
General theory of entanglement enhancement by external
fields in spin chains

Tomotaka Kuwahara

1/6/2012





Acknowledgements

It is a pleasure to thank Professor Naomichi Hatano for his valuable suggestions and comments.
I am grateful to Dr. H. Azuma for critical reading as well as for helpful discussions and com-
ments. Finally, I appreciate the members of the Hatano group for their tender supports. The
present thesis is supported by CREST from Japan Science and Technology Agency as well as
Grant-in-Aid for scientific Research No. 22340110.

3



Abstract

In the present thesis, we report several general properties of the enhancement of the entangle-
ment by external fields.

First, we investigate the thermal entanglement of interacting two qubits. We maximize it by
tuning a local Hamiltonian under a given interaction Hamiltonian. We prove that the optimizing
local Hamiltonian takes a simple form which dose not depend on the temperature and that the
corresponding optimized thermal entanglement decays as 1/(T log T ) at high temperatures. We
also find that at low temperatures the thermal entanglement is maximum without any local
Hamiltonians and that the second derivative of the maximized thermal entanglement changes
discontinuously at the boundary between the high- and low-temperature phases.

Second, we investigate the maximized entanglement of indirectly interacting two spins,
that is, through other spins. We present a necessary condition for the indirect interaction to
give a non-zero maximized entanglement between the focused spins. We also prove that if
the focused spins are separated by two spins, there is a critical temperature above which the
maximized entanglement between the focused spins vanishes. Then, we numerically calculate
the maximized entanglement between the end spins of three-spin chains and four-spin chains.
We discover that the maximizing local fields on the end spins have asymmetric forms. In the
three-spin chains, we attribute the entanglement enhancement to the asymmetry of the local
fields qualitatively and quantitatively in terms of the magnons. In XX and XY four-spin
chains, we find that the critical temperature shows qualitatively different behavior depending
on the conservation of the angular momentum in the z direction.
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Chapter 1

Introduction

In the present chapter, we introduce the theoretical motivation of the present research and the
connection with the past works. We also give the fundamental knowledge for understanding
the present thesis.

1.1 Motivation

The present thesis is devoted to the study of the enhancement of the quantum entanglement due
to external fields. Over the last two decades, the quantum entanglement have attracted much
attention. Numerous studies are devoted to understanding its properties and the discovery of
the application to new technologies [1–5]. We especially focus on the problem of what cause
the entanglement enhancement. In the following, we show the research background in more
detail.

First, the quantum entanglement is one of the most essential properties which characterize
the degree of the non-classicality. This was discovered by Schrödinger in early times [6] when
the quantum physics was established. They also played an essential role in the solution of the
EPR paradox [7], which had been one of the most puzzling problems for a long time. The
entanglement reflects the non-locality; it makes it possible to create a correlation which cannot
be explained by the classical theory [8]. Its existence are observed experimentally in 1981 by
A. Aspect et al. [9–11]. Until the 1990s, however, specific properties of the entanglement had
not been studied because it was not clear then how the quantum entanglement could be put to
practical use. Since the quantum information thereby was developed [12], the research of the
entanglement have been an essential task in order to understand its properties. Representative
examples are the quantum computation [13], the quantum code [14] and so on. As another
theoretical application, the entanglement is a useful physical quantity in phenomena in which
the quantumness plays a crucial role. Indeed, many researches have suggested the relationship
between the quantum phase transition and the entanglement [15,16]. These researches are under
development, but they have much potential to bring essential principles. So far, many properties
of the entanglement have been clarified and the corresponding experiments are following them.
Because of the mathematical difficulties of the entanglement, however, there are still quite
a few problems to be solved. From the theoretically and practically aspects, in particular,
the generation and the enhancement of the entanglement are very important problem. Their
properties often depend on individual systems and it is a tough problem to obtain general
properties. We tackle this problem from the direction of using external fields. In the present
research, we focus on the entanglement in thermal equilibrium states, including the ground
states.
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Second, we show the motivation of the present research of the entanglement enhancement
by external fields. The first reason for that is that the strong entanglement is required in terms
of practical applications [3]. Indeed, there are many researches about the generation of the
strong entanglement [4]. Moreover, external fields are easily controllable and the entanglement
by external fields is realizable. The second reason is that we can know from this research why
the quantumness of the system can be increased by the change of external parameters. There
are many examples on the quantum phenomena which occur after changes in external fields [4].
Until now, many studies have been reported on the entanglement in various quantum systems.
However, little is known about the reasons why external fields can enhance the entanglement
and the general properties of the entanglement enhancement.

Third, we show our final purposes of the present study:

1. To establish the general principles on the enhancement of the (bipartite and multipartite)
entanglement.

2. To reveal the general properties of the thermal entanglement at high temperatures, espe-
cially the possibilities of the protection of the entanglement.

3. To clarify the general properties of the entanglement over a long distance, which is gen-
erated between a pair of spins separated far apart [17–19], as well as the method of
generating it, if possible.

These problems are closely related to practical applications of the entanglement and the compre-
hension of the foundation of quantum physics. However, we have encountered several difficulties
in working on these problems. The first one is the difficulty of the calculation of the entan-
glement [20]. As is shown in the following sections, the calculation of the entanglement needs
the density matrix of the total system, which contains all degrees of freedom of the system.
Because of this, it is very difficult to calculate the entanglement in complicated systems. The
method of the calculation of the multipartite entanglement even has not been established; it
goes without saying that we have to know the density matrix of the total system. At present,
there are several measures [21–23] in the ground states which distill the essential properties of
the multipartite entanglement. In the present thesis, we consider only the bipartite entangle-
ment, for which we can use well-defined entanglement measures such as the concurrence and
the negativity.

In order to work on the above problems, we discuss the entanglement maximized by local
fields. This is the maximum value of the entanglement between a specific spin pair when we
can arbitrarily modulate the local fields on the focused spins (Fig. 1.1). The research of the
maximized entanglement is very suitable for the above three problems because of the following
reasons:

1. Properties of the local fields which maximize the entanglement reflect the essence of the
entanglement enhancement by the local fields.

2. It tells us the limit of the entanglement enhancement due to the local fields. If the maxi-
mized entanglement is equal to zero, it means that we cannot generate the entanglement
with any local fields under the given condition.

In the present thesis, we mainly show the general properties of the maximized entanglement.
Now, we show the main achievement of the present thesis. We mainly work on the following

two targets:
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Figure 1.1: A schematic picture of the entanglement maximization. A specific two spins interact
with each other directly or indirectly. The word “indirect” means that two spins interact via
other spins. We can modulate the local fields on the focused two spins arbitrarily. We thereby
define the maximum value of the entanglement as the maximized entanglement.

1. Maximization of the thermal entanglement of arbitrarily interacting two qubits (Chap-
ter 2).

2. General properties of the maximized entanglement of indirectly interacting two spins
(Chapter 3)

In Chapter 2, we consider the entanglement maximization problems of two spins which di-
rectly interact with each other. In this case, we can calculate the entanglement analytically
to some extent. Therefore, we succeeded in obtaining the general properties for the arbitrary
interactions. In Chapter 3, we consider the entanglement maximization problem of two spins
indirectly interacting through other spins. In this case, unlike the case of the two spins, it is
much more difficult to calculate the entanglement in arbitrary cases. Therefore, we focus on
the possibilities of the generation of the entanglement and the properties of the entanglement
enhancement in short spin chains.

1.2 List of publication

• T. Kuwahara and N. Hatano. Maximization of thermal entanglement of arbitrarily inter-
acting two qubits. Physical Review A 83, 062311 (2011)

(contains results presented in Chapter 2)

• T. Kuwahara. General properties of the maximized entanglement of indirectly interacting
two spins. arXiv:quant-ph/12042337.

(contains results presented in Chapter 3)
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1.3 Entanglement theory

In the present section, we overview basic knowledge on the quantum entanglement necessary
to understand the present thesis.

1.3.1 Definition of the entanglement

First, we show the definition of the entanglement [24]. We discuss the pure state and the mixed
state separately. Let us consider only the bipartite entanglement and assume that the quantum
system consists of the spins 1 and 2. The general form of the pure state |ψ〉 is then given by

|ψ〉 = s|↑1↑2〉 + t|↑1↓2〉 + u|↓1↑2〉 + w|↓1↓2〉, (1.1)

where {|↑〉, |↓〉} are the base of each spin states. It is defined that the spins 1 and 2 are not
entangled if and only if the following condition is satisfied:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉, (1.2)

where |ψ1〉 and |ψ2〉 denote arbitrary states of the spins 1 and 2. In other words, if the states
of the spins 1 and 2 cannot be decomposed into the direct product of states of each spin. we
say that the state is entangled.

The above definition is applied only to pure states. Let us then discuss the mixed states. In
order to discuss the mixed states, we consider the density matrix ρ12, where elements are given
by 〈↑1↑2|ρ12|↓1↓2〉, for example. By diagonalizing the density matrix, we can denotes ρ12 as

ρ12 =
4∑

i=1

pi|ψi〉〈ψi|, (1.3)

which consists of the four eigenstates {|ψi〉}4
i=1 with the stochastic weights {pi}4

i=1. Generally
speaking, we cannot decide the mixedness of the states uniquely. For example, let us define the
states {|ψ̃i〉}4

i=1 as follows:

|ψ̃i〉 =
4∑

i=1

Uij|ψj〉, for j = 1, 2, 3, 4, (1.4)

where Uij is an arbitrary unitary matrix. The states {|ψ̃i〉}4
i=1 also give the expansion (1.3).

We then define that the spins 1 and 2 are not entangled if and only if there is a unitary matrix
Uij which satisfies

ρ12 =
4∑

i=1

pi

(
|ψi1〉 ⊗ |ψi2〉

)(
〈ψi1| ⊗ 〈ψi2|

)
. (1.5)

In other words, if the states of the spins 1 and 2 cannot be decomposed into a mixture of the
non-entangled states, we say that the mixed state is entangled. The definition can be extended
to any bipartite systems. However, it is usually difficult to judge whether the appropriate
unitary matrix Uij which reduces the density matrix to the form (1.5) exists or not in general
cases. In the present thesis, we can completely determine the entanglement of the bipartite
systems of 2 × 2 and 2 × 3.
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1.3.2 Entanglement measure

Next, we show the quantification of the entanglement. An entanglement measure E(ρ12) has
to satisfy the following conditions [25]:

1. An entanglement measure E(ρ12) projects the density matrix into a positive number.

2. If E(ρ12) is equal to zero, the density matrix ρ12 is not entangled. In other words, it can
be decomposed as Eq. (1.5).

3. An entanglement measure E(ρ12) cannot be increased by LOCC, namely

E(ρ12) ≥
∑

i

piE

(
(Ai ⊗ Bi)ρ12(A

†
i ⊗ B†

i )

tr(Ai ⊗ Bi)ρ12(A
†
i ⊗ B†

i )

)
, (1.6)

where Ai and Bi are local operators that satisfy
∑

i=1 AiA
†
i ⊗ BiB

†
i = I12 with I12 being

the identity operator.

In addition, the condition of the convexity is sometimes demanded; namely,

E

(∑
i

piρi

)
≤

∑
i

piE(ρi). (1.7)

In the bipartite system of 2×2, there are several measures which satisfy these conditions. In the
following, we use three measures, namely, the concurrence, the negativity, and the determinant
measure. The concurrence and the negativity satisfy the above conditions.

Concurrence

The concurrence C(ρ12) is the most popular entanglement measure [26] . The concurrence is
defined as follows;

C(ρ12) ≡ max(λ1 − λ2 − λ3 − λ4, 0), (1.8)

where {λi}4
i=1 are the eigenvalues of√

ρ12(σ
y
1 ⊗ σy

2)ρ
∗
12(σ

y
1 ⊗ σy

2) (1.9)

in the non-ascending order λ1 ≥ λ2 ≥ λ3 ≥ λ4.
It is often difficult to obtain the analytical forms of the concurrence, but it is easy in the

case in which the density matrix has the form of the X-state

ρ12 =


p↑↑ 0 0 F2

0 p↑↓ F1 0
0 F ∗

1 p↓↑ 0
F ∗

2 0 0 p↓↓

 , (1.10)

where the parameters {p↑↑, p↑↓, p↓↑, p↓↓} are real numbers and the parameters and {F1, F2} are
complex numbers. The concurrence of this state is simply calculated as

C(ρ12) = max(|F1| −
√

p↑↑p↓↓, |F2| −
√

p↓↑p↑↓, 0). (1.11)
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Negativity

Next, we introduce the negativity N(ρ12) [27]. The negativity is defined as follows:

N(ρ12) ≡ ||ρT1
12 ||1 − 1

= max(−2λ−, 0), (1.12)

where || · ||1 is the trace norm, λ− is the minimum eigenvalue of ρT1
12 , which can be negative,

and T1 denotes the transpose operation with respect to only the spin 1; for example,
p↑↑ F3 F4 F2

F ∗
3 p↑↓ F1 F5

F ∗
4 F ∗

1 p↓↑ I6

F ∗
2 F ∗

5 F ∗
6 p↓↓


T1

=


p↑↑ F3 F ∗

4 F ∗
2

F ∗
3 p↑↓ F ∗

1 F ∗
5

F4 F1 p↓↑ F6

F2 F5 F ∗
6 p↓↓

 . (1.13)

The second equation of (1.12) comes from the fact that ρT1
12 can have only one negative eigen-

value [28]. The advantage of this measure is that because it can be described as the minimum
eigenvalue, it is easier to calculate than the concurrence; we can simply calculate the perturba-
tion form of the negativity as

N(ρ0 + δρ) ≅ N(ρ0) − 2〈φ−|δρT1|φ−〉, (1.14)

where we refer to the eigenstate corresponding to the negative eigenvalue of ρT1
0 as |φ−〉. If the

eigenstate of λ− has the form of the Bell state, the negativity and the concurrence have an equal
value [29] . In some cases, the logarithmic negativity log2 ||ρT1

12 ||1 is used instead of N(ρ12), but
it is known that log2 ||ρT1

12 ||1 does not satisfy the convexity [30] . We uses the negativity N(ρ12)
in the present thesis.

Determinant measure

We finally introduce the determinant measure π(ρ12) [28]. It does not satisfy all the condi-
tions for the entanglement measure, but it is easier to calculate than the concurrence and the
negativity. The determinant measure is defined as

π(ρ12) ≡

{
0, for ρT1

12 ≥ 0,

2(| det ρT1
12 |)1/4, for ρT1

12 < 0.
(1.15)

This entanglement measure is not a full entanglement monotone. However, it provides tight
lower and upper bounds for other entanglement measures including the negativity and the
concurrence. In addition, det ρT1

12 is expressed in the form of a polynomial and hence is much
easier to maximize numerically than the concurrence and the negativity. Utilizing this measure,
we tested Hypothesis 1 below by numerical optimization for various kinds of interaction at
various temperatures and found it always satisfied.

1.3.3 Thermal entanglement

Next, we introduce the thermal entanglement. The thermal entanglement is defined as the
entanglement in thermal equilibrium systems. The density matrix in thermal equilibrium is
given by

ρ =
e−βHtot

Z
, (1.16)
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where Z = tr(e−βHtot) is the partition function and β = 1/kT with k the Boltzmann constant.
The thermal fluctuation generally destroys the entanglement because it decreases the purity of
the system; the purity is defined as trρ2. In some systems, however, it is discovered that the
entanglement is enhanced by the thermal fluctuation [31,32].
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Chapter 2

Maximization of thermal entanglement
of arbitrarily interacting two qubits

In the present chapter, we investigate the thermal entanglement of interacting two qubits.
We maximize it by tuning a local Hamiltonian under a given interaction Hamiltonian. We
prove that the optimizing local Hamiltonian takes a simple form which dose not depend on the
temperature and that the corresponding optimized thermal entanglement decays as 1/(T log T )
at high temperatures. We also find that at low temperatures the thermal entanglement is
maximum without any local Hamiltonians and that the second derivative of the maximized
thermal entanglement changes discontinuously at the boundary between the high- and low-
temperature phases.

2.1 Introduction

Quantum entanglement plays an essential role in quantum information processing [24]. Various
kinds of investigation have been carried out to understand properties of entanglement for the last
two decades [3,4]. The thermal entanglement [31], which is entanglement of thermal equilibrium
states, is one of the important concepts because it shows us the effect of thermal fluctuations on
entanglement. Thermal disturbances generally cause disentanglement and have serious effects
on quantum information processing. Therefore, many schemes have been proposed to protect
entanglement from thermal disturbances [33–42]. As one of these schemes, a lot of attention has
been paid to methods based on manipulation of local Hamiltonians [33,36,38–42]; for example,
in quantum spin systems, bipartite thermal entanglement can be enhanced by modulating
external magnetic fields. In the present chapter, we focus on a simple question as to how much
entanglement can be generated by optimizing the local Hamiltonian. We give a theoretical
limit of entanglement enhancement by manipulation of the local Hamiltonians.

Relationships between the thermal entanglement and local parameters have been investi-
gated especially in bipartite quantum spin systems [31,38–46]. From these researches, behavior
of the thermal entanglement under external magnetic fields may be understood in the cases
of almost all interactions. However, little has been reported on the maximization problem of
the thermal entanglement; in the case of the bipartite XY spin model, this problem has been
solved only numerically [40]. Until now, there are no analytical approaches to optimizing the
thermal entanglement of arbitrarily interacting two qubits.

In the present chapter, we will answer the following question: given a system of two qubits
which interact via an arbitrary interaction Hamiltonian, how can we maximize the thermal
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entanglement between these two qubits by changing only the local Hamiltonian? A naive
approach to this problem may be to solve the optimization problem numerically. However, this
problem has six local parameters in total and the functional forms of entanglement measures
such as the concurrence [26] and the negativity [27] are very complicated. Thus, for an arbitrary
interaction, it is difficult to solve this optimization problem numerically. Therefore, we employ
perturbation techniques and utilize symmetric properties in order to determine the optimizing
local Hamiltonian analytically. In this way, for all kinds of interaction, we give general properties
of the optimized entanglement.

Our main results are the following:

1. We find that at low temperatures the thermal entanglement is maximum without any
local Hamiltonians, whereas at high temperatures it is maximized by non-zero local fields.
We refer to the former temperature range as the low-temperature phase and the latter
temperature range as the high-temperature phase. The secondary differentiation of the
maximized entanglement is discontinuous at the phase boundary.

2. In the high-temperature phase, the functional form of the optimizing local Hamiltonian
is independent of the temperature; only the coefficients depend on the temperature.

3. The optimized entanglement, enhanced by a local Hamiltonian in the high-temperature
phase, decreases with increasing temperature as 1/(T log T ).

4. If the interaction Hamiltonian has no degeneracy of its eigenvalues, the entanglement is
maximized without local Hamiltonians over a finite range of the low-temperature phase.

5. If the interaction Hamiltonian has degeneracy, the low-temperature phase shrinks to the
zero-temperature point. The optimizing local Hamiltonian becomes infinitesimal and the
optimized entanglement becomes full in the low-temperature limit.

The present chapter is organized as follows. In Section II, we state the main problem after
symmetry consideration. In Section III, we give the main theorems on the entanglement op-
timization. In Section IV, we show numerical results of the optimizing local parameters, the
boundary temperatures and the singularity at the phase boundary. We also argue that the two
phases appear because of competition between the purifying effect and the decoupling effect
both of the local Hamiltonian. Finally, in Section V, a discussion concludes the chapter.

2.2 Entanglement optimization problem

First, we set the fundamental framework of the present problem. We consider a 2 ⊗ 2 system
of σ1 and σ2. The most general form of the Hamiltonian of this system is given as follows:

Htot ≡ Hint + HLO,

Hint ≡
∑

i,j=x,y,z

Jijσ
i
1 ⊗ σj

2,

HLO ≡
∑

i=x,y,z

(hi
1σ

i
1 ⊗ I + hi

2I ⊗ σi
2), (2.1)

where {σi
1}i=x,y,z and {σi

2}i=x,y,z are the Pauli matrices, Hint is an interaction Hamiltonian, and
HLO is a local Hamiltonian. We assume that {Jij}i,j=x,y,z are fixed and independent of the
temperature, whereas we can change the parameters {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} arbitrarily.
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We parametrize the local fields in the polar coordinates as

{hi
1}i=x,y,z = {h1 sin θ1 cos φ1, h1 sin θ1 sin φ1, h1 cos θ1},

{hi
2}i=x,y,z = {h2 sin θ2 cos φ2, h2 sin θ2 sin φ2, h2 cos θ2}.

(2.2)

Hereafter, we use the parametrization

h ≡ h1 + h2

2
, ζ ≡ h1 − h2

h1 + h2

, (2.3)

where −1 ≤ ζ ≤ 1 and h ≥ 0; in other words,

h1 = (1 + ζ)h, h2 = (1 − ζ)h. (2.4)

Then, the four eigenvalues of HLO are

{−2h,−2ζh, 2ζh, 2h}, (2.5)

where we define the corresponding eigenstates as {|−−〉, |−+〉, |+−〉, |++〉}.
The density matrix in thermal equilibrium is

ρ =
e−βHtot

Z
, (2.6)

where Z = tr(e−βHtot) is the partition function and β = 1/(kT ) with k the Boltzmann constant.
In order to quantify entanglement, we adopt the negativity [27] as an entanglement measure.
The negativity is defined as the trace norm of a partially transposed density matrix:

N(ρ) ≡ ||ρT1 ||1 − 1

= max(−2λ−, 0), (2.7)

where || ||1 is the trace norm, T1 denotes the transpose with respect to only σ1, and λ− is the
minimum, possibly negative eigenvalue of ρT1 . The second equation of (2.7) comes from the
fact that ρT1 can have only one negative eigenvalue, if any [28]. Thus, the present entangle-
ment optimization problem is equivalent to finding the values of {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} which

maximize N(ρ) for an arbitrary fixed interaction Hint.
Note that the maximizing local fields Hop

LO generally depend on the temperature T , or on the
inverse temperature β = 1/(kT ). This is because we tune the local fields at a fixed temperature
β. Let us then define the high-temperature limit, in which we mostly develop the argument.
In our high-temperature limit, we make β tend to zero with the parameters in Hint fixed. In
other words, we have β||Hint|| → 0 in the high-temperature limit, where ||Hint|| is the norm of
Hint. On the other hand, we let the maximizing local fields depend on β as we take the limit
β → 0. Hence, β||Hop

LO|| can even diverge in our high-temperature limit.
Before presenting our main results on the entanglement optimization, we prove the following

Lemma 1 to simplify the present entanglement optimization problem.
Lemma 1. By local unitary transformations of Hint, we can eliminate the interaction pa-

rameters {Jij}i̸=j and reduce it to the form

Hint =
∑

i=x,y,z

Jiσ
i
1 ⊗ σi

2. (2.8)
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We can also choose the parameters {Jx, Jy, Jz} such that {Jx, Jy} ≥ Jz ≥ 0 or 0 ≥ Jz ≥ {Jx, Jy}.
In spin-1/2 systems, this means that we can transform any interactions including the

Dzyaloshinskii-Moriya (DM) [42,47,48] interaction into a ferromagnetic or an anti-ferromagnetic
Heisenberg exchange interaction.

Proof. We can prove this Lemma by applying a singular value decomposition [?] to the
matrix (Ĵ)ij ≡ Jij. In this case, the singular value decomposition Û ĴŴ is performed by

3 × 3 real orthogonal transformations Û and Ŵ of the three-dimensional spin spaces of the
spins 1 and 2, respectively. A real orthogonal transformation is composed of rotation and
inversion operations, but inversion operations cannot be performed by unitary transformations.
Therefore, we remove the inversion operations from the real orthogonal transformation of the
singular value decomposition and restrict ourselves only to the rotation operations, which means
det Û = det Ŵ = 1. In other words, we rotate σ⃗1 = {σx

1 , σy
1 , σ

z
1} with Û and σ⃗2 = {σx

2 , σy
2 , σ

z
2}

with Ŵ . Then we can transform {Jij}i,j=x,y,z into the antiferromagnetic cases {Jx, Jy} ≥ Jz ≥ 0
or the ferromagnetic cases 0 ≥ Jz ≥ {Jx, Jy}, with the other elements {Jij}i̸=j put to zero. Here,
we choose the z-axis so that |Jz| is the least of {|Ji|}i=x,y,z. Thus, Lemma 1 is proved.

Let us show an example in the case of the XXZ model with the z-component of the DM
interaction. The Hamiltonian of such a system is given by

Hint ≡Jσx
1 ⊗ σx

2 + Jσy
1 ⊗ σy

2 + Jzσ
z
1 ⊗ σz

2

+ Dz(σ
x
1 ⊗ σy

2 − σy
1 ⊗ σx

2 ), (2.9)

where J and Jz are the real coupling coefficients and Dz is the z-component of the DM in-
teraction. In the case of J = 1, Jz = −2 and Dz = 1, we can transform {Jx, Jy, Jz, Dz} into
{−

√
2,−

√
2,−2, 0} by rotating the spin 1 by 135 degrees around the z-axis, namely into

Hint = −
√

2σx
1 ⊗ σx

2 −
√

2σy
1 ⊗ σy

2 − 2σz
1 ⊗ σz

2. (2.10)

This is an antiferromagnetic Heisenberg interaction. To attain this result, first, the singular
value decomposition transforms {Jx, Jy, Jz, Dz} into {

√
2,
√

2, 2, 0} by rotating the spin 1 by
−45 degrees around the z-axis and inverting the z-axis of the spin. Next, we remove the
inversion of the z-axis because it cannot be performed by unitary operations, and thereby
transform {Jx, Jy, Jz, Dz} into {

√
2,
√

2,−2, 0}. By changing the rotation angle from −45 to
135, we can invert the signs of Jx and Jy and arrive at {Jx, Jy, Jz, Dz} = {−

√
2,−

√
2,−2, 0}.

In the following, based on Lemma 1, we always use the diagonalized form (2.8) of the inter-
action parameters with {Jx, Jy} ≥ Jz ≥ 0 or 0 ≥ Jz ≥ {Jx, Jy}. We now have all the necessary
ingredients to state the main theorems.

2.3 Main analytical results

In the present section, we analytically discuss the optimization problem. The main conclusion of
the present section is that the negativity is maximized by the parameters {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} =

{0, 0, hop, 0, 0,−hop}. The optimizing parameter hop must be very large at high temperatures,
whereas it may be 0 at low temperatures.

2.3.1 Optimization in the case the high-temperature limit β → 0

Let us first discuss the optimization problem in the high-temperature limit.

