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Abstract

In the present thesis, we report several general properties of the enhancement of the entangle-
ment by external fields.

First, we investigate the thermal entanglement of interacting two qubits. We maximize it by
tuning a local Hamiltonian under a given interaction Hamiltonian. We prove that the optimizing
local Hamiltonian takes a simple form which dose not depend on the temperature and that the
corresponding optimized thermal entanglement decays as 1/(T log T') at high temperatures. We
also find that at low temperatures the thermal entanglement is maximum without any local
Hamiltonians and that the second derivative of the maximized thermal entanglement changes
discontinuously at the boundary between the high- and low-temperature phases.

Second, we investigate the maximized entanglement of indirectly interacting two spins,
that is, through other spins. We present a necessary condition for the indirect interaction to
give a non-zero maximized entanglement between the focused spins. We also prove that if
the focused spins are separated by two spins, there is a critical temperature above which the
maximized entanglement between the focused spins vanishes. Then, we numerically calculate
the maximized entanglement between the end spins of three-spin chains and four-spin chains.
We discover that the maximizing local fields on the end spins have asymmetric forms. In the
three-spin chains, we attribute the entanglement enhancement to the asymmetry of the local
fields qualitatively and quantitatively in terms of the magnons. In XX and XY four-spin
chains, we find that the critical temperature shows qualitatively different behavior depending
on the conservation of the angular momentum in the z direction.
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Chapter 1

Introduction

In the present chapter, we introduce the theoretical motivation of the present research and the
connection with the past works. We also give the fundamental knowledge for understanding
the present thesis.

1.1 Motivation

The present thesis is devoted to the study of the enhancement of the quantum entanglement due
to external fields. Over the last two decades, the quantum entanglement have attracted much
attention. Numerous studies are devoted to understanding its properties and the discovery of
the application to new technologies [1-5]. We especially focus on the problem of what cause
the entanglement enhancement. In the following, we show the research background in more
detail.

First, the quantum entanglement is one of the most essential properties which characterize
the degree of the non-classicality. This was discovered by Schrédinger in early times [6] when
the quantum physics was established. They also played an essential role in the solution of the
EPR paradox [7], which had been one of the most puzzling problems for a long time. The
entanglement reflects the non-locality; it makes it possible to create a correlation which cannot
be explained by the classical theory [8]. Its existence are observed experimentally in 1981 by
A. Aspect et al. [9-11]. Until the 1990s, however, specific properties of the entanglement had
not been studied because it was not clear then how the quantum entanglement could be put to
practical use. Since the quantum information thereby was developed [12], the research of the
entanglement have been an essential task in order to understand its properties. Representative
examples are the quantum computation [13], the quantum code [14] and so on. As another
theoretical application, the entanglement is a useful physical quantity in phenomena in which
the quantumness plays a crucial role. Indeed, many researches have suggested the relationship
between the quantum phase transition and the entanglement [15,16]. These researches are under
development, but they have much potential to bring essential principles. So far, many properties
of the entanglement have been clarified and the corresponding experiments are following them.
Because of the mathematical difficulties of the entanglement, however, there are still quite
a few problems to be solved. From the theoretically and practically aspects, in particular,
the generation and the enhancement of the entanglement are very important problem. Their
properties often depend on individual systems and it is a tough problem to obtain general
properties. We tackle this problem from the direction of using external fields. In the present
research, we focus on the entanglement in thermal equilibrium states, including the ground
states.



Second, we show the motivation of the present research of the entanglement enhancement
by external fields. The first reason for that is that the strong entanglement is required in terms
of practical applications [3]. Indeed, there are many researches about the generation of the
strong entanglement [4]. Moreover, external fields are easily controllable and the entanglement
by external fields is realizable. The second reason is that we can know from this research why
the quantumness of the system can be increased by the change of external parameters. There
are many examples on the quantum phenomena which occur after changes in external fields [4].
Until now, many studies have been reported on the entanglement in various quantum systems.
However, little is known about the reasons why external fields can enhance the entanglement
and the general properties of the entanglement enhancement.

Third, we show our final purposes of the present study:

1. To establish the general principles on the enhancement of the (bipartite and multipartite)
entanglement.

2. To reveal the general properties of the thermal entanglement at high temperatures, espe-
cially the possibilities of the protection of the entanglement.

3. To clarify the general properties of the entanglement over a long distance, which is gen-
erated between a pair of spins separated far apart [17-19], as well as the method of
generating it, if possible.

These problems are closely related to practical applications of the entanglement and the compre-
hension of the foundation of quantum physics. However, we have encountered several difficulties
in working on these problems. The first one is the difficulty of the calculation of the entan-
glement [20]. As is shown in the following sections, the calculation of the entanglement needs
the density matrix of the total system, which contains all degrees of freedom of the system.
Because of this, it is very difficult to calculate the entanglement in complicated systems. The
method of the calculation of the multipartite entanglement even has not been established; it
goes without saying that we have to know the density matrix of the total system. At present,
there are several measures [21-23] in the ground states which distill the essential properties of
the multipartite entanglement. In the present thesis, we consider only the bipartite entangle-
ment, for which we can use well-defined entanglement measures such as the concurrence and
the negativity.

In order to work on the above problems, we discuss the entanglement maximized by local
fields. This is the maximum value of the entanglement between a specific spin pair when we
can arbitrarily modulate the local fields on the focused spins (Fig. 1.1). The research of the
maximized entanglement is very suitable for the above three problems because of the following
reasons:

1. Properties of the local fields which maximize the entanglement reflect the essence of the
entanglement enhancement by the local fields.

2. Tt tells us the limit of the entanglement enhancement due to the local fields. If the maxi-
mized entanglement is equal to zero, it means that we cannot generate the entanglement
with any local fields under the given condition.

In the present thesis, we mainly show the general properties of the maximized entanglement.
Now, we show the main achievement of the present thesis. We mainly work on the following
two targets:
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Figure 1.1: A schematic picture of the entanglement maximization. A specific two spins interact
with each other directly or indirectly. The word “indirect” means that two spins interact via
other spins. We can modulate the local fields on the focused two spins arbitrarily. We thereby
define the maximum value of the entanglement as the maximized entanglement.

1. Maximization of the thermal entanglement of arbitrarily interacting two qubits (Chap-
ter 2).

2. General properties of the maximized entanglement of indirectly interacting two spins
(Chapter 3)

In Chapter 2, we consider the entanglement maximization problems of two spins which di-
rectly interact with each other. In this case, we can calculate the entanglement analytically
to some extent. Therefore, we succeeded in obtaining the general properties for the arbitrary
interactions. In Chapter 3, we consider the entanglement maximization problem of two spins
indirectly interacting through other spins. In this case, unlike the case of the two spins, it is
much more difficult to calculate the entanglement in arbitrary cases. Therefore, we focus on
the possibilities of the generation of the entanglement and the properties of the entanglement
enhancement in short spin chains.

1.2 List of publication

e T. Kuwahara and N. Hatano. Maximization of thermal entanglement of arbitrarily inter-
acting two qubits. Physical Review A 83, 062311 (2011)

(contains results presented in Chapter 2)

e T. Kuwahara. General properties of the maximized entanglement of indirectly interacting
two spins. arXiv:quant-ph/12042337.

(contains results presented in Chapter 3)



1.3 Entanglement theory

In the present section, we overview basic knowledge on the quantum entanglement necessary
to understand the present thesis.

1.3.1 Definition of the entanglement

First, we show the definition of the entanglement [24]. We discuss the pure state and the mixed
state separately. Let us consider only the bipartite entanglement and assume that the quantum
system consists of the spins 1 and 2. The general form of the pure state |¢) is then given by

[) = s|TiT2) +t|T1le) +ulliTe) +w|l1]2), (1.1)

where {|1),]])} are the base of each spin states. It is defined that the spins 1 and 2 are not
entangled if and only if the following condition is satisfied:

) = Y1) @ [¢ha), (1.2)

where [11) and |¢)5) denote arbitrary states of the spins 1 and 2. In other words, if the states
of the spins 1 and 2 cannot be decomposed into the direct product of states of each spin. we
say that the state is entangled.

The above definition is applied only to pure states. Let us then discuss the mixed states. In
order to discuss the mixed states, we consider the density matrix p;, where elements are given
by (T1T2|p12|l1]2), for example. By diagonalizing the density matrix, we can denotes pys as

P12 = ZMWQ@/&’, (1-3>

i=1

which consists of the four eigenstates {|i;)}{_; with the stochastic weights {p;}’_,. Generally
speaking, we cannot decide the mixedness of the states uniquely. For example, let us define the
states {|v;) }1_, as follows:

4
i) = > Uysly), for j =1,2,3,4, (1.4)

i=1

where Uy; is an arbitrary unitary matrix. The states {|i;)}L, also give the expansion (1.3).
We then define that the spins 1 and 2 are not entangled if and only if there is a unitary matrix
Ui; which satisfies

P12 = sz(wzﬁ ® |¢12>) (<1/121| ® <¢z2’) (1.5)

In other words, if the states of the spins 1 and 2 cannot be decomposed into a mixture of the
non-entangled states, we say that the mixed state is entangled. The definition can be extended
to any bipartite systems. However, it is usually difficult to judge whether the appropriate
unitary matrix U;; which reduces the density matrix to the form (1.5) exists or not in general
cases. In the present thesis, we can completely determine the entanglement of the bipartite
systems of 2 x 2 and 2 x 3.
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1.3.2 Entanglement measure

Next, we show the quantification of the entanglement. An entanglement measure E(pi2) has
to satisfy the following conditions [25]:

1. An entanglement measure E(pi2) projects the density matrix into a positive number.

2. If E(p12) is equal to zero, the density matrix pio is not entangled. In other words, it can
be decomposed as Eq. (1.5).

3. An entanglement measure E(p;2) cannot be increased by LOCC, namely

% B '@ Bf
Blow) = Yo pp( 2B S B (16)

tr(4; ® By)pra(A] ® BY)

where A; and B, are local operators that satisfy > ._, AiAZT & BiBiT = I with I;5 being
the identity operator.

In addition, the condition of the convexity is sometimes demanded; namely,

E(zi:pipz) < zi:piE(m)- (1.7)

In the bipartite system of 2 x 2, there are several measures which satisfy these conditions. In the
following, we use three measures, namely, the concurrence, the negativity, and the determinant
measure. The concurrence and the negativity satisfy the above conditions.

Concurrence

The concurrence C(py2) is the most popular entanglement measure [26] . The concurrence is
defined as follows;

0(012) = max()\l — Ay — A3 — A4, 0)7 (1-8)

where {\;}}_, are the eigenvalues of

V(0! @ o) pis (ol @ o) (1.9)

in the non-ascending order A\; > Ay > A3 > \4.
It is often difficult to obtain the analytical forms of the concurrence, but it is easy in the
case in which the density matrix has the form of the X-state

py 0 0 £

P12 = 0 Py F1 0
0 Fy py 0

;0 0 py

(1.10)

where the parameters {py,py,pi1. )} are real numbers and the parameters and {Fy, F»} are
complex numbers. The concurrence of this state is simply calculated as

C(p12) = max(|Fy| — /pripy s [ Fo| — /P11p11, 0)- (1.11)
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Negativity
Next, we introduce the negativity N(pi2) [27]. The negativity is defined as follows:

N(p1a) = [lpralli — 1
= max(—2A_,0), (1.12)

where || - ||; is the trace norm, A_ is the minimum eigenvalue of pl}, which can be negative,
and T denotes the transpose operation with respect to only the spin 1; for example,

Ty

pr By Fy B pry F3 Ff FS

F?;k by Fy F; _ F?T by Fl* F’; (1 13)
Ey FY opy s Ey Fyopy B '
Iy F5 Fg py B, Fs Fg py

The second equation of (1.12) comes from the fact that pl} can have only one negative eigen-
value [28]. The advantage of this measure is that because it can be described as the minimum
eigenvalue, it is easier to calculate than the concurrence; we can simply calculate the perturba-
tion form of the negativity as

N(po +0p) ~ N(po) — 2(¢-|0p" |$-), (1.14)

where we refer to the eigenstate corresponding to the negative eigenvalue of pOT1 as |¢p_). If the
eigenstate of A_ has the form of the Bell state, the negativity and the concurrence have an equal
value [29] . In some cases, the logarithmic negativity log, ||p13|]; is used instead of N(pys), but
it is known that log, ||pi4||1 does not satisfy the convexity [30] . We uses the negativity N (pi2)
in the present thesis.

Determinant measure

We finally introduce the determinant measure 7(p12) [28]. It does not satisfy all the condi-
tions for the entanglement measure, but it is easier to calculate than the concurrence and the
negativity. The determinant measure is defined as

0, for pi3 > 0,
T = - 1.15
. {2<|detp%|>1/4, for 3 < 0. 1)

This entanglement measure is not a full entanglement monotone. However, it provides tight
lower and upper bounds for other entanglement measures including the negativity and the
concurrence. In addition, det plTé is expressed in the form of a polynomial and hence is much
easier to maximize numerically than the concurrence and the negativity. Utilizing this measure,
we tested Hypothesis 1 below by numerical optimization for various kinds of interaction at
various temperatures and found it always satisfied.

1.3.3 Thermal entanglement

Next, we introduce the thermal entanglement. The thermal entanglement is defined as the
entanglement in thermal equilibrium systems. The density matrix in thermal equilibrium is
given by

e_BHtot

P:Z,

(1.16)
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where Z = tr(e #Htt) is the partition function and 3 = 1/kT with k the Boltzmann constant.
The thermal fluctuation generally destroys the entanglement because it decreases the purity of
the system; the purity is defined as trp®. In some systems, however, it is discovered that the
entanglement is enhanced by the thermal fluctuation [31,32].
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Chapter 2

Maximization of thermal entanglement
of arbitrarily interacting two qubits

In the present chapter, we investigate the thermal entanglement of interacting two qubits.
We maximize it by tuning a local Hamiltonian under a given interaction Hamiltonian. We
prove that the optimizing local Hamiltonian takes a simple form which dose not depend on the
temperature and that the corresponding optimized thermal entanglement decays as 1/(7'log T')
at high temperatures. We also find that at low temperatures the thermal entanglement is
maximum without any local Hamiltonians and that the second derivative of the maximized
thermal entanglement changes discontinuously at the boundary between the high- and low-
temperature phases.

2.1 Introduction

Quantum entanglement plays an essential role in quantum information processing [24]. Various
kinds of investigation have been carried out to understand properties of entanglement for the last
two decades [3,4]. The thermal entanglement [31], which is entanglement of thermal equilibrium
states, is one of the important concepts because it shows us the effect of thermal fluctuations on
entanglement. Thermal disturbances generally cause disentanglement and have serious effects
on quantum information processing. Therefore, many schemes have been proposed to protect
entanglement from thermal disturbances [33-42]. As one of these schemes, a lot of attention has
been paid to methods based on manipulation of local Hamiltonians [33,36,38-42]; for example,
in quantum spin systems, bipartite thermal entanglement can be enhanced by modulating
external magnetic fields. In the present chapter, we focus on a simple question as to how much
entanglement can be generated by optimizing the local Hamiltonian. We give a theoretical
limit of entanglement enhancement by manipulation of the local Hamiltonians.

Relationships between the thermal entanglement and local parameters have been investi-
gated especially in bipartite quantum spin systems [31,38-46]. From these researches, behavior
of the thermal entanglement under external magnetic fields may be understood in the cases
of almost all interactions. However, little has been reported on the mazimization problem of
the thermal entanglement; in the case of the bipartite XY spin model, this problem has been
solved only numerically [40]. Until now, there are no analytical approaches to optimizing the
thermal entanglement of arbitrarily interacting two qubits.

In the present chapter, we will answer the following question: given a system of two qubits
which interact via an arbitrary interaction Hamiltonian, how can we maximize the thermal

15



entanglement between these two qubits by changing only the local Hamiltonian? A naive
approach to this problem may be to solve the optimization problem numerically. However, this
problem has six local parameters in total and the functional forms of entanglement measures
such as the concurrence [26] and the negativity [27] are very complicated. Thus, for an arbitrary
interaction, it is difficult to solve this optimization problem numerically. Therefore, we employ
perturbation techniques and utilize symmetric properties in order to determine the optimizing
local Hamiltonian analytically. In this way, for all kinds of interaction, we give general properties
of the optimized entanglement.
Our main results are the following:

1. We find that at low temperatures the thermal entanglement is maximum without any
local Hamiltonians, whereas at high temperatures it is maximized by non-zero local fields.
We refer to the former temperature range as the low-temperature phase and the latter
temperature range as the high-temperature phase. The secondary differentiation of the
maximized entanglement is discontinuous at the phase boundary.

2. In the high-temperature phase, the functional form of the optimizing local Hamiltonian
is independent of the temperature; only the coefficients depend on the temperature.

3. The optimized entanglement, enhanced by a local Hamiltonian in the high-temperature
phase, decreases with increasing temperature as 1/(7'log 7).

4. If the interaction Hamiltonian has no degeneracy of its eigenvalues, the entanglement is
maximized without local Hamiltonians over a finite range of the low-temperature phase.

5. If the interaction Hamiltonian has degeneracy, the low-temperature phase shrinks to the
zero-temperature point. The optimizing local Hamiltonian becomes infinitesimal and the
optimized entanglement becomes full in the low-temperature limit.

The present chapter is organized as follows. In Section II, we state the main problem after
symmetry consideration. In Section III, we give the main theorems on the entanglement op-
timization. In Section IV, we show numerical results of the optimizing local parameters, the
boundary temperatures and the singularity at the phase boundary. We also argue that the two
phases appear because of competition between the purifying effect and the decoupling effect
both of the local Hamiltonian. Finally, in Section V, a discussion concludes the chapter.

2.2 Entanglement optimization problem

First, we set the fundamental framework of the present problem. We consider a 2 ® 2 system
of o1 and o5. The most general form of the Hamiltonian of this system is given as follows:

Hiow = Hine + Hr0,
Hint = Z J1j0’1®0-%7

1’7]:1,7y7z

Hio = Z (Rio} @ I + hyI @ ab), (2.1)

1=x,Y,2

where {0 }i—, .. and {0%}i—s, . are the Pauli matrices, Hiy is an interaction Hamiltonian, and
Hio is a local Hamiltonian. We assume that {.J;;};j—.,. are fixed and independent of the
temperature, whereas we can change the parameters {hf, hy, hi, h3, h¥, h3} arbitrarily.

16



We parametrize the local fields in the polar coordinates as

{hi}izw,yvz = {hy sin 0y cos ¢y, hy sin Oy sin ¢y, hy cos 0y },
{hb}icay.. = {hasin 6y cos g, hy sin Oy sin ¢a, hy cos O}

(2.2)
Hereafter, we use the parametrization
hi+h hi —h
ot (b =
where —1 < ¢ <1 and h > 0; in other words,
hi=14+h, hy=(1-=)h. (2.4)
Then, the four eigenvalues of Hyo are
{—2h, —2Ch,2Ch,2h}, (2.5)
where we define the corresponding eigenstates as {|——), |—+), |[+—), |++)}.
The density matrix in thermal equilibrium is
= (26)

where Z = tr(ePHt) is the partition function and 8 = 1/(kT) with k the Boltzmann constant.
In order to quantify entanglement, we adopt the negativity [27] as an entanglement measure.
The negativity is defined as the trace norm of a partially transposed density matrix:

N(o) = [[o™]l — 1
= max(—2A_,0), (2.7)

where || ||; is the trace norm, 7} denotes the transpose with respect to only oy, and A_ is the
minimum, possibly negative eigenvalue of p'. The second equation of (2.7) comes from the
fact that p™ can have only one negative eigenvalue, if any [28]. Thus, the present entangle-
ment optimization problem is equivalent to finding the values of {h{,hY, hi, h3, hy, hi} which
maximize N(p) for an arbitrary fixed interaction Hiy.

Note that the maximizing local fields H{Y generally depend on the temperature 7', or on the
inverse temperature 3 = 1/(k7T’). This is because we tune the local fields at a fixed temperature
(. Let us then define the high-temperature limit, in which we mostly develop the argument.
In our high-temperature limit, we make 3 tend to zero with the parameters in H;, fixed. In
other words, we have §||Hiy|| — 0 in the high-temperature limit, where || Hiy|| is the norm of
Hi.. On the other hand, we let the maximizing local fields depend on 3 as we take the limit
B — 0. Hence, B||H{{|| can even diverge in our high-temperature limit.

Before presenting our main results on the entanglement optimization, we prove the following
Lemma 1 to simplify the present entanglement optimization problem.

Lemma 1. By local unitary transformations of H,, we can eliminate the interaction pa-
rameters {.J;;}i2; and reduce it to the form

Hiy = Z Jiol @ ab. (2.8)

i:xayzz
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We can also choose the parameters {.J,, J,,, J, } such that {J,, J,} > J, > 00r 0> J, > {J,, J, }.

In spin-1/2 systems, this means that we can transform any interactions including the
Dzyaloshinskii-Moriya (DM) [42,47,48] interaction into a ferromagnetic or an anti-ferromagnetic
Heisenberg exchange interaction.

Proof. We can prove this Lemma by applying a singular value decomposition [?] to the
matrix (J);; = Ji;. In this case, the singular value decomposition UJW is performed by
3 x 3 real orthogonal transformations U and W of the three-dimensional spin spaces of the
spins 1 and 2, respectively. A real orthogonal transformation is composed of rotation and
inversion operations, but inversion operations cannot be performed by unitary transformations.
Therefore, we remove the inversion operations from the real orthogonal transformation of the
singular value decomposition and restrict ourselves only to the rotation operations, which means
det U = det W = 1. In other words, we rotate &; = {o¥, 07,0} with U and &, = {0%, 0¥, 03}
with 7. Then we can transform {JZ] }ij=zy.» into the antiferromagnetic cases {J,, J,} > J, >0
or the ferromagnetic cases 0 > J, > {J,, J, }, with the other elements {.J;; },; put to zero. Here,
we choose the z-axis so that |.J,| is the least of {|J;|}i=s,y,.. Thus, Lemma 1 is proved.

