of Theorem 1.

Let us prove that the sets of J-parameters (jag, jac, jBc, japc, Js5, Qe) and (345, Jac, Jhos Tape, I8 €
satisfy Condition 1 of Theorem 1 by examining the change of the J-parameters jag, jac,
jiBc, japc and Js. First, we examine the change of the J-parameters jap, jac and jagc-
From (A.40)—(A.42), we have the following three equations:

72 = (a2 (3.399)
7z = (aPaD)242,, (3.400)
ii5e = (0 a2 e, (3.401)

where ag) is the transfer parameter of the DMT T(i)

Second, we examine the change of the parameter J5. We have alread. shown that
J{ = 0. Thus, the equation J! = 0 holds, because of 0 = J; = C (Z)CB(i)CC(i)Jg’.
Because the state |¢) is EP-indefinite, the equation J5 = 0 holds. Hence,

J! = (aP a2 ;. (3.402)

Third, we examine the change of the parameter jpc and prove that the sets of the
J-parameters (jag, jac, jBo, japc, Js) and (jg, jh¢es JBos Iase, JE ) satisfy Condition 1 of
Theorem 1. Because of Lemma 5, at least one of Kgg and Kg()J is less than or equal to
Kpc. Because both of TX) are A-DMTs, the inequalities K, < Kgé hold. Thus, we
obtain K}~ < Kpc. Because of Lemma 2, at least one of jg)c is more than or equal to
J1Bc. Because both of T’ X) are A-DMTs, the inequalities jg)c < j%e hold. Thus, we obtain
Jjc < jhe- Because of K < Kpe and jpe < jpe, we can find a parameter 0 < 84 <1
which satisfies .

J50 = dho + Ba(l = (@Da)) i po. (3.403)
Note that (3.399)—(3.403) mean that the sets of the J-parameters (jag, jac, jsc, jasc, J5)
and (j g, 4 Ihes Japes JY) satisfy Condition 1 of Theorem 1.

Next, let us prove that the sets of the J-parameters (jag, jac, Jsc, jasc, Js, Qe) and
(345 Thcs %oy Tapes I8, Q&) satisfy Condition 2 of Theorem 1. First, we prove this in
the case where the state [¢) is 5—indeﬁnite by examining the change of the entanglement
charge Q4. In other words, we prove that the entanglement charge Q¢ is zero if and only
if B4 is zero or one. Because of (A.19) and (A.30), the entanglement charge Q¢ is zero if
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and only if at least one of A’ and sin ¢} is zero. First we prove that sin¢f > 0 if and
only if 54 > 0. Because of J =0, (3.399) and (3.400), we obtain

J//
-1/ " 5
JBcCos s = ———— = 0. 3.404
be ° 2J4BJAc ( )
From (3.403), (3.404) and jpc = 0, we obtain

Jiiesin® @ = ji — fie cos o = Ba(1 — (@Da)) e (3.405)

Thus, jjeosin? > 0 if and only if 54 > 0. Because the state |¢") is EP definite, 5%, > 0
holds, and thus sin ¢f > 0 if and only if 54 > 0. Next we prove that A’; > 0 if and only
if 1 > 3. From (3.399)-(3.403), we obtain

Ay
(ata)?
= K —4KapKac(jho + Ba(l - (a(i)ag))Q)jch + (a(i)ag))jSBC)
= Ay +4KapKaci%po(l - Ba)(1 - (aPa})?)
= 4KapKaciipe(l = Ba)(1 — (aPal))?). (3.406)

= K — 4K spKacKpe

"
AIlOl"Hl

Thus, A’; > 0 if and only if 1 > . Hence, the entanglement charge Q¢ is zero if and only
if the dissipation parameter (34 is zero or one. Thus, the entanglement charge Q¢ and the
dissipation parameter 54 satisfy Condition 2 of Theorem 1.

Now, we have proven that if the state |¢) is (-indefinite, the sets of the J-parameters

(jas,jac,jBc, jasc, Js, Qe) and (JAp, J4cs Jhes Jipes JE Q) satisfy Conditions 1 and 2

of Theorem 1. Thus, we can reproduce the transformation from the state [1) to the state
|y by an A-DMT whose transfer parameter and dissipative parameter are a(i)o&) and
(4, respectively. Hence, we have completed the proof of the statement S5 in the case that
the |¢) is C-indefinite.

Next, we show the statement Sy in the case that the state |¢) is (-definite. In this
case, no A-DMT transforms the EP-indefinite state |¢) into the EP-definite state [¢').
Thus, we only have to show that if the state |¢) is (-definite, the deterministic LOCC
transformation which consists of the measurement M(; and the DMT TX) from the EP-
indefinite state [¢)) to the EP-definite state |¢)”) is impossible. In order to prove this,

we show that if the deterministic LOCC transformation is executable, the state ‘@Zz(i)> is
(-definite. .

We prove that the state ‘w(i)> is (-definite by reduction to absurdity. Let us assume
that the state ‘¢(i)> were (-indefinite. If |1/)(i)> were (-indefinite, both of sin @éi) and
Af]i) would be zero. Because of (3.404) and because the transformation 7' X) is a DMT,
the equation jg)c cos gog) = jpocospy = 0 would hold. Because of sin gog) = 0 and

jg)c coS cpg) = 0, the equation jg)c = 0 would hold. This contradicts the fact that the state
W(% is EP-definite. Note that the state ‘w(i)> is EP-definite because of the assumption

k # 0. Hence, the state |¢(i)> is C-definite.
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Next, we will derive the equations

"
1 — o Anorrn
Ahorm T 4K 4K acjge sin® of

A(i) ~
= A0 ey = 1= (3.407)
Anorm + 4K apKac(jpe)? sin® o5

and
QevVA,
vV Alorm
for Q% # 0. We will use them to prove thatthe state |1)) is (-definite, the deterministic

LOCC transformation from the state |¢)) to the state |¢)”) is impossible. Now we assume
that Q¢ # 0 until the end of derivation of (3.408). Let us derive (3.407) and (3.408).