18



Theorem 1. In the high-temperature limit β → 0, the local parameters which maximize the
entanglement N(ρ) are given in the form of {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, hop, 0, 0,−hop}. The

optimizing value hop is given by the solution of the following equation:

e2h′
op ≅

8h′2
op

β|Jx + Jy|
as β → 0, (2.11)

where

h′
op ≡ βhop, (2.12)

and the optimized entanglement Nop asymptotically behaves as

Nop(ρ) ≅ β
|Jx + Jy|

2h′
op

− 2e−2h′
op

≅ β
|Jx + Jy|

2h′
op

(
1 − 1

2h′
op

)
as β → 0, (2.13)

where we used Eq. (2.11) upon moving from the first line to the second line.
The leading order of the solution of Eq. (2.11) is given by

h′
op ≅ 1

2
log

1

β
+

1

2
log

8

|Jx + Jy|
. (2.14)

We can thereby obtain the following simpler asymptotes:

hop ≅ log 1/β

2β
as β → 0, (2.15)

Nop(ρ) ≅ β
|Jx + Jy|
log 1/β

as β → 0. (2.16)

That is, the optimizing value hop depends only on the temperature and the optimized negativity
decays in the form 1/(T log T ) in the limit β → 0. In Appendix A, we compare the asymptotes
of Eqs. (2.11) and (2.13) with those of Eqs. (2.15) and (2.16)

Proof. We prove Theorem 1 in the following steps. First, we prove in Lemma 2 that
the optimizing local parameter hop is greater than or equal to (log 1/β)/(2β) in the high-
temperature limit and the optimized thermal state is nearly a pure state. The entanglement
of the state comes from perturbations to the pure state. Then, we calculate the negativity
approximately by perturbation method in Lemma 4. Using this expression, we finally solve the
maximization problem for each local parameter.

First, we determine a lower bound of the optimizing value hop and prove that the optimized
thermal state is a nearly pure state. For this purpose, we prove the following Lemma 2.

Lemma 2. A necessary condition for the existence of the entanglement in the high-temperature
limit under a fixed interaction Hamiltonian Hint is given by

βh >
log 1/β

2
as β → 0. (2.17)

This Lemma 2 shows that (log 1/β)/(2β) is a lower bound of the optimizing value of hop.
Proof. We firstly prove that we need a non-zero value of βh for the existence of the en-

tanglement in the high-temperature limit β → 0. In other words, we need h at least of order
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1/β. In order to show this, we consider a general necessary condition for the existence of the
entanglement given by [50]

λ1 ≥ λ3 + 2
√

λ2λ4 ≥ 3λ4, (2.18)

where {λµ}4
µ=1 are the eigenvalues of the density matrix ρ in the non-ascending order (λ1 ≥ λ2 ≥ λ3 ≥ λ4).

Let us define the eigenvalues of Htot = HLO + Hint as {Eµ}4
µ=1 in the non-descending order

(E1 ≤ E2 ≤ E3 ≤ E4). Equation (3.3) gives the eigenvalues of ρ as {e−βEµ/Z}4
µ=1, and there-

fore the inequality (2.18), or e−βE1 ≥ 3e−βE4 , gives

β(E4 − E1) ≥ log 3. (2.19)

Here, Hint is a constant matrix and hence βHint → 0 as β → 0. If we let HLO be of the same
order as Hint, the left-hand side of (2.19) would vanish in the limit β → 0 and (2.18) would not
be satisfied. Therefore, we have to make HLO much greater than Hint, and then the eigenvalues
of Htot should converge to those of HLO, {−2h,−2ζh, 2ζh, 2h} in the limit β → 0. With
E1 → −2h and E4 → 2h, the inequality (2.19) reduces to the following inequality:

βh ≥ log 3

4
. (2.20)

This inequality means that we need a non-zero value of βh in the high-temperature limit β → 0.
In other words, we need to make h grow as 1/β at least, in order for the entanglement to exist
in the limit β → 0.

Next, we derive an approximation of the density matrix, and then obtain Eq. (2.17) by
utilizing the Peres-Horodecki criterion [51, 52], which is a necessary and sufficient condition
for the existence of the entanglement. In the present optimization problem, we fix Hint to a
constant matrix, and therefore we have βHint → 0 in the high-temperature limit. We thereby
work in the first-order approximation with respect to βHint:

Zρ = e−H′
LO−βHint

≅ e−H′
LO − β

∫ 1

0

e−(1−x)H′
LOHinte

−xH′
LOdx

= e−H′
LO − β

∑
µ,ν

fµν〈µ|Hint|ν〉|µ〉〈ν|, (2.21)

where Z = tr(e−H′
LO−βHint), and we let H ′

LO = βHLO with h′ = βh as well as

fµν =

{
e−E′

ν−e
−E′

µ

E′
µ−E′

ν
, for E ′

µ ̸= E ′
ν ,

e−E′
µ , for E ′

µ = E ′
ν .

(2.22)

Here, {E ′
µ}4

µ=1 are the eigenvalues of H ′
LO = βHLO, {−2h′,−2ζh′, 2ζh′, 2h′}, and {|µ〉}4

µ=1 are
the corresponding eigenstates, {|−−〉, |−+〉, |+−〉, |++〉}.

We then utilize the necessary and sufficient condition for the existence of the entanglement,
det ρT1 < 0. This has been proved [28] to be equivalent to the Peres-Horodecki criterion [51,52].
In the following discussion, among the various terms of the expansion of det ρT1 , we compare the
values of the products including off-diagonal elements (POD) with that of the product of the
diagonal elements (PD), which has a positive value. Then a necessary condition for det ρT1 < 0
is that POD is greater than or of the same order as the PD.
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To analyze the order of the PD and the PODs, we express ρT1 in the basis {|µ〉}4
µ=1 and

focus on the main terms for ζ ̸= 0 and ζ ̸= ±1:

ZρT1

β→0−−→


e2h′

a12
βe2h′

h′ a31
βe2h′

h′ a32
βe2ζh′

h′

a21
βe2h′

h′ e2ζh′
a41

βe2h′

h′ a42
βe2ζh′

h′

a13
βe2h′

h′ a14
βe2h′

h′ e−2ζh′
a34

βe−2ζh′

h′

a23
βe2ζh′

h′ a24
βe2ζh′

h′ a43
βe−2ζh′

h′ e−2h′

 , (2.23)

where {aij} are determined from Eqs. (2.21) and (2.22) and are constants of order 1. Note that
on the diagonal of Eq. (2.23), the second term in Eq. (2.21) is neglected in comparison to the
first term. Then we compare the orders of the PODs with that of the PD. The PD is given
by e2h′

e2ζh′
e−2ζh′

e−2h′
= 1, whereas each POD includes at least two off-diagonal elements. The

maximum of the absolute value of the PODs is of order e4h′
β2/h′2, which comes from the product

−e2h′ × a41
βe2h′

h′ × a14
βe2h′

h′ × e−2h′
. Therefore, it is necessary for det ρT1 < 0 that e4h′

β2/h′2 is

greater or of order 1, which is the order of PD. By taking the logarithm of e4h′
β2/h′2, we can

obtain the following inequality as a necessary condition:

βh = h′ ≥ log 1/β

2
+

log h′

2

≥ log 1/β

2
+

1

2
log

(
log 1/β

2
+

log h′

2

)
≥ log 1/β

2
+

1

2
log

(
log 1/β

2
+

1

2
log

( log 3

4

))
>

log 1/β

2
, (2.24)

where we utilized (2.20) in deriving the third inequality and used the fact β → 0 in deriving the
last inequality. Thus, Lemma 2 is proved for ζ ̸= 0 and ζ ̸= ±1. For ζ = 0 or ζ = ±1, some of
the eigenvalues of H ′

LO are degenerate, which means that E ′
µ can be equal to E ′

ν in Eq. (2.22),
and ZρT1 is not of the same form as that of Eq. (2.23). However, the inequality (2.24) still
holds as is proved in Appendix B.

We now consider the negativity (2.7) in the range given by (2.17). We first show in the
following Lemma 3 that the optimized negativity in the cases of ζ = ±1 is not large enough.

Lemma 3. In the cases of ζ = ±1, the optimized negativity satisfies the following:

Nop(ρ, ζ = ±1)

β

β→0−−→ 0. (2.25)

This lemma shows that the optimized negativity in the cases of ζ = ±1 is of a higher order of
β. Indeed, we numerically confirmed in the cases of ζ = ±1 that the entanglement exists, but
its amplitude is of order β2.

Proof. Let us prove Eq. (2.25) in the case of ζ = 1. The proof for ζ = −1 is almost the same.
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We start from the main term of ZρT1 for ζ = 1 in the representation in the basis {|µ〉}4
µ=1:

ZρT1

β→0−−→


e2h′

a12βe2h′
a31

βe2h′

h′ a32
βe2h′

h′

a21βe2h′
e2h′

a41
βe2h′

h′ a42
βe2h′

h′

a13
βe2h′

h′ a14
βe2h′

h′ e−2h′
a34βe−2h′

a23
βe2h′

h′ a24
βe2h′

h′ a43βe−2h′
e−2h′

 , (2.26)

where we used the fact that at ζ = 1 the eigenvalues of H ′
LO in Eq. (2.22) are degenerate as

{E ′
1, E

′
2, E

′
3, E

′
4} = {2h′, 2h′,−2h′,−2h′}.

In order to optimize the negativity, we necessarily consider the region h′ = βh > (log 1/β)/2
as is given in Lemma 2. Therefore, we can use the fact e2h′

> β−1 in (2.26). Of the elements of
the matrix (2.26), the (1, 1) and (2, 2) elements are of order β−1 or greater, whereas the (3, 3),
(4, 4), (3, 4) and (4, 3) elements are of order β1 or less. The other elements are approximately
of order 1. We therefore break up the matrix (2.26) in the form

ρT1 =
1

Z


e2h′

0 0 0
0 e2h′

0 0
0 0 0 0
0 0 0 0



+
1

Z


0 a12βe2h′

a31
βe2h′

h′ a32
βe2h′

h′

a21βe2h′
0 a41

βe2h′

h′ a42
βe2h′

h′

a13
βe2h′

h′ a14
βe2h′

h′ 0 0

a23
βe2h′

h′ a24
βe2h′

h′ 0 0

 + O(β2), (2.27)

where Z ≅ 2e2h′
+ 2e−2h′ ≅ 2/β, and therefore the first term is the dominant term of or-

der 1, whereas the second term is of order β1. The eigenvalues of the dominant term are
{e2h′

/Z, e2h′
/Z, 0, 0} and the corresponding eigenstates are {|−−〉, |−+〉, |+−〉, |++〉}. A nega-

tive eigenvalue can appear when the degeneracy of the two zero eigenvalues of the states |+−〉
and |++〉 is resolved by perturbation. Then, the level repulsion between them makes one of
them positive and the other negative. However, the first-order perturbation of the second term
of Eq. (2.27) dose not resolve the degeneracy of the zero eigenvalues. Therefore, the negative
eigenvalue must be produced in a higher order of β in the case of ζ = 1. Thus, Lemma 3 is
proved. We focus on the cases ζ ̸= ±1 hereafter.

Using the lower bound (2.17) of the optimizing parameter hop, we next prove that the
optimized thermal state is a nearly pure state in the cases of ζ ̸= ±1. For this purpose, we
consider the eigenstates of the perturbed density matrix. We define the perturbed eigen-
states of βHtot = H ′

LO + βHint as {|−−′〉, |−+′〉, |+−′〉, |++′〉} corresponding to the eigenstates
{|−−〉, |−+〉, |+−〉, |++〉} of H ′

LO, respectively, and their eigenvalues as {2h′ − βδϵ1, 2ζh′ −
βδϵ2,−2ζh′ − βδϵ3,−2h′ − βδϵ4}, where {δϵi}4

i=1 are the perturbative changes due to Hint,
which are of order 1. Then the density matrix is given by the summation over these four states.
In the high-temperature limit β → 0, the mixing ratio {λ−−′ , λ−+′ , λ+−′ , λ++′} of the states
{|−−′〉, |−+′〉, |+−′〉, |++′〉} are

{λ−−′ , λ−+′ , λ+−′ , λ++′}

=
1

Z
{e2h′−βδϵ1 , e2ζh′−βδϵ2 , e−2ζh′−βδϵ3 , e−2h′−βδϵ4}, (2.28)
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where

Z = e2h′−βδϵ1 + e2ζh′−βδϵ2 + e−2ζh′−βδϵ3 + e−2h′−βδϵ4 . (2.29)

In the region h′ > (log 1/β)/2, which is the lower bound of h′
op, we have

λ−+′

λ−−′
= e−2(1−ζ)h′+βδϵ1−βδϵ2 < β1−ζe−βδϵ1+βδϵ2 ,

λ+−′

λ−−′
= e−2(1+ζ)h′+βδϵ1−βδϵ3 < β1+ζe−βδϵ1+βδϵ3 ,

λ++′

λ−−′
= e−2h′+βδϵ1−βδϵ4 < β2e−βδϵ1+βδϵ4 . (2.30)

Since the right-hand sides of the inequalities vanish in the limit β → 0, we deduce that the
optimized thermal state is a nearly pure state of |−−′〉 in the high-temperature limit β → 0
when ζ ̸= ±1.

Next, we perturbatively calculate the negativity in the cases of ζ ̸= ±1. Since the optimized
state is a nearly pure state of |−−′〉, we regard the other contributions {|−+′〉, |+−′〉, |++′〉}
as perturbation:

ρ0 = |−−′〉〈−−′|,

δρ =
∑

{i=−+′,+−′,++′}

λiρi, (2.31)

where {|−−′〉, |−+′〉, |+−′〉, |++′〉} are the eigenstates of βHtot = H ′
LO + βHint as has been

stated. In order to calculate the negativity approximately, we derive the expression for the
perturbation of the negativity caused by an infinitesimal variation of the density matrix.

Lemma 4. When the negativity has a non-zero value, the first-order perturbation of the
negativity is given by

N(ρ0 + δρ) ≅ N(ρ0) − 2〈φ−|δρT1 |φ−〉, (2.32)

where we refer to the eigenstate corresponding to the negative eigenvalue of ρT1
0 as |φ−〉.

Proof. The non-zero negativity is given by the negative eigenvalue λ− of the partial transpose
of the density matrix, ρT1

0 , as is defined in (2.7). Because of the linearity of the partial transpose,
if ρ0 changes into ρ0 + δρ, ρT1

0 also changes into ρT1
0 + δρT1 . Moreover, the eigenstate of ρT1

0

corresponding to λ− is not degenerate because λ− is the only possible negative eigenvalue [28].
Then, from the general perturbation theory for λ−, we have Eq. (2.32) in the first order.

From Eqs. (2.31) and (2.32), we can calculate the negativity in the present case of ζ ̸= ±1
as

N

( 4∑
i=1

λiρi

)
=N(|−−′〉) −

∑
{i=−+′,+−′,++′}

(
2λi〈φ−|ρT1

i |φ−〉 + O(λ2
i )

)
. (2.33)

The state |−−′〉 and its negativity N(|−−′〉) are calculated in the first order of the perturbation
H ′

LO → H ′
LO + βHint. The zeroth-order eigenstates and eigenvalues are {|−−〉, |−+〉, |+−〉, |++〉}
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and {−2h′ − 2ζh′, 2ζh′, 2h′}, respectively. The first-order eigenstate for the state |−−〉 is then
given by

|−−′〉 = |−−〉 + βn1|−+〉 + βn2|+−〉 + βn3|++〉 + O(β2), (2.34)

where

n1 =
〈−+|Hint|−−〉
−2(1 − ζ)h′ ,

n2 =
〈+−|Hint|−−〉
−2(ζ + 1)h′ ,

n3 =
〈++|Hint|−−〉

−4h′ . (2.35)

Note that the normalization factor of the state |−−′〉 is 1 + O(β2). The matrix representation

of ρT1
0 =

(
|−−′〉〈−−′|

)T1 is therefore given in the basis of {|−−〉, |−+〉, |+−〉, |++〉} as follows
by ignoring the terms of O(β2):

(
|−−′〉〈−−′|

)T1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 + β


0 n∗

1 n2 0
n1 0 n3 0
n∗

2 n∗
3 0 0

0 0 0 0

 . (2.36)

The zeroth-order eigenvalues of ρT1
0 are {1, 0, 0, 0}. The negative eigenvalue emerges when the

degeneracy of the first and second zero eigenvalues resolve in the first order of β. The third
zero eigenvalue remains to be zero. The eigenvalues are then given by {1, β|n3|,−β|n3|, 0} in
the first order and hence the negative eigenvalue −β|n3| gives the negativity

N(|−−′〉) = 2β|n3|

= β
|〈++|Hint|−−〉|

2h′ + O(β2), (2.37)

The corresponding eigenstate |φ−〉 is given by

|φ−〉 =
1√
2

(
|−+〉 − n3

|n3|
|+−〉

)
+ O(β)|−−〉. (2.38)

Similarly, we have

ρT1

−+′ =
(
|−+′〉〈−+′|

)T1 = |−+〉〈−+| + O(β),

ρT1

+−′ =
(
|+−′〉〈+−′|

)T1 = |+−〉〈+−| + O(β),

ρT1

++′ =
(
|++′〉〈++′|

)T1 = |++〉〈++| + O(β), (2.39)

as well as

λ−+′ =
e2ζh′−βδϵ2

Z

≅ e−2(1−ζ)h′
(1 + βδϵ1)(1 − βδϵ2)(1 − e−2(1−|ζ|)h′

)

= e−2(1−ζ)h′
+ O(β2−ζ−|ζ|),

λ+−′ =
e−2ζh′−βδϵ3

Z
≅ e−2(1+ζ)h′

+ O(β2+ζ−|ζ|),

λ++′ =
e−2h′−βδϵ4

Z
≅ e−4h′

+ O(β3−|ζ|), (2.40)
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where we used Eq. (2.29) for Z. Note that the first term of each of λ−+′ , λ+−′ and λ++′ is
of order β1−ζ , β1+ζ and β2 or less, respectively, in the range of (2.17), h′ > (log 1/β)/2. By
substituting Eqs. (2.37)–(2.40) in Eq. (2.33), we have

N

( 4∑
i=1

λiρi

)
≅β

|〈++|Hint|−−〉|
2h′

− e−2(1−ζ)h′ − e−2(1+ζ)h′
+ O(β2(1−|ζ|)) (2.41)

for ζ ̸= ±1.
Because the matrix element |〈++|Hint|−−〉| is independent of h′ and ζ, we can solve the

maximization problem of Eq. (2.41) as follows. First, to maximize the negative terms in
Eq. (2.41), we must put ζ = 0. Then, by differentiating Eq. (2.41) with h′, we have the opti-
mizing parameter h′

op as a solution of

e2h′
op ≅

8h′2
op

β|〈++|Hint|−−〉|
. (2.42)

The optimized negativity is then given by

Nop(ρ) ≅ β
|〈++|Hint|−−〉|

2h′
op

− 2e−2h′
op

≅ β
|〈++|Hint|−−〉|

2h′
op

(
1 − 1

2h′
op

)
, (2.43)

where we used Eq. (2.42) upon moving from the first line to the second line. This is the result
for ζ ≠ ±1. From Lemma 3, we see that the optimized negativity (2.43) in the case of ζ = 0 is
larger in the limit β → 0 than the one (2.25) in the cases of ζ = ±1.

The other optimizing parameters to be fixed are {θ1, φ1, θ2, φ2}. Let us see how these pa-
rameters affect the value of (2.43). These parameters affect the matrix element |〈++|Hint|−−〉|
and hence the value of (2.43) directly as well as indirectly through h′

op given by Eq. (2.42).
We can write down the solution of Eq. (2.42) in terms of Lambert’s W function [53], which is
defined as a solution of

x = W (x)eW (x), (2.44)

because we can cast Eq. (2.42) into the form

(−h′
op)e

−h′
op = −

√
β|〈++|Hint|−−〉|

8
. (2.45)

The appropriate solution of Eq. (2.42) is given by

h′
op ≅ −W−1

(
−

√
β|〈++|Hint|−−〉|

8

)
, (2.46)

where W−1(x) is the branch of W (x) satisfying W−1(x) ≤ −1 in the domain −1/e < x < 0 [53].
The function −W−1(−x) is a monotonically decreasing function of x in the domain 0 < x < 1/e.
Therefore, maximizing the element |〈++|Hint|−−〉| with respect to the parameters {θ1, φ1, θ2, φ2}
brings h′

op to its minimum within the range h′
op > 1. Since the factor

1

2h′
op

(
1 − 1

2h′
op

)
(2.47)
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in Eq. (2.43) is a decreasing function of h′
op for h′

op > 1, minimizing h′
op within the range h′

op > 1
brings the factor (2.47) to its maximum. To summarize, the element |〈++|Hint|−−〉| increases
the value of (2.43) not only directly but also through h′

op indirectly.

The next task is then to find the parameters {θ1, φ1, θ2, φ2} that maximize the matrix
element |〈++|Hint|−−〉| in Eq. (2.43). The eigenstates of the one-qubit part

∑
i=x,y,z hiσi of

the local Hamiltonian HLO are given by

|+〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉,

|−〉 = − sin
θ

2
|0〉 + eiφ cos

θ

2
|1〉, (2.48)

where we define |0〉 and |1〉 as the eigenstates of σz and represent {hi}i=x,y,z as

{h sin θ cos φ, h sin θ sin φ, h cos θ} (2.49)

in the polar coordinate. We can thereby express the eigenstates |++〉 and |−−〉 of HLO in the
forms

|++〉 = cos
θ1

2
cos

θ2

2
|00〉 + cos

θ1

2
sin

θ2

2
eiφ2 |01〉

+ sin
θ1

2
cos

θ2

2
eiφ1 |10〉 + sin

θ1

2
sin

θ2

2
ei(φ1+φ2)|11〉,

|−−〉 = sin
θ1

2
sin

θ2

2
|00〉 − sin

θ1

2
cos

θ2

2
eiφ2 |01〉

− cos
θ1

2
sin

θ2

2
eiφ1 |10〉 + cos

θ1

2
cos

θ2

2
ei(φ1+φ2)|11〉. (2.50)

We therefore have the matrix element 〈++|Hint|−−〉 in the following form:

〈++|Hint|−−〉

=Jz sin θ1 sin θ2 + (Jx − Jy)
[
sin2 θ1

2
sin2 θ2

2
e−i(φ1+φ2)

+ cos2 θ1

2
cos2 θ2

2
ei(φ1+φ2)

]
−(Jx + Jy)

[
cos2 θ1

2
sin2 θ2

2
ei(φ1−φ2)

+ sin2 θ1

2
cos2 θ2

2
ei(−φ1+φ2)

]
. (2.51)

In the cases of {Jx, Jy} ≥ Jz ≥ 0 and 0 ≥ Jz ≥ {Jx, Jy}, the upper bound of |〈++|Hint|−−〉|
is given by

|〈++|Hint|−−〉| ≤ |Jx + Jy|. (2.52)

We prove this inequality in the cases of Jx ≥ Jy ≥ Jz ≥ 0; we can prove the other cases in the
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same way. First, |〈++|Hint|−−〉| satisfies the following inequality:

|〈++|Hint|−−〉|
≤|Jz| sin θ1 sin θ2

+ |Jx − Jy|
(
sin2 θ1

2
sin2 θ2

2
+ cos2 θ1

2
cos2 θ2

2

)
+ |Jx + Jy|

(
cos2 θ1

2
sin2 θ2

2
+ sin2 θ1

2
cos2 θ2

2

)
=|Jz| sin θ1 sin θ2 + |Jx − Jy|

1 + cos θ1 cos θ2

2

+ |Jx + Jy|
1 − cos θ1 cos θ2

2
. (2.53)

By utilizing the fact that Jx ≥ Jy ≥ Jz ≥ 0, the inequality (2.53) reduces to

|〈++|Hint|−−〉| ≤Jx − Jy cos θ1 cos θ2 + Jz sin θ1 sin θ2

≤|Jx + Jy|. (2.54)

The inequality (2.52) becomes an equality when we choose {θ1, θ2, φ1, φ2} as {0, π, 0, 0} for ex-
ample, or in the Cartesian coordinate {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, h, 0, 0,−h}. Then, the op-

timizing local parameters are given in the form of {hx
1 , h

y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, hop, 0, 0,−hop}.

Moreover, Eqs. (2.11) and (2.13) can be given by substituting |〈++|Hint|−−〉| with |Jx + Jy|
in Eqs. (2.42) and (2.43).

Finally, the leading order of Lambert’s W function −W−1(−x) is log x [53]. Therefore, the
leading order of Eq. (2.46) gives Eq. (2.14), which then results in Eqs. (2.15) and (2.16). This
completes the proof of Theorem 1.

2.3.2 Optimization at arbitrary temperatures

It is difficult to generalize Theorem 1 to arbitrary temperatures. However, we can present the
following Theorem 2. Let us now parametrize the local fields as follows:

{hx
1 , h

y
1, h

z
1, h

x
2 , h

y
2, h

z
2}

={hx
1 , h

y
1, h

z(1 + ξ), hx
2 , h

y
2,−hz(1 − ξ)}, (2.55)

or

hz ≡ hz
1 − hz

2

2
, ξ ≡ hz

1 + hz
2

hz
1 − hz

2

. (2.56)

Theorem 2. When we express the negativity as a function of the local parameters {hx
1 , h

y
1, h

z(1+
ξ), hx

2 , h
y
2,−hz(1 − ξ)}, the following equation holds at arbitrary temperatures:

∂N

∂hx
1

=
∂N

∂hx
2

=
∂N

∂hy
1

=
∂N

∂hy
2

=
∂N

∂ξ
= 0

at {hx
1 , h

y
1, h

x
2 , h

y
2, ξ, h

z} = {0, 0, 0, 0, 0, h}. (2.57)

This theorem means that the form of the optimizing local parameters in the high-temperature
limit, {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, hop, 0, 0,−hop}, also gives an extremal value of the nega-

tivity at arbitrary temperatures.
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Proof. To prove this theorem, we firstly calculate the perturbation of the negativity due
to an infinitesimal variation of the local parameters at arbitrary temperatures. If it always
vanishes, Eq. (2.57) is proved. We first derive the perturbation of the density matrix due to
an infinitesimal variation of the local parameters, from {0, 0, h, 0, 0,−h} to {δhx

1 , δh
y
1, h(1 +

δξ), δhx
2 , δh

y
2,−h(1 − δξ)}. This means the perturbation of the form

Htot = Hop
tot + δHLO, (2.58)

where

Hop
tot ≡

∑
i=x,y,z

Jiσ
i
1 ⊗ σi

2 + h(σz
1 ⊗ I − I ⊗ σz

2) (2.59)

is the total Hamiltonian with the local parameters {0, 0, h, 0, 0,−h} and

δHLO ≡
∑
i=x,y

(δhi
1σ

i
1 ⊗ I + δhi

2I ⊗ σi
2)

+ hδξ(σz
1 ⊗ I + I ⊗ σz

2) (2.60)

is the infinitesimal variation of the local Hamiltonian. Equation (2.21) gives the perturbation
of the density matrix δρ as

δρ =
e−β(Hop

tot+δHLO)

Z + δZ
− e−βHop

tot

Z

= −δZ

Z
ρop −

β

Z

∫ 1

0

e−β(1−x)Hop
totδHLOe−βxHop

totdx, (2.61)

where ρop = e−βHop
tot/Z and

δZ = tr

(
−β

∫ 1

0

e−β(1−x)Hop
totδHLOe−βxHop

totdx

)
. (2.62)

Then, the perturbation of the negativity in Eq. (2.32), δN = −2〈φ−|δρT1 |φ−〉, is given as

δN = −δZ

Z
N(ρop)

+
2β

Z

∫ 1

0

tr

[
|φ−〉〈φ−|

(
e−β(1−x)Hop

totδHLOe−βxHop
tot

)T1
]
dx

=
βN(ρop)

Z
tr

(∫ 1

0

e−β(1−x)Hop
totδHLOe−βxHop

totdx

)
+

2β

Z

∫ 1

0

tr
[(
|φ−〉〈φ−|

)T1e−β(1−x)Hop
totδHLOe−βxHop

tot

]
dx

=

∫ 1

0

tr
[
e−βxHop

totn̂e−β(1−x)Hop
totδHLO

]
dx (2.63)

where

n̂ ≡ β

Z

[
N(ρop)

(
I ⊗ I

)
+ 2

(
|φ−〉〈φ−|

)T1
]

(2.64)
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and we used the identity N(ρop) = −2〈φ−|ρT1
op|φ−〉 as well as tr(AT1B) = tr(ABT1). We will

prove that the integrand of Eq. (2.63),

tr
[
e−βxHop

totn̂e−β(1−x)Hop
totδHLO

]
, (2.65)

always vanishes for {hx
1 , h

y
1, h

x
2 , h

y
2, ξ, hz} = {0, 0, 0, 0, 0, h}.