Let us show an example in the case of the X X Z model with the z-component of the DM
interaction. The Hamiltonian of such a system is given by

Hiy =Jof @ 05 + Jo! @ o8 + J.07 ® 73
+ D.(0f ® 05 — 0f ® 03), (2.9)

where J and J, are the real coupling coefficients and D, is the z-component of the DM in-
teraction. In the case of J =1, J, = =2 and D, =1, we can transform {J,, J,, J,, D,} into
{—v/2, —V/2,—2,0} by rotating the spin 1 by 135 degrees around the z-axis, namely into

Hue = V207 ® 0% — V/20Y @ 0¥ — 207 @ 0. (2.10)

This is an antiferromagnetic Heisenberg interaction. To attain this result, first, the singular
value decomposition transforms {.J,, J,, J., D} into {V/2,4/2,2,0} by rotating the spin 1 by
—45 degrees around the z-axis and inverting the z-axis of the spin. Next, we remove the
inversion of the z-axis because it cannot be performed by unitary operations, and thereby
transform {.J,, J,, J,, D,} into {V2,4/2,-2,0}. By changing the rotation angle from —45 to
135, we can invert the signs of J, and J, and arrive at {.J,, J,, J., D.} = {—v/2, —v/2, —2,0}.

In the following, based on Lemma 1, we always use the diagonalized form (2.8) of the inter-
action parameters with {J,, J,} > J, > 0or 0 > J, > {J,, J,}. We now have all the necessary
ingredients to state the main theorems.

2.3 Main analytical results

In the present section, we analytically discuss the optimization problem. The main conclusion of
the present section is that the negativity is maximized by the parameters {h{, h{, hi, h h3, hi} =
{0,0, hop, 0,0, —hop . The optimizing parameter h,, must be very large at high temperatures,
whereas it may be 0 at low temperatures.

2.3.1 Optimization in the case the high-temperature limit 5 — 0

Let us first discuss the optimization problem in the high-temperature limit.

18



Theorem 1. In the high-temperature limit § — 0, the local parameters which maximize the
entanglement N(p) are given in the form of {h{, h{, b5, h%, hY, h3} = {0,0, hop, 0,0, —hep }. The
optimizing value hoy, is given by the solution of the following equation:

. 8h/2
o~ — P 55§50, (2.11)
Bl e+ Jy|
where
h;p = Bhop, (2.12)

and the optimized entanglement N,, asymptotically behaves as

| o + Jy —on!
Nop(p) = 12zl goom,
p 2h,
| e + Jy] 1
~ ﬁ—(l . ) as 3—0, (2.13)
2h, 2h,

where we used Eq. (2.11) upon moving from the first line to the second line.
The leading order of the solution of Eq. (2.11) is given by

1 1 1
h ~ —log— + ~log ———. 2.14
We can thereby obtain the following simpler asymptotes:
log 1/
hop == 5 B —0, (2.15)
| Jo + Jy|
N, (p) ~ iz 2l 0. 2.16
(o) = AT s (216)

That is, the optimizing value h,, depends only on the temperature and the optimized negativity
decays in the form 1/(T'logT') in the limit § — 0. In Appendix A, we compare the asymptotes
of Egs. (2.11) and (2.13) with those of Egs. (2.15) and (2.16)

Proof. We prove Theorem 1 in the following steps. First, we prove in Lemma 2 that
the optimizing local parameter h,, is greater than or equal to (log1/3)/(28) in the high-
temperature limit and the optimized thermal state is nearly a pure state. The entanglement
of the state comes from perturbations to the pure state. Then, we calculate the negativity
approximately by perturbation method in Lemma 4. Using this expression, we finally solve the
maximization problem for each local parameter.

First, we determine a lower bound of the optimizing value h,, and prove that the optimized
thermal state is a nearly pure state. For this purpose, we prove the following Lemma 2.

Lemma 2. A necessary condition for the existence of the entanglement in the high-temperature
limit under a fixed interaction Hamiltonian Hj,; is given by

log 1/

h
ph>—

as [ — 0. (2.17)
This Lemma 2 shows that (log1/3)/(23) is a lower bound of the optimizing value of hyp.

Proof. We firstly prove that we need a non-zero value of Sh for the existence of the en-
tanglement in the high-temperature limit 3 — 0. In other words, we need h at least of order
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1/6. In order to show this, we consider a general necessary condition for the existence of the
entanglement given by [50]

AL > Mg+ 20/ A0k > 3y, (2.18)

where {),}/,_, are the eigenvalues of the density matrix p in the non-ascending order (A1 > Xy > Az > \y).
Let us define the eigenvalues of Hi,, = Hyo + Hiy as {Eu}i:1 in the non-descending order

(Ey < Ey < E3 < Ey). Equation (3.3) gives the eigenvalues of p as {e™#F¢/Z}!_| and there-

fore the inequality (2.18), or e 7751 > 3e=FF4 | gives

B(Ey — Ey) > log 3. (2.19)

Here, Hi,; is a constant matrix and hence SH; — 0 as f — 0. If we let Hyo be of the same
order as Hiy, the left-hand side of (2.19) would vanish in the limit § — 0 and (2.18) would not
be satisfied. Therefore, we have to make Hpo much greater than Hj,, and then the eigenvalues
of Hio should converge to those of Hypo, {—2h, —2Ch,2Ch,2h} in the limit 8 — 0. With
Ey — —2h and E; — 2h, the inequality (2.19) reduces to the following inequality:

log 3

Bh > ==, (2.20)

This inequality means that we need a non-zero value of $h in the high-temperature limit 3 — 0.
In other words, we need to make h grow as 1/ at least, in order for the entanglement to exist
in the limit 5 — 0.

Next, we derive an approximation of the density matrix, and then obtain Eq. (2.17) by
utilizing the Peres-Horodecki criterion [51,52], which is a necessary and sufficient condition
for the existence of the entanglement. In the present optimization problem, we fix Hy, to a
constant matrix, and therefore we have fH;,; — 0 in the high-temperature limit. We thereby
work in the first-order approximation with respect to SHiy:

1
—_H! _(1_ / _ /
~ ¢ Hio —ﬁ/ e~ Hio g, e Hiody

0

= ¢ Mo~ fuu (ol Hinelt) 1) (v, (2.21)

M?V

where Z = tr(e~to=#Hint) and we let H|, = BHyo with h' = Bh as well as

—EBl, _¢—Fu / /
e v—e
{—E;—E; . for B, 4 E,

—E! '
e u, for £, = E,.

S = (2.22)

Here, {E} },_, are the eigenvalues of Hyo = 3Hyo, {—2h', =2¢h',2Ch', 21}, and {|u)},_, are
the corresponding eigenstates, {|——), |—+), |[+—), |[++) }.

We then utilize the necessary and sufficient condition for the existence of the entanglement,
det p™* < 0. This has been proved [28] to be equivalent to the Peres-Horodecki criterion [51,52].
In the following discussion, among the various terms of the expansion of det p’*, we compare the
values of the products including off-diagonal elements (POD) with that of the product of the
diagonal elements (PD), which has a positive value. Then a necessary condition for det p’* < 0
is that POD is greater than or of the same order as the PD.
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To analyze the order of the PD and the PODs, we express p’ in the basis {|u)}/,—, and
focus on the main terms for ¢ # 0 and ( # +1:

Zph
’ ’
2h! ﬁ62h ﬁth ﬂeQCh
€ Q12 R a3 X asa h
’
ﬁth 2 I B 2n/ ,@€2Ch
B—0 a1 Y ¢ aq1 % Q42 h 2.93
’ /@e%’ Be 2h/ —QCh' /36720/ ) ( : )
a a a
13 77 147 34 g

2¢h/ 2¢h/ e—2¢h _on
23 Be Y Q24 Be h 43 B W €

where {a;;} are determined from Eqs. (2.21) and (2.22) and are constants of order 1. Note that
on the diagonal of Eq. (2.23), the second term in Eq. (2.21) is neglected in comparison to the
first term. Then we compare the orders of the PODs with that of the PD. The PD is given
by e2l 2 o= o=2h" — 1 whereas each POD includes at least two off-diagonal elements. The
maximum of the absolute value of the PODs is of order e** 32 /h'2, which comes from the product

—e2l x a415h2,h X aM& x =2 Therefore, it is necessary for det p’* < 0 that e4h/ﬂ2/h’2 is
greater or of order 1, which is the order of PD. By taking the logarithm of ¢** 3%/, we can
obtain the following inequality as a necessary condition:

log1/5 N log b/

Bh=H >
2 2
logl/ﬁ 1 logl/6  logh'
3 g( SR
logl/ﬁ 1 logl/p 1 log 3
=" 2 +210g( 2 +21°g< 4 )
>10g21/ﬁ, (2.24)

where we utilized (2.20) in deriving the third inequality and used the fact 5 — 0 in deriving the
last inequality. Thus, Lemma 2 is proved for ¢ # 0 and ¢ # £1. For ( =0 or ( = £1, some of
the eigenvalues of Hj are degenerate, which means that £}, can be equal to £, in Eq. (2.22),
and Zp™ is not of the same form as that of Eq. (2.23). However, the inequality (2.24) still
holds as is proved in Appendix B.

We now consider the negativity (2.7) in the range given by (2.17). We first show in the
following Lemma 3 that the optimized negativity in the cases of ( = £1 is not large enough.

Lemma 3. In the cases of ( = £1, the optimized negativity satisfies the following:

Nop(p’C = :i:l) /3*)0

0. (2.25)

This lemma shows that the optimized negativity in the cases of ( = #£1 is of a higher order of
(. Indeed, we numerically confirmed in the cases of ( = 41 that the entanglement exists, but
its amplitude is of order (32.

Proof. Let us prove Eq. (2.25) in the case of ( = 1. The proof for ( = —1 is almost the same.
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We start from the main term of Zp™ for ¢ =1 in the representation in the basis {[u)}5_;:

Zph
’
o2n 2h! ﬁe2h ﬁe2h
€ apfe a1 a32 =7
/ ’
oh! oh! ﬁe2h ﬁe2h
p—0 | az1fe e an = a5 (2.26)
Be2hl 562}1/ —on! _9on! ) :
13—~ Q14— € azafle
/ /
Bth e2h _9on! —9on
237 61245,1/ ay3fle €

where we used the fact that at ¢ = 1 the eigenvalues of H| in Eq. (2.22) are degenerate as
{E}, B}, EL By = {20,210, —2h/, 21/}

In order to optimize the negativity, we necessarily consider the region b’ = Sh > (log1/3)/2
as is given in Lemma 2. Therefore, we can use the fact €2 > 57! in (2.26). Of the elements of
the matrix (2.26), the (1,1) and (2,2) elements are of order 37! or greater, whereas the (3, 3),
(4,4), (3,4) and (4, 3) elements are of order 8! or less. The other elements are approximately
of order 1. We therefore break up the matrix (2.26) in the form

e 0 00
T _ l 0 €2hl 00
PP=Z1o0o 0 00
0 0O 0O
, 2k o2k
0 afBe®  az P an
! W g g e
+E azlg;h’ Be2h’ T 2 + 0(62)7 (2'27)
Q13— G4y 0 0
e2h e2h
a23T CL24'BT 0 0

where Z ~ 2e?" +2¢7?"" ~2/3, and therefore the first term is the dominant term of or-
der 1, whereas the second term is of order 8. The eigenvalues of the dominant term are
{e? /7, e /Z,0,0} and the corresponding eigenstates are {|——), |—+), |[+—=), |[++)}. A nega-
tive eigenvalue can appear when the degeneracy of the two zero eigenvalues of the states |+—)
and |++) is resolved by perturbation. Then, the level repulsion between them makes one of
them positive and the other negative. However, the first-order perturbation of the second term
of Eq. (2.27) dose not resolve the degeneracy of the zero eigenvalues. Therefore, the negative
eigenvalue must be produced in a higher order of 3 in the case of ¢ = 1. Thus, Lemma 3 is
proved. We focus on the cases ( # +1 hereafter.

Using the lower bound (2.17) of the optimizing parameter h,, we next prove that the
optimized thermal state is a nearly pure state in the cases of ( # +1. For this purpose, we
consider the eigenstates of the perturbed density matrix. We define the perturbed eigen-
states of fHor = H{ o + BHin as {|—='),|—+'), |+—'),|++) } corresponding to the eigenstates
{I—=),|—+), |[+=), |++)} of H{,, respectively, and their eigenvalues as {2h' — (dey,2Ch" —
Bdey, —2Ch — Bdez, —2h' — Bdes}, where {de;}?_, are the perturbative changes due to Hiy,
which are of order 1. Then the density matrix is given by the summation over these four states.
In the high-temperature limit § — 0, the mixing ratio {A__, A/, Ay, A\, v} of the states
{I==") =40, [+="), [++)} are

{)‘——’7 )‘—+’7 A-l——’a )‘++'}
1

- (2 —ber 20N ~fbes =20 ~Poen o—2W'~Pdea) (2.28)
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where

Z — €2h/7ﬁ561 + e?{h’*ﬁﬁ&g + e*2<h’*ﬁ563 _'_ e*?hlfﬁ564. (229)

In the region A’ > (log1/3)/2, which is the lower bound of A/, we have

op?

/\—-‘r’ o 672(17C)h’+ﬁéelfﬂ6eg < ﬂlfﬁefﬁ&ﬁrﬁ&:z,

A

/\+—’ _ 672(1+C)h’+56617ﬂ563 < /81+C€75561+,85€3

A ’

i—l—-ﬁ-’ _ 672h,+ﬂ6€175664 < ﬂ2€7ﬂ661+[3664' (230>
Since the right-hand sides of the inequalities vanish in the limit § — 0, we deduce that the
optimized thermal state is a nearly pure state of |——') in the high-temperature limit g — 0
when ¢ # +£1.

Next, we perturbatively calculate the negativity in the cases of ( # +1. Since the optimized
state is a nearly pure state of |——'), we regard the other contributions {|—+'), [+—"), |[++')}
as perturbation:

op = Z Aipi, (2.31)

{i=—+'+—"++'}

where {|—="),|—+),|+='),|++')} are the eigenstates of GHi, = H{ o+ SHiy as has been
stated. In order to calculate the negativity approximately, we derive the expression for the
perturbation of the negativity caused by an infinitesimal variation of the density matrix.

Lemma 4. When the negativity has a non-zero value, the first-order perturbation of the
negativity is given by

N(po+dp) = N(po) — 2(¢—|0p" |6), (2.32)

where we refer to the eigenstate corresponding to the negative eigenvalue of pgl as |¢p_).

Proof. The non-zero negativity is given by the negative eigenvalue A\_ of the partial transpose
of the density matrix, pOTl, as is defined in (2.7). Because of the linearity of the partial transpose,
if pp changes into pg + dp, pOT1 also changes into pgl + dp™t. Moreover, the eigenstate of pOT1
corresponding to A_ is not degenerate because A_ is the only possible negative eigenvalue [28].
Then, from the general perturbation theory for A_, we have Eq. (2.32) in the first order.

From Egs. (2.31) and (2.32), we can calculate the negativity in the present case of ¢ # £1
as

N (Z o)

=N(== = S (2o lelen) +008). (2.33)

{i:7+/7+7l7++l}

The state | ——') and its negativity N(|]——')) are calculated in the first order of the perturbation
H{o — Hj o+ BHiy. The zeroth-order eigenstates and eigenvalues are {|——), |[—+), |[+—), |[++) }
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and {—2h" — 2Ch',2Ch', 2h'}, respectively. The first-order eigenstate for the state |——) is then

given by
="y = [==) 4 Bra|=+) + Bna|+=) + Bs|++) + O(5%), (2.34)
where
(e HHl )
1 — )
—2(1 = Q)
(| Hud
2 — )
—2(C+ 1)K
(++ [ Hint|——)
= . 2.
g = (2.35)
Note that the normalization factor of the state |——') is 1 + O(?). The matrix representation

of pgt = (|——’><——’])T1 is therefore given in the basis of {|——),|—+), |+—),|++)} as follows

by ignoring the terms of O(3?):

o O =
o O O
o O O

(I==)=="N)" = +5

o O OO

0 0 0

n2

ns
0
0

*
0 nj
nq 0
ny Mg

0 0

0
0
0 (2.36)
0

The zeroth-order eigenvalues of pgl are {1,0,0,0}. The negative eigenvalue emerges when the
degeneracy of the first and second zero eigenvalues resolve in the first order of 5. The third
zero eigenvalue remains to be zero. The eigenvalues are then given by {1, 3|ns|, —3|ns|,0} in
the first order and hence the negative eigenvalue —/|ns| gives the negativity

N(==") = 28[ny
[+ Hiwal =)

2
pum 2.
3 oh +0(6%), (2.37)
The corresponding eigenstate |¢_) is given by
1 ns
) =—= (1) — —=[+—)) + O(B)|——). 2.38
6-) = 5 (I=+) = ol+) + 08) 1) (2.38)
Similarly, we have
1 / T
Pl = (=) (=) = |- {-++0(8),
1 / T
P = (=" (=) = [+ =) (=] + 0(8),
Py = (HH) DT = )+ + 0(8), (2:39)
as well as
62{}1,’7,@662
Apr = ———
* Z
~ ¢ 200N (1 4 B6e)(1 — Bley)(1 — e 201D
— ¢ 200N L 026Ky,
)\ B e—QCh’_ﬁ5€3 - _2(1+<)hl + 0(62+C_|C|)
4 —Z >~ e 5
o—2h'—Bdes )
Ay = ———— e M 4 0(5*1), (2.40)

A
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where we used Eq. (2.29) for Z. Note that the first term of each of A_ +/ Ai_r and A++/ is
of order 517¢, 8¢ and (% or less, respectively, in the range of (2.17), A’ > (log1//3)/2.
substituting Eqs. (2.37)—(2.40) in Eq. (2.33), we have

++|Hmt’ >’
(Z Aip ) ~ o

— e 210N _ o200 4 (3201 (2.41)

for ¢ # +1.

Because the matrix element |(4++|Hiy|——)| is independent of A’ and (, we can solve the
maximization problem of Eq. (2.41) as follows. First, to maximize the negative terms in
Eq. (2.41), we must put ¢ = 0. Then, by differentiating Eq. (2.41) with A’, we have the opti-
mizing parameter h;, as a solution of

8h/2
2h! op
e“lor o~ . (2.42)
BI{++Hine|——)]
The optimized negativity is then given by
[ Hint[ =) —om
Nop(p) =~ T — 2¢ 2hop
op
| ([ Hini [ ——) | < 1 )
g 2hy,, 2h,, /" (243)

where we used Eq. (2.42) upon moving from the first line to the second line. This is the result
for ¢ # £1. From Lemma 3, we see that the optimized negativity (2.43) in the case of ( =0 is
larger in the limit § — 0 than the one (2.25) in the cases of ( = £1.

The other optimizing parameters to be fixed are {01, ¢1,0s, Pp2}. Let us see how these pa-
rameters affect the value of (2.43). These parameters affect the matrix element |(++|Hint|——)]
and hence the value of (2.43) directly as well as indirectly through h;, given by Eq. (2.42).
We can write down the solution of Eq. (2.42) in terms of Lambert’s W function [53], which is
defined as a solution of

x=W(x)eV®, (2.44)

because we can cast Eq. (2.42) into the form

(—h) Yo Mo = \/5| ++|Hmt| mil (2.45)

The appropriate solution of Eq. (2.42) is given by

T (_\/ﬁ\<++\;ﬂm|——>!)7 (2.46)

where W_;(x) is the branch of W (x) satisfying W_;(z) < —1 in the domain —1/e < z < 0 [53].
The function —W_;(—x) is a monotonically decreasing function of x in the domain 0 < z < 1/e.
Therefore, maximizing the element |(++| Hy | ——)| with respect to the parameters {6;, ¢1, 62, ¢ }
brings A/, to its minimum within the range h{, > 1. Since the factor

2ligp (1 N 2th) (2.47)
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in Eq. (2.43) is a decreasing function of h;, for hl, > 1, minimizing A, within the range h{, > 1
brings the factor (2.47) to its maximum. To summarize, the element |(+-+|Hin|——)| increases
the value of (2.43) not only directly but also through A/, indirectly.

The next task is then to find the parameters {61, ¢1,0s, ¢2} that maximize the matrix
element [{++|Hiy|——)| in Eq. (2.43). The eigenstates of the one-qubit part » ,_ . ho’ of
the local Hamiltonian Hyo are given by

0 , 0
|+) = cos 5\0) + €' sin §|1>,

0 , 0
|—) = —sin §|0> + €' cos 5]1>, (2.48)
where we define |0) and |1) as the eigenstates of o and represent {h'},—, , . as

{hsin 0 cos ¢, hsin O sin ¢, h cos 0} (2.49)

in the polar coordinate. We can thereby express the eigenstates |++) and |——) of Hyo in the
forms

0 0 0 0y
|++) = cos 51 cos 52]00> + cos 51 sin 526”2 101)
0 0y . 0 0y .
+ sin 51 Cos 5261(1)1 110) + sin 51 sin 526’(‘1)”‘1’2) |11),

0, . 0 0 by,
|——) = sin ?1 sin —2|00) - Siﬂ;1 Cos 526“’52!01>

01 9 01 05
—cos o sin — 5 e'?1[10) + cos 5 cos ¢ el@1+e2)|11). (2.50)
We therefore have the matrix element (++|Hjy|——) in the following form:
(++[Hine[——)

0 0y _,
=J,sinb; sinby + (J, — Jy) [sm 21 sin? 526—1((151"!‘(252)
0 0y .
+ cos? 51 cos’ 526%(‘151“52)]
0, . ,0
—(Je + J )[COS ) sin? 22 ! (91=%2)

61 0
+sin? — 5 L cos? 22 e'= ¢1+¢2)] (2.51)

In the cases of {J;, J,} > J, > 0and 0 > J, > {J,, J, }, the upper bound of |(++|Hn|——)|
is given by

(4 Hine| ==) < | o + Jy |- (2.52)

We prove this inequality in the cases of J, > J, > J. > 0; we can prove the other cases in the
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same way. First, |(++|Hin|——)| satisfies the following inequality:

[ ([ Hint [ =)
<|J,| sin 6; sin Oy
. 901 . 509 01 0,
+ |y — J| (sm2 B sin? 5t cos® 5y cos® E)
0 o 0 0
+ |, + J,| ((3082 51 sin 52 + sin? 51 cos® é)

1+ cos 6y cos b,
2

— cos 0 cos O

2
By utilizing the fact that J, > J, > J, > 0, the inequality (2.53) reduces to

=|J.|sin 6, sin s + |.J, — J, |

1
+ |y + J,| (2.53)

|(++|Hine|——) | <J — J, cos By cos by + J, sin 0; sin Oy
<|Jy+J,. (2.54)

The inequality (2.52) becomes an equality when we choose {01, 65, ¢1, p2} as {0,7,0,0} for ex-
ample, or in the Cartesian coordinate {h{, h{, hi, hs, hi, hi} = {0,0,h,0,0,—h}. Then, the op-
timizing local parameters are given in the form of {h, Y, h%, h%, hi, hi} = {0,0, hop, 0,0, —hep }-
Moreover, Egs. (2.11) and (2.13) can be given by substituting |(++|Hin|——)| with |J, + J,|
in Eqs. (2.42) and (2.43).