Because the state |¢(i)> is C-definite, and because the DMT TIE‘) is an A-DMT, we obtain
Al/
A"+ AK" S K j72, sin? ol
A + 4K K e (ipe) (1= B)(1 = (a9))
AD +AK (o) (1 (a)2) + 4K KL (i)? sin” of
A O AP K () (1 (0)) K (L K () sin? o)

= 0. (3.408)

o
1_ A —

B J A0 L KK L sin? )
AP + 4K KL G he)2 (1 — (00)2) + 4K KL (550 ? sin? o)
A(l) :
= —1- 0, (3.409)

A +4KABKAG(JBC) sin?
Now, we define

"
AJ

Ahorm = W = K? — 4K apKac K}, (3.410)
(@) — A(Z) 2 ()
AIlOI'IIl = (Oé(z)) = K 4KABKACKBc- (3411)

The equation (3.409) can be transformed to (3.407) with

1
14" — Afiorm
A T " 12 a2 N
Afhorm + 4KapKacjge sin® ¢

o A

A(i) ~
= — o~ —1- 3y (3.412)
Anorm + 4K apKac(jpe)? sin® ¢y

(G50)*sin® o Aflprm
]g'zc sin’ o5 Aform

(3.413)

Because a DMT between C definite states conserves the entanglement charge, the expres-
sion Qe Qe Q% # 0 holds. Because we have assumed sin #(®) > 0, the equation
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Qg)) = (el) = Q¢ # 0 is equivalent to the following equations:

1 )
()\(0))2 K5 + Qg A norm( )2 = Ij(a(o))zu VA, (3.414)
0 (0) ’ '
2K\, b 2Kpe

1
Ks + Qlsy/AD BRI CRENAY,

AWy2 (1)
( 0 ) 2K(B% (O‘ ) 1_b<04 QKBC’ )

(3.415)

where s and ¢ are determined as follows: if sin ™ > 0, s is +1; if sin ) < 0, s is —1;
if Qe =1, tis +1; if Qe =—1,tis —1;if Qe =0, ¢ can be either +1 or —1. Because of
(3.414), (3 415) and KBC/KBC = (K2 - Aﬁ%rm)/( — Aj), we obtain the expression of

the probability p in terms of A; and Anornﬁ

otVAy—s norrn

_ (3.416)
\V A:(r?g)rm A Anl())rm
Because of (A.49) and jpc = 0, we have
pivksin @ 4 s(1 — p)jGlsin M = 0. (3.417)
From (3.417), we obtain
-(1) (1)
— 8] e Sin gy
P= "o © _ .0 " (3.418)

Jpesings’ — Sjpesingy

From (3.413), (3.416), (3.418) and jpc = 0, we arrive at (3.408)

Next, let us prove that if the state [¢) is (-definite, the deterministic LOCC transfor-
mation from the state |¢) to the state |¢)”) is impossible by reduction to absurdity. Let us
assume that the state |1)) were (-definite and that the deterministic LOCC transformation
from |¢) to [1)") were executable. Because [¢)) is EP-indefinite, sin ¢ is zero. Because the
state [1) is C-definite, at least one of sin ¢ and A; would not be zero. Thus, A; > 0 would
hold, but the equation (3.408) contradicts Q¢ # 0 and A; > 0. Thus, if the equations
(3.408) and Q¢ # 0 hold, the deterministic LOCC transformation from [¢) to |¢") is
impossible. We have already proven that if the entanglement charge Q¢ is not zero, then
(3.408) holds. Thus, we only have to prove Q¢ # 0. Because Ag)orm > Ay holds for at
least one of ¢ and because of (A.54) and A; > 0, the inequality A’ > 0 holds. Because
|¢") is EP definite, the inequality j%~ > 0 holds. Because of (3.404) and jpc = 0, the
inequality 7% sin? > 0 holds, and thus sin¢? > 0. Because of sin¢f > 0 and (A.30),
the inequality sin ¢” > 0 also holds. Thus, sin¢” > 0 and A’} > 0 hold, and thus Q¢ # 0
holds. Thus, if the state |¢) is (-definite, the deterministic LOCC transformation which
consists of the measurement M(;) and the DMT TX) from the state |¢) to the state |¢")
is impossible. Now, we complete the proof of the statement S;. Thus, we complete the
proof of the present theorem in the Case 1.

In the Case 2, k = 0, the first measurement M;) only makes all entanglement param-

eters multiplied by a® (= vab/p() or = /(1 —a)(1 — b)/(1 — p))). Note that jpc =0
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holds now. We can assume that a(¥ is less than o) without loss of generality. Then,
(A.50) is followed by the inequalities 0 < a(® < 1. Theorem 5 in the section 6.3.1 tells
us that we can take a DMT 7", which makes all entanglement parameters multiplied by
al®. The DMT T, realizes the transformation from the state |¢) to the state [1)().
The assumption for N = k guarantees that a C-LOCC transformation can realize a trans-
formation from the state }¢(0)> to the state |¢'). Hence, the statement S’ also holds in
the Case 2.0

Note that Main Theorem 2 also has been proven, because of the statement S” and
because an arbitrary C-LOCC transformation can be reproduced by three DMTs.

3.5.4 Case?®

Lastly, we carry out Steps 1-3 for the Case ®, where japc = 0 for the initial state. We
present Steps 1-3 here again.

Step 1 We give a necessary and sufficient condition of the possibility of a two-choice
DMT which transforms an arbitrary state |¢)) to another arbitrary state |¢).

Step 2 We give a necessary and sufficient condition of the possibility of a C-LOCC
transformation from an arbitrary state |¢)) to another arbitrary state |¢'). We also
prove that an arbitrary C-LOCC transformation can be reproduced by performing
an A-DMT, a B-DMT and a C-DMT, successively.

Step 3 We show that an executable deterministic LOCC transformation from an arbi-
trary state [¢) to an arbitrary state [¢)') can be reproduced by a C-LOCC trans-
formation. Conversely, a C-LOCC transformation can be reproduced by a deter-
ministic LOCC transformation, because a C-LOCC transformation is also a deter-
ministic LOCC transformation. Then, we find that the condition given in Step 2 is
also a necessary and sufficient condition of the possibility of a deterministic LOCC
transformation and that an arbitrary deterministic LOCC transformation can be
reproduced by performing an A-DMT, a B-DMT and a C-DMT, successively.