We prove in Appendix C that the operator

e−βxHop
totn̂e−β(1−x)Hop

tot (2.66)

has the same symmetry as the Hamiltonian Hop
tot in Eq. (2.59), and thereby must be expanded

in terms of the Pauli matrices in the form

1

4

(
q00I ⊗ I + qz0(σ

z
1 ⊗ I − I ⊗ σz

2) +
∑

i=x,y,z

qiiσ
i
1 ⊗ σi

2

)
, (2.67)

where q00, qz0 and qii are appropriate coefficients. Therefore, we can calculate Eq. (2.65) to
have the following equation:

tr
[
e−βxHop

totn̂e−β(1−x)Hop
totδHLO

]
=tr

{
1

4

[
q00I ⊗ I + qz0(σ

z
1 ⊗ I − I ⊗ σz

2)

+
∑

i=x,y,z

qiiσ
i
1 ⊗ σi

2

]
×

[∑
i=x,y

(δhi
1σ

i
1 ⊗ I + δhi

2I ⊗ σi
2) + hδξ(σz

1 ⊗ I + I ⊗ σz
2)

]}
. (2.68)

A straightforward algebra, such as tr(σz
1 ⊗ σx

2 ) = 0, yields that Eq. (2.68) vanishes. This means
that the perturbation of the negativity due to the infinitesimal variation of the local param-
eters {δh1

x, δh
1
y, δh

2
x, δh

2
y, δξ} always vanishes at {hx

1 , h
y
1, h

x
2 , h

y
2, ξ, hz} = {0, 0, 0, 0, 0, h}. This

completes the proof of Theorem 2.
To extend Theorem 1 to arbitrary temperatures, we assume the following hypothesis:

Hypothesis 1. The local parameters of the form {hx
1 , h

y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, hop, 0, 0,−hop}

give not only an extremal value but also the maximum value of entanglement at arbitrary tem-
peratures.
We numerically tested this hypothesis using determinant-based entanglement measure π(ρ) [28],
which is given as

π(ρ) ≡

{
0, for ρT1 ≥ 0,

2(| det ρT1 |)1/4, for ρT1 < 0.
(2.69)

Though this entanglement measure is not a full entanglement monotone, it provides tight
lower and upper bounds for other entanglement measures including the negativity and the
concurrence. In addition, det ρT1 is expressed in the form of a polynomial and is much easier
to maximize numerically than the concurrence and the negativity. Utilizing this measure,
we tested Hypothesis 1 by numerical optimization for various kinds of interaction at various
temperatures and found it always satisfied. In the following, we will assume Hypothesis 1 and
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conclude that {hx
1 , h

y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, hop, 0, 0,−hop} is the globally optimizing solution

at any temperatures.
For the local parameters {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, h, 0, 0,−h}, the density matrix ZρT1

is given at arbitrary temperatures in the basis of the eigenstates of σz
1 ⊗ σz

2, {|00〉, |01〉, |10〉, |11〉},
as

ZρT1 =


a1 0 0 a2

0 b1 − b2 b3 0
0 b3 b1 + b2 0
a2 0 0 a1

 , (2.70)

where

a1 = e−βJz cosh βJ1, a2 = −eβJz(Jx + Jy) sinh βJ2

J2

,

b1 = eβJz cosh βJ2, b2 =
2heβJz sinh βJ2

J2

,

b3 = −e−βJz sinh βJ1,

J1 ≡ |Jx − Jy|, J2 ≡
√

4h2 + (Jx + Jy)2. (2.71)

Its eigenvalues are {
a1 − |a2|, a1 + |a2|, b1 +

√
b2
2 + b2

3, b1 −
√

b2
2 + b2

3

}
. (2.72)

In Appendix D, we will prove that only a1 − |a2| can have a negative value for {Jx, Jy} ≥ Jz ≥ 0
and 0 ≥ Jz ≥ {Jx, Jy}. Therefore, the optimized negativity is given by

N(Jx, Jy, Jz, h, β) = max(Ñ , 0), (2.73)

where

Ñ = −2
a1 − |a2|

Z

= −
e−βJz cosh βJ1 −

(
eβJz |Jx + Jy| sinh βJ2

)
/J2

e−βJz cosh βJ1 + eβJz cosh βJ2

,

Z = 2e−βJz cosh βJ1 + 2eβJz cosh βJ2. (2.74)

We find from this expression that we can always make the negativity positive by choosing an
appropriate value of h.

The remaining task is to find the value of the optimizing field hop at each temperature.
We will do it analytically in the low-temperature limit β → ∞ in Sec. III.C as well as do it
numerically rigorously for a wide range of the temperature in Sec. IV.

2.3.3 Optimization in the low-temperature limit

We now discuss the optimization problem in the low-temperature limit.
Theorem 3. In the low-temperature limit β → ∞, the optimized entanglement approaches

to 1. The optimizing parameter hop approaches to 0 when we choose the optimizing parameters
as {0, 0, hop, 0, 0,−hop}.
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Proof. We need to consider the three cases, namely the cases where the ground state of Hint

is non-degenerate, doubly degenerate and triply degenerate. The eigenvalues {ϵi}4
i=1 and the

corresponding eigenstates {|ψi〉}4
i=1 of Hint are given by the following:

Hint =
∑

i=x,y,z

Jiσ
i
1 ⊗ σi

2,

ϵ1 = −Jx − Jy − Jz, |ψ1〉 =
1√
2

(
|01〉 − |10〉

)
,

ϵ2 = Jx + Jy − Jz, |ψ2〉 =
1√
2

(
|01〉 + |10〉

)
,

ϵ3 = Jx − Jy + Jz, |ψ3〉 =
1√
2

(
|00〉 + |11〉

)
,

ϵ4 = −Jx + Jy + Jz, |ψ4〉 =
1√
2

(
|00〉 − |11〉

)
. (2.75)

As has been described in Sec. II, we consider only the cases of {Jx, Jy} ≥ Jz ≥ 0 and 0 ≥ Jz ≥ {Jx, Jy}.
In each case of {Jx, Jy} ≥ Jz ≥ 0 or 0 ≥ Jz > {Jx, Jy}, the ground state of Hint is non-

degenerate, and ϵ1 or ϵ2 is the ground-state eigenvalue, respectively. In these cases, the ground
state is a Bell state and it is clear that its entanglement is maximum. In other words, there is
no need to optimize it further and Hop

LO = 0. We will see in Sec. IV that, in this non-degenerate
case, there is indeed a finite range of the temperature where the negativity is maximized for
Hop

LO = 0.
In each case of 0 ≥ Jz = Jx > Jy and 0 ≥ Jz = Jy > Jx, the ground state of Hint is doubly

degenerate and ϵ2 = ϵ4 or ϵ2 = ϵ3 is the ground-state eigenvalue, respectively. In the case
0 ≥ Jz = Jx = Jy, the ground state of Hint is triply degenerate and ϵ2 = ϵ3 = ϵ4 is the ground-
state eigenvalue. In these degenerate cases, the ground states are mixed states and their
entanglement always vanish. However, we can resolve the degeneracy of the ground states by
an infinitesimal local Hamiltonian.

We hence employ Hypothesis 1 and put {hx
1 , h

y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, hop, 0, 0,−hop}. We

then calculate the asymptotic behavior of the optimized entanglement in the low-temperature
limit β → ∞. Below we will derive

hop ≅

√
J̃

2β
log 2βJ̃ as β → ∞,

Nop ≅ 1 − 1 + log 2βJ̃

βJ̃
as β → ∞. (2.76)

in the doubly degenerate cases, where we defined J̃ ≡ |Jx + Jy|, and

hop ≅

√
J̃

2β
log 4βJ̃ as β → ∞

Nop ≅ 1 − 1 + log 4βJ̃

βJ̃
as β → ∞. (2.77)

in the triply degenerate case. In both cases the optimizing parameter hop is infinitesimal and
the optimized negativity Nop approaches to 1 in the low-temperature limit β → ∞, although
the forms of hop and Nop are slightly different in the two cases. We will see in Sec. IV that, in
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these degenerate cases, there is indeed no finite range of the temperature where the negativity
is maximized without local fields. In other words, we need a non-zero value of hop at any
non-zero temperatures.

Now we derive Eqs. (2.76) and (2.77). We start from Eq. (2.74) under Hypothesis 1. In the
doubly degenerate cases 0 ≥ Jz = Jx > Jy and 0 ≥ Jz = Jy > Jx, we can approximate Eq. (2.74)
as

Ñ ≅ −
e−β(Jz−J1) −

(
eβ(Jz+J2)|Jx + Jy|

)
/J2

e−β(Jz−J1) + eβ(Jz+J2)

=
−1 +

(
eβ(2Jz+J2−J1)|Jx + Jy|

)
/J2

1 + eβ(2Jz+J2−J1)
(2.78)

in the low-temperature limit β → ∞, where we used the facts that 2 cosh βJ1 ≅ eβJ1 , 2 sinh βJ2 ≅ eβJ2

and 2 cosh βJ2 ≅ eβJ2 . Moreover, in these doubly degenerate cases, 2Jz + J2 − J1 is either
2Jz + J2 − Jx + Jy or 2Jz + J2 + Jx − Jy, which are summarized to J2 − |Jx + Jy|. Then Eq. (2.78)
reduces to

Ñ ≅ −1 + eβX J̃/(X + J̃)

1 + eβX
, (2.79)

where

J̃ = |Jx + Jy|,

X ≡ J2 − J̃ =
√

4h2 + (Jx + Jy)2 − |Jx + Jy|. (2.80)

We first prove that X → 0 and βX → ∞ is a necessary and sufficient condition for Ñ → 1
in the low-temperature limit β → ∞. In order to prove this, we calculate the value of 1 − Ñ
as follows:

1 − Ñ = 1 − −1 + eβX J̃/(X + J̃)

1 + eβX

=
2e−βX + X/(X + J̃)

1 + e−βX
, (2.81)

Because X ≥ 0 and 0 < e−βX ≤ 1, we have X/(X + J̃) ≥ 0 and 1 < 1 + e−βX ≤ 2. Therefore,
the necessary and sufficient condition for 1 − Ñ → 0 in the low-temperature limit is

βX → ∞ and X → 0 as β → ∞. (2.82)

In such cases, the negativity can be maximized to 1 in the low temperature limit β → ∞.
Let us now calculate the optimizing parameter Xop. From the extremal condition for

Eq. (2.79),

dÑ

dX
=

eβX(βX2 + 3βJ̃X + 2βJ̃2 − J̃ − eβX)

(1 + eβX)2(J̃ + X)2
= 0, (2.83)

we obtain

βXop = log
(βX2

op

J̃
+ 3βXop + 2βJ̃ − 1

)
. (2.84)
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Because of the condition (2.82), Eq. (2.84) reduces to

βXop = log 2βJ̃ + log
(
1 +

X2
op

2J̃2
+

3Xop

2J̃
− 1

2βJ̃

)
≅ log 2βJ̃ (2.85)

in the limit β → ∞. We thus have

Xop ≅ log 2βJ̃

β
, (2.86)

which indeed satisfies (2.82). The optimizing parameter hop is thereby obtained in the form

hop =
1

2

√
X2

op + 2J̃Xop

≅

√
J̃Xop

2

≅

√
J̃

2β
log 2βJ̃, (2.87)

where we utilized Eq. (2.80) to derive the first equality. Moreover, the optimized negativity is
given by

Nop ≅ −e−βXop + 1/(Xop/J̃ + 1)

e−βXop + 1

≅ (1 − e−βXop)

(
−e−βXop + 1 − Xop

J̃

)
≅ 1 − Xop

J̃
− 2e−βXop

≅ 1 − 1 + log 2βJ̃

βJ̃
, (2.88)

where we used Eq. (2.82) upon moving from the first line to the second line. Thus Eq. (2.76)
is proved.

In the triply degenerate case 0 ≥ Jz = Jx = Jy, we have J1 = 0, and thereby we can approx-
imate Eq. (2.74) as

Ñ ≅ −
2e−βJz −

(
eβ(Jz+J2)|Jx + Jy|

)
/J2

2e−βJz + eβ(Jz+J2)

=
2 +

(
eβ(2Jz+J2)|Jx + Jy|

)
/J2

2 + eβ(2Jz+J2)
(2.89)

in the low-temperature limit β → ∞, where we used the facts that cosh βJ1 ≅ 1, 2 sinh βJ2 ≅ eβJ2

and 2 cosh βJ2 ≅ eβJ2 . Moreover, in this case, 2Jz + J2 is equal to J2 − |Jx + Jy|, and therefore
Eq. (2.89) reduces to

Ñ ≡ −2 + eβX J̃/(X + J̃)

2 + eβX
, (2.90)
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where X and J̃ are defined in Eq. (2.80). From the extremal condition dÑ/dX = 0, we obtain

Xopβ = log
(2βX2

op

J̃
+ 6βXop + 4βJ̃ − 2

)
≅ log 4βJ̃, (2.91)

where we used the same logic as the one with which we derived Eq. (2.85) in the doubly
degenerate case. In this way, the optimizing parameter hop and the optimized negativity Nop

are given as

hop ≅

√
J̃

2β
log 4βJ̃, (2.92)

and

Nop ≅ 1 − Xop

J̃
− 4e−βXop

≅ 1 − 1 + log 4βJ̃

βJ̃
. (2.93)

Thus Eq. (2.77) is proved. This completes the proof of Theorem 3.

2.3.4 Negativity and concurrence

We here mention the relationship between the negativity and the concurrence [26]. The con-
currence is also an important entanglement measure. Concerning the optimization problem of
the concurrence, we can only prove that the negativity N and the concurrence C have the same
value for the local parameters {0, 0, h, 0, 0,−h} with an arbitrary value of h; namely,

N(0, 0, h, 0, 0,−h, β) = C(0, 0, h, 0, 0,−h, β). (2.94)

This equation is proven by the theorem in Ref. [29], which says that the concurrence is equal to
the negativity iff the eigenvector of ρT1 corresponding to its negative eigenvalue is a Bell state
up to local unitary transformations.

For the local parameters {0, 0, h, 0, 0,−h}, the density matrix ZρT1 is given in Eq. (2.70) and
only the eigenvalue Ñ = a1 − |a2| can be negative. For {Jx, Jy} ≥ Jz ≥ 0 and 0 ≥ Jz ≥ {Jx, Jy}
the eigenvectors of ZρT1 corresponding to the eigenvalue Ñ = a1 − |a2| is (|00〉 + |11〉)/

√
2 and

(|00〉 − |11〉)/
√

2, respectively, both being a Bell state. In the case of Ñ > 0, the concurrence
must be equal to the negativity because the eigenvector of ρT1 corresponding to its negative
eigenvalue is a Bell state. In the case of Ñ ≤ 0, the negativity N = max(Ñ , 0) is equal to 0
and the entanglement does not exist. Therefore, the concurrence and the negativity are both
equal to 0. This completes the proof of Eq. (2.94)

2.4 High- and low-temperature phases

In the present section, we calculate the optimizing local Hamiltonian and the optimized entan-
glement numerically rigorously. After the analysis in Sec. III, we here set {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} =

{0, 0, hop, 0, 0,−hop}. In the calculations below, we will see that there are two kinds of tem-
perature range, which we refer to as the high- and low-temperature phases. We will find
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Figure 2.1: Numerically rigorous solution of the optimizing local parameter hop: the solid line
for {Jx, Jy, Jz} = {1/3, 1/3, 1/3}, the dashed line for {Jx, Jy, Jz} = {1/2, 1/3, 1/6} and the thick
line for {Jx, Jy, Jz} = {−1/2,−1/4,−1/4}. The number of data points is 3000 for each case.
The boundary temperatures Tc between the high- and low-temperature phases are 0.8168 · · · ,
0.6803 · · · and 0 for {1/3, 1/3, 1/3}, {1/2, 1/3, 1/6} and {−1/2,−1/4,−1/4}, respectively.

that in the low-temperature phase the optimizing local parameter hop vanishes, whereas in the
high-temperature phase it dose not. We start from Eq. (2.74) with the optimizing parame-
ters {hx

1 , h
y
1, h

z
1, h

x
2 , h

y
2, h

z
2} = {0, 0, hop, 0, 0,−hop}. The parameter hop which maximizes the

negativity can be calculated from

1

h

∂Ñ

∂h

∣∣∣∣
h=hop

∝ |Jx + Jy|(βJ2 cosh βJ2 − sinh βJ2)

+ J2
2β sinh βJ2 −

e2βJz |Jx + Jy|
cosh βJ1

(
−J2β +

sinh 2βJ2

2

)
=0, (2.95)

where the factor 1/h is added to remove the trivial solution of h = 0. In Fig. 2.1, we show
the optimizing local parameter hop in the cases of {Jx, Jy, Jz} = {1/3, 1/3, 1/3}, {1/2, 1/3, 1/6}
and {−1/2,−1/4,−1/4}. See Appendix A for the convergence of hop to the asymptotes (2.11)
and (2.15).

In the high-temperature phase, Eq. (2.95) has a non-trivial solution of hop > 0, while in
the low-temperature phase, Eq. (2.95) has no solutions and the optimizing value hop is zero,
which is the trivial solution of ∂Ñ/∂h = 0. Therefore, the boundary temperature Tc between
the high- and low-temperature phases is a solution of

lim
h→0

1

h

∂Ñ(Jx, Jy, Jz, h, β)

∂h
= 0. (2.96)

The boundary temperature Tc is defined for each interaction Hamiltonian Hint.
In Fig. 2.2, we show the boundary temperature Tc in the cases of {Jx, Jy} ≥ Jz ≥ 0 and

0 ≥ Jz ≥ {Jx, Jy}, which correspond to all kinds of interaction thanks to Lemma 1. We
calculated the data in Fig. 2.2 from (2.96), normalizing the interaction parameters so that
||Hint||2 = 1, where || ||2 is the spectral norm. From Fig. 2.2, we see the following properties.
First, the boundary temperatures Tc are higher in the antiferromagnetic cases {Jx, Jy} ≥ Jz ≥ 0
than in the ferromagnetic cases 0 ≥ Jz ≥ {Jx, Jy}. Second, in the antiferromagnetic systems,
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(a)

(b)

Figure 2.2: (color online) The boundary temperature Tc between the high- and low-temperature
phases, (a) for the antiferromagnetic case {Jx, Jy} ≥ Jz ≥ 0 and (b) for the ferromagnetic case
0 ≥ Jz ≥ {Jx, Jy}. The point of origin is (1, 1), which corresponds to the isotropic Heisenberg
interaction. In (a), the boundary temperatures are 0.8168 · · · , 0.1292 · · · , 0.1292 · · · , 0.5735 · · ·
and 0.6208 · · · at (1, 1), (1, 10), (10, 1), (10, 10) and (5, 5), respectively. The maximum temper-
ature is 0.8168 · · · at (1, 1), which is the XXX point. In (b), the boundary temperatures are
0, 0, 0, 0.4126 · · · and 0.3188 · · · at (1, 1), (1, 10), (10, 1), (10, 10) and (5, 5), respectively. The
maximum temperature is 0.5184 · · · at limx→∞ (x, x), which is the XX point.
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Figure 2.3: Plots of (a) the negativity; (b) its first derivatives; (c) the purity, for Jx = 1/2,
Jy = 1/3, Jz = 1/6. The solid line is the optimized entanglement and the dashed line is the
entanglement enhancement defined in the text. The boundary temperature is Tc = 0.6803 · · ·.
At T = 1.185 · · ·, the entanglement enhancement is maximum, where the value is 0.1480 · · · .
In (b), we obtained the data points by the finite-difference method. In (c), the solid line is the
purity of the optimized state and the dashed line is the one under no local Hamiltonian. The
minimum value of the purity is 0.5087 · · · at Tc.
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the boundary temperature Tc is maximum of 0.8168 · · · for the isotropic Heisenberg interaction
(the XXX model). Next, the boundary temperature Tc is zero in the cases of 0 ≥ Jz = Jx ≥ Jy

and 0 ≥ Jz = Jy ≥ Jx as well as the case of the ferromagnetic isotropic Heisenberg model,
which means that the low-temperature phase shrinks to the zero temperature in these doubly
and triply degenerate cases analyzed in Sec. III.C. We have revealed in Sec III.C that in the
low-temperature limit β → ∞ the negativity is strictly 1 with no local Hamiltonian in the non-
degenerate cases. The present calculation indeed shows that the low-temperature phase extends
to a finite temperature in the non-degenerate cases. In the antiferromagnetic system, on the
other hand, the boundary temperature is zero only in the case of the Ising model, Jx = Jz = 0
or Jy = Jz = 0.

Next, we consider the singularity at the boundary between the high- and low-temperature
phases. In Fig. 2.3, we show the optimized negativity, its first derivative and the purity tr(ρ2)
in the case of {Jx, Jy, Jz} = {1/2, 1/3, 1/6}. We also consider the entanglement enhancement,
which is defined as the difference of the entanglement between the optimized entanglement and
the entanglement under no local Hamiltonian, namely N(Hop

LO) − N(HLO = 0). We numerically
rigorously calculated the data in Fig. 2.3(a) using (2.95), and the derivatives by the finite-
difference method. Figure 2.3(b) shows that the second derivative of the negativity is not
continuous at the boundary and Fig. 2.3(c) shows that the first derivative of the purity is
not continuous at the boundary. On the other hand, there is no singularity at the point of
T = 1.185 · · ·, where the derivative of the entanglement enhancement is not continuous.

The emergence of the high- and low-temperature phases is due to the following reason. First,
the entanglement enhancement by addition of the local Hamiltonian comes from the fact that a
local Hamiltonian increases the purity and suppresses the entanglement loss caused by thermal
mixing, which is demonstrated in Fig. 2.3(c). On the other hand, too strong magnetic fields
bring the quantum system close to a direct product states and hence destroy the entanglement.
These two effects compete to give rise to the two phases. In the low-temperature phase, we do
not need a magnetic field because the purity is already high. In the high-temperature phase, on
the other hand, we need a magnetic field because the thermal fluctuation decreases the purity.
The transition from the low-temperature phase to the high-temperature phase means that
the enhancement of the entanglement due to the increase of the purity becomes predominant
compared with the entanglement decay caused by the magnetic decoupling.

2.5 Summary and conclusion

We have analytically and numerically rigorously studied thermal states of quantum systems
where two qubits interact under a local Hamiltonian HLO and have determined the local Hamil-
tonian HLO which maximizes the thermal entanglement under a fixed interaction. As a result,
we have found that the interaction Hamiltonian can be transformed into the XY Z-exchange
interactions whose parameters are either antiferromagnetic as {Jx, Jy} ≥ Jz ≥ 0 or ferromag-
netic as 0 ≥ Jz ≥ {Jx, Jy} and that the optimizing local Hamiltonian always takes the form of
hop(σ

z
1 ⊗ I − I ⊗ σz

2), where hop depends on the temperature. In addition, we have proved that
the optimized entanglement does not vanish at any temperatures and decays slowly according
to 1/(T log T ) at high temperatures. We have also found that in the low-temperature phase the
entanglement is maximum without any local Hamiltonian and have investigated the interaction
dependence of the boundary temperature of this range. Indeed, the low-temperature phase
shrinks to the zero temperature point if the interaction Hamiltonian has degeneracy. At the
same time, we have discovered a singularity of the optimized entanglement at the boundary

38



temperature, where the second derivative is discontinuous.
In conclusion, our work has revealed general properties of the thermal entanglement of

interacting two qubits, though we have assumed a numerically confirmed hypothesis. The
concept of high- and low-temperature phases is an interesting property in that it is based on
the response to external manipulation of local Hamiltonians. It is likely that we can find more
interesting properties of entanglement in this regard. In the next chapter, we investigate two
qubits which interact indirectly or general bipartite systems.
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Chapter 3

General properties of the maximized
entanglement of indirectly interacting
two spins

In the present chapter, we investigate the thermal entanglement of indirectly interacting two
spins through other spins, that is, two spins at the ends of a spin chain. We maximize it by
tuning the local fields on the two spins to obtain the maximized entanglement. We present a
necessary condition for the indirect interaction to give a non-zero maximized entanglement. We
also prove that if the two spins are separated by two sites or more, there is a critical temperature
above which the maximized entanglement vanishes. We numerically calculate the maximized
entanglement in three-spin chains and four-spin chains. We discover that the maximizing local
fields on the spins 1 and 2 have asymmetric forms, which implies that the asymmetry of the
two spins essentially contributes to the entanglement enhancement. In the three-spin chains,
we explain this enhancement due to the asymmetry qualitatively and quantitatively in terms
of the magnons. In XX and XY four-spin chains, we find that the critical temperature shows
qualitatively different behavior depending on the conservation of the angular momentum in the
z direction.

3.1 Introduction

In the previous chapter, we showed how much entanglement we can enhance with the local
fields in the two-spin system. In the present chapter, we will extend the result to multipartite
spin systems; we study the enhancement of the bipartite entanglement due to the local fields in
the system where the two spins indirectly interact with each other via other spins. The main
research targets are the following three problems:

• What is the condition for the indirect interaction to generate the entanglement?

• Is it possible to generate the entanglement at high temperatures in the indirectly inter-
acting spins?

• What are the main factors which make it possible for the local fields to enhance the
entanglement?

For the directly interacting two spins, we obtained the answer for these questions in the previous
chapter [55]: any direct interaction can generate the entanglement for appropriate local fields;
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the maximized entanglement decays as 1/T ln T as the temperature increases; the entanglement
enhancement by the local fields is brought about by the suppression of the thermal fluctuation,
or in other words, the increase of the purity. Our purpose in the present chapter is to answer
these questions qualitatively and quantitatively for indirectly interacting spins.