Finally, the leading order of Lambert’s W function —W_;(—x) is log z [53]. Therefore, the
leading order of Eq. (2.46) gives Eq. (2.14), which then results in Eqs. (2.15) and (2.16). This
completes the proof of Theorem 1.

2.3.2 Optimization at arbitrary temperatures

It is difficult to generalize Theorem 1 to arbitrary temperatures. However, we can present the
following Theorem 2. Let us now parametrize the local fields as follows:

{hiE? h":[l/’ h’i’ h%’ h’g7 h‘;}

or
hZ — hZ h? 4+ hZ
[ — =12 2.56

Theorem 2. When we express the negativity as a function of the local parameters {h7, h{, h*(1+
€),hE hy, —h*(1 — &)}, the following equation holds at arbitrary temperatures:

ON _ON _ON _ON N _
ohi — Ohi  OhY 0Ky 0

at {h%,hY hZ hY. &, k7Y = {0,0,0,0,0, h}. (2.57)

This theorem means that the form of the optimizing local parameters in the high-temperature
limit, {h7, RY, K3, b3, h, h5} = {0,0, hep, 0,0, —hep}, also gives an extremal value of the nega-
tivity at arbitrary temperatures.
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Proof. To prove this theorem, we firstly calculate the perturbation of the negativity due
to an infinitesimal variation of the local parameters at arbitrary temperatures. If it always
vanishes, Eq. (2.57) is proved. We first derive the perturbation of the density matrix due to
an infinitesimal variation of the local parameters, from {0,0,h,0,0, —h} to {0h7,dhY, h(1 +
6€),0h%, 0hy, —h(1 — 0&)}. This means the perturbation of the form

Hiow = Hoyy + 0HLo, (2.58)
where

HY =Y Joi®oy+hoi®] -1 03) (2.59)

1=T,Y,2
is the total Hamiltonian with the local parameters {0, 0, h,0,0, —h} and
0Hio = Y (6hio} @ I + 6hiy] ® o)

=T,y

+hoé(o; @ I+ 1 ® 03) (2.60)

is the infinitesimal variation of the local Hamiltonian. Equation (2.21) gives the perturbation
of the density matrix dp as

5 e —B(HP +6HLo) BHSQ
P=""7 %5z
67
= —— Pop — g / PA=DHG 5 Hy e~ PoHic dir, (2.61)

where pop = e et /Z and

1
07 =tr (—ﬁ/ e_ﬁ(l_w)H&i5HL06_5’”H50ptdx). (2.62)
0
Then, the perturbation of the negativity in Eq. (2.32), N = —2{¢_[6pt|¢_), is given as

07
ON = __N</)0p>

T1
/tr{kb (P \ A=) G 5 H o e tot) }d:c

:Mtr(/ e‘ﬁ(l z) totéH totdw)
Z 0
2 1 op _ op
2 [ (1000 e e
0
1
:/ tr[e‘ﬁIH&iﬁe_ﬁ(l_w)H&i5HL0]dm (2.63)
0

where

NI

[N (T 1) +2(l6-)6-1)" | (2.64)

n=
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and we used the identity N(pop) = —2(¢—|plil¢—) as well as tr(A" B) = tr(AB™). We will
prove that the integrand of Eq. (2.63),

tr |e~ PG pe 00D G 51 o | (2.65)

always vanishes for {hi, hY, b3 h3. & h,} = {0,0,0,0,0,h}.
We prove in Appendix C that the operator

e~ PrHiG pe =P -2 HiG: (2.66)

has the same symmetry as the Hamiltonian Hg} in Eq. (2.59), and thereby must be expanded
in terms of the Pauli matrices in the form

1 , .
1(%0]@ I+qo(0f®@I—-1®05)+ Z qii01 ®U§), (2.67)
1=T,Y,2

where qoo, g0 and g;; are appropriate coefficients. Therefore, we can calculate Eq. (2.65) to
have the following equation:

tr[ —PeHiGipe—P0- mHtO“(W—(LO}

1
:U"{Z {C]00]®]+qz0(0f ®1—-1®o03)

+ Z qiiai X 04 X

1=x,Y,2

[Z (6hiot @ I+ 6hil @ o) + héé(o; @ [+ I ® 05)] } (2.68)

1=x,Y

A straightforward algebra, such as tr(cf ® o) = 0, yields that Eq. (2.68) vanishes. This means
that the perturbation of the negativity due to the infinitesimal variation of the local param-
cters {0hy,0hy,0h%,0h2, 06} always vanishes at {h{,RY,h3, h3,&, h.} = {0,0,0,0,0,h}. This
completes the proof of Theorem 2.

To extend Theorem 1 to arbitrary temperatures, we assume the following hypothesis:
Hypothesis 1. The local parameters of the form {h7, h{,hi, b3 hy h3} = {0,0,hp, 0,0, —h,p}
giwe not only an extremal value but also the maximum value of entanglement at arbitrary tem-
peratures.

We numerically tested this hypothesis using determinant-based entanglement measure m(p) [28],
which is given as

T
7(p) = {O’ . for pT 20, (2.69)
2(| det p™ )14, for p™t < 0.
Though this entanglement measure is not a full entanglement monotone, it provides tight
lower and upper bounds for other entanglement measures including the negativity and the
concurrence. In addition, det p’* is expressed in the form of a polynomial and is much easier
to maximize numerically than the concurrence and the negativity. Utilizing this measure,
we tested Hypothesis 1 by numerical optimization for various kinds of interaction at various
temperatures and found it always satisfied. In the following, we will assume Hypothesis 1 and
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conclude that {h7, by, hi, b3, hy, h3} = {0,0, hep, 0,0, —hep} is the globally optimizing solution
at any temperatures.

For the local parameters {h¥, h¥, h?, h&, hY, hi} = {0,0,h,0,0, —h}, the density matrix Zp’
is given at arbitrary temperatures in the basis of the eigenstates of o ® o3, {|00),]01), |10),|11)},
as

a 0 0 as
T _ 0 bl - b2 b3 0
= 0 bs bi+by 0]’ (2.70)
asz 0 0 ay
where
BJ= inh
al — e_ﬁjz COSh /6{]17 a2 — _e (Ja: + Jy) S1n /BJ27
Jo
2hel’= sinh 3.J.
by = % cosh BTy, by = e’z sinh 3 27
Jo
by = —e 7’ sinh B.J;,
N o=l = AR e ) (2.71)

Its eigenvalues are

{a1 — Jas], a1 + |as, by + /03 + B2, by — (/b3 + bg}. (2.72)

In Appendix D, we will prove that only a; — |as| can have a negative value for {J,, J,} > J, >0
and 0 > J, > {J,, J,}. Therefore, the optimized negativity is given by

N(Jz, Jy, Iz, h, B) = max(N, 0), (2.73)

where

a; — |as|
A
e P cosh By — (€721, + J,|sinh B.J2) [ J
e=P7= cosh BJ; + €87z cosh 5], ’
7 = 2 P7= cosh B.J; + 2¢77% cosh 3., (2.74)

N=-2

We find from this expression that we can always make the negativity positive by choosing an
appropriate value of h.

The remaining task is to find the value of the optimizing field h., at each temperature.
We will do it analytically in the low-temperature limit § — oo in Sec. III.C as well as do it
numerically rigorously for a wide range of the temperature in Sec. IV.

2.3.3 Optimization in the low-temperature limit

We now discuss the optimization problem in the low-temperature limit.

Theorem 3. In the low-temperature limit 3 — oo, the optimized entanglement approaches
to 1. The optimizing parameter ho, approaches to 0 when we choose the optimizing parameters
as {0,0, hop, 0,0, —hop }-
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Proof. We need to consider the three cases, namely the cases where the ground state of Hj,
is non-degenerate, doubly degenerate and triply degenerate. The eigenvalues {¢;}7_, and the
corresponding eigenstates {|1;)}i; of Hiy are given by the following:

Hint: Z Jﬂi@a;,

i:x’yzz
1

(v=de =y =Ty ) = 5 (Ion) - 10)),
(101} + 10},
(100) + 1)),

1
i(|00> - |11>>. (2.75)

€2 = Jx+Jy_J27 |¢2> =

Ql

63:Jx_Jy+Jz> |¢3>=\/§
V2

€4 = —Jx + Jy + JZ, |’l7Z)4> =
As has been described in Sec. II, we consider only the cases of {J;, J,} > J, > 0and 0 > J, > {.J,, J, }.

In each case of {J,,J,} > J., >0 or 0> J, > {J,,J,}, the ground state of H, is non-
degenerate, and €; or €y is the ground-state eigenvalue, respectively. In these cases, the ground
state is a Bell state and it is clear that its entanglement is maximum. In other words, there is
no need to optimize it further and H;y) = 0. We will see in Sec. IV that, in this non-degenerate
case, there is indeed a finite range of the temperature where the negativity is maximized for
HYY = 0.

In each case of 0 > J, = J, > J, and 0 > J, = J, > J,, the ground state of Hi, is doubly
degenerate and €, = €4 or €5 = €3 is the ground-state eigenvalue, respectively. In the case
0>J, =J, =J,, the ground state of H;, is triply degenerate and €3 = €3 = €4 is the ground-
state eigenvalue. In these degenerate cases, the ground states are mixed states and their
entanglement always vanish. However, we can resolve the degeneracy of the ground states by
an infinitesimal local Hamiltonian.

We hence employ Hypothesis 1 and put {h{, h{, k5, h%, hY, h3} = {0,0, hop, 0,0, —hep}. We
then calculate the asymptotic behavior of the optimized entanglement in the low-temperature
limit 3 — oo. Below we will derive

hop U%logZﬁj as [ — oo,

_ 1+log 20
BJ

in the doubly degenerate cases, where we defined J = |Jx + Jy|, and

hop:\/%logélﬂj as [ — o0

1 +log43J
BJ
in the triply degenerate case. In both cases the optimizing parameter h,, is infinitesimal and

the optimized negativity N,, approaches to 1 in the low-temperature limit 3 — oo, although
the forms of h,, and N,, are slightly different in the two cases. We will see in Sec. IV that, in

Nop ~ 1 as (3 — oo. (2.76)

Nop ~ 1 as [ — oo. (2.77)
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these degenerate cases, there is indeed no finite range of the temperature where the negativity
is maximized without local fields. In other words, we need a non-zero value of h,, at any
non-zero temperatures.

Now we derive Egs. (2.76) and (2.77). We start from Eq. (2.74) under Hypothesis 1. In the
doubly degenerate cases 0 > J, = J, > J,and 0 > J, = J, > J,, we can approximate Eq. (2.74)
as

676(J27J1) _ (GB(JZ+J2)|JI + Jy|)/<]2
e_ﬁ(Jz_Jl) + eﬁ(r]z'i‘JQ)
-1+ (6/8(2Jz+J2—J1)|Jx + ’]yl)/JQ

- 1+ eB@L+h—) (2.78)

N~ —

in the low-temperature limit 3 — oo, where we used the facts that 2 cosh 5J; ~ €/t 2sinh 3J, ~ €72
and 2cosh B.J, ~ %72, Moreover, in these doubly degenerate cases, 2J, + J, — J; is either
2J,+ Jy— Jpy+ Jyor2J, + Jo + J, — J,, which are summarized to J, — |J, + J,|. Then Eq. (2.78)
reduces to

—14+eMXJ/(X +J)

N ~ 2.
1+ efX ’ (2.79)
where
J =11+ Jyl,
X =Jy—J = \JAh? 4 (Ja+ )2 = | T+ J, . (2.80)

We first prove that X — 0 and 8X — oo is a necessary and sufficient condition for N —1

in the low-temperature limit § — oo. In order to prove this, we calculate the value of 1 — N
as follows:

1+ JN(X 4+ )

1-N=1
1+ efX
—BX T
:26 —|—X/(X—|—J)7 (2.81)
14e#X

Because X >0 and 0 < e #* <1, we have X/(X + j) >0and 1 <1+ e #% < 2. Therefore,

the necessary and sufficient condition for 1 — N — 0 in the low-temperature limit is
X - 00 and X —0 as [ — oc. (2.82)

In such cases, the negativity can be maximized to 1 in the low temperature limit § — oo.
Let us now calculate the optimizing parameter X,,. From the extremal condition for

Eq. (2.79),

AN PX(BX?+3B8JX 420802 — J — P¥)
ax (1+ ef%)2(J + X)2

=0, (2.83)

we obtain

2

5A;p::kg(52%2-+353;p4—2ﬁj-1). (2.84)

32



Because of the condition (2.82), Eq. (2.84) reduces to

- X2 33X 1
X, =log28.J + 1o (1+ o | O%op )
FXop = log 207 H-log\ 1+ 25, + =5 = 553

~ log 2] (2.85)
in the limit § — oco. We thus have

log 23.J
op = 5 ’
which indeed satisfies (2.82). The optimizing parameter h,, is thereby obtained in the form

1 =
hop = 54/ X2, + 27X,

(2.86)

~ 1/ —log243J, (2.87)
where we utilized Eq. (2.80) to derive the first equality. Moreover, the optimized negativity is
given by

N,, ~ —e P 1/(X0p/j+ 1)
op — 6_’8X0p + 1

Xo
~ (1 — e7F%Xor) (—G_BXOP +1-— jp)

~1- X—?p — 2~ PXer

_ 1+log 20.J
BT

where we used Eq. (2.82) upon moving from the first line to the second line. Thus Eq. (2.76)
is proved.

In the triply degenerate case 0 > J, = J, = J,, we have J; = 0, and thereby we can approx-
imate Eq. (2.74) as

~1 : (2.88)

2e 0 — (P4 I, + T, |) ) Jo
26_5‘12 + eﬁ(Jz+J2)
24 (PN, + J,y)) ) I

- 9 1 eB2T+T2) (2:89)

N~

in the low-temperature limit 3 — oo, where we used the facts that cosh 3J; ~ 1, 2sinh 3.J, ~ /2
and 2 cosh 3.J ~ €%/2. Moreover, in this case, 2.J, + J is equal to J, — |.J, + J,|, and therefore
Eq. (2.89) reduces to

—2+ X T /(X + )
2+ efX ’

N = (2.90)
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where X and J are defined in Eq. (2.80). From the extremal condition dN/dX = 0, we obtain

26X?2 )
Xopf3 = 1og( b 65 Xop + 457 2)

~ log4/3.J, (2.91)

where we used the same logic as the one with which we derived Eq. (2.85) in the doubly
degenerate case. In this way, the optimizing parameter h,, and the optimized negativity N,

are given as
J .
hop = 25 log43J, (2.92)

Xo
Nop == 1 — =22 — e e
J

and

1+ log 43.J
CYA

Thus Eq. (2.77) is proved. This completes the proof of Theorem 3.

~ 1 (2.93)

2.3.4 Negativity and concurrence

We here mention the relationship between the negativity and the concurrence [26]. The con-
currence is also an important entanglement measure. Concerning the optimization problem of
the concurrence, we can only prove that the negativity /N and the concurrence C' have the same
value for the local parameters {0,0, h,0,0, —h} with an arbitrary value of h; namely,

N(0,0,k,0,0,—h, 3) = C(0,0,h,0,0, —h, 3). (2.94)

This equation is proven by the theorem in Ref. [29], which says that the concurrence is equal to
the negativity iff the eigenvector of p’t corresponding to its negative eigenvalue is a Bell state
up to local unitary transformations.

For the local parameters {0, 0, , 0,0, —h}, the density matrix Zp™ is given in Eq. (2.70) and
only the eigenvalue N = a; — |ay| can be negative. For {J,, J,} > J. > 0and 0 > J, > {J,, J,}
the eigenvectors of Zp™ corresponding to the eigenvalue N = a; — |a| is (|00) + |11))/v/2 and
(]00) — |11))/+/2, respectively, both being a Bell state. In the case of N > 0, the concurrence
must be equal to the negativity because the eigenvector of p’ corresponding to its negative
eigenvalue is a Bell state. In the case of N < 0, the negativity N = max(N ,0) is equal to 0
and the entanglement does not exist. Therefore, the concurrence and the negativity are both
equal to 0. This completes the proof of Eq. (2.94)

2.4 High- and low-temperature phases

In the present section, we calculate the optimizing local Hamiltonian and the optimized entan-
glement numerically rigorously. After the analysis in Sec. ITI, we here set {h{, hY, h5, hi h3, hi} =
{0,0, hop, 0,0, —hop}. In the calculations below, we will see that there are two kinds of tem-
perature range, which we refer to as the high- and low-temperature phases. We will find
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Figure 2.1: Numerically rigorous solution of the optimizing local parameter hop: the solid line
for {Jz, Jy, J.} = {1/3,1/3,1/3}, the dashed line for {.J,, J,, J.} = {1/2,1/3,1/6} and the thick
line for {J,, J,, J.} = {—1/2,—-1/4,—1/4}. The number of data points is 3000 for each case.
The boundary temperatures 7T, between the high- and low-temperature phases are 0.8168 - - -,
0.6803--- and 0 for {1/3,1/3,1/3}, {1/2,1/3,1/6} and {—1/2,—1/4,—1/4}, respectively.

that in the low-temperature phase the optimizing local parameter h,, vanishes, whereas in the
high-temperature phase it dose not. We start from Eq. (2.74) with the optimizing parame-
ters {h{,hY, h5, kS, K, h3} = {0,0, hop, 0,0, —hep}. The parameter ho, which maximizes the
negativity can be calculated from

10N

—— x |J + Jy|(BJz cosh BJy — sinh 5.5)

h Oh |,y

e?=| I, + J,| sinh 2(3.J,
cosh .J; <_J25 + 2 )

=0, (2.95)

+ J3Bsinh B.Jy —

where the factor 1/h is added to remove the trivial solution of h = 0. In Fig. 2.1, we show
the optimizing local parameter Ay, in the cases of {J,, J,,, J.} = {1/3,1/3,1/3}, {1/2,1/3,1/6}
and {—1/2,—1/4,—1/4}. See Appendix A for the convergence of h, to the asymptotes (2.11)
and (2.15).

In the high-temperature phase, Eq. (2.95) has a non-trivial solution of h,, > 0, while in
the low-temperature phase, Eq. (2.95) has no solutions and the optimizing value h,, is zero,
which is the trivial solution of 9N /Oh = 0. Therefore, the boundary temperature 7. between
the high- and low-temperature phases is a solution of

LNy, S B )

lim > o — 0. (2.96)

The boundary temperature 7 is defined for each interaction Hamiltonian H;,;.

In Fig. 2.2, we show the boundary temperature 7, in the cases of {J,, J,} > J, > 0 and
0> J,>{Jy Jy}, which correspond to all kinds of interaction thanks to Lemma 1. We
calculated the data in Fig. 2.2 from (2.96), normalizing the interaction parameters so that
||Hint||2 = 1, where || ||2 is the spectral norm. From Fig. 2.2, we see the following properties.
First, the boundary temperatures 7T, are higher in the antiferromagnetic cases {J,, J,} > J, >0
than in the ferromagnetic cases 0 > J, > {.J,, J,}. Second, in the antiferromagnetic systems,
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Figure 2.2: (color online) The boundary temperature T, between the high- and low-temperature
phases, (a) for the antiferromagnetic case {J;, J,} > J, > 0 and (b) for the ferromagnetic case
0>J,>{J; Jy}. The point of origin is (1, 1), which corresponds to the isotropic Heisenberg
interaction. In (a), the boundary temperatures are 0.8168 -+, 0.1292---,0.1292---,0.5735- - -
and 0.6208 --- at (1,1), (1,10), (10, 1), (10,10) and (5, 5), respectively. The maximum temper-
ature is 0.8168--- at (1, 1), which is the X X X point. In (b), the boundary temperatures are
0,0, 0,0.4126--- and 0.3188--- at (1,1), (1,10), (10,1), (10,10) and (5,5), respectively. The
maximum temperature is 0.5184 - - - at lim, ., (z, ), which is the X X point.
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Figure 2.3: Plots of (a) the negativity; (b) its first derivatives; (c) the purity, for J, = 1/2,
J, =1/3, J, =1/6. The solid line is the optimized entanglement and the dashed line is the
entanglement enhancement defined in the text. The boundary temperature is T, = 0.6803 - - -.
At T'=1.185-- -, the entanglement enhancement is maximum, where the value is 0.1480 - - -.
In (b), we obtained the data points by the finite-difference method. In (c), the solid line is the
purity of the optimized state and the dashed line is the one under no local Hamiltonian. The

minimum value of the purity is 0.5087 - - -

at 1.
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the boundary temperature 7, is maximum of 0.8168 - - - for the isotropic Heisenberg interaction
(the XX X model). Next, the boundary temperature T is zero in the cases of 0 > J, = J, > J,
and 0> J, = J, > J, as well as the case of the ferromagnetic isotropic Heisenberg model,
which means that the low-temperature phase shrinks to the zero temperature in these doubly
and triply degenerate cases analyzed in Sec. III.C. We have revealed in Sec III.C that in the
low-temperature limit § — oo the negativity is strictly 1 with no local Hamiltonian in the non-
degenerate cases. The present calculation indeed shows that the low-temperature phase extends
to a finite temperature in the non-degenerate cases. In the antiferromagnetic system, on the
other hand, the boundary temperature is zero only in the case of the Ising model, J, = J, =0
or J,=J, =0.

Next, we consider the singularity at the boundary between the high- and low-temperature
phases. In Fig. 2.3, we show the optimized negativity, its first derivative and the purity tr(p?)
in the case of {J,, J,, J.} = {1/2,1/3,1/6}. We also consider the entanglement enhancement,
which is defined as the difference of the entanglement between the optimized entanglement and
the entanglement under no local Hamiltonian, namely N(H{3) — N(HLo = 0). We numerically
rigorously calculated the data in Fig. 2.3(a) using (2.95), and the derivatives by the finite-
difference method. Figure 2.3(b) shows that the second derivative of the negativity is not
continuous at the boundary and Fig. 2.3(c) shows that the first derivative of the purity is
not continuous at the boundary. On the other hand, there is no singularity at the point of
T =1.185-- -, where the derivative of the entanglement enhancement is not continuous.