We carry out these Step 1-3 in the following Theorem 8.

Theorem 8 Let the notations |¢) and |[¢') stand for three-qubit pure states. We refer to
the sets of the K-parameters of the states 1) and |¢') as (Kap, Kac, Kpc, jasc, Js, Qe)
and (K'yg, Koo Ko, Japo, I8, Qe), respectively. We assume that japc = 0. Then, a
necessary and sufficient condition of the possibility of a deterministic LOCC transforma-
tion from the state |1) to the state |¢') is that the following two conditions are satisfied:
Condition 1: There are real numbers 0 < (4 < 1,0 < (g < 1,0 < (¢ <1 and

Clower < ¢ < 1 which satisfy the following equation:
Kyp CaCr Kap
Ko Cale Kac
Kpe | =¢ Celc Kpe |, (3.419)
e CalBGe Jagc
J5 CaCBCc Js
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where
(Kap — Ccdape) (Kac — CBiape)(Kpe — Cajipe)’
and we refer to (, Ca, (g and (o as the sub parameter, the main parameter of A, B and
C, respectively.

Condition 2: If the state [/} is EP definite, we check whether the state | is C-definite

or not. When the state |¢) is (-definite, the condition is

Clower = (3.420)

Qe=Q and (=, (3.421)
where
 Kap(AJap — J3) + As(Kap — Cefape)(Kac — Csidpe) Epe — Cojdpe)
When the state 1) is C-indefinite, the condition is
|Qel = sgn[(1 — O)(C = Coer)]s (3.423)
or in the other words,
’ =0 (C:l or C:Clower)7
Qe{ #0 (otherwise). (3-424)

Proof: First, we simplify (3.419). Let us show that we can leave japc, J5 and Qe out
of the discussion hereafter. First, j/ 5 = 0 follows from jipc = 0, because an arbitrary
measurement makes the J-parameter jspc only multiplied by a constant. Next, because
of (A.2)-(A.6) and the equation japc = 0, the equation J5 = 2japjacjpc holds. Thus,
in order to examine the change of the J-parameter Js, it suffices to examine the change
of the J-parameters jap, jac and jpc. Because of japec = 0 < g =0V Ay = 0 and
because if there is a zero in {\g|k = 0, ...,4} then sin p = 0, the entanglement charge Qe
is equal to zero. In the same manner, the entanglement charge Qg is also zero because of
Japc = 0. Thus, Qe = Q¢ = 0 holds. This equation satisfies Condition 2 of Theorem 8.
Let us show this. The state |¢) is (-indefinite, because japc = 0:

Ay = K3 —4Kap = J5 — AJap = 44pTacibesin® s
= 4jApJac A sin® o = 0, (3.425)

where we use sin¢ = 0. Note that sin ¢ = 0 holds when there is a zero in {\;|i =0, ...,4}
and that japc = Aoy = 0. Because the state |¢) is (-indefinite and because of Q6| =
sgn[(1 — €)(¢ — ower)] and ((Qower < ¢ < 1) A (Jape = 0)) = ¢ = 1, the equation
Qe = 0 satisfies Condition 2. Hence, in order to prove the present theorem, it suffices to
show that a necessary and sufficient condition is that there are real numbers a4, ag and
a¢ which are from zero to one and which satisfy the following equation:

/9 2 9 -9

JAB QAQp JAB

72 _ 2 9 )

JAc = 1%, Jac . (3.426)
72 2 9 )

JBC 05187 JBC
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Note that (3.426) and Js = 2japjacipc give Ji = a4a)a’Js, and that jagoc = 0 =
(Kap = jip) N (Kac = jic) N (Kpe = jhe)-

Third, we perform Step 1 of Case ©. In other words, we show that a necessary and
sufficient condition of the possibility of a two-choice A-DMT from the state |¢)) to the
state [¢)') is that there is a real number a4 which is from zero to one and which satisfies
the following equation:

Jic = oy Jac . (3.427)
ch 1 J%C

Substitution of the equations o = a4 and japc = jypo = 0 in Lemma 4 gives that
(3.427) is clearly a sufficient condition. Substitution of japc = 0 in (A.51) gives that
Jjeo < jpe < jpe; we thereby have jpe = jjo for an arbitrary A-DM. An A-DM
makes the J-parameters jz and jac multiplied by the transfer parameter a(®) = o) =:
aa. Hence, (3.427) is also a necessary condition. We thereby obtained a necessary and
sufficient condition of the possibility of an arbitrary two-choice DMT.

Fourth, we perform Step 2 of Case ©. In other words, we prove that a necessary and
sufficient condition of the possibility of a C-LOCC from the state [¢)) to the state ) is
that there are real numbers a4, ap and a¢ which are from zero to one and which satisfy
(3.426). We easily see that a transformation in the form of (3.426) can be reproduced
by performing an A-dissipationless DMT, a B-dissipationless DMT and C-dissipationless
DMT whose transfer parameters are a4, ag and a¢, respectively. Thus, the existence of
the real numbers a4, g and o which are from zero to one and which satisfy (3.426) is a
sufficient condition of the possibility of a C-LOCC from the state |¢) to the state [¢'). In
order to prove the necessity, we show that we can take the transfer parameters a4, ag and
a¢ for an arbitrary C-LOCC transformation. An arbitrary C-LOCC transformation T,
consists of A-DMTs {T a1, ..., Tar}, B-DMTs {Tgi, ..., Tpn} and C-DMTs {T¢y, ..., Ton}-
We refer to the transfer parameters of the DMTs as {aay, ..., aar}, {ap1, ..., apm} and
{act, ..., acn }, respectively. Then, the C-LOCC transformation can be reproduced by
performing an A-dissipationless DMT, a B-dissipationless DMT and a C-dissipationless
DMT, whose transfer parameters are Hle aai, [[1m, api and [}, aci, respectively; note
that we do not need to consider the dissipation parameters because japc = 0. We have
thereby proven that the existence of the real numbers a4, ap and a¢ which are from zero
to one and which satisfy (3.426) is a necessary and sufficient condition for a C-LOCC
transformation in the case japc = 0.