The possibility of the enhancement of the entanglement with the external fields has been
shown in many papers [4,31,54]. However, there have been few reports about the entanglement
enhancement of specific two spins. In particular, little is known about the mechanism of the
entanglement enhancement due to the external fields or the condition for the indirect interaction
to generate the entanglement. By making these problems clear, we may be able to control the
entanglement efficiently with the external fields.

In our research, we define the maximized entanglement as the maximum value of the en-
tanglement between the particular two spins under the condition that we can arbitrarily tune
the local fields only on these two spins. If the maximized entanglement is equal to zero, the
entanglement generation is impossible for any values of the local fields. The forms of the max-
imizing local fields reflect basic properties of the entanglement enhancement, and thereby help
us solve the above three problems.

We study general properties of the maximized entanglement between the focused two spins
which are connected by a spin chain. Our main results are the following three:

• We obtain a necessary condition for the indirect interaction to generate the non-zero
entanglement by optimizing the local fields.

• At high temperatures, we prove that the maximized entanglement is always equal to zero
between the two spins which are separated by two or more spins. In other words, above a
critical temperature T̃c, we can never generate the entanglement between spins far apart
for any values of the local fields.

• The main factors of the entanglement enhancement due to the local fields are not only
the increase of the purity but also their effect on the indirect interaction. To be more
specific, the external fields affect the magnons which mediate the indirect interaction.
The form of the maximizing local fields depends on this effect and has asymmetric forms
in a particular parameter region.

We show these results analytically and numerically. This chapter consists of the following
sections: in Section 2, we state the problem specifically and give some definitions; in Section 3,
we give general theorems on the entanglement enhancement which can be applied to any spin
chains; in Section 4, we show the numerical and analytical results on the maximization of the
entanglement in three-spin chains; in Section 5, we show the numerical and analytical results on
the maximization of the entanglement in four-spin chains; and in Section 6, discussion concludes
the chapter.

3.2 Statement of the problem

First, we formulate the framework of the entanglement maximization problem and describe
conditions. We consider a general XY Z N -spin chain with external fields in the z direction.
The most general form of the Hamiltonian of this system is given as follows:

Htot =
N−1∑
i=1

(Jx
i σx

i σx
i+1 + Jy

i σy
i σ

y
i+1 + Jz

i σz
i σ

z
i+1) +

N∑
i=1

hz
i σ

z
i , (3.1)
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Figure 3.1: Schematic picture of the spin chains. We define the spins 1 and N as the focused
spins and the spins which mediate the indirect interaction between the spins 1 and N as the
media spins. We assume that we can tune the magnetic fields of the spins 1 and N, while the
other fields {hz

i }N−1
i=2 are arbitrary but fixed.

where {σi
i}i=x,y,z are the Pauli matrices and we adopt the free boundary conditions.

We hereafter consider the entanglement between the spins 1 and N at the ends of the chain.
We define these two spins as the focused spins and the extremal fields hz

1 and hz
N on the two

spins as the local fields. We refer to the other spins 2 ≤ i ≤ N −1 as the media spins (Fig. 3.1).
We then define the interaction Hamiltonian as the total Hamiltonian (3.1) minus the terms of
the local fields:

Hint =
N−1∑
i=1

(Jx
i σx

i σx
i+1 + Jy

i σy
i σ

y
i+1 + Jz

i σz
i σ

z
i+1) +

N−1∑
i=2

hz
i σ

z
i , (3.2)

The basic problem that we are going to solve is to maximize the thermal entanglement between
the focused spins 1 and N by tuning the local fields hz

1 and hz
N at a fixed temperature. We also

fix all the parameters in Hint, namely, {Jx
i , Jy

i , Jz
i } for 1 ≤ i ≤ N−1 and {hz

i } for 2 ≤ i ≤ N−1.
We refer to the maximizing values of the local fields hz

1 and hz
N as h1op and hNop.

Note that the maximizing local fields h1op and hNop generally depend on the temperature T ,
or on the inverse temperature β = 1/(kT ) with k the Boltzmann constant. This is because we
tune the local fields at a fixed temperature β. Let us then define the high-temperature limit,
in which we mostly develop the argument. In our high-temperature limit, we make β tend to
zero with the parameters in Hint fixed. In other words, we have β||Hint|| → 0 in the high-
temperature limit, where ||Hint|| is the norm of Hint. On the other hand, we let the maximizing
local fields depend on β as we take the limit β → 0. Hence, βh1op and βhNop can even diverge
in our high-temperature limit.

The density matrix of the total system in thermal equilibrium is

ρtot =
e−βHtot

Z
, (3.3)

where Z = tr(e−βHtot) is the partition function. The density matrix of the focused spins 1 and
N is

ρ1N = tr1Nρtot, (3.4)

where tr1N denotes the trace operation on the spins except the focused spins 1 and N . For the
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present system (3.1), the general form of the density matrix ρ1N is given by:

ρ1N =


p↑↑ 0 0 F2

0 p↑↓ F1 0
0 F1 p↓↑ 0
F2 0 0 p↓↓

 (3.5)

in the basis of the eigenstates of σz
1 ⊗ σz

N , where p↑↑, p↑↓, p↓↑, p↓↓, F1 and F2 are real numbers.
We have F2 = 0 when Jx

i = Jy
i , for 1 ≤ i ≤ N − 1, in particular.

In order to quantify the entanglement, we here adopt the concurrence [26] as an entangle-
ment measure. The concurrence C(ρ1N) is defined as follows:

C(ρ1N) ≡ max(λ1 − λ2 − λ3 − λ4, 0), (3.6)

where {λn}4
n=1 are the eigenvalues of the matrix√

ρ1N(σy
1 ⊗ σy

N)ρ∗
1N(σy

1 ⊗ σy
N) (3.7)

in the non-ascending order λ1 ≥ λ2 ≥ λ3 ≥ λ4. For density matrices of the form (3.5), the
concurrence C(ρ1N) is reduced to the simpler form

C(ρ1N) = 2 max(|F1| −
√

p↑↑p↓↓, |F2| −
√

p↑↓p↓↑, 0). (3.8)

Then, the necessary and sufficient condition for the existence of the entanglement is given by

max(|F1| −
√

p↑↑p↓↓, |F2| −
√

p↑↓p↓↑) > 0. (3.9)

Thus, the present entanglement optimization problem for the spin pair (1, N) is equivalent to
finding the values of {hz

1, h
z
N} which maximize C(ρ1N) for the fixed parameters {Jx

i , Jy
i , Jz

i }
(1 ≤ i ≤ N − 1), {hz

i } (2 ≤ i ≤ N − 1), and β.

3.3 General theorems on entanglement generation

In the previous section, we formulated the entanglement maximization problem. In fact, there
are cases in which we cannot generate the entanglement for any values of the local fields at
all. In such cases, it is necessary to distinguish whether the entanglement is exactly equal to
zero or rapidly approaches to zero. In the present section, we introduce general theorems on a
necessary condition to generate the entanglement by optimizing the local fields. In other words,
we give a sufficient condition for the entanglement to be zero exactly for any values of the local
fields.

Theorem 1. If there exists the following separation of the interaction Hamiltonian Hint, we
cannot generate the entanglement between the focused spins σ1 and σN for any values of the
local fields at arbitrarily temperatures:

Hint = HA(σ1) + HB(σN)

with [HA(σ1), HB(σN)] = 0, (3.10)

where [· · · ] is the commutator. Note that HA does not contain σN nor HB contains σ1.
Comments. For example, we can separate the following Hamiltonian in the form (3.10):

Hint = Jx
1 σx

1σx
2 + Jy

1 σy
1σ

y
2 + Jz

1σz
1σ

z
2 + Jx

2 σx
2σx

3 + Jx
3 σx

3σx
4 , (3.11)
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where the spin pair (1, 2) interact with each other through the XYZ interaction, while the spin
pairs (2, 3) and (3, 4) interact with each other through the Ising interaction. We can separate
this Hamiltonian into HA(σ1) and HB(σ4) as

HA(σ1) = Jx
1 σx

1σx
2 + Jy

1 σy
1σ

y
2 + Jz

1σx
1σx

2 + Jx
2 σx

2σx
3 ,

HB(σ4) = Jx
3 σx

3σx
4 . (3.12)

These Hamiltonians satisfy the condition [HA(σ1), HB(σ4)] = 0, and hence we cannot generate
the entanglement between the focused spins σ1 and σ4 in this system for any values of the local
fields hz

1 and hz
4. However, the spins 1 and 4 are classically correlated with each other.

If we add hz
3σ

z
3 to Hint as

Hint = Jx
1 σx

1σx
2 + Jy

1 σy
1σ

y
2 + Jz

1σz
1σ

z
2 + Jx

2 σx
2σx

3 + hz
3σ

z
3 + Jx

3 σx
3σx

4 , (3.13)

we cannot separate the Hamiltonian Hint into the forms of HA(σ1) and HB(σ4) which satisfy
[HA(σ1), HB(σ4)] = 0, and hence the spins 1 and 4 can entangle with each other. It is worth
noting that the field in the z direction on the media spin 3 makes the classical interaction (3.12)
into the non-classical one.

Eigenstates can have the entanglement even if the condition (3.10) is satisfied. For example,
the Hamiltonian for the focused spins 1 and 3,

Htot = Hint + hz
1σ

z
1 + hz

3σ
z
3,

Hint = Jz
1σz

1σ
z
2 + Jz

2σz
2σ

z
3 (3.14)

with hz
1 = hz

3 = Jz
1 = Jz

2 satisfies the condition (3.10), but it has an eigenstate (|↑1↑3↑2〉 +
|↓1↑3↓2〉)/

√
2, which is highly entangled. Mixing of all the eigenstates with the Boltzmann

weight always destroys the entanglement between the focused spins.
Finally, under this condition, for the appropriate values of the local fields we can generate

the quantum discord, which is one of the non-classical correlations. We discuss the quantum
discord in Appendix B.1. We also note that the present theorem applies to the general case in
which there are couplings in all possible pairs of N spins.

Proof. In order to prove the present theorem, we prove that the density matrix can be
decomposed into the mixture of the product states as

ρ1N =
∑

ñ

ρñ
1 ⊗ ρñ

N , (3.15)

where the density matrices ρñ
1 and ρñ

N of the focused spins 1 and N , respectively, are physical
states, or, in other words, positive matrices. Then, the spins 1 and N are not entangled with
each other by definition.

First, if the condition (3.10) is satisfied, we can decompose the density matrix as follows:

Zρtot = e−βHA(σ1)e−βHB(σN ). (3.16)

We can express e−βHA(σ1) and e−βHB(σN ) as

e−βHA(σ1) =
∑

µ=0,x,y,z

σµ
1 ⊗ ρ1µ

media ⊗ IN ,

e−βHB(σN ) =
∑

ν=0,x,y,z

I1 ⊗ ρNν
media ⊗ σν

N , (3.17)
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where I1 and IN are the unit matrices in the spaces of the spins 1 and N , respectively, and we
define σ0

1 = I1 and σ0
N = IN . We also define that ρ1µ

media and ρNν
media are Hermitian operators in

the media-spin space. Because HA(σ1) and HB(σN) commute with each other, e−βHA(σ1) and
e−βHB(σN ) also commute with each other. Therefore, we obtain the following equation:

tr1N
[
σµ

1 ⊗ σν
Ne−βHA(σ1)e−βHB(σN )

]
= tr1N

[
σµ

1 ⊗ σν
Ne−βHB(σN )e−βHA(σ1)

]
, (3.18)

where tr1N denotes the trace operation only on the spins 1 and N . From this equation we can
obtain

ρ1µ
mediaρ

Nν
media = ρNν

mediaρ
1µ
media (3.19)

for µ, ν = 0, x, y, z. Therefore, ρ1µ
media and ρNν

media have simultaneous eigenstates. Then, we can
express ρ1µ

media and ρNν
media as

ρ1µ
media =

2N−2∑
n=1

λn
µ|n, µ1, νN〉〈n, µ1, νN | (3.20)

and

ρNν
media =

2N−2∑
n=1

τn
ν |n, µ1, νN〉〈n, µ1, νN |. (3.21)

where {|n, µ1, νN〉} are 2N−2 pieces of the simultaneous eigenstates of ρ1µ
media and ρNν

media. Note,

however, that ρ1µ
media and ρ1µ′

media may not have simultaneous eigenvalues when they have different
degeneracies, nor ρNν

media and ρNν′

media. As a result, we obtain

e−βHA(σ1)e−βHB(σN )

=

(∑
n,µ

λn
µσµ

1 ⊗ |n, µ1, ν
′
N〉〈n, µ1, ν

′
N | ⊗ IN

)(∑
n′,ν

τn
ν I1 ⊗ |n′, µ′

1, νN〉〈n′, µ′
1, νN | ⊗ σν

N

)
=

∑
n,µ,ν

λn
µτn

ν σµ
1 ⊗ |n, µ1, νN〉〈n, µ1, νN | ⊗ σν

N , (3.22)

where the indices µ′ and ν ′ in the first line can be arbitrarily chosen (ν ′, µ′ = 0, x, y, z), and
hence we choose µ′ and ν ′ in accordance with µ and ν. By tracing out the media spins, we have

tr1Ne−βHA(σ1)e−βHB(σN ) =
∑
n,µ,ν

λn
µτ

n
ν σµ

1 ⊗ σν
N

=
∑
N

(∑
µ

λn
µσµ

1

)
⊗

(∑
ν

τn
ν σν

N

)
. (3.23)

At this moment, we cannot say that
∑

µ λn
µσ

µ
1 and

∑
τ νn

ν σν
N are necessarily physical states. In

the following, we prove that Eq. (3.23) can be reduced to the mixture of the product states as
in the form (3.15).

For the purpose, we should pay attention to the degeneracies of the matrices ρ1µ
media and

ρNν
media. In fact, if there are no degeneracies in the eigenspaces of all these matrices for µ, ν =

0, x, y, z, we can easily prove that each of
∑

µ λn
µσµ

1 and
∑

ν τn
ν σν

N (n = 1, 2, · · · , 2N−2) in

Eq. (3.23) is a positive matrix. Since ρ1µ
media and ρNν

media commute with each other as well as
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ρ1µ′

media and ρNν
media do, ρ1µ

media and ρ1µ′

media should also have simultaneous eigenstates if there are
no degeneracies. If there are absolutely no degeneracies in all eigenspaces of ρ1µ

media and ρNν
media

(µ, ν = 0, x, y, z), we have an orthonormal set of 2N−2 pieces of states |n〉, each of which is the
simultaneous eigenstate |n, µ1, νN〉 for all of µ, ν = 0, x, y, z. Then, we have from Eq. (3.17)∑

µ=0,x,y,z

λn
µσµ

1 = tr1N(e−βhz
1(σ1)|n〉〈n|), (3.24)∑

ν=0,x,y,z

τn
ν σν

N = tr1N(e−βHN (σN )|n〉〈n|), (3.25)

for n = 1, 2, · · · 2N−2. This means that each of
∑

µ λn
µσµ

1 and
∑

ν τn
ν σν

N (n = 1, 2, · · · , 2N−2) is
a positive matrix, and hence Eq. (3.23) indeed takes the form (3.15).

If there are degeneracies in some of the eigenspaces of the matrices ρ1µ
media and ρNν

media, there
is a possibility that we cannot choose a common state |n〉 that represents the simultaneous
eigenstate |n, µ1, νN〉 for µ, ν = 0, x, y, z. Let us then inspect the degeneracies in more detail.

Suppose that ρ1µ
media and ρNν

media share the eigenstate |n0, µ1, νN〉 with the respective eigen-
values λn0

µ and τn0
ν . We can choose the state |n0, µ1, νN〉 even when each of the eigenvalues λn0

µ

and τn0
ν has degeneracies in its own eigenspace. Suppose also that ρ1µ′

media and ρNν
media share the

eigenstate |n1, µ
′
1, νN〉 with the respective eigenvalues λn1

µ′ and τn1
ν . After close inspection, we

can state the following: if τn0
ν and τn1

ν are not degenerate, the states |n0, µ1, νN〉 and |n1, µ
′
1, νN〉

are orthogonal to each other.
The only possibility that we cannot choose a common state |n〉 then occurs when all the

matrices ρ1µ
media (µ = 0, x, y, z) have degeneracies in the corresponding eigenspaces and/or all

the matrices ρNν
media (ν = 0, x, y, z) have degeneracies in the corresponding eigenspaces. If one

of ρ1µ
media (µ = 0, x, y, z) does not have degeneracies, we can rotate the states in the degenerate

eigenspaces of the other matrices to obtain common eigenstates.
We can thereby break down the whole eigenspace into blocks. We form a block of eigenspace

in which all the matrices ρ1µ
media (µ = 0, x, y, z) and/or all the matrices ρNν

media (ν = 0, x, y, z)
have degeneracies. Let us denote each block as Hñ with the dimensionality Dñ. Let us choose
an arbitrary orthonormal set of states |n〉ñ (n = 1, 2, · · · , Dñ) in the block Hñ. Then we sum
the terms

∑
µ λn

µσµ
1 and

∑
ν τn

ν σν
N inside each block Hñ to have

∑
n:|n〉ñ∈Hñ

∑
µ=0,x,y,z

λn
µσµ

1 =

Dñ∑
n=1

tr1N

(
e−βHA(σ1)|n〉ñ〈n|ñ

)
, (3.26)

∑
n:|n〉ñ∈Hñ

∑
ν=0,x,y,z

τn
ν σν

N =

Dñ∑
n=1

tr1N

(
e−βHB(σN )|n〉ñ〈n|ñ

)
, (3.27)

which proves that each left-hand side is a positive matrix. This in turn shows that Eq. (3.23)
can be summarized into the form Eq. (3.15), where the summation in the right-hand side of
Eq. (3.15) is taken over the blocks ñ. Thus, Theorem 1 is proved.

Theorem 1 gives us a necessary condition that we can generate the entanglement between
the focused spins by optimizing the local fields. However, this is not a sufficient condition. For
example, we can prove the following theorem for spin chains.

Theorem 2. Let us consider the XYZ chain (3.1) with {Jx
i , Jy

i , Jz
i } = {Jx, Jy, Jz} (1 ≤ i ≤

N − 1). We tune the local fields hz
1 and hz

N , while the media fields {hz
i }N−1

i=2 are arbitrary but
fixed. There is a critical temperature above which the maximized entanglement between the
focused spins 1 and N is exactly zero if they are separated by two or more spins (N ≥ 4). In

47



other words, we cannot generate the entanglement for any values of the local fields above this
temperature for N ≥ 4.

Comments. This critical temperature yields a stronger restriction than the known ones [31],
which discuss the entanglement disappearance under a fixed Hamiltonian. Let us denote this
critical temperature as T̃c. We say T̃c = ∞ if we cannot generate the entanglement at any
temperatures, whereas we say T̃c = 0 if the maximized entanglement is equal to zero even in
the ground state.

Proof. In order to prove this theorem, it is enough to show

max(F 2
1 − p↑↑p↓↓, F

2
2 − p↑↓p↓↑) < 0 (3.28)

after the maximization of the left-hand side with respect to hz
1 and hz

N in the high temperature
limit β → 0, where {F1, F2, p↑↑, p↑↓, p↓↑, p↓↓} are the elements of the density matrix defined in
Eq. (3.5). Then, Eq. (3.8) yields the exactly zero concurrence in the limit β → 0. Since the
system (3.1) has a finite number of degrees of freedom, the elements {F1, F2, p↑↑, p↑↓, p↓↑, p↓↓}
must be analytic as a function of β. Therefore, there can be a finite value of β at which
max(F 2

1 − p↑↑p↓↓, F
2
2 − p↑↓p↓↑) = 0 after the maximization. This gives the critical temperature.

Note that the elements of ρ1N here are functions of h1op(β), hNop(β) and β.
Now, let us define the exponents κ1 and κN as

h1op = O(β−κ1) and hNop = O(β−κN ) (3.29)

in the limit β → 0, where κ1 and κN are real number. We estimate the order of each element
of {F 2

1 , F 2
2 } and {p↑↑p↓↓, p↑↓p↓↑} in the following three cases:

• Case (a): κ1 < 1 and κN < 1.

• Case (b): κ1 ≥ κN , κ1 ≥ 1 and κN > 0; or κN ≥ κ1, κ1 > 0 and κN ≥ 1.

• Case (c): κ1 ≥ 1 and κN ≤ 0; or κ1 ≤ 0 and κN ≥ 1.

Notice that the three cases cover the entire space of κ1 and κN .
Case (a). In this case, we can prove the inequality (3.28) by utilizing a necessary condition

for the existence of the entanglement [56], which is

tr ρ2
1N ≥ 1

3
. (3.30)

In the case (a), βh1op and βhNop are of order β1−κ1 and β1−κN , respectively, and approach to
zero in the high temperature limit β → 0. The density matrix ρ1N becomes proportional to
the identity matrix because then β||Htot|| → 0; hence we have

lim
β→0

tr ρ2
1N =

1

4
. (3.31)

Therefore, in the case(a), the entanglement between the spins 1 and N is exactly zero in the
high-temperature limit.

Case (b). To simplify the problem, we consider the case of h1op, hNop > 0, κ1 ≥ κN , κ1 ≥ 1
and κN > 0, but we can prove the other cases in the same way. We define the exponent κ̃ as

h1op − hNop = O(β−κ̃) (3.32)
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in the limit β → 0 and consider the case

κ̃ > 0 (3.33)

in the following. We discuss the case κ̃ ≤ 0 in Appendix B.2. Here, in order to obtain the
inequality (3.28), we prove the following; F1 and F2 are of order of

O(βκ1+κN+κ) and O(βκ1+κN+κ′
), (3.34)

or higher, respectively, where

κ = min(κN , 1) > 0 and κ′ = min(κN , κ̃, 1) > 0. (3.35)

On the other hand, p↑↑p↓↓ and p↑↓p↓↑ are both of order of

O(β2κ1+2κN ), (3.36)

or lower. Then, the inequality (3.28) is satisfied below a certain value of β.
In order to prove (3.34) and (3.36), we separate the total Hamiltonian as follows:

Htot = H1 + Hmedia + Hcouple + HN , (3.37)

where

H1 = h1opσ
z
1, HN = hNopσ

z
N ,

Hmedia =
N−2∑
i=2

(Jxσx
i σx

i+1 + Jyσy
i σ

y
i+1 + Jzσz

i σ
z
i+1) +

N−1∑
i=2

hz
i σ

z
i ,

Hcouple = Jxσx
1σx

2 + Jyσy
1σ

y
2 + Jzσz

1σ
z
2 + Jxσx

N−1σ
x
N + Jyσy

N−1σ
y
N + Jzσz

N−1σ
z
N . (3.38)

Now, we consider the term Hcouple, which couples the focused spins and the media spins, as

perturbation. The unperturbed density matrix ρ
(0)
tot is given by

ρ
(0)
tot = e−βH1−βHN e−βHmedia (3.39)

because H1, Hmedia and HN commute with each other. Because the external fields are applied
in the z direction, the eigenstates of H1 +HN are given by {|↑1↑N〉, |↑1↓N〉, |↓1↑N〉, |↓1↓N〉} with
the corresponding eigenvalues {−h1op−hNop,−h1op +hNop, h1op−hNop, h1op +hNop}; we denote

these eigenvalues as {E↑↑
1N , E↑↓

1N , E↓↑
1N , E↓↓

1N}. We also give the eigenstates of Hmedia as

|ψn
media〉 = sn|↑2〉|ψ̃↑↑

n 〉|↑N−1〉 + tn|↑2〉|ψ̃↑↓
n 〉|↓N−1〉 + un|↓2〉|ψ̃↓↑

n 〉|↑N−1〉 + wn|↓2〉|ψ̃↓↓
n 〉|↓N−1〉,

(3.40)

for n = 1, 2, · · · , 2N−2, where {|ψ̃↑↑
n 〉, |ψ̃↑↓

n 〉, |ψ̃↓↑
n 〉, |ψ̃↓↓

n 〉} are the states of the spins from 3 to
N − 2. Because the total Hamiltonian Htot is a real matrix, the parameters {sn, tn, un, wn}
are real numbers. We define the corresponding eigenvalues of Hmedia as {En

media}. Then, the
unperturbed eigenstates are given by

{|↑1↑N〉 ⊗ |ψn
media〉, |↑1↓N〉 ⊗ |ψn

media〉, |↑1↓N〉 ⊗ |ψn
media〉, |↓1↓N〉 ⊗ |ψn

media〉}. (3.41)
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We define the perturbed eigenstates corresponding to each of (3.41) as {|ψn,↑↑
tot 〉, |ψn,↑↓

tot 〉, |ψn,↓↑
tot 〉, |ψn,↓↓

tot 〉},
respectively. We express them as

|ψn,ξ
tot 〉 = |↑1↑N〉 ⊗ |ψn,ξ

media,↑↑〉 + |↑1↓N〉 ⊗ |ψn,ξ
media,↑↓〉 + |↓1↑N〉 ⊗ |ψn,ξ

media,↓↑〉 + |↓1↓N〉 ⊗ |ψn,ξ
media,↓↓〉,

(3.42)

for n = 1, 2, · · · , 2N−2 and ξ =↑↑, ↑↓, ↓↑, ↓↓, where |ψn,ξ
media,↑↑〉, |ψ

n,ξ
media,↑↓〉, |ψ

n,ξ
media,↓↑〉 and |ψn,ξ

media,↓↓〉
are the states of the spins from 2 to N − 1 and may be not normalized. We also define the
corresponding perturbed eigenvalues as {En,↑↑

tot , En,↑↓
tot , En,↓↑

tot , En,↓↓
tot }, which we express as

En,ξ
tot = Eξ

1N + En
media + δEn,ξ

tot (3.43)

for n = 1, 2, · · · , 2N−2 and ξ =↑↑, ↑↓, ↓↑, ↓↓. Note that {En
media} and {δEn,ξ

tot } are of order β0

because Hmedia and Hcouple do not depend on the temperature β. Then, we have

e−βEn,↑↑
tot

Ztot

=
eβ(h1op+hNop)−β(En

media+δEn,↑↑
tot )

Ztot

= O(β0) (3.44)

in the limit β → 0 in the case h1op, hNop > 0, where Ztot is the partition function of the total
Hamiltonian.