The emergence of the high- and low-temperature phases is due to the following reason. First,
the entanglement enhancement by addition of the local Hamiltonian comes from the fact that a
local Hamiltonian increases the purity and suppresses the entanglement loss caused by thermal
mixing, which is demonstrated in Fig. 2.3(c). On the other hand, too strong magnetic fields
bring the quantum system close to a direct product states and hence destroy the entanglement.
These two effects compete to give rise to the two phases. In the low-temperature phase, we do
not need a magnetic field because the purity is already high. In the high-temperature phase, on
the other hand, we need a magnetic field because the thermal fluctuation decreases the purity.
The transition from the low-temperature phase to the high-temperature phase means that
the enhancement of the entanglement due to the increase of the purity becomes predominant
compared with the entanglement decay caused by the magnetic decoupling.

2.5 Summary and conclusion

We have analytically and numerically rigorously studied thermal states of quantum systems
where two qubits interact under a local Hamiltonian Hy,o and have determined the local Hamil-
tonian Hy,o which maximizes the thermal entanglement under a fixed interaction. As a result,
we have found that the interaction Hamiltonian can be transformed into the XY Z-exchange
interactions whose parameters are either antiferromagnetic as {J,, J,} > J, > 0 or ferromag-
netic as 0 > J, > {.J,, J,} and that the optimizing local Hamiltonian always takes the form of
hop(0f @ I — I @ 05), where h,, depends on the temperature. In addition, we have proved that
the optimized entanglement does not vanish at any temperatures and decays slowly according
to 1/(T'log T') at high temperatures. We have also found that in the low-temperature phase the
entanglement is maximum without any local Hamiltonian and have investigated the interaction
dependence of the boundary temperature of this range. Indeed, the low-temperature phase
shrinks to the zero temperature point if the interaction Hamiltonian has degeneracy. At the
same time, we have discovered a singularity of the optimized entanglement at the boundary
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temperature, where the second derivative is discontinuous.

In conclusion, our work has revealed general properties of the thermal entanglement of
interacting two qubits, though we have assumed a numerically confirmed hypothesis. The
concept of high- and low-temperature phases is an interesting property in that it is based on
the response to external manipulation of local Hamiltonians. It is likely that we can find more
interesting properties of entanglement in this regard. In the next chapter, we investigate two
qubits which interact indirectly or general bipartite systems.
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Chapter 3

General properties of the maximized
entanglement of indirectly interacting
two spins

In the present chapter, we investigate the thermal entanglement of indirectly interacting two
spins through other spins, that is, two spins at the ends of a spin chain. We maximize it by
tuning the local fields on the two spins to obtain the maximized entanglement. We present a
necessary condition for the indirect interaction to give a non-zero maximized entanglement. We
also prove that if the two spins are separated by two sites or more, there is a critical temperature
above which the maximized entanglement vanishes. We numerically calculate the maximized
entanglement in three-spin chains and four-spin chains. We discover that the maximizing local
fields on the spins 1 and 2 have asymmetric forms, which implies that the asymmetry of the
two spins essentially contributes to the entanglement enhancement. In the three-spin chains,
we explain this enhancement due to the asymmetry qualitatively and quantitatively in terms
of the magnons. In XX and XY four-spin chains, we find that the critical temperature shows
qualitatively different behavior depending on the conservation of the angular momentum in the
z direction.

3.1 Introduction

In the previous chapter, we showed how much entanglement we can enhance with the local
fields in the two-spin system. In the present chapter, we will extend the result to multipartite
spin systems; we study the enhancement of the bipartite entanglement due to the local fields in
the system where the two spins indirectly interact with each other via other spins. The main
research targets are the following three problems:

e What is the condition for the indirect interaction to generate the entanglement?

e [s it possible to generate the entanglement at high temperatures in the indirectly inter-
acting spins?

e What are the main factors which make it possible for the local fields to enhance the
entanglement?

For the directly interacting two spins, we obtained the answer for these questions in the previous
chapter [55]: any direct interaction can generate the entanglement for appropriate local fields;
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the maximized entanglement decays as 1/T In T as the temperature increases; the entanglement
enhancement by the local fields is brought about by the suppression of the thermal fluctuation,
or in other words, the increase of the purity. Our purpose in the present chapter is to answer
these questions qualitatively and quantitatively for indirectly interacting spins.

The possibility of the enhancement of the entanglement with the external fields has been
shown in many papers [4,31,54]. However, there have been few reports about the entanglement
enhancement of specific two spins. In particular, little is known about the mechanism of the
entanglement enhancement due to the external fields or the condition for the indirect interaction
to generate the entanglement. By making these problems clear, we may be able to control the
entanglement efficiently with the external fields.

In our research, we define the maximized entanglement as the maximum value of the en-
tanglement between the particular two spins under the condition that we can arbitrarily tune
the local fields only on these two spins. If the maximized entanglement is equal to zero, the
entanglement generation is impossible for any values of the local fields. The forms of the max-
imizing local fields reflect basic properties of the entanglement enhancement, and thereby help
us solve the above three problems.

We study general properties of the maximized entanglement between the focused two spins
which are connected by a spin chain. Our main results are the following three:

e We obtain a necessary condition for the indirect interaction to generate the non-zero
entanglement by optimizing the local fields.

e At high temperatures, we prove that the maximized entanglement is always equal to zero
between the two spins which are separated by two or more spins. In other words, above a
critical temperature T, we can never generate the entanglement between spins far apart
for any values of the local fields.

e The main factors of the entanglement enhancement due to the local fields are not only
the increase of the purity but also their effect on the indirect interaction. To be more
specific, the external fields affect the magnons which mediate the indirect interaction.
The form of the maximizing local fields depends on this effect and has asymmetric forms
in a particular parameter region.

We show these results analytically and numerically. This chapter consists of the following
sections: in Section 2, we state the problem specifically and give some definitions; in Section 3,
we give general theorems on the entanglement enhancement which can be applied to any spin
chains; in Section 4, we show the numerical and analytical results on the maximization of the
entanglement in three-spin chains; in Section 5, we show the numerical and analytical results on
the maximization of the entanglement in four-spin chains; and in Section 6, discussion concludes
the chapter.

3.2 Statement of the problem

First, we formulate the framework of the entanglement maximization problem and describe
conditions. We consider a general XY Z N-spin chain with external fields in the z direction.
The most general form of the Hamiltonian of this system is given as follows:
N-1 N
Hiw =Y (Jiojol, + ool + Jiojoi,) + Y hio}, (3.1)
i=1

=1
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Figure 3.1: Schematic picture of the spin chains. We define the spins 1 and N as the focused
spins and the spins which mediate the indirect interaction between the spins 1 and N as the
media spins. We assume that we can tune the magnetic fields of the spins 1 and N, while the
other fields {h?}Y5! are arbitrary but fixed.

where {o?},_,, . are the Pauli matrices and we adopt the free boundary conditions.

We hereafter consider the entanglement between the spins 1 and N at the ends of the chain.
We define these two spins as the focused spins and the extremal fields ] and h3; on the two
spins as the local fields. We refer to the other spins 2 < i < N —1 as the media spins (Fig. 3.1).
We then define the interaction Hamiltonian as the total Hamiltonian (3.1) minus the terms of
the local fields:

N-1 N-1
Hiny = Z(Jfafaﬁrl + Jlololy + Jiojoi,) + Z hios, (3.2)
=2

i=1

The basic problem that we are going to solve is to maximize the thermal entanglement between
the focused spins 1 and N by tuning the local fields A7 and h%; at a fixed temperature. We also
fix all the parameters in Hiy, namely, {J7, J/, J7} for 1 <i < N—1and {h{} for2 <i< N-1.
We refer to the maximizing values of the local fields hi and h%; as hiop, and hyep.

Note that the maximizing local fields Ao, and hyop generally depend on the temperature 7T,
or on the inverse temperature § = 1/(kT") with k& the Boltzmann constant. This is because we
tune the local fields at a fixed temperature 3. Let us then define the high-temperature limit,
in which we mostly develop the argument. In our high-temperature limit, we make 3 tend to
zero with the parameters in Hi, fixed. In other words, we have (||Hin|| — 0 in the high-
temperature limit, where ||Hiy|| is the norm of Hi,,. On the other hand, we let the maximizing
local fields depend on 3 as we take the limit 5 — 0. Hence, Shiop and Shye, can even diverge
in our high-temperature limit.

The density matrix of the total system in thermal equilibrium is

e_ﬂHtot
Ptot = 7 (3-3)

where Z = tr(e #Htt) is the partition function. The density matrix of the focused spins 1 and
N is

PIN = tr1inProts (3.4)

where tryy denotes the trace operation on the spins ezcept the focused spins 1 and N. For the
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present system (3.1), the general form of the density matrix p;y is given by:

pit 0 0 I

PIN = 0 P B0
0 F1 Plr 0

o0 0 py

(3.5)

in the basis of the eigenstates of o7 ® 0%, where p1, p1y, pi1, P1|, F1 and F; are real numbers.
We have Fy = 0 when J¥ = J/ for 1 <i < N — 1, in particular.

In order to quantify the entanglement, we here adopt the concurrence [26] as an entangle-
ment measure. The concurrence C'(p;y) is defined as follows:

C(pin) = max(A; — Ay — A3 — Ay, 0), (3.6)

where {\,}2_, are the eigenvalues of the matrix

Voot © o)ty (0! @ o%) (3.7)

in the non-ascending order \; > Ay > A3 > A4. For density matrices of the form (3.5), the
concurrence C(p;y) is reduced to the simpler form

C(pin) = 2max(|Fi| — /pripyys [ F2| = /P1ip17, 0)- (3.8)

Then, the necessary and sufficient condition for the existence of the entanglement is given by

max(|Fy| — /pripys [ F2| — /Pripir) > 0. (3.9)

Thus, the present entanglement optimization problem for the spin pair (1, N) is equivalent to
finding the values of {hf, h%} which maximize C'(piy) for the fixed parameters {J*, J?, J7}

3.3 General theorems on entanglement generation

In the previous section, we formulated the entanglement maximization problem. In fact, there
are cases in which we cannot generate the entanglement for any values of the local fields at
all. In such cases, it is necessary to distinguish whether the entanglement is exactly equal to
zero or rapidly approaches to zero. In the present section, we introduce general theorems on a
necessary condition to generate the entanglement by optimizing the local fields. In other words,
we give a sufficient condition for the entanglement to be zero exactly for any values of the local
fields.

Theorem 1. If there exists the following separation of the interaction Hamiltonian Hi,;, we
cannot generate the entanglement between the focused spins o; and oy for any values of the
local fields at arbitrarily temperatures:

Hine = Ha(o1) + Hp(on)
with [Ha(o1), Hg(on)] = 0, (3.10)

where [- - -] is the commutator. Note that H, does not contain oy nor Hp contains o;.
Comments. For example, we can separate the following Hamiltonian in the form (3.10):

Hi = Jiojoy + Jloloy + Jioiol + Jyo505 + Jy0507, (3.11)
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where the spin pair (1, 2) interact with each other through the XYZ interaction, while the spin
pairs (2,3) and (3,4) interact with each other through the Ising interaction. We can separate
this Hamiltonian into H(oy) and Hg(o4) as

Hy(o1) = Jioyo; + J{ojoy + Jiojo; + J50503,
Hg(oy) = Jio50y. (3.12)

These Hamiltonians satisfy the condition [H4(01), Hg(04)] = 0, and hence we cannot generate
the entanglement between the focused spins o; and o4 in this system for any values of the local
fields hi and hi. However, the spins 1 and 4 are classically correlated with each other.

If we add hio3 to Hiy as

Hi = Jio{os + Jiolol + Jioio5 + J5o505 + hjol + Jio507, (3.13)

we cannot separate the Hamiltonian Hi, into the forms of Ha(oy) and Hp(o4) which satisfy
[Ha(o1), Hg(04)] = 0, and hence the spins 1 and 4 can entangle with each other. It is worth
noting that the field in the 2z direction on the media spin 3 makes the classical interaction (3.12)
into the non-classical one.

Eigenstates can have the entanglement even if the condition (3.10) is satisfied. For example,
the Hamiltonian for the focused spins 1 and 3,

Hiot = Hint + hio7 + hio3,
Hiy = Jiojo5 + Jy050% (3.14)

with hf = hi = Jf = JJ satisfies the condition (3.10), but it has an eigenstate (|T17372) +
1117512))/+v/2, which is highly entangled. Mixing of all the eigenstates with the Boltzmann
weight always destroys the entanglement between the focused spins.

Finally, under this condition, for the appropriate values of the local fields we can generate
the quantum discord, which is one of the non-classical correlations. We discuss the quantum
discord in Appendix B.1. We also note that the present theorem applies to the general case in
which there are couplings in all possible pairs of N spins.

Proof. In order to prove the present theorem, we prove that the density matrix can be
decomposed into the mixture of the product states as

PIN = ZP? ® P (3.15)

where the density matrices pf and p% of the focused spins 1 and N, respectively, are physical
states, or, in other words, positive matrices. Then, the spins 1 and N are not entangled with
each other by definition.

First, if the condition (3.10) is satisfied, we can decompose the density matrix as follows:

Zpror = e PHalo)e=HnloN) (3.16)
We can express e #H4(01) and e=AHBON) a5

e~ BHa(o1) — Z o' ® prlrﬁedia @ In,

u=0,z,y,z

e_IBHB(O'N) — Z I ® pgé’dia ® U]K/? (317)

v=0,z,y,2

45



where I; and Iy are the unit matrices in the spaces of the spins 1 and N, respectively, and we
define 09 = I, and 0% = Iy. We also define that p . and pY”,. are Hermitian operators in
the media-spin space. Because H (o)) and Hg(oy) commute with each other, e 3#4(1) and

e PHB(ON) also commute with each other. Therefore, we obtain the following equation:
tr'V o} @ J]’(,e_ﬁHA(Jl)e_ﬁHB(UN)] = tr'"[of ® U]"Ve_ﬁHB(”N)e_ﬁHA(Ul)}, (3.18)

where tr'" denotes the trace operation only on the spins 1 and N. From this equation we can
obtain

1u Nv  _ Nv iy
pmediapmedia - pmediapmedia (319>

N

m

1 . .
for p,v = 0,z,y, z. Therefore, p 2 .. and pY. have simultaneous eigenstates. Then, we can

express pit - and pN¥. as
GN—2
Prredia = Z Aplms pa, v (n, s vl (3.20)
n=1
and
GN -2
Prmedia = Z T |n, s vn) (ns g, vl (3.21)
n=1

2V=2 pieces of the simultaneous eigenstates of p .. and pN”. . Note,

where {|n, u1,vn)} are
however, that pifgdia and piﬁdia may not have simultaneous eigenvalues when they have different

: Nv Nv/ :
degeneracies, nor p, Y. and p; ... As a result, we obtain

e~ PHA(o1) ;—BHB(oN)

(S0t @ o e vl 1 ) (S0 ) o | .0 )
n, U n' v
:Z)\ZTSU?(@ |n7M17VN><nnu17VN| ®0]V\[7 (322)

N,V

where the indices p/ and v/ in the first line can be arbitrarily chosen (v, 1/ = 0,z,y, 2), and
hence we choose p/ and /' in accordance with p and v. By tracing out the media spins, we have

tryye Al fslon) — N " Aol @ o

n,u,v

=D (Z /\ZUf) ® (Z TZLO-K/)‘ (3.23)

At this moment, we cannot say that > i Apoy and Y vjof, are necessarily physical states. In
the following, we prove that Eq. (3.23) can be reduced to the mixture of the product states as
in the form (3.15).

For the purpose, we should pay attention to the degeneracies of the matrices ,orlr’idia and
pNv. . In fact, if there are no degeneracies in the eigenspaces of all these matrices for p,v =
0,z,y,z, we can easily prove that each of Zu Apoy and Yo Trof (no= 1,2, ,2V=2) in

Nv
media

Eq. (3.23) is a positive matrix. Since prlfedia and p commute with each other as well as
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pme/dla and pNv.do, pt . and pme/dla should also have simultaneous eigenstates if there are
no degeneracies. If there are absolutely no degeneracies in all eigenspaces of pmedlaL and pNv..

(u,v =0, 2,y, ), we have an orthonormal set of 2¥~2 pieces of states |n), each of which is the
simultaneous eigenstate |n, i, vn) for all of p,v =0, x,y, 2. Then, we have from Eq. (3.17)
> Aol =ty (e ), (3.24)
n=0,z,y,z
> ok = trin(e YO In) ), (3.25)
v=0,z,y,2z

for n = 1,2,---2¥72. This means that each of ° Ato{ and 3 7'o% (n =1,2,---,2V7?) is
a positive matrix, and hence Eq. (3.23) indeed takes the form (3.15).

If there are degeneracies in some of the eigenspaces of the matrices pt . and pN..  there
is a possibility that we cannot choose a common state |n) that represents the simultaneous
eigenstate |n, yiq, I/N> for u,v = 0,x,y, 2. Let us then inspect the degeneracies in more detail.

Suppose that pmedla and pNv.. share the eigenstate |ng, 1, vx) with the respective eigen-
values A7 and 7,0°. We can choose the state [n, 11, ) even when each of the eigenvalues A7}

and 7, has degeneracies in its own eigenspace. Suppose also that ,omedlaL and pv.. share the
eigenstate |ny, i}, vy) with the respective eigenvalues /\Z1 and 7''. After close inspection, we
can state the following: if 770 and 77" are not degenerate, the states |ng, p1, vn) and |nq, g}, vy)
are orthogonal to each other.

The only possibility that we cannot choose a common state |n) then occurs when all the
matrices Prl:edia (u = 0,z,y, 2) have degeneracies in the corresponding eigenspaces and/or all
the matrices pv. (v =0,z,y,2) have degeneracies in the corresponding eigenspaces. If one
of pmedla (u=0,z,y, z) does not have degeneracies, we can rotate the states in the degenerate
eigenspaces of the other matrices to obtain common eigenstates.

We can thereby break down the whole eigenspace into blocks. We form a block of eigenspace
in which all the matrices prlrijedia (0 = 0,2,y,2) and/or all the matrices p¥. (v = 0,7,y,2)
have degeneracies. Let us denote each block as H; with the dimensionality D;. Let us choose
an arbitrary orthonormal set of states [n); (n =1,2,---, Dy) in the block H;. Then we sum
the terms Y Aioy and ), 7)o inside each block H; to have

Dy
S Y Mt =t (e s (nls), (3.26)
n=1

n: |n)ﬁeHﬁ ;u':O:x)yVZ

Dy
S0Y wet =3 trn (e O nda(nls), (3.27)
n=1

n:n)s €Hyp v=0,2,y,2

which proves that each left-hand side is a positive matrix. This in turn shows that Eq. (3.23)
can be summarized into the form Eq. (3.15), where the summation in the right-hand side of
Eq. (3.15) is taken over the blocks 7. Thus, Theorem 1 is proved.

Theorem 1 gives us a necessary condition that we can generate the entanglement between
the focused spins by optimizing the local fields. However, this is not a sufficient condition. For
example, we can prove the following theorem for spin chains.

Theorem 2. Let us consider the XYZ chain (3.1) with {JF, J/, JZ} = {J*, JY, J*} (1 <i <
N —1). We tune the local fields h? and h%;, while the media fields {h?}}5! are arbitrary but
fixed. There is a critical temperature above which the maximized entanglement between the
focused spins 1 and N is exactly zero if they are separated by two or more spins (N > 4). In
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other words, we cannot generate the entanglement for any values of the local fields above this
temperature for N > 4.

Comments. This critical temperature yields a stronger restriction than the known ones [31],
which discuss the entanglement disappearance under a fixed Hamiltonian. Let us denote this
critical temperature as T,. We say T, = oo if we cannot generate the entanglement at any
temperatures, whereas we say T, = 0 if the maximized entanglement is equal to zero even in
the ground state.

Proof. In order to prove this theorem, it is enough to show

max(F{ — pyipyy, Fy — prpyy) <0 (3.28)

after the maximization of the left-hand side with respect to hi and h%, in the high temperature
limit 8 — 0, where {F1, F5, 11,01y, P11, Py b are the elements of the density matrix defined in
Eq. (3.5). Then, Eq. (3.8) yields the exactly zero concurrence in the limit 5 — 0. Since the
system (3.1) has a finite number of degrees of freedom, the elements {Fy, Fs, p11, p11, P11, P11}
must be analytic as a function of 3. Therefore, there can be a finite value of § at which
max(FZ — ppipyy, F3 — prypjp) = 0 after the maximization. This gives the critical temperature.
Note that the elements of p;y here are functions of hiop(3), hnop(3) and f.
Now, let us define the exponents k; and ky as

hiop = O(B7) and hyep = O(37"Y) (3.29)

in the limit 3 — 0, where k; and sy are real number. We estimate the order of each element
of {F?, F#} and {p1p,,p1,p;1} in the following three cases:

e Case (a): Ky <1 and Ky < 1.
e Case (b): k1 > ky, k1 > 1 and Ky > 0; or Ky > Ky, kK1 > 0 and Ky > 1.
e Case (c): kg > 1land ky <0;or kK <0 and Ky > 1.

Notice that the three cases cover the entire space of k1 and k.
Case (a). In this case, we can prove the inequality (3.28) by utilizing a necessary condition
for the existence of the entanglement [56], which is

1
trp2y > 3 (3.30)
In the case (a), Bhio, and Bhye, are of order 317" and B'7FN respectively, and approach to

zero in the high temperature limit 3 — 0. The density matrix p;y becomes proportional to
the identity matrix because then (3||Hiot|| — 0; hence we have

1
lim trpjy = . 3.31
613[1) I'Pin 1 ( )
Therefore, in the case(a), the entanglement between the spins 1 and N is exactly zero in the
high-temperature limit.