Fifth, we define the notations used to carry out Step 3. We refer to the first mea-
surement of the deterministic LOCC transformation as {M)|i = 0,1}. Let the nota-
tion {|¢)} stand for the results of the measurement {M;|i = 0,1}. Let the notation
(jgg,jgé,jg)c,jggc, Jéi)) stand for the set of the J-parameters of the state |¢()). We
define the measurement parameters a, by, kg 00 and o for {M|i = 0,1} as (A.32)
and (A.33), and (A.45), respectively.

Finally, we perform Step 3 of Case ©. In other words, we show the following statement
S”:. “An arbitrary deterministic LOCC transformation can be reproduced by a C-LOCC
transformation for japc = 0.” By carrying out Step 3, we show that the condition which
we have obtained in Step 2 is also a necessary and sufficient condition for a deterministic
LOCC transformation.
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Now, we can classify the sets of the initial and final states as follows:
Case 8-1 At least one of the J-parameters jag, jpc and jac is zero.

Case 8-2 None of the J-parameters jap, jpc and jac is zero, and at least one of the
J-parameters j'y 5, jpo and 7 is zero.

Case 8-3 All of the J-parameters jag, jpc, jac, jag, jpc and j'4o are nonzero.

Note that we already have japc = j4 o in the present Case D.

In Case 8-1 we derive the necessary and sufficient condition directly. In other cases,
Case 8-2 and Case 8-3, we prove the statement S” separately.

In Case 8-1, we first note that only the biseparable states are allowed as the initial
states in this case. We can assume that the only nonzero J-parameter is jsc without
loss of generality. We proved at the end of Sec. 2 (Fig. 3.5(b)) that there is no state
which has only two kinds of the bipartite entanglement. The set of full-separable states
and biseparable states which have the same kinds of bipartite entanglements is a totally
ordered set [14]. Thus, if we prove that we cannot transform a full-separable state or
a biseparable state into other type states with LOCC transformations, then we can de-
rive the necessary and sufficient condition, which reduces to the following: there is an
executable deterministic LOCC transformation from |¢) to |¢') if and only if jac > jhe-

Let us prove that we cannot transform a full-separable state or a biseparable state into
other types of states with LOCC transformations. In order to prove this, it suffices to show
that if jap = 0, the bipartite entanglement between the qubits A and B is always zero
after an LOCC transformation. An LOCC transformation is a set of measurements. Thus
it suffices to prove the following statement Sp: “A measurement transforms an arbitrary
state whose jap and japc are zero, only into a state whose j4p and japc are also zero.”
Then we have j’y 5 = jipo = 0 after all measurements. Let us show the above statement.
We already proved above that japc is zero after a measurement, we therefore prove the
statement only for jap.

Let the notation {M/,} stand for an arbitrary measurement. We take a state |¢)")

as an arbitrary three-qubit pure state and take states {|@D“(i)>} as the results of the
measurement {M; }, which is performed on the qubit A of the state [¢"). The nota-

tions (]AB,jAC,jBC,jABC, JY) and (]Zl(B)vjA(C)v];(C)’jABC’ Jé’ ) stand for the sets of the J-

parameters of the states [¢") and ‘77/1/ /@) > respectively, where we assume ;4 Be = ]Z‘(B)C = 0.
For each measurement {M,}, we define the measurement parameters aj,, b, k(; ,0(;
and o/ as (A.32), (A.33), and (A.45), respectively. Then the equatlons (A.40) (A.44)
give the equatlons /D" = jA(C) o/ 4" jlg% and jBC = BCb/ /p Hence, if 7/ 5,

J"e or jhe is zero, then .]Z‘(B), j;;(g or j Bé also must be zero, respectively. This means the

statement Sy is true.

Thus if the initial state [¢)) is biseparable, the final state |¢)') is also biseparable,
because |¢') is the results of LOCC transformations from the state |¢)). Thus, in Case
8-1, the necessary and sufficient condition is jac > j’o. Note that this condition is
equivalent to the equation (3.426), because jap = jpc = ji4c = jpe = 0 in Case 8-1.

In Case 8-2, where none of jap, jgc and jac is zero and at least one of jy 5, j5e
and j’o is zero, the initial state is EP definite while the final state is EP indefinite.
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Then Theorem 3 guarantees that the final EP-indefinite state |¢') is a full-separable state
or a biseparable state. In the case where the state |¢)') is full-separable, the transfer
parameters g, ap and a¢ which are all zero satisfy (3.426). In the case where the state
|¢") is a biseparable state, we can assume that j, 5 # 0 and j'; = jc = 0 without loss of
generality. Then, Theorem 4 and japc = 0 give that j 5 < jap. Hence, aa = j'5/jas,
ap = 1 and a¢ = 0 are indeed from zero to one and satisfy (3.426). Thus, we have proven
the statement S” in the Case 8-2 too.

In Case 8-3, where all of the J-parameters jag, jsc, jac, Jap, Jpo and jio are nonzero,
the existence of the transfer parameters a4, ap and ac which are from zero to one and
which satisfy (3.426) is equivalent to the following statement SD: There are real numbers
aap, asc and age which are from zero to one and which satisfy the inequalities

QAB = QACQBC, OBC 2> OABOAC, OAC = QBCOAR (3.428)

as well as the equations

aap = Jap/ias, @ac = jac/isc, apc = jpc/ibe- (3.429)

In order to see this equivalence, it suffices to note that the transfer parameters a4, ag and
ac can be expressed as o = aacapo/aap, @4 = aapaac/apc and a% = aapapc/AAc-

We show the statement S” by using the equivalence between the statement SD and
the existence of the transfer parameters a4, ap and ag. We show the statement S” by
mathematical induction with respect to the number of measurement times N. For N = 1,
the statement S” clearly holds. Let us prove the statement S” for N = k + 1, assuming
that the statement S” holds whenever 1 < N < k.