Now, we show the outline of the proof. First, the elements {F1, F2, p↑↑, p↑↓, p↓↑, p↓↓} can be
calculated from (3.42) and (3.43) as

F1 =
1

Ztot

2N−2∑
n=1

∑
ξ=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot

〈
ψn,ξ

media,↑↓
∣∣ψn,ξ

media,↓↑
〉
,

F2 =
1

Ztot

2N−2∑
n=1

∑
ξ=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot

〈
ψn,ξ

media,↑↑
∣∣ψn,ξ

media,↓↓
〉

(3.45)

and

p↑↑ =
1

Ztot

2N−2∑
n=1

∑
ξ=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot

〈
ψn,ξ

media,↑↑
∣∣ψn,ξ

media,↑↑
〉
,

p↑↓ =
1

Ztot

2N−2∑
n=1

∑
ξ=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot

〈
ψn,ξ

media,↑↓
∣∣ψn,ξ

media,↑↓
〉
,

p↓↑ =
1

Ztot

2N−2∑
n=1

∑
ξ=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot

〈
ψn,ξ

media,↓↑
∣∣ψn,ξ

media,↓↑
〉
,

p↓↓ =
1

Ztot

2N−2∑
n=1

∑
ξ=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot

〈
ψn,ξ

media,↓↓
∣∣ψn,ξ

media,↓↓
〉
. (3.46)

Second, we estimate the leading orders of {F1, F2} and {p↑↓p↓↑, p↑↑p↓↓}. From the pertur-

bation theory, we can obtain the approximate forms of {|ψn,ξ
tot 〉} and expand {F1, F2} and

{p↑↓p↓↑, p↑↑p↓↓} with respect to β. The elements {F1, F2} are additive with respect to the
indices n and ξ; we define each contribution to the elements {F1, F2} as

F n,ξ
1 =

〈
ψn,ξ

media,↑↓
∣∣ψn,ξ

media,↓↑
〉
,

F n,ξ
2 =

〈
ψn,ξ

media,↑↑
∣∣ψn,ξ

media,↓↓
〉
. (3.47)
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Then, the elements {F1, F2} are given by

F1 =
1

Ztot

2N−2∑
n=1

∑
ξ=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot F n,ξ

1 ,

F2 =
1

Ztot

2N−2∑
n=1

∑
ξ=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot F n,ξ

2 , (3.48)

respectively. The elements {p↑↓p↓↑, p↑↑p↓↓}, on the other hand, are given by double summations
as

p↑↓p↓↑ =
1

Z2
tot

2N−2∑
n,n′=1

∑
ξ,ξ′=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot

〈
ψn,ξ

media,↑↓
∣∣ψn,ξ

media,↑↓
〉
e−βEn′,ξ′

tot
〈
ψn′,ξ′

media,↓↑
∣∣ψn′,ξ′

media,↓↑
〉
,

p↑↑p↓↓ =
1

Z2
tot

2N−2∑
n,n′=1

∑
ξ,ξ′=↑↑,↑↓,↓↑,↓↓

e−βEn,ξ
tot

〈
ψn,ξ

media,↑↑
∣∣ψn,ξ

media,↓↓
〉
e−βEn′,ξ′

tot
〈
ψn′,ξ′

media,↓↓
∣∣ψn′,ξ′

media,↓↓
〉
. (3.49)

Because the summands of (3.49) are all positive, we can obtain the following inequalities for
{p↑↓p↓↑, p↑↑p↓↓}:

p↑↓p↓↑ ≥
1

Z2
tot

2N−2∑
n=1

e−βEn,↑↑
tot

〈
ψn,↑↑

media,↑↓
∣∣ψn,↑↑

media,↑↓
〉
e−βEn,↑↑

tot
〈
ψn,↑↑

media,↓↑
∣∣ψn,↑↑

media,↓↑
〉
≡ P ↑↑

↑↓,↓↑,

p↑↑p↓↓ ≥
1

Z2
tot

2N−2∑
n=1

e−βEn,↑↑
tot

〈
ψn,↑↑

media,↑↑
∣∣ψn,↑↑

media,↑↑
〉
e−βEn,↑↑

tot
〈
ψn,↑↑

media,↓↓
∣∣ψn,↑↑

media,↓↓
〉
≡ P ↑↑

↑↑,↓↓, (3.50)

where we pick up only the terms of n = n′ and ξ = ξ′ =↑↑ from the summations in (3.49).
The elements P ↑↑

↑↓,↓↑ and P ↑↑
↑↑,↓↓ are additive with respect to n; we define each contribution to

the elements {P ↑↑
↑↓,↓↑, P

↑↑
↑↑,↓↓} as

P n,↑↑
↑↓,↓↑ =

〈
ψn,↑↑

media,↑↓
∣∣ψn,↑↑

media,↑↓
〉〈

ψn,↑↑
media,↓↑

∣∣ψn,↑↑
media,↓↑

〉
,

P n,↑↑
↑↑,↓↓ =

〈
ψn,↑↑

media,↑↑
∣∣ψn,↑↑

media,↑↑
〉〈

ψn,↑↑
media,↓↓

∣∣ψn,↑↑
media,↓↓

〉
. (3.51)

Then, the elements {P ↑↑
↑↓,↓↑, P

↑↑
↑↑,↓↓} are given by

P ↑↑
↑↓,↓↑ =

1

Z2
tot

2N−2∑
n=1

e−2βEn,↑↑
tot P n,↑↑

↑↓,↓↑,

P ↑↑
↑↑,↓↓ =

1

Z2
tot

2N−2∑
n=1

e−2βEn,↑↑
tot P n,↑↑

↑↑,↓↓, (3.52)

respectively. In this way, we calculate each contribution to the elements {F1, F2} and {P ↑↑
↑↓,↓↑, P

↑↑
↑↑,↓↓}

separately.

In accordance with the above outline, we first calculate |ψn0,↑↑
tot 〉, namely the perturbed

state of |↑1↑N〉 ⊗ |ψn0
media〉. In order to simplify the calculation, we rewrite the perturbation
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Hamiltonian Hcouple as follows;

Hcouple =
1

2

{
J
[
(1 + γ)σx

1σx
2 + (1 − γ)σy

1σ
y
2

]
+ Jzσz

1σ
z
2

+ J
[
(1 + γ)σx

N−1σ
x
N + (1 − γ)σy

N−1σ
y
N

]
+ Jzσz

N−1σ
z
N

}
=

{
J
[
σ+

1 σ−
2 + σ−

1 σ+
2 + γ(σ+

1 σ+
2 + σ−

1 σ−
2 )

]
+

1

2
Jzσz

1σ
z
2

+ J
[
σ+

N−1σ
−
N + σ−

N−1σ
+
N + γ(σ+

N−1σ
+
N + σ−

N−1σ
−
N)

]
+

1

2
Jzσz

N−1σ
z
N

}
, (3.53)

where

J = Jx + Jy, γ =
Jx − Jy

Jx + Jy

. (3.54)

From the calculation in Appendix B.3, the leading terms of the elements {|ψn0,↑↑
media,ξ〉} for

ξ =↑↑, ↑↓, ↓↑, ↓↓ in Eq. (3.42) are given by

|ψn0,↑↑
media,↑↑〉 = |ψn0

media〉, (3.55)

|ψn0,↑↑
media,↑↓〉 =

J

−2hNop

(
γsn0 |↑2〉|ψ̃↑↑

n0
〉|↓N−1〉 + tn0 |↑2〉|ψ̃↑↓

n0
〉|↑N−1〉

+ γun0|↓2〉|ψ̃↓↑
n0
〉|↓N−1〉 + wn0 |↓2〉|ψ̃↓↓

n0
〉|↑N−1〉 + O(βκN )

)
, (3.56)

|ψn0,↑↑
media,↓↑〉 =

J

−2h1op

(
γsn0 |↓2〉|ψ̃↑↑

n0
〉|↑N−1〉 + γtn0 |↓2〉|ψ̃↑↓

n0
〉|↓N−1〉

+ un0 |↑2〉|ψ̃↓↑
n0
〉|↑N−1〉 + wn0 |↑2〉|ψ̃↓↓

n0
〉|↓N−1〉 + O(βκ1)

)
(3.57)

and

|ψn0,↑↑
media,↓↓〉 =

J2

4h1ophNop

(
γ2sn0 |↓2〉|ψ̃↑↑

n0
〉|↓N−1〉 + γtn0 |↓2〉|ψ̃↑↓

n0
〉|↑N−1〉

+ γun0|↑2〉|ψ̃↓↑
n0
〉|↓N−1〉 + wn0 |↑2〉|ψ̃↓↓

n0
〉|↑N−1〉 + O(βκN )

)
. (3.58)

Now, we calculate the contribution of |ψn0,↑↑
tot 〉 to the elements {F1, F2} and {P ↑↑

↑↓,↓↑, P
↑↑
↑↑,↓↓},

which are defined as {F n0,↑↑
1 , F n0,↑↑

2 } and {P n0,↑↑
↑↓,↓↑ , P n0,↑↑

↑↑,↓↓ }. From Eqs. (3.55)–(3.58), we have the

elements {F n0,↑↑
1 , F n0,↑↑

2 } as

F n0,↑↑
1 =

J2

4h1ophNop

(
γsn0wn0〈ψ̃↓↓

n0
|ψ̃↑↑

n0
〉 + un0tn0〈ψ̃↑↓

n0
|ψ̃↓↑

n0
〉

+ γ2tn0un0〈ψ̃↓↑
n0
|ψ̃↑↓

n0
〉 + γwn0sn0〈ψ̃↑↑

n0
|ψ̃↓↓

n0
〉 + O(βκN )

)
(3.59)

and

F n0,↑↑
2 =

J2

4h1ophNop

(
γ2wn0sn0〈ψ̃↓↓

n0
|ψ̃↑↑

n0
〉 + γun0tn0〈ψ̃↓↑

n0
|ψ̃↑↓

n0
〉

+ γtn0un0〈ψ̃↑↓
n0
|ψ̃↓↑

n0
〉 + sn0wn0〈ψ̃↑↑

n0
|ψ̃↓↓

n0
〉 + O(βκN )

)
(3.60)
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as well as the elements {P n0,↑↑
↑↓,↓↑ , P n0,↑↑

↑↑,↓↓ } in the forms

P n0,↑↑
↑↓,↓↑ =

J2

16h2
1oph

2
Nop

(
γ2s2

n0
+ t2n0

+ γ2u2
n0

+ w2
n0

+ O
(
βκN

))
×

(
γ2s2

n0
+ γ2t2n0

+ u2
n0

+ w2
n0

+ O(βκN )
)

≥ J2

16h2
1oph

2
Nop

(w4
n0

+ βκN δP n0,↑↑
↑↓,↓↑ ) (3.61)

and

P n0,↑↑
↑↑,↓↓ =

J2

16h2
1oph

2
Nop

(
γ4s2

n0
+ γ2t2n0

+ γ2u2
n0

+ w2
n0

+ O(βκN )
)

≥
J2w2

n0

16h2
1oph

2
Nop

(w2
n0

+ βκN δP n0,↑↑
↑↑,↓↓ ) (3.62)

in the limit β → 0, where we define the real numbers of order β0 as δP n0,↑↑
↑↓,↓↑ and δP n0,↑↑

↑↑,↓↓ so as
to satisfy the above inequalities.

Then, we sum the elements {F n,↑↑
1 , F n,↑↑

2 } and {P n,↑↑
↑↓,↓↑, P

n,↑↑
↑↑,↓↓} with the Boltzmann weight

e−βEn,↑↑
tot over the label n. First, we calculate the summation of {F n,↑↑

1 , F n,↑↑
2 }. Because the

spins 2 and (N − 1) are separated by (N − 4) spins, the correlation between the spins 2 and
(N − 1) are generated by the (N − 3)th-order perturbation of Hmedia. Therefore, we obtain

〈σx
2σx

N−1〉0 = O(βα1),

〈σy
2σ

y
N−1〉0 = O(βα2), (3.63)

where 〈· · · 〉0 denotes the thermal average with respect to ρ
(0)
tot in (3.39) and α1 ≥ N − 3,

α2 ≥ N − 3. Since we are considering the case N ≥ 4, we have α1 ≥ 1 and α2 ≥ 1. From the
equations

〈σx
2σx

N−1 + σy
2σ

y
N−1〉0

4

=
〈σ+

2 σ−
N−1 + σ−

2 σ+
N−1〉0

2

=tr

(
e−βHmedia

|↓2↑N−1〉〈↑2↓N−1| + |↑2↓N−1〉〈↓2↑N−1|
2

)
=tr

(
e−βHmedia |↓2↑N−1〉〈↑2↓N−1|

)
=

1

Zmedia

2N−2∑
n=1

e−βEn
media

〈
↑2↓N−1

∣∣ψn
media

〉〈
ψn

media

∣∣↓2↑N−1

〉
(3.64)
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and

〈σx
2σx

N−1 − σy
2σ

y
N−1〉0

4

=
〈σ+

2 σ+
N−1 + σ−

2 σ−
N−1〉0

2

=tr

(
e−βHmedia

|↓2↓N−1〉〈↑2↑N−1| + |↑2↑N−1〉〈↓2↓N−1|
2

)
=tr

(
e−βHmedia|↑2↑N−1〉〈↓2↓N−1|

)
=

1

Zmedia

2N−2∑
n=1

e−βEn
media

〈
↓2↓N−1

∣∣ψn
media

〉〈
ψn

media

∣∣↑2↑N−1

〉
, (3.65)

where Zmedia ≡ tr(e−βHmedia), σ+ ≡ (σx + iσy)/2 and σ− ≡ (σx − iσy)/2, we also have

2N−2∑
n=1

e−βEn
mediatnun〈ψ̃↑↓

n |ψ̃↓↑
n 〉 =

2N−2∑
n=1

e−βEn
mediatnun〈ψ̃↓↑

n |ψ̃↑↓
n 〉 = O(βα) (3.66)

and

2N−2∑
n=1

e−βEn
mediasnwn〈ψ̃↑↑

n |ψ̃↓↓
n 〉 =

2N−2∑
n=1

e−βEn
mediasnwn〈ψ̃↓↓

n |ψ̃↑↑
n 〉 = O(βα), (3.67)

where α = min(α1, α2). Moreover, because {δEn,ξ
tot } in Eq. (3.43) are of order β0, we have

e−βEn,ξ
tot = e−β(Eξ

1N+En
media)

(
1 − βδEn,ξ

tot + O(β2)
)
, (3.68)

for n = 1, 2, · · · , 2N−2 and ξ =↑↑, ↑↓, ↓↑, ↓↓. Then, we obtain from Eqs. (3.59), (3.60), and
(3.66)–(3.68),

2N−2∑
n=1

e−βEn,↑↑
tot F n,↑↑

1

=
2N−2∑
n=1

e−β(Eξ
1N+En

media)F n,↑↑
1 +

2N−2∑
n=1

e−β(Eξ
1N+En

media)
(
−βδEn,ξ

tot + O(β2)
)
F n,↑↑

1

=e−βE↑↑
1N

J2

4h1ophNop

(
O(βα) + O(βκN )

)
+ e−βE↑↑

1N
J2

4h1ophNop

O(β)

=e−βE↑↑
1N × O(βκ1+κN+κ) (3.69)

and

2N−2∑
n=1

e−βEn,↑↑
tot F n,↑↑

2 = e−βE↑↑
1N

J2

4h1ophNop

(
O(βα) + O(βκN ) + O(β)

)
= e−βE↑↑

1N × O(βκ1+κN+κ),

(3.70)

where α = min(α1, α2) ≥ 1 and κ is defined in (3.35).
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We can similarly calculate the contributions of the other states {|ψn,ξ
tot 〉} (ξ =↑↓, ↓↑, ↓↓).

From Eqs. (B.39) and (B.42) in Appendix B.3, we have the contributions of the states {|ψn,↑↓
tot 〉}

to F1 and F2 as

2N−2∑
n=1

e−βEn,↑↓
tot F n,↑↓

1 = e−βE↑↓
1N

J2

4h1ophNop

(
O(βα) + O(βκN ) + O(βκ̃) + O(β)

)
= e−βE↑↓

1N × O(βκ1+κN+κ′
),

2N−2∑
n=1

e−βEn,↑↓
tot F n,↑↓

2 = e−βE↑↓
1N

J2

4h1ophNop

(
O(βα) + O(βκN ) + O(β)

)
= e−βE↑↓

1N × O(βκ1+κN+κ),

(3.71)

where we utilized Eqs. (3.66)–(3.68) and κ′ is defined in (3.35). From the inequality

e−βEξ
1N

Ztot

< 1 (3.72)

for ξ =↑↑, ↑↓, ↓↑, ↓↓, we finally obtain (3.34) substituting Eqs. (3.69)–(3.71) into Eq. (3.48).
Second, we calculate the summation of {P n,↑↑

↑↓,↓↑, P
n,↑↑
↑↑,↓↓}. The parameter wn in Eq. (3.40)

cannot vanish for all n. Therefore, we have

1

Z2
tot

2N−2∑
n=1

e−2βEn,↑↑
tot w4

n = O(β0),

1

Z2
tot

2N−2∑
n=1

e−2βEn,↑↑
tot w2

n = O(β0), (3.73)

where we utilized Eq. (3.44). Hence we obtain

P ↑↑
↑↓,↓↑ =

1

Z2
tot

2N−2∑
n=1

e−2βEn,↑↑
tot P n,↑↑

↑↓,↓↑

≥ J2

16h2
1oph

2
Nop

1

Z2
tot

2N−2∑
n=1

e−2βEn,↑↑
tot (w4

n + βκN δP n,↑↑
↑↓,↓↑) = O(β2κ1+2κN ) (3.74)

and

P ↑↑
↑↑,↓↓ =

1

Z2
tot

2N−2∑
n=1

e−2βEn,↑↑
tot P n,↑↑

↑↑,↓↓

≥ J2

16h2
1oph

2
Nop

1

Z2
tot

2N−2∑
n=1

e−2βEn,↑↑
tot (w2

n + βκN δP n,↑↑
↑↑,↓↓) = O(β2κ1+2κN ). (3.75)

Because p↑↓p↓↑ ≥ P ↑↑
↑↓,↓↑ and p↑↑p↓↓ ≥ P ↑↑

↑↑,↓↓, we obtain (3.36). Thus, the inequality (3.28) is
satisfied below a certain value of β in the case (b).

Case (c). To simplify the problem, we consider the case of h1 > 0, κ1 ≥ 1 and κN ≤ 0, but
we can prove the other cases in the same way. In this case, we prove the following; F 2

1 and F 2
2

are both of order of

O(β2κ1+2), (3.76)
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or higher. On the other hand, p↑↑p↓↓ and p↑↓p↓↑ are both of order of

O(β2κ1), (3.77)

or lower. Then, the inequality (3.28) is satisfied below a certain value of β.
In a similar manner to the case (b), we separate the total Hamiltonian as follows:

Htot = H1 + H ′
media + H ′

couple, (3.78)

where

H1 = h1opσ
z
1 ,

H ′
media =

N−1∑
i=2

(Jxσx
i σx

i+1 + Jyσy
i σ

y
i+1 + Jzσz

i σ
z
i+1) +

N−1∑
i=2

hz
i σ

z
i + hNopσ

z
N ,

H ′
couple = Jxσx

1σx
2 + Jyσy

1σ
y
2 + Jzσz

1σ
z
2. (3.79)

We consider the interaction term H ′
couple, which couples the spins 1 and the other spins, as

perturbation. In the case (c), the norm of the Hamiltonian H ′
media is of order β0 because

κN < 0. Then, the unperturbed density matrix ρ
′(0)
tot is expressed as

ρ
′(0)
tot = e−βH1e−βH′

media . (3.80)

The eigenstates of H1 can be given by {|↑1〉, |↓1〉} with the corresponding eigenvalues {−h1op, h1op};
we denote these eigenvalues as {E↑

1 , E
↓
1}. We also define the eigenstates of H ′

media as

|φn
media〉 = s′n|↑2〉|φ̃↑↑

n 〉|↑N〉 + t′n|↑2〉|φ̃↑↓
n 〉|↓N〉 + u′

n|↓2〉|φ̃↓↑
n 〉|↑N〉 + w′

n|↓2〉|φ̃↓↓
n 〉|↓N〉 (3.81)

for n = 1, 2, · · · 2N−1, where {|φ̃↑↑
n 〉, |φ̃↑↓

n 〉, |φ̃↓↑
n 〉, |φ̃↓↓

n 〉} are the states of the spins from 3 to
N − 1. Because the total Hamiltonian Htot is a real matrix, the parameters {s′n, t′n, u′

n, w′
n}

are real numbers. We define the corresponding eigenvalues of H ′
media as {E ′n

media}. Then, the
unperturbed eigenstates are given by {|↑1〉 ⊗ |φn

media〉} and {|↓1〉 ⊗ |φn
media〉}. We define the

corresponding perturbed eigenstates as {|φn,↑
tot 〉} and {|φn,↓

tot 〉} and the corresponding perturbed
eigenvalues as {En,↑

tot , E
n,↓
tot }. We express them in the forms

|φn,η
tot 〉 = |↑1〉 ⊗ |φn,η

media,↑〉 + |↓1〉 ⊗ |φn,η
media,↓〉 (3.82)

and

E
′n,η
tot = Eη

1 + E
′n
media + δE

′n,η
tot (3.83)

for n = 1, 2, · · · 2N−1 and η =↑, ↓, where |φn,η
media,↑〉 and |φn,η

media,↓〉 are the states of the spins from

2 to N and may not be normalized. Note that {En
media} and {δE

′n,ξ
tot } are of order β0 because

||H ′
media|| and ||H ′

couple|| are of order β0. Then, in the limit β → 0, we have

e−βE
′n,↑
tot

Ztot

=
eβh1op−β(E

′n
media+δE

′n,↑
tot )

Ztot

= O(β0) (3.84)

in the case h1op > 0.

56



Next, we calculate the elements {F1, F2} and {p↑↓p↓↑, p↑↑p↓↓}. The calculation in Ap-

pendix (B.4) gives the state |φn0,↑
tot 〉 in the form

|φn0,↑
tot 〉 = |↑1〉 ⊗ |φn0

media〉 +
J

−2h1op

|↓1〉 ⊗
(
γs′n0

|↓2〉|φ̃↑↑
n0
〉|↑N〉 + γt′n0

|↓2〉|φ̃↑↓
n0
〉|↓N〉

+ u′
n0
|↑2〉|φ̃↓↑

n0
〉|↑N〉 + w′

n0
|↑2〉|φ̃↓↓

n0
〉|↓N〉 + O(βκ1)

)
. (3.85)

Then, we can calculate the contribution of |φn0,↑
tot 〉 to the elements {F1, F2} and {p↑↑, p↑↓, p↓↑, p↓↓};

we denote them as {F n0,↑
1 , F n0,↑

2 } and {pn0,↑
↑↑ , pn0,↑

↑↓ , pn0,↑
↓↑ , pn0,↑

↓↓ }. First, the elements {F n0,↑
1 , F n0,↑

2 }
are given by

F n0,↑
1 =

J

−2h1op

(
γs′n0

w′
n0
〈φ↓↓

n0
|φ↑↑

n0
〉 + u′

n0
t′n0

〈φ↓↑
n0
|φ↑↓

n0
〉 + O(βκ1)

)
(3.86)

and

F n0,↑
2 =

J

−2h1op

(
γt′n0

u′
n0
〈φ↓↑

n0
|φ↑↓

n0
〉 + w′

n0
s′n0

〈φ↑↑
n0
|φ↓↓

n0
〉 + O(βκ1)

)
. (3.87)

Second, the elements {pn0,↑
↑↑ , pn0,↑

↑↓ , pn0,↑
↓↑ , pn0,↑

↓↓ } are given by

pn0,↑
↑↑ =s′2n0

+ u′2
n0

,

pn0,↑
↑↓ =t′2n0

+ w′2
n0

,

pn0,↑
↓↑ =

J2

4h2
1op

(
γ2s′2n0

+ u′2
n0

+ O(βκ1)
)
,

pn0,↑
↓↓ =

J2

4h2
1op

(
γ2t′2n0

+ w′2
n0

+ O(βκ1)
)
. (3.88)

Then, we sum {F n,↑
1 , F n,↑

2 } and {pn,↑
↑↑ , pn,↑

↑↓ , pn,↑
↓↑ , pn,↑

↓↓ } with the Boltzmann weight e−βE
′n,↑
tot over

the label n. First, we calculate the summation of {F n,↑
1 , F n,↑

2 }. From the same discussion as in
Eqs. (3.66) and (3.67) in the case (b), we have

2N−1∑
n=1

e−βE
′n
mediat′nu

′
n〈φ̃↑↓

n |φ̃↑↓
n 〉 =

2N−1∑
n=1

e−βE
′n
mediat′nu′

n〈φ̃↓↑
n |φ̃↓↑

n 〉 = O(βα′
) (3.89)

and

2N−1∑
n=1

e−βE
′n
medias′nw

′
n〈φ̃↑↑

n |φ̃↓↓
n 〉 =

2N−1∑
n=1

e−βE
′n
medias′nw′

n〈φ̃↓↓
n |φ̃↑↑

n 〉 = O(βα′
), (3.90)

where ||H ′
media|| is of order β0, and the exponent α′ is defined as follows:

α′ = min(α′
1, α

′
2),

〈σx
2σx

N〉 = O(βα′
1), 〈σy

2σ
y
N〉 = O(βα′

2), (3.91)

where α′
1 ≥ N − 2 and α′

2 ≥ N − 2. Since we are considering the case N ≥ 4, we have α′
1 ≥ 2

and α′
2 ≥ 2. Moreover, because {δE

′n,η
tot } in Eq. (3.83) are of order β0, we have

e−βE
′n,η
tot = e−β(Eη

1 +E
′n
media)

(
1 − βδE

′n,η
tot + O(β2)

)
, (3.92)
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for n = 1, 2, · · · , 2N−1 and η =↑, ↓. Then, we obtain from Eqs. (3.86), (3.87), and (3.89)–(3.92),

2N−1∑
n=1

e−βE
′n,↑
tot F n0,↑

1

=
2N−1∑
n=1

e−β(Eη
1 +E

′n
media)F n0,↑

1 +
2N−1∑
n=1

e−β(Eη
1 +E

′n
media)

(
1 − βδE

′n,η
tot + O(β2)

)
F n0,↑

1

=e−βE↑
1

J

−2h1op

(
O(βα′

) + O(βκ1)
)

+ e−βE↑
1

J

−2h1op

O(β) = e−βE↑
1 × O(βκ1+1) (3.93)

and

2N−1∑
n=1

e−βE
′n,↑
tot F n0,↑

2 = e−βE↑
1

J

−2h1op

(
O(βα′

) + O(βκ1) + O(β)
)

= e−βE↑
1 × O(βκ1+1). (3.94)

We similarly calculate the contributions of the other states {|ψn,↓
tot 〉}; then, we finally arrive at

(3.76),

F1 =
1

Ztot

∑
η=↑,↓

e−βEη
1 × O(βκ1+1) = O(βκ1+1),

F2 =
1

Ztot

∑
η=↑,↓

e−βEη
1 × O(βκ1+1) = O(βκ1+1), (3.95)

where we utilized the inequality

e−βEη
1

Ztot

< 1 (3.96)

for η =↑, ↓.
Second, we calculate the summation of {pn,↑

↑↑ , pn,↑
↑↓ , pn,↑

↓↑ , pn,↑
↓↓ }. From Eq. (3.88), we obtain

2N−1∑
n=1

e−βE
′n,↑
tot pn,↑

↑↑ = e−βE↑
1 × O(β0),

2N−1∑
n=1

e−βE
′n,↑
tot pn,↑

↑↓ = e−βE↑
1 × O(β0),

2N−1∑
n=1

e−βE
′n,↑
tot pn,↑

↓↑ = e−βE↑
1 × O(β2κ1),

2N−1∑
n=1

e−βE
′n,↑
tot pn,↑

↓↓ = e−βE↑
1 × O(β2κ1), (3.97)

because s′2n + u′2
n , t′2n + w′2

n , γ2s′2n + u′2
n and γ2t′2n + w′2

n cannot vanish for all n. From Eq. (3.84),
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Figure 3.2: Schematic picture of the three-spin chain. We define the spins 1 and 3 as the
focused spins and the spin 2 as the media spin. The spins 1 and 3 are symmetric with each
other and they indirectly interact to each other through the spin 2.

we have

p↑↑ ≥
1

Ztot

2N−1∑
n=1

e−βE
′n,↑
tot pn,↑

↑↑ = O(β0),

p↑↓ ≥
1

Ztot

2N−1∑
n=1

e−βE
′n,↑
tot pn,↑

↑↓ = O(β0),

p↓↑ ≥
1

Ztot

2N−1∑
n=1

e−βE
′n,↑
tot pn,↑

↓↑ = O(β2κ1),

p↓↓ ≥
1

Ztot

2N−1∑
n=1

e−βE
′n,↑
tot pn,↑

↓↓ = O(β2κ1). (3.98)

We thereby obtain (3.76). We thus obtain (3.76) and (3.77) and hence the inequality (3.28) is
satisfied below a certain value of β in the case (c).