Case (b). To simplify the problem, we consider the case of hiop, hnop > 0, K1 > Ky, K1 > 1
and ky > 0, but we can prove the other cases in the same way. We define the exponent < as

hlop - hNop = O(ﬁik) (332)
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in the limit § — 0 and consider the case
k>0 (3.33)

in the following. We discuss the case £ < 0 in Appendix B.2. Here, in order to obtain the
inequality (3.28), we prove the following; F; and F, are of order of

O(B51+H5+5) and O(BrH+rv+'), (3.34)
or higher, respectively, where
k= min(ky, 1) > 0 and £ = min(ky, &, 1) > 0. (3.35)
On the other hand, pyp;; and p; p|; are both of order of
O(pPra+enn), (3.36)

or lower. Then, the inequality (3.28) is satisfied below a certain value of (3.
In order to prove (3.34) and (3.36), we separate the total Hamiltonian as follows:

Htot = Hl + Hmedia + Hcouple + HN: (337>
where

z z
Hl = hlopo—lv HN = hNopUNa

N-2 N-1
R T _xr _x y Yy z 2 2z z_z
Hnedia = E (JFoiof + JVolal + JP0jo7 ) + E hio?,
i—2 i—2
Heouple = JP0V05 + JVolol + J2oi05 + JToN_jon + JVok_jo% + JPon_10x- (3.38)

Now, we consider the term Hoyple, Which couples the focused spins and the media spins, as

perturbation. The unperturbed density matrix pﬁﬁi is given by

pgg% — efﬁHlfﬁHNefﬂHmedia (339)

because H;y, Heqia and Hy commute with each other. Because the external fields are applied
in the z direction, the eigenstates of H; + Hy are given by {|T1Tn), [Tiln), [L1Tw), [L1ln)]} with
the corresponding eigenvalues {—h1op — Anop, —Piop + RNop, Piop — RNops Piop + nop }; We denote
these eigenvalues as {E], EIX, Bt BlL}. We also give the eigenstates of Hypedia as

[Vinedia) = Sal T2 OMN [ Tv—1) + tal 12D L) [ Lv—1) + unl L) i) Ta—1) + wﬂlz)l@ﬁ)llzv—(l), |
3.40

for n = 1,2,--- 272 where {[{I1), )11}, [L1), |iht)} are the states of the spins from 3 to
N — 2. Because the total Hamiltonian Hi is a real matrix, the parameters {s,,t,, tu,, w,}

are real numbers. We define the corresponding eigenvalues of Hpedia as {Eloqia)- Then, the
unperturbed eigenstates are given by
UTLTN) @ [Ymedia) [ T1IN) @ [Viedia)s [T1IN) @ [Vhhedia)s [L11N) @ [Vhedia) }- (3.41)
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We define the perturbed eigenstates corresponding to each of (3.41) as {021, [l YY), iy, [},
respectively. We express them as

i) = T1Tw) ® Wmedla i) TN ® |¢med1a,¢l> +1l1Tw) ® Wmedla i+ ly) @ |wmedla,ll>
(3.42)

forn=1,2,.- “2and & =11,11, 11, 11, where Wmedla TT> |wmed1a,Tl> Wmedla u) and szdia,iﬁ
are the states of the spins from 2 to N — 1 and may be not normalized. We also define the

corresponding perturbed eigenvalues as {E/L! T, ELIY ERIT BRI which we express as

ng = EfN + Enedla + 5E§)’f (343)
for n = 1,2,---,2Y"% and € =11,11, /1, |]. Note that {E" 4.} and {6E*} are of order 3°
because Hedia and Houple do not depend on the temperature 3. Then, we have

e BB oB(hiopThNep)—B(EL a1+ B )

Ztot B Ztot B O(ﬁo> <344>

in the limit 8 — 0 in the case hiop, hyop > 0, Where Zyy is the partition function of the total
Hamiltonian.

Now, we show the outline of the proof. First, the elements {Fy, Fy, pyy, 011, 11,2y} can be
calculated from (3.42) and (3.43) as

oN-2

Z Z e E?Ot{ <1/}med1a T ‘wmedla 7

Ziot 1= emtaTanL

oN -2

Z Z Fiss <wmed1a ™ Wmed,a 1l (345)

n=1&=11,11,I1,11

ot

and
2N 2
n,&
P = Z Z —BE: <wmed1a,ﬂ ‘wmedla 1
Ziot o= emrfmanil
2N 2
n,§
pTl - Z Z ﬁEmt medla,Tl ‘wmedla T
Ziot 12 emtfaTinL
2N 2
pir = Z Z tOt <wmed1a,ﬂ }¢medla 7
Zrot 1] erfoTinL
2N 2
n,§
Pl = Z Z O (e L [ Vmia (3.46)

Zot = 1 e=11,10,01,00

Second, we estimate the leading orders of {Fy, Fo} and {pp;1,p1py ). From the pertur-
bation theory, we can obtain the approximate forms of {|¢/:¢)} and expand {Fj, F;} and

{p1ip11,p11py } with respect to 5. The elements {Fi, F5} are additive with respect to the
indices n and &; we define each contribution to the elements {Fy, F»} as

Fn £ = <wmed1a 11 ‘wmedla 7
Fn t = <wmedla I ‘wmedla 1 (347)
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Then, the elements {F}, Fy} are given by

2N—2
n,§
F = e_BEtot Fln’g
Ztot — _ Z ’
n=1 &=17,7011,11
2N72
n,§
b=z > RS (3.48)
o

n=1 &=11,11,11,11

respectively. The elements {py;p;1, p11p), }, on the other hand, are given by double summations
as

2N 2
n' 5 1 ¢! !¢l
pTlplT - 2 Z Z mt <77Z)med1a Ti‘wmedla Tl>6 PPiot <¢g1é(§iia,lT‘l/}:1(;§iia,iT )
Ziot o=t
2N 2
PPl = 5 Z Z mt <77Z)med1a TT‘wmedla il>€ ﬁEtOt <77Z)m(;§1a u‘wmedla 1! (349)
tot

n,n/=1&&=1T,1L11,11

Because the summands of (3.49) are all positive, we can obtain the following inequalities for
{p11p11, PripLL )

2]\772
1 —BENIT /0 1 _BENIT /1T n, 11 il
PUPL 275 Y e (Yl [Vnediag )€ (Va1 [Vinedian 1) = Pl
tot n:l
1 2N72
BE”OTT Tl n,11 —BELIT /i m,11 n,171 11
J4avan ZZQ Z et (Pedia ﬁwmedia,ﬁ>€ Phict <¢media,u‘wmedia,u> P (3.50)
tot n=1

where we pick up only the terms of n = n/ and £ = ¢ =11 from the summations in (3.49).
The elements P i1 and PTT |, are additive with respect to n; we define each contribution to

the elements {PTTlTiP TT ) as

N 1 a1 a1 AT
PTni T <wr7?1edia,ﬂ ‘@Z}rrrbledia,u < rrrbledla AT |wr7rlledia,ﬂ ’
poll n,11 n11 n11 w11
TT = <1/}media,TT ‘wmedia,TT < media, | | |¢media,il : (351>

Then, the elements {PTT lT I PTTTT, 11} are given by

2N—2
1 11
1 —28ERT pn,1T
Priy = 72 > e PR Py
tot =1
2N 2
Pl = Z e B PR (3.52)

respectively. In this way, we calculate each contribution to the elements { Fy, 5} and {PTT I PTTT I
separately.

In accordance with the above outline, we first calculate ]wﬁftm% namely the perturbed
state of [T1Tn) ® |00 4.)- In order to simplify the calculation, we rewrite the perturbation
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Hamiltonian Hoypre as follows;

1
Hepe = 5{J [(L+7)0703 + (1 = Y)otod] + J'oio3

+ I [(1+ )0k + (1= )ok_iok] + ook b
1
= {J[otor +or0f +7lotof +0707)] + 3T 0i0;
1
+ J["?\Ll“}?f + oy on Hy(on_on + 0;771‘7;7)} + EJZJJZV—10]ZV}> (3.53)

where
JE—JY
Jo+Jy

J=J"+JY, = (3.54)

From the calculation in Appendix B.3, the leading terms of the elements {|w21°e£125>} for
€ =T1,11, 11 1] in Eq. (3.42) are given by
W:;Oe’dTiL,ﬁ) - |77ng?sdia>7 (3'55)
nott pant patl
|77Z)media,u> _% (78n0|T2>|¢n0>|lN—1> + tn0|T2>|1/}n0>|TN—l>
P LG v 1) + )[BT} + OB™), (3.56)

J - -
5dt 1) == (5o L MBI T -1) + g L) EIE L)

—2h10p
ot (1) ) + wn T2)E v + O(8™)) (3.57)
and
nott v 2 A Al
|77Z)media,u> _m <’Y Sn0|l2>|¢n0>|lN—1> + ’Ytn0|l2>|,¢n0>|TN—1>
o Yt T2 M PN L1} + g [T T + O(8)). (3.58)

Now, we calculate the contribution of [¢/'%'") to the elements {F}, F3} and {PTTJ,lT’ PTTTTJL}V
which are defined as {F}"'", F;*'1} and {Pﬁojg, Pﬁffﬁ}. From Egs. (3.55)—(3.58), we have the
elements {Fo1T Foth) ag

T J2 y b ) )
oM = (s (D10 + gy (DI
4h10p hNop
+ Pagting BB + 700050 (BT + O(5™)) (3.59)
and
i J2 I ) b )
L (V%nosm (GEPITY 4 Attt (DL 1)
4h10p hNop

o Vgt (B TL) + sngtong (DL1ELS) + O(5™)) (3.60)
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as well as the elements {P™!T P11V in the forms
TLIT 211,01

prott _ I
14T 1642 h2

(7252 820 + 7%, + i, + O(3™))
lop'“Nop
X (72520 + % 4 Ul +ws + O(ﬁ“N))

J2
Z -
16534, 130,

lop

(wp, + B3P (3.61)

and

n J? .
Pmo,lT = —16h% h?v (’7487210 + 72157210 + VQUZO + w?m + O(ﬁ N))
op op

Jow, 2 1
op

lop

in the limit 8 — 0, where we define the real numbers of order 3° as cSPTnffTT and 5PT”T°1T SO as
to satisty the above inequalities.

Then, we sum the elements {F}"'", F;"'"} and {PTTLLTLTT’ PT"T’TL} with the Boltzmann weight

e=PEu" over the label n. First, we calculate the summation of {Fln’”, FZ”’TT}. Because the
spins 2 and (N — 1) are separated by (N — 4) spins, the correlation between the spins 2 and
(N — 1) are generated by the (N — 3)th-order perturbation of Hyeqin. Therefore, we obtain

{0308 _1)0 = O(8*), (3.63)

where (---)o denotes the thermal average with respect to pég,); in (3.39) and oy > N — 3,

as > N — 3. Since we are considering the case N > 4, we have a; > 1 and as > 1. From the
equations

x T y_y
<‘72‘7N—1 + ‘72‘71\7—1)0
4
+ _— - 4+
ooyt o308 )0
2
=tr <6_6Hmedia

:tr (e_ﬁHmedia

LaTn—)(Teln—a| + H2lN1><l2TN1‘)
2

Lot (Talvoi )

1 2N—2 .
" e Z e~ Pmean(Ta| N1 |Vinedia) (Vimedia| L2 TN 1) (3.64)
media n=1
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and

(o505 1 — Uggjy\f—l>0

4
(0308 1 T 0305 1)0
N 2
r (e_,@Hmedia [lalno1)(ToTnoa] + |T2TN1><l2lN1|)
2
:tr(eiﬁHmedia TQTN71><l2lN71’>
1 2N—2
_ —BE cdia 1 n
_Zmedia ; € d <l2lN—1 |wmedia><wmediaH2TN*1>’ <3‘65>
where Zpeqia = tr(e Plmedia) o+ = (6% +i0¥) /2 and 0~ = (0% — io¥)/2, we also have
2]\7—2 2N 2
Z e medlat u, wTiWLT Z e~ medlat Uy, ¢lT|¢Tl> (ﬁa) (3.66)
n=1
and
oN-2 oN-2
D> e Pheaesywn(llnty = D e heaesywn (9 inT) = O(87), (3.67)
n=1 n=1

where @ = min(ay, as). Moreover, because {0E[=*} in Eq. (3.43) are of order 3°, we have
e BB — PPNt Boaia) (1 _ BOE™E & 0(52)), (3.68)

forn = 1,2,--- 22 and € =11,1.,11,ll. Then, we obtain from Eqgs. (3.59), (3.60), and
(3.66)(3.68),

2N—2
Z o BEL fadll
n=1

2N—2 2N—2

=D e MR F T Y e AP ) (— GO BLE + O(67) B!

2 2
B R Y O 0 N N W) S A
e %MW<WH(60H 00
—e PEIN x O(Bri+en+r) (3.69)
and

2 11 i J? 1
Z B it — ¢ ﬁElN—<O(ﬁ°‘) +O(B™) + O(@) = e BN % O(Brr TN TRy,
n=1 4hlothop

(3.70)

where @ = min(ay, @) > 1 and & is defined in (3.35).
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We can similarly calculate the contributions of the other states {|2/1?Of)} & =10L11,10).
From Egs. (B.39) and (B.42) in Appendix B.3, we have the contributions of the states {|y/*)}
to F| and F5 as

oN -2

2
S el = o0tk T (0(5%) + 0(5) + O(F) + 0(8)) = e Pk x o),
n—1 4hlothop
22 T 1l J? Tl
o e = PP (0(87) + O(8™) + 0(8)) = e Pl x O(81 ),
n—1 4hlothop
(3.71)
where we utilized Eqgs. (3.66)—(3.68) and &’ is defined in (3.35). From the inequality
@_ﬂEfN
<1 3.72
Ztot ( )

for £ =17,11,17, 1], we finally obtain (3.34) substituting Eqs. (3.69)—(3.71) into Eq. (3.48).
Second, we calculate the summation of {PTHL’,TT’P{LT:TLTL}' The parameter w, in Eq. (3.40)
cannot vanish for all n. Therefore, we have

21\772
> e = 0(8"),
ZtOt n:l
1 2N—2
> e w2 = 0(4°), (3.73)
tot ,n:l

where we utilized Eq. (3.44). Hence we obtain

oN-2

1 n, 11
(L —28ERT pn,11
Piin =3 > e e Pl
tot 1
J2 oN -2
—28E3 T (2t Iy _ O g2r1+2
= T6h2_12_ 72, > e B (wy + BOPY ) = O ) (3.74)
op ot n=1

lop

and

oN -2

1 n, 11
m_ —28E%T pn,11
P =73 > e PR P
tot n=1
J2 1 2N—2
—28EMIT 2 JTYy 2k142
R e 2o (wp 4 BN OPR ) = O(pF ), (3.75)
Nop “tot

Z 1612
16h3,, —

satisfied below a certain value of 3 in the case (b).

Case (c). To simplify the problem, we consider the case of hy > 0, k; > 1 and ky < 0, but
we can prove the other cases in the same way. In this case, we prove the following; FZ and F7
are both of order of

Because pyp;y > PTTLT,H and pyp; > PTTTT,W we obtain (3.36). Thus, the inequality (3.28) is

O(5*1+2), (3.76)
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or higher. On the other hand, pyyp;; and p; p;; are both of order of

O(3*1), (3.77)

or lower. Then, the inequality (3.28) is satisfied below a certain value of f.
In a similar manner to the case (b), we separate the total Hamiltonian as follows:

Hiot = Hi + Hypogi, + H'Ouple, (3.78)
where
Hl == hlopo—fy
N-1
media = Z(Jmafgfﬂ + JUoiol + JPojo ) + Z hio? + hnopoi,
i=2 —
couple = J70105 + JUalol + Jroios. (3.79)

We consider the interaction term H, ., which couples the spins 1 and the other spins, as

perturbation. In the case (c), the norm of the Hamiltonian H! .. is of order 3° because

kny < 0. Then, the unperturbed density matrix p;g?

edia

is expressed as
pltg)(t);) —=e ﬁHl BHmedla (380)

The eigenstates of H; can be given by {|11), |11)} with the corresponding eigenvalues { R1ops Pop };
we denote these eigenvalues as {ElT , Ell} We also define the eigenstates of H

media &

[Fmedia) = S0 T2 OM 1) + 612D |01 Ln) + 1w L) SR Tx) +wrll2)éih) 1) (3.81)

for n = 1,2,---2N71 where {|o]1),|o11), |01, |@H)} are the states of the spins from 3 to
N — 1. Because the total Hamiltonian Hy, is a real matrix, the parameters {si,,t u, w}
are real numbers. We define the corresponding eigenvalues of H’ ;. as {E™ . }. Then, the
unperturbed eigenstates are given by {|T1) ® [¢Fcqia)} and {|l1) ® |7 cqin) }- We define the
corresponding perturbed eigenstates as {|¢/21)} and {|¢/+)} and the corresponding perturbed

eigenvalues as {E&J , Etot} We express them in the forms

|68} = IT1) ® |@heia,r) + [11) ® [dcgia, ) (3.82)

and
El" = B} + BNy + 0B (3.83)
forn=1,2,---2¥ L and n =7, |, where | P rarentia, 1) and | ) are the states of the spins from

2 to N and may not be normalized. Note that {E™ . } and {§E,"} are of order 3° because

|| and ||H, || are of order 3°. Then, in the limit 3 — 0, we have

’ ’ medla couple

/
é BE";(:LtT eﬁthP ﬁ( medla+6Et;Lt’T)

Ztot B Ztot B 0(50) <384>

in the case hjop > 0.
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Next, we calculate the elements {Fy, Fy} and {p;p;1,pi1p; ). The calculation in Ap-

no, |

pendix (B.4) gives the state |¢gy ') in the form

[frei') = 1) © [Shmeaia) + th ) @ (vs;0|l2>la3LL>ITN>+vt;0|lz>la3£ﬁ>llzv>
T2 G4 T) + 13, [1IE5) L) + O(8™) ). (3.85)

no, |

Then, we can calculate the contribution of |¢gy; ') to the elements { Fy, F»} and {py1, pu,p” pu}
we denote them as {F]"", F7T} and iy T,p?f T,pﬁ) T,plf 1. First, the elements {F]"", F7oT}
are given by

T J K
o =g (st (O3 161L) vt th, (011 100) + O(5™)) (350
_2h10p
and
Fy = (it (0111015) + wh, s (011 015) + O(5™) ). (3.:87)
_thop

no,T , no,!

Second, the elements {pTT 2R ,pl“ T} are given by

no,T 2 /2
Py =Sp, T Uy

no,T 12 12
Py =t , Tw

no’
2

T J K
P! =g (s + i, +0(8™)),

lop
n J? .
Py T = =i (V2 4+ w? +0(B™)). (3.88)

Then, we sum {F}"!, F;"'} and {pﬁTapﬁTypﬁT, p?f} with the Boltzmann weight e~PE over

the label n. First, we calculate the summation of {F}" T Fy ’T}. From the same discussion as in
Egs. (3.66) and (3.67) in the case (b), we have

9N—-1 9N—-1
Y e Bt (OGN = Y e Pant, un ($1]|611) = O(5”) (3.89)
n=1 n=1
and
2N—1 2]\7 1
D e sl (G1161) = 3 e sl (G = 07). (390
n=1
where [|H! ;.|| is of order 3%, and the exponent ' is defined as follows:
O./ (ah a2)
(o3 > O(3),  (ofok) = 0(5™), (3.91)

where of > N — 2 and o, > N — 2. Since we are considering the case N > 4, we have o > 2
and o, > 2. Moreover, because {E,"} in Eq. (3.83) are of order 3°, we have

/

o BB _ B+ EL 1) (1 _ BSEM 4 0(52)>, (3.92)
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forn=1,2,---,2¥"Land n =7, |. Then, we obtain from Egs. (3.86), (3.87), and (3.89)—(3.92),

oN-1

/
Z e P! ot

n=1
2N 1 2N 1

_ Z o—B(ET +Emedla)FTto Ty Z o~ BET+E ) (1 - 55E£tn + O(ﬁ2)>F”0T
n=1

__—BE] J o K1 —BE] J _ —BE] K1 +1
e (03 + 0(F™)) + e —0(B) = e P x 0@ (399
and
A "n,1 T J T
Z e Bl F2"°’T = ¢ PE1 Toh (O(ﬁa )+ O(6™) + O(ﬁ)) = e PE1 x o™, (3.94)
n=1 P

We similarly calculate the contributions of the other states {|i/})}; then, we finally arrive at
(3.76),

]' — K1 K1
Fi=— 0 e 0 = o3 ),
tot
=",
1 "
= L O = oY), (3.95)
tot
n_Tvl
where we utilized the inequality
e PPl
<1 3.96
Ztot ( )

for n =1, |.
Second, we calculate the summation of {pﬁT, p?f, pﬁT, pTﬂ}. From Eq. (3.88), we obtain

oN-1

Z e*ﬁEtgngTﬁT — e*ﬂEI % 0(50%

n=1
oN-—1

2 ¢ B T = e E 0,
2N 1

> EtgtTp”T e P % O(B*),
n=1

2N—1

_BE™ _gE! -
D e el phl = e O(67), (3.97)
n=1

because s + u/?, t? + w?, ¥2s? 4+ u/* and v*t? + w/? cannot vanish for all n. From Eq. (3.84),

n’» 'n
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Figure 3.2: Schematic picture of the three-spin chain. We define the spins 1 and 3 as the

focused spins and the spin 2 as the media spin. The spins 1 and 3 are symmetric with each
other and they indirectly interact to each other through the spin 2.

we have

v

Pi1

v

Py

A%

_gE'nt
it D e el il = 0(5*),
n=1
2N—1

_gE™ n w1
D e el pit = 0(8™). (3.98)

n=1

tot

1
Ztot

v

by

We thereby obtain (3.76). We thus obtain (3.76) and (3.77) and hence the inequality (3.28) is
satisfied below a certain value of 3 in the case (c).

Thus, we prove the inequality (3.28) in the cases (a), (b) and (c). This completes the proof
of Theorem 2.

3.4 Entanglement maximization in three-spin chains

In the present section, we discuss the maximization problem in three-spin chains. A significant
result of the present section is that the maximizing local fields are asymmetric to each other in
a particular parameter region. This effect is nontrivial; the positions of the spins 1 and 3 are
geometrically symmetric to each other and the entanglement is invariant with respect to the
exchange of the two spins. Nevertheless, we obtain |hjop 7# |hsop| in a region. We show that the
asymmetry can be mainly attributed to the behavior of the magnon. This effect indicates that
the purity of the focused spins is not the only criterion for the enhancement of the bipartite
entanglement. This is different from the case of the entanglement maximization in two-spin
systems, which we considered in the previous chapter.
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3.4.1 Numerical results
The Hamiltonian which we consider in the present section is

2
Hiw =Y (Joofol, + JVolol,, + J°0707,,) + hiof + g0 + h303, (3.99)

=1

where the spins 1 and 3 are the focused spins and the spin 2 is the media spin (Fig. 3.2). We
assume J* > JY > J?. We solve the entanglement maximization problem about the spins 1
and 3 by fixing the temperature 7" and the field hZ 4, on the spin 2. In order to solve this
maximization problem numerically, we use the random search method and the Newton method
together. According to Theorem 2, if the two spins were separated by two spins, there would
always be a critical temperature above which the maximized entanglement is exactly equal to
zero. In the present case, the focused two spins are separated by only one spin and therefore
Theorem 2 does not apply; the elements |Fi|, \/pr1p[, |F2| and |/pyp;t are shown to be of the
same order in the same way as in the proof of Theorem 2. Therefore, it generally depends on the
interaction Hamiltonian and the positions of the focused spins whether the critical temperature
exists or not. As for the Hamiltonian (3.99), we can prove that the entanglement between the
spins 1 and 3 can exist at any temperatures by letting h{ = hi — oo (Appendix B.5).