First, let us define parameters which are necessary for the proof. We refer to the first
measurement of the deterministic LOCC transformation from the state |¢) to the state
[Y") as {M;|i = 0,1} and refer to the ith result of the measurement {M)|i = 0,1} as

}¢(Z)>. Because of the assumption for N = k, the transformation from the state ‘@/J(i)> to

the state [¢) can be reproduced by a C-LOCC transformation. Thus we can define real

parameters alyp,, ol and algp as ol = Jhp/iip. ol = Jhe/ife and ale = jpe /i

which are from zero to one and which satisfy the following equations:

oy > alLae, (3.430)
aft > al{paliy, (3.431)
ol >l al)y. (3.432)

We define a real parameter 7% as 49 = jg)c /ipc and define o as the multiplication
factor of the measurement {Mg|i =0, 1}.

Next, we carry out the proof of the statement S” for N = k + 1. In order to show
this, it suffices to prove the following inequalities because of the statement SD:

QAR > QACQBC, QBC > QABOAC, CAC = OBCOAR, (3.433)
0<aup <1, 0<asc <1, 0<ape<1, (3.434)

where aap = jhp/jan, aac = jho/jac and apec = jpo/jpc. Note that the following

equations hold: . o o
® (’)aﬁ?c, Qapc = 7(1)045;)0. (3.435)

(@)
apap — & aAB? dpc — X
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Because of (3.435), the inequalities (3.433) is equivalent to the following inequalities:

0l > ol A0 (3.436)
YOl > ()2l o) (3.437)
0ol > a®ali) 4Ol (3.438)

Let us first prove (3. 434) and then (3.436)—(3.438). Because of (3.435), the quantities
) are independent of 7. All of oz(ﬁ;, oz(j)c and ag)c are from
zero to one. The real numbers a® and ¥ are from zero to one for at least one of 1,
which can be seen by substituting japc = 0 in (A.51) and the inequality (A.50). Thus

the products oz(’)oz(l) a(i)ax)c g)c are from zero to one for both i. Note that

oz(")oz(jg, aWa AC and vy ")ag)c are independent of i. Now, we have proven (3. 434)

Next, we prove (3.436)—(3.438). The products a(i)afﬁg, (’)a - and yYDaj; ) are in-
dependent of i and the inequalities (3.436)—(3.438) are equlvalent for i=0 and i = 1.
At least one of a® and oY and at least one of ¥ and 4" are less than or equal to
one. We can assume that the real number () is less than or equal to one without loss of
generality. Then, (3.430) and (3.432) are followed by (3.436) and (3.438).

The rest is (3.437). If this were invalid, (3.431) would be followed by the inequality

7D < (aD)? for all i. The inequality ¥ < (a(?)? would mean that

oz(")oz%g, oz(’)oz & and y®al;

and 7o

b b—k?
APl (3.439)
Do) Doy
and vV < (aM)? would mean that
1-b 1—a)(1—10)—k?
(1=a)0=b) =k (3.440)

<
1 — po) (1 = p(o))?

The inequality (3.439) would give that pe) < a. Then, the inequality 1 —pgy > 1 —a
would hold, but this contradicts (3.440). Hence, (3.437) holds so does the statement S”.0

Note that Main Theorem 2 also has been proven in Theorem 8, because of the state-
ment S” and because an arbitrary C-LOCC transformation can be reproduced by three
DMTs.

Now, we have completed the proof of Main Theorems.

Finally, we prove Table 3.1. Main Theorem 2 gives the first row of Table 3.1. In the
section 6.2, we have obtained the second row of Table 3.1. In Case 8-1 of the proof of
Theorem 8, we have proven the third and fourth rows of Table 3.1. The fifth and the last
rows have been proven in Ref. [24]. We thereby completed Table 3.1.

3.6 The judgement protocol
In the present section, we give the protocol of determining whether a deterministic LOCC

transformation from an arbitrary state 1)) to an another arbitrary state |¢’) is executable
or not.
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1 Examine whether jage # 0. If japc # 0, proceed to 2-A. If jagc = 0, proceed to 2-B.

2-A Because japc # 0, we have Kup = jip + jipc # 0, Kac = jic + jipc # 0 and
Kpc = jbe + j4pc # 0. Thus the fractions K5/ Kap, K'yo/Kac, Ko/Kpc and
Jhpe/iape are definite. Examine whether j%po/japc = 0. If jupc/jasc # 0,
proceed to 3-A-A. If j s /japc = 0, proceed to 3-A-B.

3-A-A Examine whether the expressions Ky 5/ Kap # 0, K';o/Kac # 0and K/ Kpc #
0 hold. Unless all of these three expressions hold, the deterministic transformation
from the state |1)) to the state |¢)') is impossible because of j, 5~ # 0 and (3.8)—
(3.10). If all of the three expressions hold, we can define real parameters ¢, (4, (g
and (¢ as follows:

JiscKBe

Ca = ZABC2T (3.441)
]E&BCKJIBC’
JascKac

(B = 57— (3.442)
]I%BCK;\C
JascKas

c = 57—, (3.443)
]EXBCK;XB

¢ = ﬁi (3.444)
]AB(JQACBCC

Examine whether the state [¢') is EP definite. If the state [¢)') is EP definite,
proceed to 3-A-A-A. If the state |¢)') is EP indefinite, proceed to 3-A-A-B.

3-A-A-A Examine whether the state|y) is ~f—deﬁnite. If the state [¢)) is (-definite, pro-
ceed to 3-A-A-A-A. If the state [¢) is (-indefinite, proceed to 3-A-A-A-B.

3-A-A-A-A The deterministic LOCC transformation from the state [¢) to the state |¢')
is executable, if and only if the parameters ¢, Ca, (g and (¢ satisty () per < ¢ <1,
0<U<1L0<G<L0< (<1, (3.72), ¢ =¢and Qe = Qp, where (oyer 15
defined by (3.73).