Thus, we prove the inequality (3.28) in the cases (a), (b) and (c). This completes the proof
of Theorem 2.

3.4 Entanglement maximization in three-spin chains

In the present section, we discuss the maximization problem in three-spin chains. A significant
result of the present section is that the maximizing local fields are asymmetric to each other in
a particular parameter region. This effect is nontrivial; the positions of the spins 1 and 3 are
geometrically symmetric to each other and the entanglement is invariant with respect to the
exchange of the two spins. Nevertheless, we obtain |h1op ̸= |h3op| in a region. We show that the
asymmetry can be mainly attributed to the behavior of the magnon. This effect indicates that
the purity of the focused spins is not the only criterion for the enhancement of the bipartite
entanglement. This is different from the case of the entanglement maximization in two-spin
systems, which we considered in the previous chapter.
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3.4.1 Numerical results

The Hamiltonian which we consider in the present section is

Htot =
2∑

i=1

(Jxσx
i σx

i+1 + Jyσy
i σ

y
i+1 + Jzσz

i σ
z
i+1) + hz

1σ
z
1 + hz

mediaσ
z
2 + hz

3σ
z
3, (3.99)

where the spins 1 and 3 are the focused spins and the spin 2 is the media spin (Fig. 3.2). We
assume Jx ≥ Jy ≥ Jz. We solve the entanglement maximization problem about the spins 1
and 3 by fixing the temperature T and the field hz

media on the spin 2. In order to solve this
maximization problem numerically, we use the random search method and the Newton method
together. According to Theorem 2, if the two spins were separated by two spins, there would
always be a critical temperature above which the maximized entanglement is exactly equal to
zero. In the present case, the focused two spins are separated by only one spin and therefore
Theorem 2 does not apply; the elements |F1|,

√
p↑↑p↓↓, |F2| and

√
p↑↓p↓↑ are shown to be of the

same order in the same way as in the proof of Theorem 2. Therefore, it generally depends on the
interaction Hamiltonian and the positions of the focused spins whether the critical temperature
exists or not. As for the Hamiltonian (3.99), we can prove that the entanglement between the
spins 1 and 3 can exist at any temperatures by letting hz

1 = hz
3 → ∞ (Appendix B.5).

In Fig. 3.3, we show the numerical results about the entanglement maximization. The main
feature is that in a parameter region the maximizing local fields h1op and h3op are asymmetric
to each other, namely |h1op| ̸= |h3op|. In this region, the asymmetry must be essential to
the enhancement of the entanglement. The asymmetry appears continuously (solid line in
Fig. 3.3) or discontinuously (broken line in Fig. 3.3). Note that in these case there is no critical
temperature above which the maximized entanglement would be zero.

3.4.2 Analytical argument

Here, we argue the origin of the asymmetry for the XX model; the phase diagram of the other
models are not different from the XX model qualitatively. The main reason of the asymmetry
is the strong dependence of the indirect interaction on the local fields. Then, we focus on the
magnons which mediate the indirect interaction and discuss the effect of the local fields on the
magnons. We show that the following three points affect the asymmetry:

1. The Boltzmann weights of the states with the magnons.

2. Localization of the magnons.

3. Suppression of the off-diagonal elements {F1, F2} due to mixing of different magnon states.

We define a magnon as a spin flip; a down spin in the background of up spins or an up
spin in the background of down spins. For example, the magnon number is two for both of
the states |↑↑↑↓↓〉 and |↑↑↓↓↓〉. In the XX three-spin chain, the number of the magnons can
be either zero or one according to the above definition. The magnon does not exist in the
states |↑1↑2↑3〉 and |↓1↓2↓3〉, nor the entanglement. This suggests that the magnons mediate
the indirect interaction and is essential to the entanglement between the focused spins. Even if
the magnons exist, however, the entanglement can be very small when the magnon is localized
in one site. It is also possible that the off-diagonal elements {F1, F2} in the density matrix are
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Figure 3.3: The parameter ranges in which the asymmetry appears (a) in the case of Jx = Jy =
1 and (b) in the case of Jx = 1, Jy = 0.5. In the asymmetric phase, the optimizing fields h1op

and h3op are asymmetric to each other as |h1op| ̸= |h3op|, while they satisfy |h1op| = |h3op| in the
symmetric phase. On the solid line, the asymmetry appears continuously, while on the broken
line the asymmetry appears discontinuously. The ratio h1op/h3op is shown for (c) hz

media = 4
and (d) T = 1.5 on the chained lines of (a).
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suppressed by the mixture of the two kinds of magnon states. As shown in Eqs. (3.64) and
(3.65), these elements are related to the correlation between the focused spins;

F1 =
〈σx

2σx
N−1 + σy

2σ
y
N−1〉0

4
,

F2 =
〈σx

2σx
N−1 − σy

2σ
y
N−1〉0

4
. (3.100)

Let us show an example; each of the two states

1√
2
(|↑1↑2↓3〉 + |↓1↑2↑3〉),

1√
2
(|↑1↑2↓3〉 − |↓1↑2↑3〉), (3.101)

has one magnon and its entanglement is maximum. However, the correlations which their
magnons mediate are opposite to each other; the first state has 〈σx

1σx
3 〉 = 〈σy

1σ
y
3〉 = 1, whereas

the second one has 〈σx
1σx

3 〉 = 〈σy
1σ

y
3〉 = −1. Then, the off-diagonal elements {F1, F2} are also

opposite to each other. Therefore, the entanglement is enhanced if we suppress the mixedness
of the one state of (3.101).

Let us analytically show how the above three points affect the asymmetry. First, we consider
the case of T ≅ 0 and hz

media ≫ J , that is, the upper left corner of the phase diagram in Fig. 3.3.
In this case, we have h1op = h3op > 0 in the ‘symmetric’ phase and h1op, h3op > 0 but h1op ̸= h3op

in the ‘asymmetric’ phase. Let us consider the interaction J and the local fields h1op, h3op on
the focused spins as perturbation. Then, the four unperturbed ground states |↑1↑2↑3〉, |↑1↑2↓3〉,
|↓1↑2↑3〉 and |↓1↑2↓3〉 are degenerate; we define these four states as {ψ(0)

i }. Because we assume
hz

media ≫ J , we consider the mixing of only these four states. The first-order contribution of the
excited states |↑1↓2↑3〉, |↑1↓2↓3〉, |↓1↓2↑3〉 and |↓1↓2↓3〉 to the above four unperturbed ground
states are given in the forms

ψ
(1)
1 = |↑1↑2↑3〉, ψ

(1)
2 = |↑1↑2↓3〉 +

J

−2hz
media

|↑1↓2↑3〉,

ψ
(1)
3 = |↓1↑2↑3〉 +

J

−2hz
media

|↑1↓2↑3〉, and ψ
(1)
4 = |↓1↑2↓3〉 +

J

−2hz
media

|↑1↓2↓3〉 +
J

−2hz
media

|↓1↓2↑3〉.

(3.102)

Then, we calculate the following matrix:

〈ψ(0)
i |δH|ψ(1)

j 〉 (3.103)

for i, j = 1, 2, 3, 4, where δH is the perturbation Hamiltonian, namely the interaction J and
the local fields h1op, h3op. The matrix (3.103) is given by


−h1op − h3op 0 0 0

0 −h1op + h3op − J2/(2hz
media) −J2/(2hz

media) 0
0 −J2/(2hz

media) h1op − h3op − J2/(2hz
media) 0

0 0 0 h1op + h3op − J2/hz
media

 .

(3.104)
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Diagonalizing this matrix, we obtain the eigenstates in the first-order perturbation as

|ψ1〉 = |↑1↑2↑3〉, ϵ1 = −h1op − h3op − hz
media,

|ψ2〉 =
1√
2

√
1 +

h1op − h3op√
(h1op − h3op)2 + δ2

(
|↑1↑2↓3〉 +

δ

J
|↑1↓2↑3〉

)
+

1√
2

√
1 − h1op − h3op√

(h1op − h3op)2 + δ2

(
|↓1↑2↑3〉 +

δ

J
|↑1↓2↑3〉

)
,

ϵ2 = −δ −
√

(h1op − h3op)2 + δ2 − hz
media,

|ψ3〉 =
1√
2

√
1 − h1op − h3op√

(h1op − h3op)2 + δ2

(
|↑1↑2↓3〉 +

δ

J
|↑1↓2↑3〉

)
− 1√

2

√
1 +

h1op − h3op√
(h1op − h3op)2 + δ2

(
|↓1↑2↑3〉 +

δ

J
|↑1↓2↑3〉

)
,

ϵ3 = −δ +
√

(h1op − h3op)2 + δ2 − hz
media,

|ψ4〉 = |↓1↑2↓3〉 +
δ

J
|↓1↓2↑3〉 +

δ

J
|↑1↓2↓3〉, ϵ4 = h1op + h3op − hz

media + 2δ, (3.105)

where

δ ≡ J2

−2hz
media

. (3.106)

We thereby calculate the elements F1, p↑↑ and p↓↓ of the density matrix ρ12, which contribute
to the concurrence. First, the leading terms of p↑↑ and p↓↓ are obtained as follows:

p↑↑ =
e−βϵ1

Ztot

and p↓↓ =
e−βϵ4

Ztot

. (3.107)

Therefore,
√

p↑↑p↓↓ is equal to eβhz
media and does not depend on h1op and h3op. Then the entan-

glement depends on h1op and h3op mainly through F1 and F2 as is shown in (3.8).
We obtain the leading term of F1 as follows:

F1 =
eβ(hz

media+δ)

2Ztot

(
1 − (h1op − h3op)

2

(h1op − h3op)2 + δ2

)(
eβ
√

(h1op−h3op)2+δ2 − e−β
√

(h1op−h3op)2+δ2
)
. (3.108)

Let us see how F1 depends on the asymmetry h1op − h3op. We consider the following three
terms of F1 separately:

1 − (h1op − h3op)
2

(h1op − h3op)2 + δ2
= 2

1√
2

√
1 +

h1op − h3op√
(h1op − h3op)2 + δ2

· 1√
2

√
1 − h1op − h3op√

(h1op − h3op)2 + δ2
,

eβ
√

(h1op−h3op)2+δ2
and e−β

√
(h1op−h3op)2+δ2

. (3.109)

We start from the point h1op = h3op and gradually increase the asymmetry h1op − h3op to see
how the above three terms affect the entanglement through the element F1. We argue that
there are two effects competing with each other, which may yield the phase boundary in the
upper left corner of the phase diagram in Fig. 3.3.
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The two factors on the right-hand side of the first term in (3.109) appear as coefficients in
the states |ψ2〉 and |ψ3〉 in (3.105). As the asymmetry h1op−h3op is increased, the second factor
decreases and therefore the states |ψ2〉 and |ψ3〉 become dominated by the states |↑1↑2↓3〉 and
|↓1↑2↑3〉, respectively; the first factor decreases when the asymmetry is reversed to h3op − h1op.
Then the magnon becomes localized on the site 1 or 3 as the asymmetry h1op−h3op is increased.
This is a negative effect on the entanglement; the entanglement would be suppressed if the
magnon does not move around the system. Indeed, the element F1 in (3.108) and hence the
entanglement in (3.8) can decrease because of the decrease of the first term in (3.109).

The second and third terms in (3.109) are the Boltzmann weights of the states |ψ2〉 and
|ψ3〉. As the asymmetry h1op−h3op is increased, the second term increases while the third term
decreases exponentially. The state |ψ2〉 has positive transverse correlations 〈σx

1σx
3 〉 and 〈σy

1σ
y
3〉,

while the state |ψ3〉 has negative ones. As has been shown in the example of (3.101), the increase
and decrease of the respective Boltzmann weights enhance the transverse correlations. This is
a positive effect on the entanglement; the transverse correlations can promote the off-diagonal
elements {F1, F2} in Eq. (3.100). Indeed, the element F1 in (3.108) can increase because of the
exponential increase and the decrease of the second and third terms in (3.109).

The above negative and positive effects of the asymmetry on F1 and the entanglement
compete with each other. In other words, in some cases the entanglement is maximized without
the asymmetry, while in other cases it is maximized by introducing the asymmetry. This may
be the reason of the phase boundary in the upper left corner of the phase diagram in Fig. 3.3.

Second, we consider the case hmedia > T ≫ 1, that is, the phase of the asymmetry in
the upper right area of the phase diagram in Fig. 3.3. We numerically obtained h1op ≫ J ,
h3op ≪ −J and |h1op| ̸= |h3op| in this area. We show that the asymmetry indeed promotes
the entanglement by starting from the point h1op = −h3op and increasing the asymmetry
h1op + h3op gradually. We argue that the increase of the entanglement is due to delocalization
of the magnon. In order to calculate the entanglement in the present case, we regard the
interaction between the focused spins and the media spins as perturbation.

Because |h1op| ≫ 1 and |h3op| ≫ 1, we consider only the two states |↑1↑2↓3〉 and |↑1↓2↓3〉 as
the unperturbed states. Then, these two states in the first-order perturbation are given by

|ψ1〉 = |↑1↑2↓3〉 +
J

−2(|h3op| + hz
media)

|↑1↓2↑3〉 +
J2

4(|h3op| + hz
media)(h1op + |h3op|)

|↓1↑2↑3〉,

ϵ1 = −h1op − |h3op| − hz
media (3.110)

and

|ψ2〉 = |↑1↓2↓3〉 +
J

−2(h1op + hz
media)

|↓1↑2↓3〉 +
J2

4(h1op + hz
media)(h1op + |h3op|)

|↓1↓2↑3〉,

ϵ2 = −h1op − |h3op| + hz
media. (3.111)

From these expressions, we can calculate
√

p↑↑p↓↓ as

√
p↑↑p↓↓ = eβ(h1op+|h3op|) J2

4(|h3op| + hz
media)(h1op + hz

media)
. (3.112)

Similarly, the element F1 is given by

F1 = eβ(h1op+|h3op|)

(
J2

4(|h3op| + hz
media)(h1op + |h3op|)

eβhz
media +

J2

4(h1op + hz
media)(h1op + |h3op|)

e−βhz
media

)
.

(3.113)
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To clarify the effect of the asymmetry h1op + h3op, we put

h1op = h0 + δh and h3op = −h0 + δh, (3.114)

where h0 ≫ δh > 0. Then, Eqs. (3.112) and (3.113) are recast into

√
p↑↑p↓↓ = e2βh0

J2

4
[
(hz

media + h0)2 − δh2
] (3.115)

and

F1 = e2βh0

(
J2

8h0(h0 + hz
media − δh)

eβhz
media +

J2

8h0(h0 + hz
media + δh)

e−βhz
media

)
. (3.116)

The former
√

p↑↑p↓↓ does not depend on the symmetry δh up to the first order. On the other
hand, the latter F1 and hence the entanglement in (3.8) increase as δh is increased; the increase
of the first term on the right-hand side of (3.116) excels the decrease of the second term because
of the difference in the Boltzmann weights.

The increase of F1 can be related to delocalization of the magnon. Since |h1op| ≫ 1 and
|hNop| ≫ 1, the magnon is almost localized in the site 3 in |ψ1〉 of (3.110) and in the site 1 in
|ψ2〉 of (3.111), but slightly delocalized owing to the perturbation terms. As we increase δh,
the perturbation terms of |ψ1〉 increase, but those of |ψ2〉 decrease. Therefore, the magnon is
delocalized more in |ψ1〉, while it is localized more in |ψ2〉. This corresponds to the increase of
the first term and the decrease of the second term in (3.116). Because the Boltzmann weight of
the state |ψ1〉 is greater than that of |ψ2〉, the magnon delocalization in |ψ1〉 excels the magnon
localization in |ψ2〉. This corresponds to the increase of F1.

3.5 Entanglement maximization in four-spin chains

In the present section, we consider the maximization problem in four-spin chains (Fig. 3.4). As
has been proved in Theorem 2, the four-spin chain is the shortest one in which the end-to-end
entanglement cannot be generated in the high-temperature limit. We mainly discuss the critical
temperature T̃c and its dependence on the interaction of the spins.

3.5.1 Numerical results

In the present section, we consider the XY spin chains given by the Hamiltonian

Htot =
3∑

i=1

(Jxσx
i σx

i+1 + Jyσy
i σ

y
i+1) + hz

1σ
z
1 + hz

4σ
z
2 + hz

media(σ
z
2 + σz

3). (3.117)

We solve the entanglement maximization problem about the focused spins 1 and 4 by fixing
the temperature T and the field hz

media on the media spins 2 and 3. In order to solve this
maximization problem numerically, we used the random search method and the Newton method
together. According to Theorem 2, there always exists a critical temperature above which the
maximized entanglement is exactly equal to zero because the focused spins 1 and 4 are separated
by two spins.

We show the phase diagram of the XX spin chain and the XY spin chain in Fig. 3.5. As
in the case of the three spins, there is an ‘asymmetric’ phase where the maximizing local field
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Figure 3.4: Schematic picture of four-spin chains. We define the spins 1 and 4 as the focused
spins whereas the spins 2 and 3 as the media spins. The spins 1 and 4 indirectly interact with
each other through the spins 2 and 3. In this system, the two focused spins are separated by
two spins. Therefore, according to Theorem 2, there is a critical temperature above which the
maximized entanglement is equal to zero.

|h1op| is not equal to |h4op|. Moreover, the maximized entanglement is equal to zero in a region.
The qualitatively different behavior of the critical temperature between the XX and the XY
chains is due to the conservation of the angular momentum in the z direction, as we will argue
in Section 3.5.2.

3.5.2 Difference between the XX and the XY model

We discuss the behavior of the critical temperature in the XX and XY chains. In the XX
chain, the critical temperature increases as the media field hz

media is increased, while in the XY
chain it does not. This difference is attributed to the conservation of the angular momentum
in the z direction. In the XX chain, we can suppress the mixture of the states with more than
two magnons by choosing the fields as

hz
1 = −h0

hz
i = h0, for i = 2, 3, · · ·N, (3.118)

and h0β ≫ 1. Then, the density matrix e−βHtot is almost equivalent to the ground state of
Htot and the mixture of the other states can be suppressed exponentially by increasing h0. The
ground state is given by the following form;

a0|↓1↑2 · · · ↑N〉 + a1|↑1↓2 · · · ↑N〉 + a2|↑1↑2↓3 · · · ↑N〉 + · · · + aN−1|↑1↑2 · · · ↓N〉, (3.119)

where we can calculate ak by the kth order perturbation to have

ak = O

(
Jk

hk
0

)
(3.120)

for k = 1, 2, · · ·N − 1 with the factor hk
0 coming from the energy denominator. In the ground

state (3.119), the element p↓↓ is equal to zero because there is no state with more than one down
spins in (3.119). The entanglement between the spins 1 and N exists because |F1| ∝ |aN−1| ∝
|J/h0|N−1 > 0. The mixture of the excited states generally destroys the entanglement, but is
suppressed exponentially because of the Boltzmann weights. The entanglement between the
spins 1 and N thereby survives.

On the other hand, in the XY chains, we cannot control the number of the magnons in
the ground state by increasing the media fields. Therefore, p↑↑p↓↓ is not zero in the ground
state, which invalidates the argument for the XX model. This may account for the fact that
the critical temperature does not increase as the media fields hz

media are increased.
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Figure 3.5: The phase diagrams for the four-spin chain, (a) in the case of Jx = Jy = 1 and
(b) in the case of Jx = 1, Jy = 0.5. In the ‘asymmetric’ phase, the maximizing fields h1op and
h4op are asymmetric to each other as |h1op| ̸= |h4op|, while they satisfy |h1op| = |h4op| in the
‘symmetric’ phase. The asymmetry appears continuously on the solid line, while it appears
discontinuously on the broken line. The maximized entanglement vanishes beyond the chained
line.
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3.5.3 Calculation of the critical temperature

Let us calculate the critical temperature analytically. It is generally difficult to solve the
entanglement maximization analytically. At the critical temperature, however, we numerically
confirmed that the maximizing local fields take the form h1op = h4op → ∞ in some region of the
‘symmetric’ phases in Fig. 3.5. For the XX model, this happens everywhere in the ‘symmetric’
phase in Fig. 3.5 (a), whereas for the XY model it happens only in the lower one of the
two ‘symmetric’ phases Fig. 3.5 (b). In such regions, we can derive the critical temperature
analytically. In the ‘asymmetric’ phases in Fig. 3.5, on the other hand, the maximizing local
fields do not have simple forms except in the case of the XX model, for which they approximately
have the form of h1op → ∞ and h4op = −hz

media. We consider the critical temperature in the
‘asymmetric’ phase in Fig. 3.5 (a) for the XX model in Appendix B.6.

Let us now derive the critical temperature in the limit h1op = h4op → ∞. In order to
calculate the entanglement in this limit, we regard the coupling Hamiltonian Hcouple between the
focused spins and the media spins as perturbation. Because of the condition h1op = h4op → ∞,
we consider only the following four unperturbed states:

|↑1↑4〉 ⊗ |ψ1〉, |↑1↑4〉 ⊗ |ψ2〉, |↑1↑4〉 ⊗ |ψ3〉 and |↑1↑4〉 ⊗ |ψ4〉, (3.121)

where {|ψn〉}4
n=1 are the eigenstates of the media spins. The states {|ψn〉}4

n=1 and their corre-
sponding eigenvalues are given by the solution of the bipartite XY spin chain:

|ψ1〉 =
1√
2

(
|↑2↓3〉 − |↓2↑3〉

)
, ϵ1 = −Jx − Jy,

|ψ2〉 =
1√
2

(
|↑2↓3〉 + |↓2↑3〉

)
, ϵ2 = Jx + Jy,

|ψ3〉 = a|↓3↓4〉 − b|↑2↑3〉, ϵ3 = −
√

4(hz
media)

2 + (Jx − Jy)2,

|ψ4〉 = b|↓3↓4〉 + a|↑2↑3〉, ϵ4 =
√

4(hz
media)

2 + (Jx − Jy)2, (3.122)

where we define a and b as

a =
1√
2

√
1 − 2hz

media√
4(hz

media)
2 + (Jx − Jy)2

, b =
1√
2

√
1 +

2hz
media√

4(hz
media)

2 + (Jx − Jy)2
. (3.123)

Next, we calculate the perturbation of {|↑1↑4〉⊗ |ψn〉}4
n=1 as in the proof of Theorem 2. The

perturbation contribution of |↑1↑4〉 ⊗ |ψn0〉 to the leading term of the element F1 is given by

J2

4h1oph4op

(
γsn0wn0 + un0tn0 + γ2tn0un0 + γwn0sn0

)
, (3.124)

where {sn, tn, un, wn} are defined as the coefficients of {|ψn〉}4
n=1 in (3.122):

|ψn〉 = sn|↑2↑3〉 + tn|↑2↓3〉 + un|↓2↑3〉 + wn|↓2↓3〉. (3.125)

Equations (3.124) and (3.125) correspond to Eqs. (3.59) and (3.40), respectively. Similarly, the
perturbation contribution of |↑1↑4〉 ⊗ |ψn0〉 to the leading term of the element F2 is given by

J2

4h1oph4op

(
γ2wn0sn0 + γun0tn0 + γtn0un0 + sn0wn0

)
, (3.126)
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which corresponds to Eq. (3.60). On the other hand, Eqs. (3.56)–(3.58) give the perturbation
contribution of |↑1↑4〉 ⊗ |ψn0〉 to the leading terms of the elements {p↑↓, p↓↑, p↓↓} as

J2

4h2
4op

(
γ2s2

n0
+ t2n0

+ γ2u2
n0

+ w2
n0

)
,

J2

4h2
1op

(
γ2s2

n0
+ γ2t2n0

+ u2
n0

+ w2
n0

)
,

J4

16h2
1oph

2
4op

(
γ4s2

n0
+ γ2t2n0

+ γ2u2
n0

+ w2
n0

)
, (3.127)

respectively.
We have now all the ingredients for calculating the matrix elements {F1, F2, p↑↑, p↑↓, p↓↑, p↓↓}

in the limit h1op = h4op → ∞. We consider the mixture of the perturbed states of |↑1↑4〉⊗ |ψ1〉,
|↑1↑4〉⊗|ψ2〉, |↑1↑4〉⊗|ψ3〉 and |↑1↑4〉⊗|ψ4〉. These four states mix with the Boltzmann weights
of e−β(ϵ1+δϵ1), e−β(ϵ2+δϵ2), e−β(ϵ3+δϵ3) and e−β(ϵ4+δϵ4), where we define the energy perturbations
as {δϵi}4

i=1. In the limit h1op = h4op → ∞, we have to consider only the leading terms of
{F1, F2, p↑↑, p↑↓, p↓↑, p↓↓}. Therefore, we ignore the energy perturbation {δϵi}4

i=1. We thus arrive
at the elements of the density matrix as

ZtotF1 =
J2

4h2
0

[
−4abγ sinh β|ϵ3| − (1 + γ2) sinh β|ϵ1|

]
,

ZtotF2 =
J2

4h2
0

[
−2ab(1 + γ2) sinh β|ϵ3| − 2γ sinh β|ϵ1|

]
, (3.128)

and

Ztotp↑↑ = Ztot = 2 cosh β|ϵ1| + 2 cosh β|ϵ3|,

Ztotp↑↓ =
J2

4h2
0

[
(γ2a2 + b2)e−βϵ4 + (a2 + γ2b2)e−βϵ3 + (γ2 + 1) cosh β|ϵ1|

]
,

Ztotp↓↑ =
J2

4h2
0

[
(γ2a2 + b2)e−βϵ4 + (a2 + γ2b2)e−βϵ3 + (γ2 + 1) cosh β|ϵ1|

]
,

Ztotp↓↓ =
J4

16h4
0

[
(γ4a2 + b2)e−βϵ4 + (a2 + γ4b2)e−βϵ3 + 2γ2 cosh β|ϵ1|

]
, (3.129)

where we defined h0 ≡ h1op = h4op with h0 → ∞.
By utilizing these parameters, we obtain a necessary and sufficient condition (3.9) for the

existence of the entanglement in the form of the following two inequalities:

Z2
tot(F

2
1 − p↑↑p↓↓) =

[
4abγ sinh β|ϵ3| + (1 + γ2) sinh β|ϵ1|

]2

− Ztot

[
(γ4a2 + b2)e−βϵ4 + (a2 + γ4b2)e−βϵ3 + 2γ2 cosh β|ϵ1|

]
> 0, (3.130)

or

Z2
tot(F

2
2 − p↑↓p↓↑) =

[
2ab(1 + γ2) sinh β|ϵ3| + 2γ sinh β|ϵ1|

]
−

[
(γ2a2 + b2)e−βϵ4 + (a2 + γ2b2)e−βϵ3 + (γ2 + 1) cosh β|ϵ1|

]
> 0. (3.131)

In the case of the XX model with γ = 0, in particular, the above condition becomes simpler;
because we have F2 = 0 for γ = 0, the inequality (3.131) is never satisfied. The condition
(3.130), on the other hand, reduces to

sinh2(β|ϵ1|) − Z−βϵ4
tot = sinh2(2βJ) − Ztote

−2βhz
media > 0, (3.132)
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Figure 3.6: Comparison of the phase boundary (a) in the case of Jx = Jy = 1 and (b) in
the case of Jx = 1, Jy = 0.5. The critical temperature calculated according to Eq. (3.130) is
indicated by the broken lines and the numerically calculated one by the solid lines, which are
the same as in Fig. 3.5. The critical temperatures calculated by Eqs. (B.58) and (3.131) are
also indicated by the chained line in (a) and the thin solid line in (b), respectively. In the
XX spin chain, the approximation gives almost the same values as the numerical ones in the
symmetric phase, while in the XY spin chain, the approximated values from (3.130) fit the
numerical ones in the range of 0 ≤ hz

media ≤ 0.851.
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or

e2βhz
media sinh2(2βJ)

2 cosh(2βJ) + 2 cosh(2βhz
media)

> 1. (3.133)

In Fig. 3.6, we compare the critical temperatures calculated according to Eqs. (3.130) and
(3.131) with the numerically calculated ones. We also plot in Fig. 3.6 (a) for the XX model, the
critical temperature of the ‘asymmetric’ phase according to Appendix B.6. The approximations
generally give precise estimates for the XX model, particularly for the ‘symmetric’ phase.