In Fig. 3.3, we show the numerical results about the entanglement maximization. The main
feature is that in a parameter region the maximizing local fields hiop and hsop, are asymmetric
to each other, namely |hiop| # |hgop|- In this region, the asymmetry must be essential to
the enhancement of the entanglement. The asymmetry appears continuously (solid line in
Fig. 3.3) or discontinuously (broken line in Fig. 3.3). Note that in these case there is no critical
temperature above which the maximized entanglement would be zero.

3.4.2 Analytical argument

Here, we argue the origin of the asymmetry for the XX model; the phase diagram of the other
models are not different from the XX model qualitatively. The main reason of the asymmetry
is the strong dependence of the indirect interaction on the local fields. Then, we focus on the
magnons which mediate the indirect interaction and discuss the effect of the local fields on the
magnons. We show that the following three points affect the asymmetry:

1. The Boltzmann weights of the states with the magnons.
2. Localization of the magnons.
3. Suppression of the off-diagonal elements { F1, F»} due to mixing of different magnon states.

We define a magnon as a spin flip; a down spin in the background of up spins or an up
spin in the background of down spins. For example, the magnon number is two for both of
the states |T171]) and [TT]]]). In the XX three-spin chain, the number of the magnons can
be either zero or one according to the above definition. The magnon does not exist in the
states |T17273) and ||1l2]3), nor the entanglement. This suggests that the magnons mediate
the indirect interaction and is essential to the entanglement between the focused spins. Even if
the magnons exist, however, the entanglement can be very small when the magnon is localized
in one site. It is also possible that the off-diagonal elements {F}, F»} in the density matrix are
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Figure 3.3: The parameter ranges in which the asymmetry appears (a) in the case of J* = JY =
1 and (b) in the case of J* =1,JY = 0.5. In the asymmetric phase, the optimizing fields A,y
and hs,p are asymmetric to each other as |hiop| # |hsop|, While they satisfy |hiop| = |haop| in the
symmetric phase. On the solid line, the asymmetry appears continuously, while on the broken
line the asymmetry appears discontinuously. The ratio hiop/hsep is shown for (¢) hZ 4. = 4
and (d) 7= 1.5 on the chained lines of (a).
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suppressed by the mixture of the two kinds of magnon states. As shown in Egs. (3.64) and
(3.65), these elements are related to the correlation between the focused spins;

(o508 + JgUIyV—1>0

Fl = )
4
Fy = 172%% _4”5“%—90_ (3.100)
Let us show an example; each of the two states
1 1
—=(IT1Tals) + [L1T2T3)), —=(T1T2ls) — [l1T213)), (3.101)

V2 V2

has one magnon and its entanglement is maximum. However, the correlations which their

magnons mediate are opposite to each other; the first state has (oc70%) = (0{0}) = 1, whereas
the second one has (070%) = (o}0}) = —1. Then, the off-diagonal elements {F}, F»} are also

opposite to each other. Therefore, the entanglement is enhanced if we suppress the mixedness
of the one state of (3.101).

Let us analytically show how the above three points affect the asymmetry. First, we consider
the case of T' >~ 0 and A} .4, > J, that is, the upper left corner of the phase diagram in Fig. 3.3.
In this case, we have hiop, = hgop > 0 in the ‘symmetric’ phase and hiqp, hsop > 0 but higp 7# hsop
in the ‘asymmetric’ phase. Let us consider the interaction J and the local fields hiop, haop 0N
the focused spins as perturbation. Then, the four unperturbed ground states |11T213), [T1T213),

|11T273) and |[172]3) are degenerate; we define these four states as {wl@}. Because we assume
R edia = J, we consider the mixing of only these four states. The first-order contribution of the

excited states [T1]213), [T1l2l3), |l1l2T3) and |]1]213) to the above four unperturbed ground
states are given in the forms

O = 11 ats), o8 = [111als) + #fmmms»
= Iafata) + —gr—IMaTa) and 047 = [LTals) + =g ITulala) + —g—Ibalals)
(3.102)
Then, we calculate the following matrix:
(WOl H ) (3.103)

for 7,7 = 1,2,3,4, where 0H is the perturbation Hamiltonian, namely the interaction J and
the local fields hyop, hgop. The matrix (3.103) is given by

_hlop - h30p 0 0 0
0 _hlop + h30P - J2/<2hfnedia> _J2/<2hiledia> 0
0 _JQ/(Qhrznedia) thP - h30p - J2/(2h§1edia) 0
0 0 0 hlop + h'30p - J2/hfncdia
(3.104)
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Diagonalizing this matrix, we obtain the eigenstates in the first-order perturbation as

[91) = |T1T2T3> €1 = —hiop — h3op — Niyedias

hiop — h3op o
) = \/— \/ hlo:) h3oz 5 (|T1T2l3> + 7|T1l2T3>)
hlop h30p Y
\/_ \/ T — )T 1 02 (IL1T213s) + j|T1l2T3>),
=—0— hlop h30p) + 62 — hrzned1a7
hlop h3op J
|13) = \/— \/ Tron — o) £ 2 (|T1T2l3> + j|T1l2T3>)

hlop hfSop 4
-7 Tl g7 97 1121+ lTlaTa)).

€3 = _5 + \/ thP - h30p) + 52 hfncdlam

) 1)
[Va) = [L1T2l3) + 3|¢1m3> + 3|T1l2l3>, €4 = hiop + hzop — PZegin + 26, (3.105)
where
J2
0= — (3.106)
_2hmedla

We thereby calculate the elements F, py1 and p) | of the density matrix p;2, which contribute
to the concurrence. First, the leading terms of p1; and p;| are obtained as follows:

e—Pe e~ Bea

p =
i Ztot Ztot

(3.107)

Therefore, \/pr1p; is equal to e?'meaia and does not depend on hiop and hsep. Then the entan-
glement depends on hy,p, and hgep mainly through Fy and F; as is shown in (3.8).
We obtain the leading term of Fj as follows:

h? 1 2
Fl _ 65( mcdla+ ) (1 _ ( (hlop - h3op) > (eg /(hlop_hBOp)2+62 o 6_5 /(hlop_h3op)2+52)' (3108)

2Ztot hlop - h3op)2 =+ 92

Let us see how Fj depends on the asymmetry hiop, — haop. We consider the following three
terms of F) separately:

1— (hlop h30p _ hlop h30p hlop h30p

(R1op — haop)? T8 f \/ Piop — P3op)? + 02 f \/ Piop — P3op)? + 02

(}7/1op_h30p)2“1‘62

and eV (1op=hsop)?+0% (3.109)

We start from the point hio, = hsop and gradually increase the asymmetry hio, — hiop to see
how the above three terms affect the entanglement through the element F;. We argue that
there are two effects competing with each other, which may yield the phase boundary in the
upper left corner of the phase diagram in Fig. 3.3.
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The two factors on the right-hand side of the first term in (3.109) appear as coefficients in
the states [19) and [¢3) in (3.105). As the asymmetry hjop — hgop 1S increased, the second factor
decreases and therefore the states |1)2) and [13) become dominated by the states |T172/3) and
|11T213), respectively; the first factor decreases when the asymmetry is reversed to hsop — Riop.
Then the magnon becomes localized on the site 1 or 3 as the asymmetry hiop — h3op is increased.
This is a negative effect on the entanglement; the entanglement would be suppressed if the
magnon does not move around the system. Indeed, the element F; in (3.108) and hence the
entanglement in (3.8) can decrease because of the decrease of the first term in (3.109).

The second and third terms in (3.109) are the Boltzmann weights of the states |1)9) and
|93). As the asymmetry hiop — hgop is increased, the second term increases while the third term
decreases exponentially. The state |1)5) has positive transverse correlations (o70%) and (o7c}),
while the state [1)3) has negative ones. As has been shown in the example of (3.101), the increase
and decrease of the respective Boltzmann weights enhance the transverse correlations. This is
a positive effect on the entanglement; the transverse correlations can promote the off-diagonal
elements {F7, F»} in Eq. (3.100). Indeed, the element Fj in (3.108) can increase because of the
exponential increase and the decrease of the second and third terms in (3.109).

The above negative and positive effects of the asymmetry on F; and the entanglement
compete with each other. In other words, in some cases the entanglement is maximized without
the asymmetry, while in other cases it is maximized by introducing the asymmetry. This may
be the reason of the phase boundary in the upper left corner of the phase diagram in Fig. 3.3.

Second, we consider the case hyeqin > 1T > 1, that is, the phase of the asymmetry in
the upper right area of the phase diagram in Fig. 3.3. We numerically obtained hj,, > J,
haop < —J and |higp| # |hsop| in this area. We show that the asymmetry indeed promotes
the entanglement by starting from the point hi,, = —hsop and increasing the asymmetry
hiop + hsop gradually. We argue that the increase of the entanglement is due to delocalization
of the magnon. In order to calculate the entanglement in the present case, we regard the
interaction between the focused spins and the media spins as perturbation.

Because |hiop| > 1 and |hsep| > 1, we consider only the two states |T172]3) and |T1]2]3) as
the unperturbed states. Then, these two states in the first-order perturbation are given by

J2
V1) = |T1T2ls) + - 1T1l2Ts) + - [11T273),
_2<‘h30P| + hmedia) 4(’h30p| + hmedia)(hlop + ’h?’OPD
€1 = _hlop - |h3OP| - hfnedia (3110)
and
ha) = [Talals) + ! L1 Tals) + S L1 daTs)
SO _2(h10p + h’rznedia) e 4(hlop + hfnedia)(h'lop + |h30p|> ek
€y = _hlop — |h30p| + hfnedia' (3111)
From these expressions, we can calculate ,/py1p|| as
B(h1op+lhaon ) J?
VD1ipyp = ener e g Y (3.112)
4(|h30p| + hmedia)(hlop + hmedia)
Similarly, the element Fj is given by
2 2
Fl — 6ﬁ(hlop+|h3op|) J eﬂh‘lznedia —I.— J 6_ n
4(|h?>0p| + hrznedia)(hlop + |h30p|) 4(hlop + h‘rznedia)(h’lop + |h30p|)
(3.113)
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To clarify the effect of the asymmetry hiop + hsop, We put
hlop = ho + oh and hgop = —ho + 6h7 (3114)

where hg > 0h > 0. Then, Egs. (3.112) and (3.113) are recast into

J2
= 0o 3.115
VDPIPIL =€ NPT (3.115)
and
J2 J2
F — 2Bho ﬂhrznedia -3 media | | 31]_6
1 ) <8h0(h0 + hfnedia - 5h) ‘ * 8h0(h0 + hfnedia + 5h> ‘ ( )

The former ,/py7py; does not depend on the symmetry dh up to the first order. On the other
hand, the latter F; and hence the entanglement in (3.8) increase as dh is increased; the increase
of the first term on the right-hand side of (3.116) excels the decrease of the second term because
of the difference in the Boltzmann weights.

The increase of F} can be related to delocalization of the magnon. Since |hiqp| > 1 and
|hnop| > 1, the magnon is almost localized in the site 3 in |¢q) of (3.110) and in the site 1 in
|1he) of (3.111), but slightly delocalized owing to the perturbation terms. As we increase 0h,
the perturbation terms of [¢1) increase, but those of [i5) decrease. Therefore, the magnon is
delocalized more in |t);), while it is localized more in |¢)5). This corresponds to the increase of
the first term and the decrease of the second term in (3.116). Because the Boltzmann weight of
the state |11) is greater than that of |i5), the magnon delocalization in |¢;) excels the magnon
localization in [t)). This corresponds to the increase of Fj.

3.5 Entanglement maximization in four-spin chains

In the present section, we consider the maximization problem in four-spin chains (Fig. 3.4). As
has been proved in Theorem 2, the four-spin chain is the shortest one in which the end-to-end
entanglement cannot be generated in the high-temperature limit. We mainly discuss the critical
temperature 7. and its dependence on the interaction of the spins.

3.5.1 Numerical results

In the present section, we consider the XY spin chains given by the Hamiltonian

3
Hiw = S (J*0t0t,, + J070%0) + hiof + B + Wgia(05 + 03). (3.117)
=1

We solve the entanglement maximization problem about the focused spins 1 and 4 by fixing
the temperature 7" and the field hZ_;, on the media spins 2 and 3. In order to solve this
maximization problem numerically, we used the random search method and the Newton method
together. According to Theorem 2, there always exists a critical temperature above which the
maximized entanglement is exactly equal to zero because the focused spins 1 and 4 are separated
by two spins.

We show the phase diagram of the XX spin chain and the XY spin chain in Fig. 3.5. As
in the case of the three spins, there is an ‘asymmetric’ phase where the maximizing local field
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Figure 3.4: Schematic picture of four-spin chains. We define the spins 1 and 4 as the focused
spins whereas the spins 2 and 3 as the media spins. The spins 1 and 4 indirectly interact with
each other through the spins 2 and 3. In this system, the two focused spins are separated by
two spins. Therefore, according to Theorem 2, there is a critical temperature above which the
maximized entanglement is equal to zero.

|h1op| is not equal to |hyep|. Moreover, the maximized entanglement is equal to zero in a region.
The qualitatively different behavior of the critical temperature between the XX and the XY
chains is due to the conservation of the angular momentum in the z direction, as we will argue
in Section 3.5.2.

3.5.2 Difference between the XX and the XY model

We discuss the behavior of the critical temperature in the XX and XY chains. In the XX
chain, the critical temperature increases as the media field h7 ;. is increased, while in the XY
chain it does not. This difference is attributed to the conservation of the angular momentum
in the z direction. In the XX chain, we can suppress the mixture of the states with more than
two magnons by choosing the fields as

R = —hy
K = ho, fori=2,3,---N, (3.118)

and hoB > 1. Then, the density matrix e #Hwt is almost equivalent to the ground state of
H.; and the mixture of the other states can be suppressed exponentially by increasing hy. The
ground state is given by the following form,;

aolliTe - Tw) +ai|Tile - Tw) +az|TiTals - Tw) + - Fan—1|T1T2 - In)s (3.119)

where we can calculate a; by the kth order perturbation to have
Jk
ap = O(—k> (3.120)
hyg

for k =1,2,--- N — 1 with the factor hf coming from the energy denominator. In the ground
state (3.119), the element p|, is equal to zero because there is no state with more than one down
spins in (3.119). The entanglement between the spins 1 and N exists because |Fj| o« |ay_1|
|J/ho|N~1 > 0. The mixture of the excited states generally destroys the entanglement, but is
suppressed exponentially because of the Boltzmann weights. The entanglement between the
spins 1 and N thereby survives.

On the other hand, in the XY chains, we cannot control the number of the magnons in
the ground state by increasing the media fields. Therefore, pyp); is not zero in the ground
state, which invalidates the argument for the XX model. This may account for the fact that
the critical temperature does not increase as the media fields h? are increased.

media
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Figure 3.5: The phase diagrams for the four-spin chain, (a) in the case of J* = JY = 1 and
(b) in the case of J* = 1,J¥ = 0.5. In the ‘asymmetric’ phase, the maximizing fields o, and
haop are asymmetric to each other as |hiop| # |haop|, While they satisfy |hiop| = |haop| in the
‘symmetric’ phase. The asymmetry appears continuously on the solid line, while it appears

discontinuously on the broken line. The maximized entanglement vanishes beyond the chained
line.
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3.5.3 Calculation of the critical temperature

Let us calculate the critical temperature analytically. It is generally difficult to solve the
entanglement maximization analytically. At the critical temperature, however, we numerically
confirmed that the maximizing local fields take the form Ao, = h4op — 00 in some region of the
‘symmetric’ phases in Fig. 3.5. For the XX model, this happens everywhere in the ‘symmetric’
phase in Fig. 3.5 (a), whereas for the XY model it happens only in the lower one of the
two ‘symmetric’ phases Fig. 3.5 (b). In such regions, we can derive the critical temperature
analytically. In the ‘asymmetric’ phases in Fig. 3.5, on the other hand, the maximizing local
fields do not have simple forms except in the case of the XX model, for which they approximately
have the form of hi,, — 00 and hyop, = —hZ 4;.. We consider the critical temperature in the
‘asymmetric’ phase in Fig. 3.5 (a) for the XX model in Appendix B.6.

Let us now derive the critical temperature in the limit Ao, = haop — o0. In order to
calculate the entanglement in this limit, we regard the coupling Hamiltonian Hoyple between the
focused spins and the media spins as perturbation. Because of the condition Aiop = haep — 00,
we consider only the following four unperturbed states:

IT174) ® [th1), [T1Ta) @ [W2), [T1T4) ® |t3) and [T1T4) @ |2ha), (3.121)

where {|1,)}2_, are the eigenstates of the media spins. The states {|i,,)}*_, and their corre-
sponding elgenvalues are given by the solution of the bipartite XY spin chaln

V1) = —(|T2l3> [12T3)), e = —J" — JY,

S

|1a) = 7(|T2l3> + [1213)), €2 =J" + JY,
[v3) = allsls) —b|T2T3), €3 = —\/4 2 edia)? T (JT = JV)2,
a) = bll3la) +alT2Ts), €12 = \/4 2 edin)? + (JT—JY)2, (3.122)

where we define a and b as

2h thedla . (3.123)

medla
o \/_ \/ \/4 medla Jy \/_ \/ \/4 medla Jy>2

Next, we calculate the perturbation of {|1174) ® [¢,) }2_, as in the proof of Theorem 2. The
perturbation contribution of |T174) ® [¢,,) to the leading term of the element F} is given by

J2

S E— <fysn0wn0 + Ungtng + Vg lng + YWne sno) : (3.124)
4hlophélop

where {s,, tn, Un, w,} are defined as the coefficients of {|¢,)}1_, in (3.122):

n) = sulT2Ts) + talT2ls) + un|l2Ts) + wnllals). (3.125)

Equations (3.124) and (3.125) correspond to Egs. (3.59) and (3.40), respectively. Similarly, the
perturbation contribution of |T174) ® [¢y,) to the leading term of the element F, is given by
J2

————— (V" Wng Sne + Vlngtng + VbngUng + SnoWny ) (3.126)
4hlophélop
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which corresponds to Eq. (3.60). On the other hand, Eqgs. (3.56)—(3.58) give the perturbation
contribution of |T114) ® |ty,) to the leading terms of the elements {p;|,p;1,p;,} as

J2
4h?

4op

(V5o + g + 7 Un, + W),

2.2 2,2 2 2
4h2 (7 Sno +7 tno +un0 +wn0>’

lop
J4
16h2

= (v's, + 7t + 7l +wh), (3.127)
lop'“4op
respectively.

We have now all the ingredients for calculating the matrix elements {1, F2, p11, P11, P11, Py}
in the limit hyop = haop — 00. We consider the mixture of the perturbed states of |T174) ® |¢1),
1T1T4) @ |¥2), [T174) ® |¢03) and |T1T4) ®@|1h4). These four states mix with the Boltzmann weights
of e~ Alatda) —g=Blextie) o=flesties) and e-Aleatdea) wwhere we define the energy perturbations
as {0¢;}i ;. In the limit hyop = hyep, — 00, we have to consider only the leading terms of
{Fy, F5,pt1,p11, P11, P11 - Therefore, we ignore the energy perturbation {d¢; };_;. We thus arrive
at the elements of the density matrix as

2

J ) .
Ziot F1 = 2 [—4@()7 sinh |es| — (1 4 ~?) Smhﬁ|el|},
0

J2
Ziot Iy = 2 [—2ab(1 + 7*) sinh 3|es| — 2y sinh Ble; ], (3.128)
0
and
ZiotP11 = Ziot = 2 cosh fer| + 2 cosh fes],

2

J
ZitD1] = [(72a2 + bz)e_ﬁ64 + (a2 + 7262)6_553 + (72 + 1) cosh 6|61|} ,

4h}
2T 2 0 1oy —pa 2 | 212\ —fes 2
ZiotP|1 = 2 [(’Y a® +b)e + (a® + v e P + (v + 1)COShﬁ|61@,
0
J4
Zyotpy| = Tohi [(74612 + b?)e P4 4 (a® + 4'%)e P 4 292 cosh ﬁ\q]] , (3.129)
0

where we defined hg = hiop = haop With hy — o0.
By utilizing these parameters, we obtain a necessary and sufficient condition (3.9) for the
existence of the entanglement in the form of the following two inequalities:

Ze(FY = pripyy) = [4abysinh Bles| + (1 +77) sinh e |]°
— Ziot[(7'@® + bP)e 7 + (a® + "0 e 7 4 292 cosh Bler|] > 0, (3.130)
or
Zy (F5 — prppr) = [2ab(1 + %) sinh (es| + 2y sinh 3]e;|]
— [(v*a® + b*)e 7 + (a® + 7%b*)e 7 + (v* + 1) cosh Bles|] > 0. (3.131)

In the case of the XX model with v = 0, in particular, the above condition becomes simpler;
because we have F, = 0 for v = 0, the inequality (3.131) is never satisfied. The condition
(3.130), on the other hand, reduces to

sinh?(Bel]) — ZP = sinh?(26.J) — Zyope 2Pneaia > 0, (3.132)
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Figure 3.6: Comparison of the phase boundary (a) in the case of J* = J¥ = 1 and (b) in
the case of J* = 1,JY = 0.5. The critical temperature calculated according to Eq. (3.130) is
indicated by the broken lines and the numerically calculated one by the solid lines, which are
the same as in Fig. 3.5. The critical temperatures calculated by Eqs. (B.58) and (3.131) are
also indicated by the chained line in (a) and the thin solid line in (b), respectively. In the
XX spin chain, the approximation gives almost the same values as the numerical ones in the
symmetric phase, while in the XY spin chain, the approximated values from (3.130) fit the

numerical ones in the range of 0 < hAZ ;.. < 0.851.
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or

€20 edia ginh? (Qﬂj)
2cosh(2(6J) + 2cosh(26hZ ;:.)

media

> 1. (3.133)

In Fig. 3.6, we compare the critical temperatures calculated according to Egs. (3.130) and
(3.131) with the numerically calculated ones. We also plot in Fig. 3.6 (a) for the XX model, the
critical temperature of the ‘asymmetric’ phase according to Appendix B.6. The approximations
generally give precise estimates for the X X model, particularly for the ‘symmetric’ phase.