3-A-A-A-B The deterministic LOCC transformation from state [¢) to state [¢)) is ex-
ecutable, if and only if the parameters ¢, (4, (g and (¢ satisty (jower < ¢ < 1,

0<C<1,0<(<1,0<¢0 <1, (3.72) and |Qe| = sgn[(1 — ¢)(¢ = Qower)]-

3-A-A-B The deterministic LOCC transformatioinn from the state |¢) to the state |¢')
is executable, if and only if the parameters ¢, (4, (g and (¢ satisfy (gper < ¢ <1,
OSCAS170§CB§170§CC§1and(372)

3-A-B Because jyz- = 0, if there are (, (4, (g and (¢ which are from zero to one and
satisfy (3.72), then at least one of , (4, (5 and (¢ is equal to zero because of (3.72)
and the expression japc # 0. Therefore, at most one of K5, Ky and Ky is
nonzero. Hence, the deterministic LOCC transformation from the state [¢) to the
state |1) is executable if and only if j) 5~ = 0, Ji = 0, at least two of the three
parameters K'y5, Ky~ and K. are zero, and the remaining one is less than or
equal to the corresponding K-parameter of K p, Kac and Kgc. For example, if
K g # 0, then the inequality K’z < Kap is the condition.
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2-B Examine whether the initial state is EP definite. If the initial state is EP definite,
proceed to 3-B-A. If the initial state is EP indefinite, proceed to 3-B-B.

3-B-A In this case, ¢ = 1 holds, because of 5%z = 0, (jower < ¢ < 1and j3ziicibe # 0.
The equation J5 = \/2745jacjpc holds because japc = 0. Then, the deterministic
LOCC transformation from the EP-definite state [¢)) to the state |¢’) is executable
if and only if there are (4, (g and (¢ which are from zero to one and satisfy the
following equations:

Ky = CalpKas, (3.445)

Kie = CalcKac, (3.446)

Kpe = (8lcKpe, (3.447)

Jisc = 0, (3.448)

Jy = CaCaCcs. (3.449)

The above equations are equivalent to the following equations:

K\pK\cKpe = (GEKapKacKpe, (3.450)
K\ pKacKpe = (3KapK)cKpe, (3.451)
KapK)oKpe = (GKipKacKso, (3.452)
Jisc = 0, (3.453)

Js = CaCsCels. (3.454)

Hence, the deterministic LOCC transformation from the EP-definite state [¢) to
the state [¢)) is executable if and only if the following inequalities hold:

KKy Kpe < KapKacK'e, (3.455)
KpKacKlyy < KapK\oKpe, (3.456)
KapK)yoKyy < K\pKacKpe, (3.457)
Jisc = 0, (3.458)
KapJi = EKypKioKpolds. (3.459)

3-B-B In this case, the state |1) is EP indefinite, and hence J; = 0 holds. Therefore
the deterministic transformation from the EP-indefinite state |1)) to the state [¢))
is impossible if J! # 0, because of (3.72). In the case of J. = 0, we define real
parameters (), (i and ¢ as (4 = /(Ca, (5 = Vs, (¢ = V((c. Then, the
deterministic LOCC transformation from the EP-indefinite state [¢) to the state
|4} is executable if and only if there are (4, (j; and (/ which are from zero to one
and satisfy the following equations:

Kip = CiCpKan, (3.460)
Kie = CicKac, (3.461)
Kpe = (p¢cKne, (3.462)
Jisc = 0, (3.463)

Ji o= 0. (3.464)
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The above equations are equivalent to the following equations:

KypKioKpe = (FKapKacKpe, (3.465)
KhpKacKpo = (aKapK)oKpe, (3.466)
KapK)oKpe = (GKhipKacKpo, (3.467)
Jisc = 0, (3.468)

Jy = 0. (3.469)

Hence, the deterministic LOCC transformation is executable if and only if the fol-
lowing inequalities hold:

K\pK'\cKpe < KapKacKpe, (3.470)
KipKacKpe < KapK)oKpe, (3.471)
KapKycKpe < KipKacKpe, (3.472)
Jisc = 0, (3.473)

Jy = 0. (3.474)

3.7 Conclusion

In the present paper, we have given four important results. First, we have introduced the
entanglement charge (Qe. This new entanglement parameter Qe has features which the
electric charge has. The set of the six parameters (jag, jac, jBc, japc, Js, Qe) is a perfect
set for LU-equivalence; arbitrary three qubit pure states are LU-equivalent if and only if
their entanglement parameters (jag, jac, jsc, jasc, Js, Qe) are the same. The entangle-
ment charge Q)¢ satisfies a conservation law partially. Deterministic LOCC transforma-
tions between (-definite states conserve the entanglement charge Q. When we transform
a E—indeﬁnite state into a QN"-deﬁnite state, we can choose the value of the entanglement
charge. Once the value is determined, we cannot change it anymore (Fig. 3.6). In this
sense, we can regard g:—indeﬁnite states as charge-definite states.

Second, we have given a necessary and sufficient condition of the possibility of de-
terministic LOCC transformations of three-qubit pure states. We have revealed that we
need siz entanglement parameters in order to describe deterministic transformations of
three-qubit pure states. In other words, we have revealed that three-qubit pure states are
a partially ordered set parametrized by the six entanglement parameters.

Third, we have given the minimum times of measurements to reproduce an arbitrary
executable deterministic LOCC transformation. We can realize the minimum times by
performing DMTs. We can also determine the order of measurements; we can determine
which qubit is measured first, second and third.

Fourth, we have clarified the rules of the change of the entanglement parameters. The
rules indicate the transfer of entanglement. When one qubit is measured, the entanglement
moves from the tripartite entanglement to the bipartite entanglement between the other
two qubits. For example, if the qubit A is measured, the tripartite entanglement jspc
among the qubits A, B and C is squeezed into the bipartite entanglement jpo between
the qubits B and C'. This implies that the tripartite entanglement is a higher entity than
the bipartite entanglements.
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Is there entanglement transfer for a stochastic LOCC transformation? For this ques-
tion, the present thesis has given a partial answer. Let us see the inequalities which is
given in Lemma 2:

2

9 2
JBc < mejfg% < |Jhe+ |1- (Zpia(i)> Fasc (3.475)
k=1

=1

The left inequality means that the bipartite entanglement jpc between the qubits B and
C increases when the qubit A is measured. The right inequality is equivalent to the
following inequality:

2 2 2 2
(Z p(z‘)iféé) + (Z p(z‘)i%c) < jho + Janc (3.476)
=1 =1

because jﬁfgc = a()japc. We can interpret the left-hand side of (3.476) as the sum of
the bipartite entanglement jgc between the qubits B and C and the tripartite entan-
glement jspc among the qubits A, B and C' after a measurement. On the other hand,
the right-hand side is the sum before a measurement. Thus, (3.476) means that a mea-
surement decreases the sum. Note that the bipartite entanglement jgo of the qubits B
and C' increases, whereas the tripartite entanglement j4pc among the qubits A, B and
C' decreases. To summarize the above, a kind of dissipative entanglement transfer also
occurs for a two-choice measurement which are not a DM. It is expected that the transfer
occurs for an n-choice measurement too. Indeed, the left inequality of (3.475) also holds
for an n-choice measurement. However, the right inequality of (3.475) for an n-choice
measurement has not been proven yet.