For the approximation for the ‘asymmetric’ phase, the consistency is fairly good in the
range shown in Fig. 3.6 (a) as well as even in the range hz

media ≫ J with a slight deviation.
The deviation is because we used the approximation h4op = −hz

media, which is not correct in
fact; for hz

media = 50 and 100, for example, h4op = −59 and h4op = −100, respectively. The
approximate estimates of the critical temperature are T̃c = 10.31 and 18.05 for hz

media = 50 and
100, respectively, while the numerical estimates are T̃c = 10.37 and 18.20, respectively.

For the XY model, the approximate estimate shown in Fig. 3.6 (b) is due to (3.130) in the
range bounded by the broken line and is due to (3.131) in the range bounded by the thin solid
line. The former gives good estimates in the range of 0 ≤ hz

media ≤ 0.851.

3.6 Summary and conclusion

We have analytically and numerically studied the maximum value of the thermal entanglement
between two spins which indirectly interact with each other. We showed two theorems on its
general properties. First, if the indirect interaction satisfies the condition (3.10), the maximized
entanglement is always equal to zero. We can say that in this case the interaction is not
quantum but classical. This is one of the essential difference between the direct interaction and
the indirect interaction; the direct interaction always generates non-zero entanglement. We
also proved that the maximized entanglement is equal to zero above the critical temperature if
the two spins are separated by two or more spins.

Secondly, in the three-spin chains and the four-spin chains, we showed properties of the
maximized entanglement which is calculated numerically. In the three-spin chains, we showed
that the maximizing local fields are not symmetric as h1op ̸= h3op (Fig. 3.3) in some parameter
regions. We have explained the asymmetry qualitatively and quantitatively. We attributed
the appearance of the asymmetry to the effects on the magnons, which mediate the indirect
interaction. In other words, the local fields affect the effective interaction between the fo-
cused spins, while the direct interaction is determined independently of the external fields. In
Eqs. (3.11)–(3.13), we also gave an example where the media fields also affect the interaction.
In the four-spin chains, we demonstrated that the maximized entanglement vanishes above the
certain critical temperature. Because of the difference in the symmetric properties between
the XX and XY spin chains, the dependence of the critical temperatures on the media fields
are qualitatively different between the two systems. We calculated the critical temperature
analytically in some parameter regions.

In conclusion, we have clarified several properties of the entanglement which is generated
from the indirect interaction. Our study has given several general limits for the entanglement
generation. We have also shown some properties of the external fields which is closely related to
the entanglement enhancement. However, there are many problems to be solved on the general
relationship between the external fields and the entanglement enhancement. In particular,
we have not shown the properties of the multipartite entanglement. It is obvious that the
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external fields also have effect on qualitative behaviors of the multipartite entanglement; the
most famous one is the quantum phase transition of the transverse Ising model. In future, we
plan to investigate the general properties of the enhancement of the multipartite entanglement
by external fields.
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Chapter 4

Summary and future works

In the present chapter, we conclude the present thesis and show the future works.

4.1 Conclusion

In the present thesis, we have given several answers to the following problems:

1. The general principles on the enhancement of (bipartite and multipartite) entanglement.

2. The general properties of the enhancement of the thermal entanglement at high temper-
atures.

3. The general properties of the long distance entanglement, as well as the method of gen-
erating it, if possible.

First, we have shown that the entanglement enhancement by external fields is attributed to
the increase of the purity in the two-spin system. In the multipartite spin systems, the increase
of the purity is not the only factor for the entanglement enhancement. In particular, in the
three-spin chain, the enhancement of the entanglement can be brought about by the influence on
the behavior of the magnons, which mediate the indirect interaction. So far, this results cannot
be generalized to the other spin systems. However, we believe that the influence on a interaction
by the external fields can play an essential role in the entanglement enhancement. Second, we
have shown general properties of the maximized entanglement in the high-temperature limit.
The protection of the thermal entanglement is impossible for any values of the local fields if
the two spins are separated by two or more spins. Third, above a certain temperature, the long
distance entanglement cannot be generated as a corollary of Theorem 2 in Chapter 3.

4.2 Future works

In the present thesis, we cannot give perfect answers to all the above problems. Therefore, we
continue to study the above problems in more detail. First, we plan to research the generation
of the long-distance entanglement by the local fields in the low-temperature limit. We have
already obtained some results on it; in order to generate the long distance entanglement between
the focused spins, we have to modulate the local fields on the focused spins and the neighboring
spins (Fig. 4.1). Second, we also plan to investigate the general properties of the enhancement
of the multipartite entanglement, which reflects the total quantumness of the system. The

73



Figure 4.1: Schematic picture of the generation of the long distance entanglement. Four spins
connect to the media system and we utilize two spins as one probe. We apply the local fields
to these probe spins. One is very strong and the other is very weak. By choosing these local
fields appropriately, we can generate the entanglement between the spins 1 and n.

research of the multipartite entanglement is essential to survey the relationship between the
quantum phase transition and the enhancement of the quantumness. In the ground states,
there are several useful measures of the multipartite entanglement [21, 23]. Therefore, we are
going to work on the entanglement enhancement in the ground states.
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Appendix A

Appendix for Chapter 2

A.1 Numerical comparison

In the present Appendix, we compare the asymptotes in Eqs. (2.11) and (2.13) with those in
Eqs. (2.15) and (2.16) in the case of {Jx, Jy, Jz} = {1/3, 1/3, 1/3}. In this case, Eqs. (2.11),
(2.13), (2.15) and (2.16), respectively, reduce to

e2h′
(2.11) =

12h′2
(2.11)

β
, (A.1)

N(2.13) = β
1

3h′
(2.11)

− 2e−2h′
(2.11) , (A.2)

h(2.15) =
log 1/β

2β
, (A.3)

N(2.16) = β
2

3 log 1/β
, (A.4)

where the subscripts denote the equation number of the corresponding asymptotes. In Fig. A.1,
we show the comparison of these asymptotes with the numerically rigorous estimates of hop and
Nop obtained from Eq. (2.95). We can see that the convergences of h(2.15)/hop and N(2.16)/Nop

are very slow, while the convergences of h(2.11)/hop and N(2.13)/Nop are much faster. The
convergence of N(h(2.11))/Nop, where N(h) is given in Eqs. (2.73) and (2.74), is even faster
than that of N(2.13)/Nop; at T = 100, the values of N(h(2.11))/Nop and N(2.13)/Nop are 0.999998
and 0.9994, respectively.

A.2 Lemma 2 in degenerate cases

In the proof of Lemma 2, we left out the cases of ζ = 0 or ζ = ±1 in Eq. (2.23). In the present
Appendix, we prove that Lemma 2 still holds in these cases. First, the general form of Eq. (2.21)
is given in the basis of {|µ〉}4

µ=1 as follows:

ZρT1

β→0−−→


e2h′

a12f12β a31f31β a32f32β
a21f21β e2ζh′

a41f41β a42f42β
a13f13β a14f14β e−2ζh′

a34f34β
a23f23β a44f42β a43f43β e−2h′

 , (A.5)
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Figure A.1: The comparison between the asymptotes in Eqs. (2.11) and (2.13) and those in
Eqs. (2.15) and (2.16). (a) for the ratios h(2.11)/hop (solid line) and h(2.15)/hop (dashed line),
where h(2.11) and h(2.15) are derived from Eqs. (A.1) and (A.3), respectively, and hop is the

numerically rigorous value calculated from Eq. (2.95). At T = 100, the values of h
(2.11)
op /hop

and h
(2.15)
op /hop are 1.0007 and 0.4438, respectively. (b) for the ratios N(2.13)/Nop (solid line)

and N(2.16)/Nop (dashed line), where N(2.13) and N(2.16) are derived from Eqs. (A.2) and (A.4),
respectively, and Nop is the numerically rigorous value calculated from Eq. (2.95). At T = 100,
the values of N(2.13)/Nop and N(2.16)/Nop are 0.9994 and 2.494, respectively.
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where {aij} are constants of order 1 and {fµν} are defined in Eq. (2.22). Note that on the
diagonal of Eq. (A.5), the second term of Eq. (2.21) is neglected in comparison to the first
term. In the cases of ζ ̸= 0 and ζ ̸= ±1, Eq. (A.5) reduces to Eq. (2.23).

In the case of ζ = 0, we have {E ′
1, E

′
2, E

′
3, E

′
4} = {2h′, 0, 0,−2h′} and f23 = f32 = e−E′

2 = 1,
and hence Eq. (A.5) reduces to

ZρT1

β→0−−→


e2h′

a12
βe2h′

h′ a31
βe2h′

h′ a32β

a21
βe2h′

h′ 1 a41
βe2h′

h′ a42
β
h′

a13
βe2h′

h′ a14
βe2h′

h′ 1 a34
β
h′

a23β a24
β
h′ a43

β
h′ e−2h′

 , (A.6)

In this case, the product of the diagonal elements (PD) of ZρT1 is 1, whereas the maximum of
the absolute values of the products including off-diagonal elements (POD) is of order e4h′

β2/h′2,

which comes from the product −e2h′ × a41
βe2h′

h′ × a14
βe2h′

h′ × e−2h′
. Therefore, it is necessary for

det ρT1 < 0 that the order of e4h′
β2/h′2 is greater or of order 1, which leads to

βh = h′ >
log 1/β

2
(A.7)

as in Eq. (2.24). Thus, Lemma 2 is proved in the case of ζ = 0.
The proofs for the cases of ζ = 1 and ζ = −1, or the cases of {h1, h2} = {2h, 0} and

{h1, h2} = {0, 2h}, are essentially the same. We here present the proof only for the case of
ζ = 1. In this case, we have {E ′

1, E
′
2, E

′
3, E

′
4} = {2h′, 2h′,−2h′,−2h′}, f12 = f21 = e2h′

and
f34 = f43 = e−2h′

, and hence Eq. (A.5) reduces to

ZρT1

β→0−−→


e2h′

a12βe2h′
a31

βe2h′

h′ a32
βe2h′

h′

a21βe2h′
e2h′

a41
βe2h′

h′ a42
βe2h′

h′

a13
βe2h′

h′ a14
βe2h′

h′ e−2h′
a34βe−2h′

a23
βe2h′

h′ a24
βe2h′

h′ a43βe−2h′
e−2h′

 , (A.8)

The PD of ZρT1 is 1, whereas the maximum of the absolute values of the PODs is of or-

der e4h′
β2/h′2 or of order e8h′

β4/h′4, which come from −e2h′ × a41
βe2h′

h′ × a14
βe2h′

h′ × e−2h′
and

a32
βe2h′

h′ × a41
βe2h′

h′ × a14
βe2h′

h′ × a23
βe2h′

h′ , respectively. Therefore, it is also necessary for det ρT1 < 0

that e4h′
β2/h′2 is greater or of order 1, which again leads to Eq. (A.7). Thus, Lemma 2 is also

proved in the case of ζ = 1.

A.3 Proof of Eq. (2.67)

In order to prove Eq. (2.67), we begin with the standard operator expansion of an arbitrary
2 ⊗ 2 operator Q:

Q =
1

4

∑
i,j=0,x,y,z

qijσ
i
1 ⊗ σj

2, (A.9)
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where σ0
1 = σ0

2 = I is the two-dimensional identity operator. The coefficients qij are given by

qij = tr
(
Qσi

1 ⊗ σj
2

)
(A.10)

because tr(I ⊗ I) = 4 and the other terms are traceless.
Symmetries that the Hamiltonian (2.59) possesses eliminate many of the coefficients {qij}

of the expansion of operators with the same symmetries, such as exp(−βxHop
tot). First, a

straightforward calculation shows that the Hamiltonian (2.59) commutes with the global phase
flip

Uflip = ei(π/2)σz
1 ⊗ ei(π/2)σz

2

= −σz
1 ⊗ σz

2. (A.11)

This operator flips the signs of σx and σy. For an operator Q that commutes with Uflip, the
coefficients {q0x, q0y, qx0, qy0, qxz, qyz, qzx, qzy} vanish. For example, we have

qxz = tr[Q(σx
1 ⊗ σz

2)]

= tr[Uflip
−1QUflipUflip

−1(σx
1 ⊗ σz

2)Uflip]

= tr[Q((−σx
1 ) ⊗ σz

2)]

= −qxz = 0. (A.12)

The same argument gives q0x = q0y = qx0 = qy0 = qxz = qyz = qzx = qzy = 0.
Next, the Hamiltonian (2.59) is a real matrix in the σz basis. Noting that only σy has

imaginary elements in this representation, we have, for an operator Q with the symmetry
Q∗ = Q,

(qxy)
∗ = tr[Q∗((σx

1 )∗ ⊗ (σy
2)

∗)]

= tr[Q(σx
1 ⊗ (−σy

2))]

= −qxy. (A.13)

On the other hand, the Hermiticity of an operator Q is followed by

(qxy)
∗ = tr[((σx

1 )† ⊗ (σy
2)

†)Q†]

= tr[Q(σx
1 ⊗ σy

2)]

= qxy. (A.14)

The above argument shows qxy = qyx = 0.
Finally, the Hamiltonian (2.59) is symmetric with respect to the following set of operations:

U12 = (ei(π/2)σx
1 ⊗ ei(π/2)σx

2 )P12

= −(σx
1 ⊗ σx

2 )P12, (A.15)

where P12 is the permutation of the spins 1 and 2. The operator σx
1 ⊗ σx

2 flips the signs of σz
1 and

σz
2 but the permutation P12 makes the signs back to the original ones, because the local fields

are in the opposite directions in the Hamiltonian (2.59). For an operator Q that commutes
with U12, we have

qz0 = tr[Q(σz
1 ⊗ I)]

= tr[U12
−1QU12U12

−1(σz
1 ⊗ I)U12]

= tr[Q(I ⊗ (−σz
2))]

= −q0z. (A.16)
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To summarize, an operator with the same symmetries as the Hamiltonian (2.59) is expanded
in the form

Q =
1

4

[
q00I ⊗ I + qz0(σ

z
1 ⊗ I − I ⊗ σz

2)

+
∑

i=x,y,z

qiiσ
i
1 ⊗ σi

2

]
. (A.17)

In (2.66), the operators e−βxHop
tot and e−β(1−x)Hop

tot have the same symmetries as the Hamiltonian
Hop

tot and hence are given in the form (A.17).
Since the density operator ρ = e−βHop

tot is given in the form (A.17), the partial transpose ρT1

is also of the form (A.17); in the σz basis, the partial transpose T1 only flips the sign of σy
1 and

hence changes only the sign of qyy in the expansion, not the symmetries nor the form of the
expansion.

The state |φ−〉 is a non-degenerate eigenstate of the operator ρT1 if the minimum eigenvalue
λ− is negative. Suppose that the operator ρT1 commutes with a symmetry operator U . Then
the projection operator |φ−〉〈φ−| should have the same symmetry. This is shown as follows.
Since we have

ρT1U |φ−〉 = UρT1 |φ−〉 = λ−U |φ−〉 (A.18)

and |φ−〉 is non-degenerate, the vector U |φ−〉 must be the same vector as |φ−〉 except for
a phase: U |φ−〉 = eiθ|φ−〉. Therefore, the projection operator |φ−〉〈φ−| commutes with U if
the negativity is non-zero. This means that |φ−〉〈φ−| as well as (|φ−〉〈φ−|)T1 have the same
symmetries as the Hamiltonian Hop

tot and are expanded in the form (A.17).
We thereby arrive at the conclusion that the operator

e−βxHop
totn̂e−β(1−x)Hop

tot

=e−βxHop
tot

[
N(ρop)

(
I ⊗ I

)
+ 2

(
|φ−〉〈φ−|

)T1
]
e−β(1−x)Hop

tot (A.19)

has the same symmetries as the Hamiltonian Hop
tot and hence is expanded in the form (A.17).

A.4 The Eigenvalues of (2.70)

In this section, we prove that in the eigenvalues of the matrix (2.70), only a1 − |a2| can have
a negative value for {Jx, Jy} ≥ Jz ≥ 0 and 0 ≥ Jz ≥ {Jx, Jy}. The four eigenvalues are given
in (2.72). Because a1 > 0, |a2| > 0 and b2

2 + b2
3 > 0, we obviously have

a1 + |a2| > 0, b1 +
√

b2
2 + b2

3 > 0. (A.20)

Therefore, we only have to prove that b1 −
√

b2
2 + b2

3 > 0.

First, we prove this inequality for h = 0. For h = 0, the eigenvalue b1 −
√

b2
2 + b2

3 reduces
to

b1 −
√

b2
2 + b2

3

= eβJz cosh
[
β(Jx + Jy)

]
− e−βJz sinh

[
β|Jx − Jy|

]
=

1

2

(
eβ(Jx+Jy+Jz) + eβ(−Jx−Jy+Jz)

− eβ(|Jx−Jy |−Jz) + eβ(−|Jx−Jy |−Jz)
)
. (A.21)
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For {Jx, Jy} ≥ Jz ≥ 0, we have

eβ(Jx+Jy+Jz) − eβ(|Jx−Jy |−Jz) ≥ 0, (A.22)

which leads to b1 −
√

b2
2 + b2

3 > 0. For 0 ≥ Jz ≥ {Jx, Jy}, we have

eβ(−Jx−Jy+Jz) − eβ(|Jx−Jy |−Jz)

=

{
2e−βJy sinh

[
β(−Jx + Jz)

]
for 0 ≥ Jz ≥ Jx ≥ Jy,

2e−βJx sinh
[
β(−Jy + Jz)

]
for 0 ≥ Jz ≥ Jy ≥ Jx.

(A.23)

Because −Jx + Jz ≥ 0 and −Jy + Jz ≥ 0,

eβ(−Jx−Jy+Jz) − eβ(|Jx−Jy |−Jz) ≥ 0 (A.24)

for 0 ≥ Jz ≥ {Jx, Jy}, which also leads to b1 −
√

b2
2 + b2

3 > 0. Thus, b1 −
√

b2
2 + b2

3 > 0 is proved
for h = 0.

Next, we prove b2
1 − b2

2 − b2
3 > 0 for arbitrary h, which is equivalent to b1 −

√
b2
2 + b2

3 > 0

because b1 +
√

b2
2 + b2

3 > 0. The value of b2
1 − b2

2 − b2
3 is calculated as follows:

b2
1 − b2

2 − b2
3

=e2βJz

(
cosh2 βJ2 −

4h2

J2
2

sinh2 βJ2

)
− e−2βJz sinh2 βJ1

=e2βJz

[
1 +

(
1 − 4h2

J2
2

)
sinh2 βJ2

]
− e−2βJz sinh2 βJ1

=e2βJz +
e2βJz(Jx + Jy)

2

J2
2

sinh2 βJ2 − e−2βJz sinh2 βJ1. (A.25)

Only the second term depends on h through J2 =
√

4h2 + (Jx + Jy)2. The term (sinh βJ2/J2)
2

is a monotonically increasing function of J2 for J2 > 0, while J2 is a monotonically increasing
function of h2. Therefore, b2

1 − b2
2 − b2

3 is also a monotonically increasing function of h2. Since
we already proved that b2

1 − b2
2 − b2

3 is positive for h = 0, we obtain b2
1 − b2

2 − b2
3 > 0 for any

values of h, and thus b1 −
√

b2
2 + b2

3 > 0 is proved.
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Appendix B

Appendix for Chapter 3

B.1 Relation between Theorem 1 and the quantum dis-

cord

In Theorem 1, we show a necessary condition for the entanglement entanglement to be gener-
ated by the maximizing local fields. In this section, we answer the following question; if the
condition (3.10) is satisfied, can the quantum discord still exist? The answer to this question
is yes and we show an example in the following.

First, we review the definition of the quantum discord [57]. The quantum discord Q(ρ12)
between the spins 1 and 2 is defined as follows:

Q(ρ12) ≡ I(ρ12) − J (ρ12), (B.1)

where I(ρ) is the quantum mutual information defined by

I(ρ) ≡ S(ρ1) + S(ρ2) − S(ρ12) (B.2)

with S(ρ) the von Neumann entropy S(ρ) ≡ tr(ρ ln ρ). On the other hand, J (ρ) is the op-
timized classical mutual information, which is the maximum information obtained from the
measurement of the spins 1 or 2, and is defined by

J (ρ) ≡ S(ρ2) − min
Πj

∑
j

pjS(ρ2|Πj
), (B.3)

where S(ρ2) is the initial von Neumann entropy of the spin 2 and
∑

j pjS(ρ2|Πj
) is the average

of the von Neumann entropy after the measurement of the spin 1 in the basis of Πj. If the
quantum discord (B.1) has a non-zero value, the correlation between these two spins may not
be explained by classical theory.

Let us consider the Hamiltonian

Hint = σx
1σx

3 + σx
3σx

2 . (B.4)

This is a transverse Ising chain and satisfies the condition (3.10) as

[HA(σ1), HB(σ2)] = 0,

HA = σx
1σx

3 ,

HB = σx
3σx

2 . (B.5)
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Therefore, the entanglement can never exist between the spins 1 and 2 in the thermal state of
Hint + hz

1σ
z
1 + hz

2σ
z
2 however we modulate hz

1 and hz
3. Indeed, the density matrix ρ12 is

ρ12 =


0.6627 0 0 0.09865

0 0.1513 0.09865 0
0 0.09865 0.1513 0

0.09865 0 0 0.03456

 . (B.6)

for hz
1 = hz

2 = 1 and T = 1. This system has no entanglement. However, it has a non-zero
quantum discord. We utilize the criterion in Ref. [58] to prove this. First, we separate the
density matrix into the following four blocks:

ρ11 = tr1
(
|↑1〉〈↑1|ρ12

)
=

(
0.6627 0

0 0.1513

)
, ρ12 = tr1

(
|↑1〉〈↓1|ρ12

)
=

(
0 0.09865

0.09865 0

)
,

ρ21 = tr1
(
|↓1〉〈↑1|ρ12

)
=

(
0 0.09865

0.09865 0

)
, ρ22 = tr1

(
|↓1〉〈↓1|ρ12

)
=

(
0.1513 0

0 0.03456

)
,

(B.7)

where tr1 denotes the trace operation only on the spin 1. A necessary and sufficient condition
for zero discord is given by the following two statements:

[ρij, (ρij)†] = 0 for i, j = 1, 2 (B.8)

and

[ρij, ρi′j′ ] = 0 for i, j, i′, j′ = 1, 2. (B.9)

The density matrix (B.6) satisfies the first condition (B.8) because it is a real matrix. However,
the second (B.9) condition is not satisfied. Indeed,

ρ11ρ12 =

(
0 0.0653822

0.0149309 0

)
, ρ12ρ11 =

(
0 0.0149309

0.0653822 0

)
, (B.10)

and we have ρ11ρ12 ̸= ρ12ρ11. Therefore, there exists a quantum discord between the spins
1 and 2. This shows that the condition in Theorem 1 is applicable only to the existence of
the entanglement. So far, we are not sure whether there exists a condition for the indirect
interaction to generate a quantum discord.