For the approximation for the ‘asymmetric’ phase, the consistency is fairly good in the
range shown in Fig. 3.6 (a) as well as even in the range hZ ., > J with a slight deviation.

which is not correct in

The deviation is because we used the approximation haep = —hZ gias
fact; for hi 4, = 50 and 100, for example, hyo, = —59 and hye, = —100, respectively. The

approximate estimates of the critical temperature are 7, = 10.31 and 18.05 for hZ 4, = 50 and
100, respectively, while the numerical estimates are T. = 10.37 and 18.20, respectively.

For the XY model, the approximate estimate shown in Fig. 3.6 (b) is due to (3.130) in the
range bounded by the broken line and is due to (3.131) in the range bounded by the thin solid

line. The former gives good estimates in the range of 0 < hZ < 0.851.

media

3.6 Summary and conclusion

We have analytically and numerically studied the maximum value of the thermal entanglement
between two spins which indirectly interact with each other. We showed two theorems on its
general properties. First, if the indirect interaction satisfies the condition (3.10), the maximized
entanglement is always equal to zero. We can say that in this case the interaction is not
quantum but classical. This is one of the essential difference between the direct interaction and
the indirect interaction; the direct interaction always generates non-zero entanglement. We
also proved that the maximized entanglement is equal to zero above the critical temperature if
the two spins are separated by two or more spins.

Secondly, in the three-spin chains and the four-spin chains, we showed properties of the
maximized entanglement which is calculated numerically. In the three-spin chains, we showed
that the maximizing local fields are not symmetric as hyop 7# haop (Fig. 3.3) in some parameter
regions. We have explained the asymmetry qualitatively and quantitatively. We attributed
the appearance of the asymmetry to the effects on the magnons, which mediate the indirect
interaction. In other words, the local fields affect the effective interaction between the fo-
cused spins, while the direct interaction is determined independently of the external fields. In
Egs. (3.11)—(3.13), we also gave an example where the media fields also affect the interaction.
In the four-spin chains, we demonstrated that the maximized entanglement vanishes above the
certain critical temperature. Because of the difference in the symmetric properties between
the XX and XY spin chains, the dependence of the critical temperatures on the media fields
are qualitatively different between the two systems. We calculated the critical temperature
analytically in some parameter regions.

In conclusion, we have clarified several properties of the entanglement which is generated
from the indirect interaction. Our study has given several general limits for the entanglement
generation. We have also shown some properties of the external fields which is closely related to
the entanglement enhancement. However, there are many problems to be solved on the general
relationship between the external fields and the entanglement enhancement. In particular,
we have not shown the properties of the multipartite entanglement. It is obvious that the
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external fields also have effect on qualitative behaviors of the multipartite entanglement; the
most famous one is the quantum phase transition of the transverse Ising model. In future, we
plan to investigate the general properties of the enhancement of the multipartite entanglement
by external fields.
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Chapter 4

Summary and future works

In the present chapter, we conclude the present thesis and show the future works.

4.1 Conclusion
In the present thesis, we have given several answers to the following problems:
1. The general principles on the enhancement of (bipartite and multipartite) entanglement.

2. The general properties of the enhancement of the thermal entanglement at high temper-
atures.

3. The general properties of the long distance entanglement, as well as the method of gen-
erating it, if possible.

First, we have shown that the entanglement enhancement by external fields is attributed to
the increase of the purity in the two-spin system. In the multipartite spin systems, the increase
of the purity is not the only factor for the entanglement enhancement. In particular, in the
three-spin chain, the enhancement of the entanglement can be brought about by the influence on
the behavior of the magnons, which mediate the indirect interaction. So far, this results cannot
be generalized to the other spin systems. However, we believe that the influence on a interaction
by the external fields can play an essential role in the entanglement enhancement. Second, we
have shown general properties of the maximized entanglement in the high-temperature limit.
The protection of the thermal entanglement is impossible for any values of the local fields if
the two spins are separated by two or more spins. Third, above a certain temperature, the long
distance entanglement cannot be generated as a corollary of Theorem 2 in Chapter 3.

4.2 Future works

In the present thesis, we cannot give perfect answers to all the above problems. Therefore, we
continue to study the above problems in more detail. First, we plan to research the generation
of the long-distance entanglement by the local fields in the low-temperature limit. We have
already obtained some results on it; in order to generate the long distance entanglement between
the focused spins, we have to modulate the local fields on the focused spins and the neighboring
spins (Fig. 4.1). Second, we also plan to investigate the general properties of the enhancement
of the multipartite entanglement, which reflects the total quantumness of the system. The
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spin 2 spin (N — 1)

Figure 4.1: Schematic picture of the generation of the long distance entanglement. Four spins
connect to the media system and we utilize two spins as one probe. We apply the local fields
to these probe spins. One is very strong and the other is very weak. By choosing these local
fields appropriately, we can generate the entanglement between the spins 1 and n.

research of the multipartite entanglement is essential to survey the relationship between the
quantum phase transition and the enhancement of the quantumness. In the ground states,
there are several useful measures of the multipartite entanglement [21,23]. Therefore, we are
going to work on the entanglement enhancement in the ground states.
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Appendix A

Appendix for Chapter 2

A.1 Numerical comparison

In the present Appendix, we compare the asymptotes in Eqgs. (2.11) and (2.13) with those in
Egs. (2.15) and (2.16) in the case of {.J,, J,, J.} ={1/3,1/3,1/3}. In this case, Egs. (2.11),
(2.13), (2.15) and (2.16), respectively, reduce to

1212

M — —g'n)’ (A1)
N@.13) = B3 — 26_%22'”), (A.2)
3Ny 11y
log 1
h(2.15) = gﬂg/ﬂj (A.3)
2
N.16) = 5m, (A.4)

where the subscripts denote the equation number of the corresponding asymptotes. In Fig. A.1,
we show the comparison of these asymptotes with the numerically rigorous estimates of h, and
Nop, obtained from Eq. (2.95). We can see that the convergences of h(.15)/hop and Na.16)/Nop
are very slow, while the convergences of hs11) /hop and N3 /Nop are much faster. The
convergence of N(h(2.11))/Nop, where N (h) is given in Eqs. (2.73) and (2.74), is even faster
than that of N213)/Nop; at T' = 100, the values of N(h(2.11))/Nop and Na.13)/Nop are 0.999998
and 0.9994, respectively.

A.2 Lemma 2 in degenerate cases

In the proof of Lemma 2, we left out the cases of ( =0 or ( = £1 in Eq. (2.23). In the present
Appendix, we prove that Lemma 2 still holds in these cases. First, the general form of Eq. (2.21)
is given in the basis of {|u)};_, as follows:

Zph

e’ a2 f128 az1fs1f aszfsf

B0 az1 fa1 X anfulf asfaof

ai3fi3B aufuB e XN agifsfB
az3fo3fB auafiB apfief e

(A.5)
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N(13)/Nop » N(16)/Nop
501

4t

3r T~

Figure A.1: The comparison between the asymptotes in Eqgs. (2.11) and (2.13) and those in
Egs. (2.15) and (2.16). (a) for the ratios h(2.11)/hop (solid line) and h(2.15)/hop (dashed line),
where 211y and h(s.15) are derived from Egs. (A.1) and (A.3), respectively, and hg, is the
numerically rigorous value calculated from Eq. (2.95). At T7'= 100, the values of h%ll) /hop
and h$5' /he, are 1.0007 and 0.4438, respectively. (b) for the ratios N3 /Nep (solid line)
and N2.16)/Nop (dashed line), where N(g13) and Ng16) are derived from Egs. (A.2) and (A.4),
respectively, and N, is the numerically rigorous value calculated from Eq. (2.95). At T' = 100,
the values of N3.13)/Nop and N(a.16)/Nop are 0.9994 and 2.494, respectively.
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where {a;;} are constants of order 1 and {f,,} are defined in Eq. (2.22). Note that on the
diagonal of Eq. (A.5), the second term of Eq. (2.21) is neglected in comparison to the first
term. In the cases of ( # 0 and ¢ # +1, Eq. (A.5) reduces to Eq. (2.23).

In the case of ¢ =0, we have {E!, By, B4, Ei} = {2h/,0,0, —2R'} and fi3 = fa = e P2 = 1,
and hence Eq. (A.5) reduces to

Zph

/ /
on! Bth Bth

€ 2=~ Aas1—p azaf
/ /

6€2h ﬁth ﬁ

B0 | @21~ 1 41— Q4237 (A.6)
e2h ﬁezh’ 3 ’ '
3= Qa5 1 A34 7,7
8 B —2n/
a3’ Q2477 4357 €

In this case, the product of the diagonal elements (PD) of Zp”* is 1, whereas the maximum of
the absolute values of the products including off-diagonal elements (POD) is of order e**' 32/h'2,

. ’ 2n! 2n! ops Lo
which comes from the product —e?" x a4lﬂeT X (142 eh, x e~ 2" Therefore, it is necessary for

det p™t < 0 that the order of e*" 32 /h'? is greater or of order 1, which leads to

Bh=h > log;/ﬁ (A7)

as in Eq. (2.24). Thus, Lemma 2 is proved in the case of { = 0.

The proofs for the cases of ( =1 and ( = —1, or the cases of {hy,hy} = {2h,0} and
{h1,he} ={0,2h}, are essentially the same. We here present the proof only for the case of
¢ =1. In this case, we have {E!, Ey, E}, E\} = {21, 21, =21, —21'}, fio = for = €?* and
fas = fu3 = e 2" and hence Eq. (A.5) reduces to

Zp™h
! !
2h' 2h/ Be2h Be2h
€ apzfe as1 =7 a32 =77
! !
B—0 a216€2h/ e 41 pet Q42 pert
h/ h/
ﬁe2h’ ﬁezh’ _on! _op! ) (A8)
a13=p— Q4= € azafe
! I
,862h ﬁth _2h/ —Qh/
23 =7 A24 =37 a3 fe e

The PD of Zp™ is 1, whereas the maximum of the absolute values of the PODs is of or-
der e 32/h? or of order e® 3*/h*, which come from —e?" x ay ﬁe:/h X Q14 Behz,h x e 2" and

2n! 2n! 2n’ 2n/ . ..
agg’BCT X ayq 2 Z, X alllﬁeT X aggﬁeT, respectively. Therefore, it is also necessary for det p’t < 0

that e 32/’ is greater or of order 1, which again leads to Eq. (A.7). Thus, Lemma 2 is also
proved in the case of ( = 1.

A.3 Proof of Eq. (2.67)

In order to prove Eq. (2.67), we begin with the standard operator expansion of an arbitrary
2 ® 2 operator Q):

1 ) )
Q= 1 Z Gij01 ® 03, (A.9)

i7j:07x7y’z
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where o) = 09 = I is the two-dimensional identity operator. The coefficients ¢;; are given by

i; = tr(Qo} ® Og) (A.10)
because tr(I ® I) = 4 and the other terms are traceless.
Symmetries that the Hamiltonian (2.59) possesses eliminate many of the coefficients {g;;}
of the expansion of operators with the same symmetries, such as exp(—pfxHy). First, a
straightforward calculation shows that the Hamiltonian (2.59) commutes with the global phase
flip
Upy = /71295 @ ¢i(n/2)75
= —0] ® 0;. (A.11)
This operator flips the signs of ¢® and ¢¥. For an operator () that commutes with Ug,, the
coefficients {qos, qoy, 4205 440, Guzs Qyz, Qows ¢y} vanish. For example, we have

= tr[Q(o] ® 03)]

= tr[Uﬂlp QUﬂipUﬂip_l<Uf ® ‘7§>Uﬂip]

= tr[Q((—07) ® 73)]

The same argument gives qo, = Qoy = 920 = Qyo = G2z = Qyz = Goz = Gzy = 0.

Next, the Hamiltonian (2.59) is a real matrix in the o basis. Noting that only oV has
imaginary elements in this representation, we have, for an operator ) with the symmetry

Q =Q,
(4zy)" = t2[Q7((07)" ® (03)")]
= tr[Q(o7 © (—03))]
= —Quy- (A.13)

On the other hand, the Hermiticity of an operator @) is followed by

()" = tr[((0])" ® (03)) Q]
= tr[Q(o] ® 03)]
The above argument shows ¢,y = gy, = 0.
Finally, the Hamiltonian (2.59) is symmetric with respect to the following set of operations:
Upp = (/21 @ im/Dos) p,,
—(0f ® 03) Pra, (A.15)
where P, is the permutation of the spins 1 and 2. The operator of ® o3 flips the signs of o7 and
03 but the permutation P, makes the signs back to the original ones, because the local fields

are in the opposite directions in the Hamiltonian (2.59). For an operator ) that commutes
with Uj,, we have

G20 = tr[Q(o] ® I)]
= tr[U12 ' QUyinUss (05 @ I)Upo)

= tr[Q( @ (—03))]
= —(qos. (A.16)
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To summarize, an operator with the same symmetries as the Hamiltonian (2.59) is expanded
in the form

.

1 qool @ I+ q.o(0; @ [ — I ® 03)

+ Z Gio} ® b | . (A.17)

1=2,y,2

In (2.66), the operators e #*Hici and e~ #1-#Hi have the same symmetries as the Hamiltonian
HY and hence are given in the form (A.17).

Since the density operator p = e #7ict is given in the form (A.17), the partial transpose p’t
is also of the form (A.17); in the o, basis, the partial transpose Tj only flips the sign of o} and
hence changes only the sign of g, in the expansion, not the symmetries nor the form of the
expansion.

The state |¢_) is a non-degenerate eigenstate of the operator p! if the minimum eigenvalue
A_ is negative. Suppose that the operator p’* commutes with a symmetry operator U. Then
the projection operator |¢_)(¢_| should have the same symmetry. This is shown as follows.

Since we have
p"U|p_) =Up™|p_) = A_Ul¢p-) (A.18)

and |¢_) is non-degenerate, the vector U|¢_) must be the same vector as |¢p_) except for
a phase: U|¢_) = e¥|¢_). Therefore, the projection operator |¢_){¢_| commutes with U if
the negativity is non-zero. This means that |¢_){¢_| as well as (|¢_){¢_|)T have the same
symmetries as the Hamiltonian Hyy and are expanded in the form (A.17).

We thereby arrive at the conclusion that the operator

o BH &~ B(1—2) HEE,

—e P N (pop) (1@ 1) +2(|6-) (6-]) " | e #0102 (A.19)

has the same symmetries as the Hamiltonian H;} and hence is expanded in the form (A.17).

A.4 The Eigenvalues of (2.70)

In this section, we prove that in the eigenvalues of the matrix (2.70), only a; — |as| can have
a negative value for {J,,J,} > J, >0 and 0> J, > {J,,J,}. The four eigenvalues are given
in (2.72). Because a; > 0, |az| > 0 and b2 + b3 > 0, we obviously have

a1+\a2| > 0, b1+\/b%+b§>0. (AZO)

Therefore, we only have to prove that by — /b3 + b3 > 0.
First, we prove this inequality for h = 0. For h = 0, the eigenvalue b; — /b3 + b3 reduces

by — /03 + b2

= e’ cosh[B(J, + J,)| — e = sinh [B| ], — J, ]

2
— P Il=T) | Bl dy|=T2)) (A.21)

to
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For {J,, J,} > J. > 0, we have

BUstIy+Tz) _ oB(1Je=Iyl=J2) > ) (A.22)

which leads to by — /b3 + b5 > 0. For 0 > J, > {J,, J, }, we have

P Ja=Ty+J2) _ B Ta— Tyl =)

B 26_/6Jy Slnh[6<_=]g: + Jz)] for 0 Z Jz Z Jx 2 Jy7 (A 23)
T\ 2e sinh[B(—, + )] for 0> T, > J, > .. |
Because —J, +J, > 0 and —J, + J, > 0,
P duts) _ B Je=yl=T2) > (A.24)

for 0 > J, > {J,, J,}, which also leads to by — 1/b3 + b3 > 0. Thus, by — /b3 + b3 > 0 is proved
for h = 0.

Next, we prove b2 — b3 — b2 > 0 for arbitrary h, which is equivalent to by — /b3 + b2 > 0
because by + /b3 + b2 > 0. The value of b — b3 — b2 is calculated as follows:

b2 — b3 — b3

2

4h?
=28 (cosh2 BJs — oz sinh? ﬁJg) — e 2= ginh? B.J,
28 4Ry —28J. i 12
=P’ |1 + (1 — ?> sinh” GJy| —e #ginh® 6.,
2
280 e (T + J,y)°

7 sinh? 3.J, — e=2#7 sinh? 3.J;. (A.25)
3

Only the second term depends on h through Jo = \/4h? + (J, + J,)2. The term (sinh 8.5/ J5)?
is a monotonically increasing function of J; for J, > 0, while J5 is a monotonically increasing
function of h?. Therefore, b¥ — b3 — b3 is also a monotonically increasing function of k% Since
we already proved that b — b3 — b3 is positive for h = 0, we obtain b — b3 — b2 > 0 for any
values of h, and thus b; — /b3 + b3 > 0 is proved.
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Appendix B

Appendix for Chapter 3

B.1 Relation between Theorem 1 and the quantum dis-
cord

In Theorem 1, we show a necessary condition for the entanglement entanglement to be gener-
ated by the maximizing local fields. In this section, we answer the following question; if the
condition (3.10) is satisfied, can the quantum discord still exist? The answer to this question
is yes and we show an example in the following.

First, we review the definition of the quantum discord [57]. The quantum discord Q(p12)
between the spins 1 and 2 is defined as follows:

Q(p12) = Z(p12) — T (p12), (B.1)

where Z(p) is the quantum mutual information defined by

T(p) = S(p1) + S(p2) — S(p) (B.2)

with S(p) the von Neumann entropy S(p) = tr(plnp). On the other hand, J(p) is the op-
timized classical mutual information, which is the maximum information obtained from the
measurement of the spins 1 or 2, and is defined by

J(p) = S(p2) — Hrllljn ZP;S(Pz\Hj% (B.3)

where S(py) is the initial von Neumann entropy of the spin 2 and } . p;S(pan;) is the average
of the von Neumann entropy after the measurement of the spin 1 in the basis of II;. If the
quantum discord (B.1) has a non-zero value, the correlation between these two spins may not
be explained by classical theory.

Let us consider the Hamiltonian

Hiy = oi03 + 0505, (B.4)
This is a transverse Ising chain and satisfies the condition (3.10) as

[Ha(01), Hp(02)] = 0,
Hy = oio3,
Hp = o303. (B.5)
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Therefore, the entanglement can never exist between the spins 1 and 2 in the thermal state of
Hin + hjo7 4+ hio0; however we modulate i and hj. Indeed, the density matrix pjy is

0.6627 0 0 0.09865
0 0.1513  0.09865 0
P12 = 0 0.09865 0.1513 0 (B.6)
0.09865 0 0 0.03456

for hf = h5 = 1 and T' = 1. This system has no entanglement. However, it has a non-zero
quantum discord. We utilize the criterion in Ref. [58] to prove this. First, we separate the
density matrix into the following four blocks:

0.6627 0 0 0.09865
pll — trl(’T1><T1|P12) — ( O 01513> ) p12 = tr1(|T1><l1|p12) - (()09865 0 > 9

p21 = trl(’l1><T1|P12) = (0.08865 0'0%865) 5 P22 = tr1(|l1><l1|012) = <O'1§13 0.03456) )
(B.7)

where tr! denotes the trace operation only on the spin 1. A necessary and sufficient condition
for zero discord is given by the following two statements:

07, (p?)1] =0 fori,j = 1,2 (B.8)
and
[0, p"7 =0 for i,5,i,j =1,2. (B.9)

The density matrix (B.6) satisfies the first condition (B.8) because it is a real matrix. However,
the second (B.9) condition is not satisfied. Indeed,

11 12 0 0.0653822 12 11 0 0.0149309
pr (0.0149309 0 ) A (0.0653822 0 ) (B-10)

and we have p''p'?2 £ p!2ptt. Therefore, there exists a quantum discord between the spins
1 and 2. This shows that the condition in Theorem 1 is applicable only to the existence of
the entanglement. So far, we are not sure whether there exists a condition for the indirect
interaction to generate a quantum discord.

B.2 1In the case hiop — hyop = O(G7) with £ < 0 in the
case (b)

Here, we discuss the case of hiop — hyop = O(87F) with & < 0 in the case (b). In this case, we
cannot consider the unperturbed states |T1ln) ® [ i) a0d [L1TN) @ [ 4;n) independently
because their eigenvalues are almost degenerate. Then, the magnitudes of the elements F} and
F; can be different from the ones in (3.34). We can still apply the same calculation to the other
parameters {PTTLT,H’ PTT{“} as in the case & > 0; they are of order F2r1725n
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We here prove that F? and F7 are of order %1%~ or higher. In order to prove this, we
separate Hy + Hy as follows;

Hy + Hy = Hi0 + 0Hy0,
1 1
Hyo = 5(hlop + hvop + ho)of + é(hlop + hvop — ho)oy

(hop + hvop) (ITATA) (T T = (Ll (Lidw]) = Ro(ITdw) (Tadn] = [LaTw) (Ui Twl),
(hop — hvop — ho) (IT1dw) (T dn] = [ Ta) (L1 Twl),
(

hiop = hvop — ho) (07 — o), (B.11)

0Hio = —

N | —

where we define as hg = O(3%) with 0 < Ky < 1, and regard 36Hyo as perturbation. The

unperturbed density matrix ﬁég% is given by

o) = e (B.12)
where ﬁ[§23 is defined by
I:It(c())t) = Huedia + Hcouple + Hio. (Bl?))