In the present thesis, we have exhaustively analyzed deterministic LOCC transfor-
mations of three-qubit pure states. This is the first step of the extension of Nielsen’s
work [14] to multipartite entanglements.
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Appendix A

Equation List

In the present Appendix, we list up equations which are often used.
The general Schmidt decomposition is given by

1) = Ao [000) + A1 [100) 4 Ay |101) + Ag |[110) + A [111) . (A.1)

This corresponds to (3.1). The definitions of the entanglement parameters jag, jac, jac,
Japc and Js:

JAB = AoAs, (A.2)

JAac = AoAa, (A.3)

JBe = [AMAae™® — Ao )sl, (A.4)
JABC = Ao, (A.5)

J5 = Xo(ibe + AA5 — ATA). (A.6)

These correspond to (3.2)—(3.6). The definitions of the entanglement parameters K4p,
K AC and K BC:

Kap = jap + jaso (A7)
Kac = jac + jasc (A.8)
Kpc = jhe + Jasc- (A.9)

These correspond to (3.8)—(A.9).
The definition of abbreviations Jap, Kap and Ks:

Jap = japiacibe, Kap = Kap, Ks = jape + Js. (A.10)
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This corresponds to (3.11). The ambiguity of J-parameters is
_ Js+jAsc VA,

()2 =2 . (A.11)
’ 2(jpe + ise)
2
AE)2 = JAC A12
( 2 ) ()\(:]I:)Q’ ( )
o JaB A13
A3 )" = )
( 3 ) ()\35)27 ( )
+\2 jiBC’ A 14
M) = )
( 4 ) (/\3:)27 ( )
.2 .2 .2
() =1 (7 - Se g ane (A1)
0
£12( )2 £\2/\E\2 2
+ AP+ () (N)° —dBe
= A.16
COs @ 2)\1‘:)\3:)\;:)\2: ’ ( )
where
0 < <. (A.18)
These correspond to (3.12)—(3.18). The definition of Qe.
2
: Japc +J5
Qe = sgn [smgo (/\2 — —= - )] (A.19)
¢ * 2030 + ise)

This corresponds to (3.20). The equations which determine the general Schmidt coeffi-
cients from J-parameters and (¢ when Q¢ is not zero:

_ )5 + JipctQevVA;  Ks+QeVA,

¥ , : = A.20
’ 2(33c + Jasc) 2Kpc ( )
2
J
A2 = % (A.21)
0
o Jim
0
s Jisc
0
2 2 9
Jap T Jac +1J
N=1- )-8 f;% ABC (A.24)
AIAL + MAS — ke
= A.25
COS ¥ NNy ; ( )
where + is + or — when {)\;,p|li = 0,...,4} is positive-decomposition coefficients or

negative decomposition coefficients, respectively. These correspond to (3.22)—(3.27).
Another expression of Js:
J5 = 2/\%)\2)\3()\2)\3 - )\1/\4 COS QD)
= 2jABjAC(>\2)\3 — )\1)\4 COS QO)
AaA3 — A1 Aq coS @
|>\2>\3 — )\1)\4€i‘p| '

2jaBjacisc (A.26)
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This corresponds to (3.28). The inequalities which the J5 satisfies:

)\2)\3 — )\1/\4 COos ¢

0< . . A.27
- |)\2)\3 — /\1/\4€z<p| - ( )
This corresponds to (3.29). The definition of the EP:
J.
—  — cosps. (A.28)
2jaBjacisc
This corresponds to (3.31). The relation between @5 and ¢:
JBC Sin s = +X\; M\ sin . (A.29)
This corresponds to (3.32). The expression which is derived from (A.29):
sings = 0 < sinp = 0. (A.30)
This corresponds to (3.33). The definition of a, b, k, 0 < 0 < 27:
—if
tag a ke
= (2 4. s
This corresponds to (3.45). The definition of the parameters a, b, k and € for a two-choice
measurement:
—if —if
t _ ap)  koe O\ _ [ a ke
—if —if
t . a(1) ]{?(1)6 ) . 1—a —ke
MyMay = < ke by S\ ke 10 ) (A-33)

These equations correspond to (3.93) and (3.94). The expression of p(; in terms of a),
by, kay, 0 < 0 < 2m:

D) = )\ga(i) -+ (1 — Ag)b(i) + 2)\0/\1k7(i) coS (Q(i) — (,0). (A.34)

This corresponds to (3.47). The changes of the coefficients of the general Schmidt decom-
position by a measurement on the qubit A:

o oy awbe — kG
AD (A.35)

N oA
A gis® _ Aoke™ + Auehi (A.36)
1 oA
/b
A = —i/m”, (A.37)
W
A\ = —SJJT;)’ (A.38)
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N Ay/b
AP = 2V (A.39)
VP()
These correspond to (3.49)—-(3.53). The changes of the parameters jag, jac, jasc, jsc,
Kap and K4¢ by a measurement on the qubit A:

p . agbiy — k(zi)jAB
Jap = @ 'JAB = . , (A.40)

agbiy — kiyjasc

Jiu)sc = aWjapc = : (A.42)
P@)
Ky = (@9 Kap, K = (a9)K (A.43)
AB AB> AC AC .
Paise = [Modakme® — (Mg — Adae™)b)|
= |k@wijapce® — jpobae™ |
= |k@iapce O — jpcby|. (A.44)

These correspond to (3.54)—(3.56), (3.59) and (3.58). The definition of the multiplication
factor ay;):

o) — 0 (A.45)

This corresponds to (3.57). The change of the quantity jpc cos s by a measurement on
the qubit A: ' '