Because hy = O(87) with 0 < %o < 1, the magnitudes of the unperturbed elements {FI(O), FQ(O)}
of ﬁég% are given by

O(BRI+F3+r0) and O(FF+Hrv+ro), (B.14)
where
ko = min(ky, 1) and x5 = min(ky, Ko, 1). (B.15)
The density matrix in the first-order perturbation is given by

1
AQE YA

Ptot =

. 1 _ .
(e-ﬁHggg s / 6—ﬁxH§235HLO€—B(1—x)H§33da;)7 (B.16)
0

where Z© is the partition function of the density matrix ﬁéﬂﬁ, while Z(® + §7 is the partition

function of pio;. The elements I} and Fy are given by

Fi = trin (T vl prot[ L1 T),
Fy = trin (Tl prot [ L1 I ), (B.17)

where triy denotes the trace operation on the spins except the focused spins 1 and N. The
first-order perturbations of the elements F; and F, are

1 7 (0 (0
—B(hop — hivop — ho)trin / dm(<T1¢N|e—ﬂxﬂfo3|mN><T1¢N|e—ﬂ<1—x>H5o3|mN>
0

—<T1¢N|e‘ﬁxﬁ533ulTN><11TN|e—ﬁ<l—x>ﬁ533|mN>) (B.18)
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and

1 (0
—B(hiop — hnop — h0>tr1N/ dx (<T1TN\€MH§°3 1T1ln) (T1ln]e P02 ! [l1lw)
0
—<mN\eﬂxﬁé?@wmwmeﬁ“”ﬁt(??lilm), (B.19)

respectively.

In order to estlmate the order of the first-order perturbations of Fy and F,, we introduce
{‘w§222§> nd {EL)™} as defined in Egs. (3.42) and (3.43), but for H). First, we have

2N72
(0) (0> n,¢ 0) 0),n,
<T1lN|6 A= HtmlllTN) Z € ~Pl-e)B, ‘wr(ned?agﬂ <w1(ne)d7ila§ﬁ : (B20>
=1L

From the calculation in Appendix B.3, we obtain

‘ ‘ ‘wmedla Tl medla lT| ‘ ’ 6R1+HN (BQl)
Therefore, we have
Z(o 11T ble™” DB 1) || = 08T, (B.22)
where
1 (0
Z00(z) tr(e_ﬁxHé"g) (B.23)
Similarly, we obtain
1 .
Zo@ (vl | ) || = 0(8™),
1
WWMW =) t"t|lllN>H o(B™),
1
ZO—H TiTwle ™" Ht°t\l1TN>H o(p™),
1 s .
7o bl | )| = 0(8™). (B.24)

As a result, we obtain the first-order perturbations of F; and F5 as

O(grtrntizfo), (B.25)
where we utilized 3(hiop — hvop — ho) = O(B'77). We can similarly calculate higher-order
perturbations of F} and F» to see that they are of order higher than (B. 25) Thus, in the case
Riop — hnop = O(B7%) with & < 0, FZ and F3 are of order higher than { Tl I TTTT,ll}'
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B.3 Calculation in the case (b)

Here, we derive the approximated form of [¢/'9'") in Eq. (3.42). In order to calculate pertur-

bation of |T1Tn) ® [¢10 4..), We employ the general perturbation theory,

1

) = 1) + (for = V) 5@

SH|), (B.26)

where H(® is the unperturbed Hamiltonian, [¢/(Y)) and E©® are the unperturbed eigenstate
and the unperturbed eigenvalue, respectively, and dH is the perturbative Hamiltonian. We

calculate each element of |w"°m>, namely {W”O’T.T )} in Eq. (3.42) with € =11,7], [T, 1]. We

media media,&

first calculate ng(;ﬂa H>’ which is given by the first-order perturbation;

W&lﬁﬁaw = L) (L TN] ® Inedia
1
X |:[t°t B (|T1TN> ® |¢med1a>) ((TlTN| ® < med1a|)] m couple|T1TN> ® |wmed1a>

_QZ: |l1TN ® |¢ > <<l1TN| ® < med1a|) couple(|T1TN> ® |¢med1a>)
media Ero hlop — h’Nop — (EmEdla + hlop hNop)7

media

(B.27)

where we put E© to E .. —hiop—hnop, HO to Hy+Hy~+ Hupedias [0©) to [T1Tn) @470 4.,.) and
dH to Heouple in Eq. (B.26). As has been stated, we assume hy,p, = O(87) and hyop = O(87"Y)
with k1, £y > 0. On the other hand, the eigenvalues { E" ;.. } are of order 3° because the media-
spin Hamiltonian Heqis is fixed. Therefore, Eq. (B.27) can be approximated by

[ i 1)

oN -2

= Z |l1TN> ® |,¢n a > ((llTN| & < med1a|) Couple(|T1TN> X |¢med1a>)
n=1

—2Nh10p

(1 + O(ﬂ”l)>. (B.28)

We can sum the leading term over the label n to obtain

" 1
|¢m0egiTa,lT> = _th (|l1TN><l1TN| & ]media) couple(|T1TN> ® |wmed1a>) (B29>
op
where
9N -2
Z |wmed1a>< media‘ = Imedia (B3O>
n=1

is the identity operator in the whole space of the media spins. Using Egs. (3.40) and (3.53) in
Eq. (B.28), we have

i) = =1 @ (sl Tna) + bl )
1) + w11 + 0(5™)), (B.31)
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Second, the leading term of W:&&L,T l> is similarly given as follows:

| ¢legilm >
oN-2
(<T1lN| ® < med1a|) COUP16(|T1TN> ® |¢med1a>) KN
- Z |T1lN ® W}medla) _2hN0p (1 + O(ﬂ ))
1

:—2h (|T1lN><T1lN| ® Imedia) couple('TlTN) & |¢med1a>)
Nop

=T 1) © (15 T T Lav-1) + taa T 1)
Nop
o Yt L) B L) + 0 L) T-a) + O(8™) ). (B.52)

Third, we calculate Wﬁﬁaﬂa I i>> which is given by the second-order perturbation;

2N72

|¢Z)OegiTa,ll> = Z |l1lN> ® |¢gledia>

n,n’/=1

((\LllN’ ® < medla’) couple(’TllN> ® ’wmed1a>) ( TllN‘ ® < medla‘)HCOUple(HlTN> |wmed1a>)
Errxbloedla thP hNOP (Emedia + thP + hNOP) B

media thP - hNOP - (Emedla thp + hNop)

+ ((\LllN’ ® < medla’) couple(ulTN> ® ’¢med1a>) (<l1TN‘ ® < medla‘)HCOUPIe(HlTN> |wmed1a>)
EITILlOedla thP hNOP (Emedia + thP + hNOP) Ernedla thP hNOP (En

(B.33)

By utilizing the assumptions hiop = O(G7") > 0, hynep = O(F7F

) > 0 with k1 > ky > 0 and
E" 4. = O(8°), we can approximate (B.33) as

2N 2
no, (<l l | ®< me 1a|)Hcoupe(|T l >® |¢me 1a>)
me(LTa ll nnzlullN media> = _(iQ(hlop +1hN0113>N .
(<T1~LN’ ® < medla’) COUple(HlTN> ® |1/}med1a>)

e, (1+0(™))

+ (<l1lN| ® < med1a|) couple(|l1TN> ® |wmed1a>)
_2(hlop + hNop)

(<l1TN| @ < med1a|) couple(|T1TN> ® |¢med1a>) <1 4+ O(ﬁm>>] )

B.34
& (B.34)

We can calculate the leading terms of (B.34) as

(|l1lN><l1lN| & Imedia)Hcouplo(lTllN><T1lN| & Imodia) Couplc(|T1TN> X |¢med1a>)
4hNop(hlop + hNop)
(|~L1lN><l1lN| & Imedia)Hcouple(HlTN)<~L1TN‘ & Imedia) Couple(|T1TN> ® |¢med1a>)
+ 4hlop(hlop + hNop) . (B35>
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Upon using Egs. (3.40) and (3.53), the numerator of the first term in (B.35) reduces to
(Hada) (LI n] © Tmedia) Heouple (|1 L) {(T1 L v © Tinedia) Heouple (IT115) © [peia))
:<|l1lN><~L1~LN| ® ]media)HcoupleJ
X110 @ (Vg T2 B 1) + o | T2 BEN T 1) + Vit | L2} B v} + iy [La) 4D T 1)) |

=JL1ln) ® (Vsnol L) I [ In=1) + Veno L)1) T 1)
F Yl [ T2) O 1) 4 Wag | T2) D5 [ Ta1)). (B.36)

Similarly, the numerator of the second term in (B.35) reduces to

(|l1lN><l1lN| ® Imedia) couple(|l1TN><l1TN| ® Imedla) couple(|T1TN> ® |¢med1a>)
:(|l1lN><l1lN| X ]medla) couple [lllTN) (73n0|l2>|¢22>|TN—1> + tho|l2>|¢r%>|lN—l>

g [ T2D ) [Tav-) + g 126580 L)) |

=J|l1ln) ® (v2sno!l2>!@5££>\lzv_1> + thou2>|1;;z(l)>HN—1>
+ Vg [ T2) PN [ Lv—1) + wng | T2) 5 [Tv-1)), (B.37)

which is equal to (B.36). As a result, we arrive at

J? - -
no,17 — 2 i Tl
i SnO no - tnO no -
Wmedla,u> —4h10thop [(’Y ) [Vng ) I In—1) + YtnglL2) [0ne ) [ TN —1)

g B L1} + g PG5 1)) + O], (B.38)

Next, we calculate each element of |¢"% ™), namely {|¢f(f’ty>} in Eq. (3.42) with & =17, 10,171, [].
By similar calculations, we obtain

J ~ -
b ) =35 | (rol 1B ) + T2} 013} )

g L) DA Lv1) + 70 L)L) Tav-1)) + O8]
J ~ -
U 11) =g | (1m0 L) B o) - g} 915 v
op

o U | T2 D) Tv-1) + g 1) Lv-1)) + O(8™)]. (B.39)

The element |1 11) can be calculated from

2N72
|¢210egila,ﬂ> = Z |l1lN> ® |¢Zledia>
n,n'=1

((llTN| ® < med1a|) couple(HlTN) ® |wmed1a>) ( TlTN| ® < medla|)HC0uple<|T1lN> |77Z}med1a>)
Errrll%dla thP + hNOP (Emedla + thP hNOP) Emedla thP + hNOP - (Er?l/edia thp hNOP)

+ ((llTN| ® < med1a|) couple(|l1lN> ® |wmedla>) ((lllNl ® < medlal) COUP16<|T lN> ® |¢med1a>)
Egl(c)adla thP + hNOP (E + thP hNOP) Emedla thp + hNOP (Emedla + thp + hNOp)
(B.A40)

media
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By utilizing the assumptions hyop = O(67"1), hnop = O(B7") with k1 > £y > 0, hiop—hnop =
O(p~%) with & > 0 and E"_,. = O(3°), we can approximate (B.40) as

media —

— ® couple ®
|77Z}21(ie7<iila iT Z |i1iN X |wmedla> (<l1TN| < m(ihaizn lh(]LT1§N> |wm0dla>)
n,n/=1 °p op

((TlTNi ® < medlai) Couple(|T1iN> ® |¢med1a>)
_2hNop
(<l1TN| ® < medlai) couple(iili,N> ® |wg1,edia>)
—2(h1op — hvop)

((lllNi ® < medlai) Couple(|T1iN> ® |¢med1a>)
—2h10p

(1+0(8™) +0(3)

+

(1 +O(5") + 0(@'%))] . (B.41)

We finally arrive at

J2 ) i
= o i i(vsnouﬁlwibllml} 7 | L) DI [T 1)

g 1) A Lv-) + 70 P2)[G0) 1) + O(8™) +0(89)],  (BA2)

where £’ is defined in (3.35).

[ i 1)

B.4 Calculation in the case (c)

Here, we derive the perturbed form of [¢%") in Eq. (3.82). Using Eq. (B.26), the leading term
of \qbtot l> is given by

N-1
nO T 2§ |i (<lli ® < medlai) COuple(iT1> |¢med1a>) (B 43)
o 1 Ine 1a n, 5 .
t t l ¢ Emeodia - thP (En?edla + hlop)

where hjo, = O(7%1) with #x; > 1, but {E." ...} are of order 8°. Then we obtain

2N 1 ® media couple ® media
50 = 2 ) g L1 ) P I 2 B80) (4 5m9). (pa

We thereby obtain [¢/'%") as

[Gre’) = 111) @ |9hgia) + th 1) ® (7820|l2>|<521)>lizv>+vt§m|lz>|¢~5£ﬁ>llw>

T2 G4 T) + 103, [1IE5) L) + O(8™) ). (B.45)

B.5 Proof for the existence of the maximized entangle-
ment in three-spin systems

In this section, we prove that the maximized entanglement always exists in the systems with the
Hamiltonian (3.99) in the high-temperature limit 3 — 0. We prove this statement by showing
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that the entanglement exists by letting i and hj
hi = hi = ho(9), (B.46)
where we assume
ho(B) = O(B7"°) with ko < —1. (B.47)

We regard the interaction Hamiltonian as perturbation and calculate the leading order of the
elements {Fy, Fy, p11, P11, P11, Py} of the density matrix. Then we show the inequality (3.9),
which is a necessary and sufficient condition for the existence of the entanglement.

First, we separate the Hamiltonian (3.99) as follows:

Hyot = Hio + Hin, (B.48)
where

Hyo = hio] + hio5 + hicqia0s + J 0705 + J0503,

media™ 2
Hiy = (J%0%08 + JY0¥0Y) + (JS0%al + JYolol)
= {J[af@_ +o705 +y(ofo5 +0707)] + J[oFo5 + 0508 +~(0F0] +0503)] },
(B.49)
hZ 4. has an arbitrary value, J* = J(1 +)/2, JV = J(1 —7)/2, and we consider Hy, as
perturbation. Because Sho(/3) — oo as f — 0, we only have to consider the ground state and
the first excited state as the unperturbed states, which are given by

[T1T2T3) and [T1laT3) (B.50)
with the corresponding eigenvalues
€1 = —2]'L0 — hfnedia + QJZ and €y = —2h0 + hfnedia — QJZ, (B51>

where we assume hZ 4. > 0, but the following discussion is also applicable to the case of
R qin < 0. Other excited states have the eigenvalues €; + O(87%°) and hence their thermal
mixing can be ignored in the limit 5 — 0.

We consider the states (B.50) up to the second-order perturbation of Hiy:

Jy
ky (\T1T2T3> T oot 2k, —2JF [L1l2T3)
Jvy J2y
- B.52
Sho +ahe . — a7 el T G TS ahe . =2 'llTQW) (B.52)
and
o (111121s) — / LiTaTa)
2 14213 Qho—thnedia—i‘QJZ 11213
J J2y
a B.
Dho — 2k, 207 |12 T R e ke — 2k 4 27 |l1l2l3>)’ (B.53)

where k; and ks are the respective normalization factor. According to the above expressions,
ky and ky are of order of 1+ O(3*°). By mixing these two states with the Boltzmann weights
e P and e=P¢2 we obtain the matrix elements {F\, Fy, pi1, P11, P11, PLL}-
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Let us first consider the case v # 1. In this case, the leading terms of F} and ,/prpj| are
given as follows;

J2(1 + ’72) 1
Fy="——— 1724 0(ptt?o
o JQ,}/ O 142k B 54
VPITPL = e +O(B), (B.54)
which yields
J?(1 — ~)?
Fl o /—pTTpll — (8h2 ’7) + 0(61—1-2/{0) >0 (B55)
0

in the limit 8 — 0. This gives a non-zero value of the concurrence (3.8) of order 5% in the
case v # 0.

Next, we consider the case v = 1. Because we assumed J* > JY > J? the equality
JY = J* = 0 is satisfied in the case v = 1. In this case, we have to take higher-order
approximation because the first term of Eq. (B.55) vanishes. The expansions of F, and | /pypj7
are given by

,]2 (hz . )2J2 6 (hz . )2J2 ﬁ
F, = media ~ media o~ O 24+3K0
> 42 8 k2 L m (5772),
J2 (hz g )2J2 6 (hz d )2J2 6 2480
o . — media ~ media ~ K B.
which is followed by
p : .
Fy = \/PiiPi1 = 4757 (Hiia)? + O(577%). (B.57)
0

If the media field R .4, is equal to zero, the entanglement vanishes for any values of the local
fields hj and h3; this is consistent with Theorem 1. For hZ 4., # 0, the concurrence (3.8) is
of order %350 in the case v = 1 and increases as the media field hZ 4, is increased. We
have thereby proved that the entanglement in a three-spin system with Hamiltonian (3.99) has

always a non-zero value if we choose the local fields properly.

z

B.6 The critical temperature in the asymmetric phase

In this section, we show analytical calculation of the critical temperature between the phase
with the asymmetry hiop # haop and the phase with the no entanglement in the four-spin
X X chain, that is, on the phase boundary in the upper right area of the phase diagram in
Fig. 3.5 (a). For the XX model, the element F5 vanishes, and hence we obtain the critical
temperature as a solution of

FY = pypy; = 0. (B.58)

We calculate the elements Fi, pyy and p| | from perturbation calculations in two steps. Numerical
calculation suggests on the phase boundary in the area that the maximizing local fields behave
as hiop — 00 and hyop >~ hY 4, and that hZ g > J and b} 4, > T. We thereby regard the
coupling between the spin 1 and the rest of the system

Jyo{os + Jyoloy = J(of oy + 07 0)) (B.59)
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as perturbation in the first step, where J, = J, = J/2. Then, we regard the interaction
Hamiltonian

Hy = (J02<73 + Joyol) + (Ja3a4 + Jojoy)
—J(0203 +U2U3)+J(U3U4 +o50f) (B.60)

as perturbation in the second step. As the unperturbed states in the limit hi,, — 00, we first
use

{11 @ o) Frzrs (B.61)

where |¢,) denotes the eigenstates of the system of the spins 2, 3 and 4 and is defined by

[Dn) = 50 12) |04 T4) + €] T2) |01 [ La) + [ L) @4 ) [T4) + 10y | L2) |1 L) (B.62)

for 1 < n < 8, which is the same as in Eq. (3.81). We define them so that their eigenvalues
{€,} are in the non-descending order.

We thereby calculate the first-order contribution of |11) ®|¢y,) to the elements { Fi, F»} and
{p11, P11, P11, P1. b, which we define as {F]!, FyT} and iy T,pﬁ) T,pﬁ) T,plf 1. We utilize the
perturbation calculation in the proof of Theorem 2. From Egs. (3.86) and (3.87), we have the
elements {F"T, F;oT} as

J
_2h10p< 0 Wno (Dng [ D1t ) + gt (@ #EI(D%)) (B.63)
and
J TT H
_zhlop( o Ung (Drb D) + wh, 80, (¢ n0\¢n0>). (B.64)

From Eq. (3.88), we also have the elements {pTT N T,pﬁ) T,plf " as

2 2

J
S T Ungs g + Wy (V8 + ) and = (70 + wip). (B.65)
0 0 0 0 4h10p 0 4h10p 0 0

Now, we move to the perturbation in the second step to obtain the eigenstates {|¢,)}
explicitly. Because hZ 4., > T, out of eight states {|¢,)} we consider the perturbations of
only the four states |T2T3l4), [l2T3l4), |T2l3l4) and |T27374) with the corresponding eigen-
values {hop — 2% qias Paops Raop, —Raop — 2hZ qia}- We ignore the perturbation of the other
states |l2l3T4), [T2l3Ta), [12T3T4) and [l2]3]4) with the corresponding eigenvalues {—hyep, +
2hmedlaﬂ h40p7 _h40P7 h40p + 2hrznedia}' -

The perturbed form of the eigenstate |T273]4) up to the second order of Hyy in (B.60) is
given by

J J?
+ , B.66
[TaTsba) + g [TalaTad + gy e —yplbaTol) (5.66)
with the eigenvalue change
J2
5 B.67
“= _2h’40p + 2hmed1a ( )
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Suppose here that we choose hyo, = —hZ Then, Eq. (B.66) reduces to

media*
2
[T2T314) + _4hrznedla’T2l3T4> 16hi12ed1a|l2T3T4> (B.68)
In the case of hyop = —hZ 4., the eigenvalues of the three zeroth order states |[273l4), |T2l3l4)

and |T27374) are degenerate into hmed13L7 we define them as {qb )}, The first order contribution
of the other states to the states {Qﬁi } with i = 2, 3,4 are given in the forms

V= 1Tl o8 = [laTsla) + ————lalsTa), o = [TaTsTa) (B.69)

4h2

media

We define the perturbation matrix as
(01" 16H4"), (B.70)

where 6H is the perturbation Hamiltonian, namely the interaction Hi,. This is given by

O J 0
—J2/ARs . 0. (B.71)
O 0 0

By diagonalizing this matrix, we thereby obtain the three states in the form

Un|T2l3la) + Vn <\l2T3l4> H2l3T4>> + WhlT2T314), (B.72)

4hz

media

where

{u, vy, w}

1 J 1 J
= ——(1-———),— 0 0,0,1
Um0 oo
1
—1 1 0 B.73
{\/5( +16hrzned1a> ( 16hrzned1a)’ }> ( )

with the eigenvalues

J? J?
{62,63,64} = {—J — Shz—,O, J— Sh }, (B74>
media media

respectively.
Now, we can calculate the explicit forms of the eigenstates {|¢,)}5_; and the corresponding
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eigenvalues {¢,}5_;:

2

[91) = [T21314) + _4hfned1a’T2l3T4> 16hf112ed1a|l2T3T4>
J2
= —3hedia T IV
1 J 1 J
|¢2> B _E (1 16hrzned1a> |T2l3l4> \/§ <1 * ]'Ghrznedla) (|l2T3l4> 4hfnedla |l2l3T4>>
J2
hmedla —-J - 8h;ed1a7

|¢3> = |T2T3T4>7 €2 = hrzned1a7

1 J 1 J
|p4) = E(l m) 1T2l3la) + 7 <1 + 16hfnedla> <\l2T3l4> _4hIZnedlaH2l3T4>>

2
|95) = [l2l3la), € hIZnedlaJ
|¢6) = |T2l3T4>; €6 = Niedias
|97) = |12T3T4), €7 = Djedias
|ps) = [l213T4), €8 = 3N eqia- (B.75)

Using Egs. (B.63)—(B.65) and (B.75), we obtain the matrix elements {F}, py,py;} to calcu-
late Eq. (B.58):

J 2 J?
Fl = <6/B(3hmed a+J /4hmedm)z— + e ( medla+J /8hmedla) Slnh ﬂj) (B76>
_2h10P 6(hmed1a) media
and
pTT — eﬁ(ghtznedla+‘]2/4hmed1a)J—2 + e'Bhanedia + Qeiﬂhfnedia7
6(h’;ed1a)
2
Py = J2 <€'B(hf“edla” */8h5caia) cosh(3.]) + p P Pineaia™T* [SMcaie) sinh (8.]) + eﬂhrznedia)
4h10p 8hmed1a

(B.77)

Substituting these expressions into (B.58), we obtain the approximate phase boundary in the
upper right area of the phase diagram in Fig. 3.6 (a).
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