Disst cos 98 = by jnc cos g5 — kyjapc cos 0. (A.46)
This corresponds to (3.62). The change of the average of the quantity jpc cosps by a
measurement on qubit A in the two expressions:

D AN = AP cos ) = Mads — M Ascos g, (A.47)
> pifie cos @8 = jpc cos gs. (A.48)

i

These correspond to (3.66) and (3.67). The change of average of the quantity A; )\, sin ¢:
@) g :
Zp 1 4 ) sin ) Zb 1 4 ) sin @ + ka >\ /\4 sinfi) = MAgsing.  (A.49)

This corresponds to (3.68) The change of the average of o/¥):

1
> ppal? <1. (A.50)
k=0
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This corresponds to (3.118). The change of jpc caused by a measurement on the qubit
A:

1 1 2
JBe < Zp(i)jg)c* < |Jset+ |1- (Zp(i)a(i)> Jasc- (A.51)
i=0

k=0

This corresponds to (3.95). The inequalities of Corollary 1:

JBosin® ol > jpesin® s, (A.52)

Jpe < Kpe = e + jase < Kpe = jpe + Jases (A.53)
A/

Ahorm = a—i = K2 —AKapKacKpe > Ay, (A.54)

They correspond to (3.106)—(3.108).

117



Appendix B

The proof that (Je is a tripartite
parameter

In the present appendix, we show that Qe defined in (3.20) is a tripartite parameter; in
other words, we show that Qe is invariant with respect to permutations of the qubits A,
B and C.

First, we perform the proof in the case of Qe = 0. Because of (A.11) and (A.19), the
equation Qe = 0 holds if and only if A; = 0V siny = 0. Because of (A.30) and (A.28),
the expression Ay = 0V sing = 0 is equivalent to A; = 0V |J5| = 2japjacjpc. Thus,
Qe = 0 is equivalent to Ay = 0V |J5| = 2japjacipc. Therefore, if we can show that
the expression A; = 0V |J5| = 2japjacipe is invariant with respect to permutations of
A, B and C, we can also show that Qe is invariant with respect to the permutations.
The parameters J; and japjacjpc are invariant with respect to the permutations of A,
B and C [20]. This fact and (A.17) give that A is also invariant with respect to the
permutations of A, B and C. Hence, the quantities Ay, J5; and jagjacjpc are invariant
with respect to the permutations of A, B and C', and thus if Qe = 0, then Qe is invariant
with respect to permutations of A, B and C'. Namely, if Qe = 0, then Qe is a tripartite
parameter.

Second, we perform the proof in the case of Q¢ = +1. In order to show this, we only
have to show that Qe is invariant with respect to the permutation of A and B, because
if we can prove the invariance with respect to the permutation of A and B we can also
prove the invariance with respect to the permutation of A and C' or B and C' in the same
manner.

Let us derive the generalized Schmidt decomposition whose order of the qubits is BAC
and see the expression of Qe in the new decomposition, which we refer to as Q5. The
generalized Schmidt decomposition of [¢) is expressed as

[¥) = X0104050¢) + Ae [14050¢) + A2 [140p10) + A3 [1a1500) + Ay [1alple). (B.1)
We can assume that (B.1) is a positive decomposition. Let us permute A and B of (B.1):
[¥) = X0108040¢) + M€ [05140¢) + A2 [0p1ale) + A3 [181400) + A [1p1ale) . (B.2)

In order to put (B.2) in the form of the generalized Schmidt decomposition, let us define

118



pure states |0'y), [14), |0%), |15), |05) and |1) as follows:

00) = =7 [1a), (1) = [04), (B.3)
‘OIB> = —e'¥? |1A>7 |1iA> = ’0A>7 (B4>
~ A30¢) + M\ |1e) _ A 0c) — Az |le)

0) = .| ,
|C> ‘C> \/m

VA3 + A

where @5 is defined in (3.60). The equation (B.2) is expressed in terms of |0'4), |14), |03),
115), |0;) and |1) as follows:

—€i¢5()\1)\3€w + )\2)\4) |1, 0, O, >
Aoz — A Age! AoA AoA
+|23 1/A\4€ 013 04 |1IB]'C4]'/C>‘ (B.6)

VA2 + N VA2 + A VA2 + N

Note that (B.6) is the generalized Schmidt decomposition whose order of the qubits is
BAC. The coefficients of (B.6) correspond to the coefficient of (B.1); \/A2 + A3 corre-
sponds to Ag, —€“?5 (A A3€™ + Aay)// A2 + A} corresponds to A€, and so on. Let us
refer to Qe for (B.6) as QF. Because of the definition of Qe and (B.6),

[¥) = /A3 + A1 1050400) +

%)
L 11,0410) + 1,1500) +

_i¢5)\)\ei¢+)\)\4) Ks

B — I € ( 1 ‘3 2 )\2 )\2 _ B7
—€i¢5 ()\1)\36“0 + )\2)\4) 9 9 K5

= | . A3+ A — B.8

holds. Then, we can complete the proof by showing that Qe = QF. Because (B.1) is a
positive decomposition and (A.20), the following two equations hold:

—€i¢5 ()\1)\36w + )\2)\4):| } . . .
sgn < Im . = sgn 1 Im[—jpce" ¥ (A A3€"? 4+ Ao\
g { |: |(/\1/\36W+/\2/\4)| g { [ JBC ( 113 2 4)]}
= sgn[A Az sin o(—Aa A3 + A1 Ag cos ) — A Ay sin (A1 A3 cos @ + Aay)]
=sgn[—M\A(\3 + \J)sinp] = —1.  (B.9)

sen (A2 L2 K ) ~ sen (KAB K5 ) ~ sen ( 2KapKpe Ks )
507 9K e N 2K,0 K5+ QevA;, 2Kac
41Kap — K2 — QeKsV/A,

— N T aRe(Ks + QevAy)
— sgn [—(VA, + QGK5)\/A_J:|
| 2K 40 (K5 + QevVAy)

[—QeVA;

= sqn 2K ac

} = Q. (B.10)

Because of (B.8), (B.9) and (B.10), we obtain Qe = Q&. O
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