B.2 In the case h1op − hNop = O(β−κ̃) with κ̃ ≤ 0 in the

case (b)

Here, we discuss the case of h1op − hNop = O(β−κ̃) with κ̃ ≤ 0 in the case (b). In this case, we
cannot consider the unperturbed states |↑1↓N〉 ⊗ |ψn

media〉 and |↓1↑N〉 ⊗ |ψn
media〉 independently

because their eigenvalues are almost degenerate. Then, the magnitudes of the elements F1 and
F2 can be different from the ones in (3.34). We can still apply the same calculation to the other
parameters {P ↑↑

↑↓,↓↑, P
↑↑
↑↑,↓↓} as in the case κ̃ > 0; they are of order β2κ1+2κN .
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We here prove that F 2
1 and F 2

2 are of order β2κ1+2κN or higher. In order to prove this, we
separate H1 + HN as follows;

H1 + HN = HLO + δHLO,

HLO =
1

2
(h1op + hNop + h0)σ

z
1 +

1

2
(h1op + hNop − h0)σ

z
N

= −(h1op + hNop)
(
|↑1↑N〉〈↑1↑N | − |↓1↓N〉〈↓1↓N |

)
− h0

(
|↑1↓N〉〈↑1↓N | − |↓1↑N〉〈↓1↑N |

)
,

δHLO = −(h1op − hNop − h0)
(
|↑1↓N〉〈↑1↓N | − |↓1↑N〉〈↓1↑N |

)
,

=
1

2
(h1op − hNop − h0)(σ

z
1 − σz

N), (B.11)

where we define as h0 = O(βκ̃0) with 0 < κ̃0 < 1, and regard βδHLO as perturbation. The

unperturbed density matrix ρ̃
(0)
tot is given by

ρ̃
(0)
tot = e−βH̃

(0)
tot , (B.12)

where H̃
(0)
tot is defined by

H̃
(0)
tot = Hmedia + Hcouple + HLO. (B.13)

Because h0 = O(β−κ̃0) with 0 < κ̃0 < 1, the magnitudes of the unperturbed elements {F (0)
1 , F

(0)
2 }

of ρ̃
(0)
tot are given by

O(βκ1+κN+κ′
0) and O(βκ1+κN+κ0), (B.14)

where

κ0 = min(κN , 1) and κ′
0 = min(κN , κ̃0, 1). (B.15)

The density matrix in the first-order perturbation is given by

ρtot =
1

Z(0) + δZ

(
e−βH̃

(0)
tot + β

∫ 1

0

e−βxH̃
(0)
tot δHLOe−β(1−x)H̃

(0)
totdx

)
, (B.16)

where Z(0) is the partition function of the density matrix ρ̃
(0)
tot, while Z(0) + δZ is the partition

function of ρtot. The elements F1 and F2 are given by

F1 = tr1N〈↑1↓N |ρtot|↓1↑N〉,
F2 = tr1N〈↑1↑N |ρtot|↓1↓N〉, (B.17)

where tr1N denotes the trace operation on the spins except the focused spins 1 and N . The
first-order perturbations of the elements F1 and F2 are

−β(h1op − hNop − h0)tr1N

∫ 1

0

dx

(
〈↑1↓N |e−βxH̃

(0)
tot |↑1↓N〉〈↑1↓N |e−β(1−x)H̃

(0)
tot |↓1↑N〉

−〈↑1↓N |e−βxH̃
(0)
tot |↓1↑N〉〈↓1↑N |e−β(1−x)H̃

(0)
tot |↓1↑N〉

)
(B.18)
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and

−β(h1op − hNop − h0)tr1N

∫ 1

0

dx

(
〈↑1↑N |e−βxH̃

(0)
tot |↑1↓N〉〈↑1↓N |e−β(1−x)H̃

(0)
tot |↓1↓N〉

−〈↑1↑N |e−βxH̃
(0)
tot |↓1↑N〉〈↓1↑N |e−β(1−x)H̃

(0)
tot |↓1↓N〉

)
, (B.19)

respectively.

In order to estimate the order of the first-order perturbations of F1 and F2, we introduce
{
∣∣ψ(0),n,ξ

tot,ξ

〉
} and {E(0),n,ξ

tot } as defined in Eqs. (3.42) and (3.43), but for H̃
(0)
tot . First, we have

〈↑1↓N |e−β(1−x)H̃
(0)
tot |↓1↑N〉 =

2N−2∑
n=1

ξ=↑↑,↑↓,↓↑,↓↓

e−β(1−x)E
(0),n,ξ
tot

∣∣ψ(0),n,ξ
media,↑↓

〉〈
ψ

(0),n,ξ
media,↓↑

∣∣. (B.20)

From the calculation in Appendix B.3, we obtain∣∣∣∣∣∣∣∣ψ(0),n,ξ
media,↑↓

〉〈
ψ

(0),n,ξ
media,↓↑

∣∣∣∣∣∣∣∣ = O(βκ1+κN ). (B.21)

Therefore, we have

1

Z(0)(x)

∣∣∣∣〈↑1↓N |e−β(1−x)H̃
(0)
tot |↓1↑N〉

∣∣∣∣ = O(βκ1+κN ), (B.22)

where

1

Z(0)(x)
≡ tr

(
e−βxH̃

(0)
tot

)
. (B.23)

Similarly, we obtain

1

Z(0)(x)

∣∣∣∣〈↑1↑N |e−βxH̃
(0)
tot |↑1↓N〉

∣∣∣∣ = O(βκN ),

1

Z(0)(1 − x)

∣∣∣∣〈↑1↓N |e−β(1−x)H̃
(0)
tot |↓1↓N〉

∣∣∣∣ = O(βκ1),

1

Z(0)(x)

∣∣∣∣〈↑1↑N |e−βxH̃
(0)
tot |↓1↑N〉

∣∣∣∣ = O(βκ1),

1

Z(0)(1 − x)

∣∣∣∣〈↓1↑N |e−β(1−x)H̃
(0)
tot |↓1↑N〉

∣∣∣∣ = O(βκN ). (B.24)

As a result, we obtain the first-order perturbations of F1 and F2 as

O(βκ1+κN+1−κ̃0), (B.25)

where we utilized β(h1op − hNop − h0) = O(β1−κ̃0). We can similarly calculate higher-order
perturbations of F1 and F2 to see that they are of order higher than (B.25). Thus, in the case
h1op − hNop = O(β−κ̃) with κ̃ ≤ 0, F 2

1 and F 2
2 are of order higher than {P ↑↑

↑↓,↓↑, P
↑↑
↑↑,↓↓}.
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B.3 Calculation in the case (b)

Here, we derive the approximated form of |ψn0,↑↑
tot 〉 in Eq. (3.42). In order to calculate pertur-

bation of |↑1↑N〉 ⊗ |ψn0
media〉, we employ the general perturbation theory,

|ψ〉 = |ψ(0)〉 +
(
Itot − |ψ(0)〉〈ψ(0)|

) 1

E(0) − H(0)
δH|ψ〉, (B.26)

where H(0) is the unperturbed Hamiltonian, |ψ(0)〉 and E(0) are the unperturbed eigenstate
and the unperturbed eigenvalue, respectively, and δH is the perturbative Hamiltonian. We
calculate each element of |ψn0,↑↑

media〉, namely {|ψn0,↑↑
media,ξ〉} in Eq. (3.42) with ξ =↑↑, ↑↓, ↓↑, ↓↓. We

first calculate |ψn0,↑↑
media,↓↑〉, which is given by the first-order perturbation;

|ψn0,↑↑
media,↓↑〉 = |↓1↑N〉〈↓1↑N | ⊗ Imedia

×
[
Itot −

(
|↑1↑N〉 ⊗ |ψn0

media〉
)(
〈↑1↑N | ⊗ 〈ψn0

media|
)] 1

E(0) − H(0)
Hcouple|↑1↑N〉 ⊗ |ψn0

media〉

=
2N−2∑
n=1

|↓1↑N〉 ⊗ |ψn
media〉

(
〈↓1↑N | ⊗ 〈ψn

media|
)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

En0
media − h1op − hNop − (En

media + h1op − hNop)
, (B.27)

where we put E(0) to En0
media−h1op−hNop, H(0) to H1+HN +Hmedia, |ψ(0)〉 to |↑1↑N〉⊗|ψn0

media〉 and
δH to Hcouple in Eq. (B.26). As has been stated, we assume h1op = O(β−κ1) and hNop = O(β−κN )
with κ1, κN > 0. On the other hand, the eigenvalues {En

media} are of order β0 because the media-
spin Hamiltonian Hmedia is fixed. Therefore, Eq. (B.27) can be approximated by

|ψn0,↑↑
media,↓↑〉

=
2N−2∑
n=1

|↓1↑N〉 ⊗ |ψn
media〉

(
〈↓1↑N | ⊗ 〈ψn

media|
)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

−2h1op

(
1 + O(βκ1)

)
. (B.28)

We can sum the leading term over the label n to obtain

|ψn0,↑↑
media,↓↑〉 =

1

−2h1op

(
|↓1↑N〉〈↓1↑N | ⊗ Imedia

)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)
, (B.29)

where

2N−2∑
n=1

|ψn
media〉〈ψn

media| = Imedia (B.30)

is the identity operator in the whole space of the media spins. Using Eqs. (3.40) and (3.53) in
Eq. (B.28), we have

|ψn0,↑↑
media,↓↑〉 =

J

−2h1op

|↓1↑N〉 ⊗
(
γsn0 |↓2〉|ψ̃↑↑

n0
〉|↑N−1〉 + γtn0|↓2〉|ψ̃↑↓

n0
〉|↓N−1〉

+ un0 |↑2〉|ψ̃↓↑
n0
〉|↑N−1〉 + wn0 |↑2〉|ψ̃↓↓

n0
〉|↓N−1〉 + O(βκ1)

)
, (B.31)

85



Second, the leading term of |ψn0,↑↑
media,↑↓〉 is similarly given as follows:

|ψn0,↑↑
media,↑↓〉

=
2N−2∑
n=1

|↑1↓N〉 ⊗ |ψn
media〉

(
〈↑1↓N | ⊗ 〈ψn

media|
)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

−2hNop

(
1 + O(βκN )

)
=

1

−2hNop

(
|↑1↓N〉〈↑1↓N | ⊗ Imedia

)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

=
J

−2hNop

|↑1↓N〉 ⊗
(
γsn0 |↑2〉|ψ̃↑↑

n0
〉|↓N−1〉 + tn0 |↑2〉|ψ̃↑↓

n0
〉|↑N−1〉

+ γun0 |↓2〉|ψ̃↓↑
n0
〉|↓N−1〉 + wn0 |↓2〉|ψ̃↓↓

n0
〉|↑N−1〉 + O(βκN )

)
. (B.32)

Third, we calculate |ψn0,↑↑
media,↓↓〉, which is given by the second-order perturbation;

|ψn0,↑↑
media,↓↓〉 =

2N−2∑
n,n′=1

|↓1↓N〉 ⊗ |ψn
media〉[ (

〈↓1↓N | ⊗ 〈ψn
media|

)
Hcouple

(
|↑1↓N〉 ⊗ |ψn′

media〉
)

En0
media − h1op − hNop − (En

media + h1op + hNop)
·

(
〈↑1↓N | ⊗ 〈ψn′

media|
)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

En0
media − h1op − hNop − (En′

media − h1op + hNop)

+

(
〈↓1↓N | ⊗ 〈ψn

media|
)
Hcouple

(
|↓1↑N〉 ⊗ |ψn′

media〉
)

En0
media − h1op − hNop − (En

media + h1op + hNop)
·

(
〈↓1↑N | ⊗ 〈ψn′

media|
)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

En0
media − h1op − hNop − (En′

media + h1op − hNop)

]
.

(B.33)

By utilizing the assumptions h1op = O(β−κ1) > 0, hNop = O(β−κN ) > 0 with κ1 ≥ κN > 0 and
En

media = O(β0), we can approximate (B.33) as

|ψn0,↑↑
media,↓↓〉 =

2N−2∑
n,n′=1

|↓1↓N〉 ⊗ |ψn
media〉

[(
〈↓1↓N | ⊗ 〈ψn

media|
)
Hcouple

(
|↑1↓N〉 ⊗ |ψn′

media〉
)

−2(h1op + hNop)

×
(
〈↑1↓N | ⊗ 〈ψn′

media|
)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

−2hNop

(
1 + O(βκN )

)
+

(
〈↓1↓N | ⊗ 〈ψn

media|
)
Hcouple

(
|↓1↑N〉 ⊗ |ψn′

media〉
)

−2(h1op + hNop)

×
(
〈↓1↑N | ⊗ 〈ψn′

media|
)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

−2h1op

(
1 + O(βκ1)

)]
. (B.34)

We can calculate the leading terms of (B.34) as(
|↓1↓N〉〈↓1↓N | ⊗ Imedia

)
Hcouple

(
|↑1↓N〉〈↑1↓N | ⊗ Imedia

)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

4hNop(h1op + hNop)

+

(
|↓1↓N〉〈↓1↓N | ⊗ Imedia

)
Hcouple

(
|↓1↑N〉〈↓1↑N | ⊗ Imedia

)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

4h1op(h1op + hNop)
. (B.35)
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Upon using Eqs. (3.40) and (3.53), the numerator of the first term in (B.35) reduces to(
|↓1↓N〉〈↓1↓N | ⊗ Imedia

)
Hcouple

(
|↑1↓N〉〈↑1↓N | ⊗ Imedia

)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

=
(
|↓1↓N〉〈↓1↓N | ⊗ Imedia

)
HcoupleJ

×
[
|↑1↓N〉 ⊗

(
γsn0 |↑2〉|ψ̃↑↑

n0
〉|↓N−1〉 + tn0 |↑2〉|ψ̃↑↓

n0
〉|↑N−1〉 + γun0 |↓2〉|ψ̃↓↑

n0
〉|↓N−1〉 + wn0 |↓2〉|ψ̃↓↓

n0
〉|↑N−1〉

)]
=J2|↓1↓N〉 ⊗

(
γ2sn0 |↓2〉|ψ̃↑↑

n0
〉|↓N−1〉 + γtn0 |↓2〉|ψ̃↑↓

n0
〉|↑N−1〉

+ γun0 |↑2〉|ψ̃↓↑
n0
〉|↓N−1〉 + wn0 |↑2〉|ψ̃↓↓

n0
〉|↑N−1〉

)
. (B.36)

Similarly, the numerator of the second term in (B.35) reduces to(
|↓1↓N〉〈↓1↓N | ⊗ Imedia

)
Hcouple

(
|↓1↑N〉〈↓1↑N | ⊗ Imedia

)
Hcouple

(
|↑1↑N〉 ⊗ |ψn0

media〉
)

=
(
|↓1↓N〉〈↓1↓N | ⊗ Imedia

)
HcoupleJ

[
|↓1↑N〉 ⊗

(
γsn0 |↓2〉|ψ̃↑↑

n0
〉|↑N−1〉 + γtn0 |↓2〉|ψ̃↑↓

n0
〉|↓N−1〉

+ un0 |↑2〉|ψ̃↓↑
n0
〉|↑N−1〉 + wn0 |↑2〉|ψ̃↓↓

n0
〉|↓N−1〉

)]
=J2|↓1↓N〉 ⊗

(
γ2sn0|↓2〉|ψ̃↑↑

n0
〉|↓N−1〉 + γtn0|↓2〉|ψ̃↑↓

n0
〉|↑N−1〉

+ γun0 |↑2〉|ψ̃↓↑
n0
〉|↓N−1〉 + wn0 |↑2〉|ψ̃↓↓

n0
〉|↑N−1〉

)
, (B.37)

which is equal to (B.36). As a result, we arrive at

|ψn0,↑↑
media,↓↓〉 =

J2

4h1ophNop

[(
γ2sn0 |↓2〉|ψ̃↑↑

n0
〉|↓N−1〉 + γtn0 |↓2〉|ψ̃↑↓

n0
〉|↑N−1〉

+ γun0 |↑2〉|ψ̃↓↑
n0
〉|↓N−1〉 + wn0 |↑2〉|ψ̃↓↓

n0
〉|↑N−1〉

)
+ O(βκN )

]
, (B.38)

Next, we calculate each element of |ψn0,↑↓
tot 〉, namely {|ψn0,↑↓

tot,ξ 〉} in Eq. (3.42) with ξ =↑↑, ↑↓, ↓↑, ↓↓.
By similar calculations, we obtain

|ψn0,↑↓
media,↑↑〉 =

J

2hNop

[(
sn0 |↑2〉|ψ̃↑↑

n0
〉|↓N−1〉 + γtn0 |↑2〉|ψ̃↑↓

n0
〉|↑N−1〉

+ un0 |↓2〉|ψ̃↓↑
n0
〉|↓N−1〉 + γwn0 |↓2〉|ψ̃↓↓

n0
〉|↑N−1〉

)
+ O(βκN )

]
|ψn0,↑↓

media,↓↓〉 =
J

−2h1op

[(
γsn0 |↓2〉|ψ̃↑↑

n0
〉|↑N−1〉 + γtn0 |↓2〉|ψ̃↑↓

n0
〉|↓N−1〉

+ un0 |↑2〉|ψ̃↓↑
n0
〉|↑N−1〉 + wn0 |↑2〉|ψ̃↓↓

n0
〉|↓N−1〉

)
+ O(βκ1)

]
. (B.39)

The element |ψn0,↑↓
media,↓↑〉 can be calculated from

|ψn0,↑↓
media,↓↑〉 =

2N−2∑
n,n′=1

|↓1↓N〉 ⊗ |ψn
media〉[ (

〈↓1↑N | ⊗ 〈ψn
media|

)
Hcouple

(
|↑1↑N〉 ⊗ |ψn′

media〉
)

En0
media − h1op + hNop − (En

media + h1op − hNop)
·

(
〈↑1↑N | ⊗ 〈ψn′

media|
)
Hcouple

(
|↑1↓N〉 ⊗ |ψn0

media〉
)

En0
media − h1op + hNop − (En′

media − h1op − hNop)

+

(
〈↓1↑N | ⊗ 〈ψn

media|
)
Hcouple

(
|↓1↓N〉 ⊗ |ψn′

media〉
)

En0
media − h1op + hNop − (En

media + h1op − hNop)
·

(
〈↓1↓N | ⊗ 〈ψn′

media|
)
Hcouple

(
|↑1↓N〉 ⊗ |ψn0

media〉
)

En0
media − h1op + hNop − (En′

media + h1op + hNop)

]
.

(B.40)
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By utilizing the assumptions h1op = O(β−κ1), hNop = O(β−κN ) with κ1 ≥ κN > 0, h1op−hNop =
O(β−κ̃) with κ̃ > 0 and En

media = O(β0), we can approximate (B.40) as

|ψn0,↑↓
media,↓↑〉 =

2N−2∑
n,n′=1

|↓1↓N〉 ⊗ |ψn
media〉

[(
〈↓1↑N | ⊗ 〈ψn

media|
)
Hcouple

(
|↑1↑N〉 ⊗ |ψn′

media〉
)

−2(h1op − hNop)

×
(
〈↑1↑N | ⊗ 〈ψn′

media|
)
Hcouple

(
|↑1↓N〉 ⊗ |ψn0

media〉
)

−2hNop

(
1 + O(βκN ) + O(βκ̃)

)
+

(
〈↓1↑N | ⊗ 〈ψn

media|
)
Hcouple

(
|↓1↓N〉 ⊗ |ψn′

media〉
)

−2(h1op − hNop)

×
(
〈↓1↓N | ⊗ 〈ψn′

media|
)
Hcouple

(
|↑1↓N〉 ⊗ |ψn0

media〉
)

−2h1op

(
1 + O(βκ1) + O(βκ̃)

)]
. (B.41)

We finally arrive at

|ψn0,↑↓
media,↓↑〉 =

J2

4h1ophNop

[(
γsn0 |↓2〉|ψ̃↑↑

n0
〉|↓N−1〉 + γ2tn0 |↓2〉|ψ̃↑↓

n0
〉|↑N−1〉

+ un0 |↑2〉|ψ̃↓↑
n0
〉|↓N−1〉 + γwn0 |↑2〉|ψ̃↓↓

n0
〉|↑N−1〉

)
+ O(βκN ) + O(βκ̃)

]
, (B.42)

where κ′ is defined in (3.35).

B.4 Calculation in the case (c)

Here, we derive the perturbed form of |φn0,↑
tot 〉 in Eq. (3.82). Using Eq. (B.26), the leading term

of |φn0,↑
tot,↓〉 is given by

|φn0,↑
tot,↓〉 =

2N−1∑
n=1

|↓1〉 ⊗ |φn
media〉

(
〈↓1| ⊗ 〈φn

media|
)
H ′

couple

(
|↑1〉 ⊗ |φn0

media〉
)

E
′n0
media − h1op − (E

′n
media + h1op)

, (B.43)

where h1op = O(β−κ1) with κ1 ≥ 1, but {E ′n
media} are of order β0. Then we obtain

|φn0,↑
tot,↓〉 =

2N−1∑
n=1

|↓1〉 ⊗ |φn
media〉

(
〈↓1| ⊗ 〈φn

media|
)
H ′

couple

(
|↑1〉 ⊗ |φn0

media〉
)

−2h1op

(
1 + O(βκ1)

)
. (B.44)

We thereby obtain |φn0,↑
tot 〉 as

|φn0,↑
tot 〉 = |↑1〉 ⊗ |φn0

media〉 +
J

−2h1op

|↓1〉 ⊗
(
γs′n0

|↓2〉|φ̃↑↑
n0
〉|↑N〉 + γt′n0

|↓2〉|φ̃↑↓
n0
〉|↓N〉

+ u′
n0
|↑2〉|φ̃↓↑

n0
〉|↑N〉 + w′

n0
|↑2〉|φ̃↓↓

n0
〉|↓N〉 + O(βκ1)

)
. (B.45)

B.5 Proof for the existence of the maximized entangle-

ment in three-spin systems

In this section, we prove that the maximized entanglement always exists in the systems with the
Hamiltonian (3.99) in the high-temperature limit β → 0. We prove this statement by showing
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that the entanglement exists by letting hz
1 and hz

3

hz
1 = hz

3 = h0(β), (B.46)

where we assume

h0(β) = O(β−κ0) with κ0 < −1. (B.47)

We regard the interaction Hamiltonian as perturbation and calculate the leading order of the
elements {F1, F2, p↑↑, p↑↓, p↓↑, p↓↓} of the density matrix. Then we show the inequality (3.9),
which is a necessary and sufficient condition for the existence of the entanglement.

First, we separate the Hamiltonian (3.99) as follows:

Htot = H̃LO + H̃int, (B.48)

where

H̃LO = hz
1σ

z
1 + hz

3σ
z
3 + hz

mediaσ
z
2 + Jzσz

1σ
z
2 + Jzσz

2σ
z
3,

H̃int = (Jxσx
1σx

2 + Jyσy
1σ

y
2) + (Jxσx

2σx
3 + Jyσy

2σ
y
3)

=
{

J
[
σ+

1 σ−
2 + σ−

1 σ+
2 + γ(σ+

1 σ+
2 + σ−

1 σ−
2 )

]
+ J

[
σ+

2 σ−
3 + σ−

2 σ+
3 + γ(σ+

2 σ+
3 + σ−

2 σ−
3 )

]}
,

(B.49)

hz
media has an arbitrary value, Jx = J(1 + γ)/2, Jy = J(1 − γ)/2, and we consider H̃int as

perturbation. Because βh0(β) → ∞ as β → 0, we only have to consider the ground state and
the first excited state as the unperturbed states, which are given by

|↑1↑2↑3〉 and |↑1↓2↑3〉 (B.50)

with the corresponding eigenvalues

ϵ1 = −2h0 − hz
media + 2Jz and ϵ2 = −2h0 + hz

media − 2Jz, (B.51)

where we assume hz
media > 0, but the following discussion is also applicable to the case of

hz
media < 0. Other excited states have the eigenvalues ϵ1 + O(β−κ0) and hence their thermal

mixing can be ignored in the limit β → 0.
We consider the states (B.50) up to the second-order perturbation of H̃int:

k1

(
|↑1↑2↑3〉 −

Jγ

2h0 + 2hz
media − 2Jz

|↓1↓2↑3〉

− Jγ

2h0 + 2hz
media − 2Jz

|↑1↓2↓3〉 +
J2γ

(2h0 − 2Jz)(2h0 + 2hz
media − 2Jz)

|↓1↑2↓3〉
)

(B.52)

and

k2

(
|↑1↓2↑3〉 −

J

2h0 − 2hz
media + 2Jz

|↓1↑2↑3〉

− J

2h0 − 2hz
media + 2Jz

|↑1↑2↓3〉 +
J2γ

(2h0 + 2Jz)(2h0 − 2hz
media + 2Jz)

|↓1↓2↓3〉
)

, (B.53)

where k1 and k2 are the respective normalization factor. According to the above expressions,
k1 and k2 are of order of 1 + O(β2κ0). By mixing these two states with the Boltzmann weights
e−βϵ1 and e−βϵ2 , we obtain the matrix elements {F1, F2, p↑↑, p↑↓, p↓↑, p↓↓}.
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Let us first consider the case γ ̸= 1. In this case, the leading terms of F1 and
√

p↑↑p↓↓ are
given as follows;

F1 =
J2(1 + γ2)

8h2
0

+ O(β1+2κ0),

√
p↑↑p↓↓ =

J2γ

4h2
0

+ O(β1+2κ0), (B.54)

which yields

F1 −
√

p↑↑p↓↓ =
J2(1 − γ)2

8h2
0

+ O(β1+2κ0) > 0 (B.55)

in the limit β → 0. This gives a non-zero value of the concurrence (3.8) of order β2κ0 in the
case γ ̸= 0.

Next, we consider the case γ = 1. Because we assumed Jx ≥ Jy ≥ Jz, the equality
Jy = Jz = 0 is satisfied in the case γ = 1. In this case, we have to take higher-order
approximation because the first term of Eq. (B.55) vanishes. The expansions of F2 and

√
p↑↓p↓↑

are given by

F2 =
J2

4h2
0

+
(hz

media)
2J2

8

β

h2
0

− (hz
media)

2J2

4

β

h3
0

+ O(β2+3κ0),

√
p↓↑p↑↓ =

J2

4h2
0

+
(hz

media)
2J2

8

β

h2
0

− (hz
media)

2J2

2

β

h3
0

+ O(β2+3κ0), (B.56)

which is followed by

F2 −
√

p↑↓p↓↑ =
β

4h3
0

J2(hz
media)

2 + O(β2+3κ0). (B.57)

If the media field hz
media is equal to zero, the entanglement vanishes for any values of the local

fields hz
1 and hz

3; this is consistent with Theorem 1. For hz
media ̸= 0, the concurrence (3.8) is

of order β1+3κ0 in the case γ = 1 and increases as the media field hz
media is increased. We

have thereby proved that the entanglement in a three-spin system with Hamiltonian (3.99) has
always a non-zero value if we choose the local fields properly.

B.6 The critical temperature in the asymmetric phase

In this section, we show analytical calculation of the critical temperature between the phase
with the asymmetry h1op ̸= h4op and the phase with the no entanglement in the four-spin
XX chain, that is, on the phase boundary in the upper right area of the phase diagram in
Fig. 3.5 (a). For the XX model, the element F2 vanishes, and hence we obtain the critical
temperature as a solution of

F 2
1 − p↑↑p↓↓ = 0. (B.58)

We calculate the elements F1, p↑↑ and p↓↓ from perturbation calculations in two steps. Numerical
calculation suggests on the phase boundary in the area that the maximizing local fields behave
as h1op → ∞ and h4op ≅ hz

media and that hz
media ≫ J and hz

media ≫ T . We thereby regard the
coupling between the spin 1 and the rest of the system

Jxσ
x
1σx

2 + Jyσ
y
1σ

y
2 = J(σ+

1 σ−
2 + σ−

1 σ+
2 ) (B.59)
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as perturbation in the first step, where Jx = Jy = J/2. Then, we regard the interaction
Hamiltonian

H̃int =
1

2
(Jσx

2σx
3 + Jσy

2σ
y
3) +

1

2
(Jσx

3σx
4 + Jσy

3σ
y
4)

= J(σ+
2 σ−

3 + σ−
2 σ+

3 ) + J(σ+
3 σ−

4 + σ−
3 σ+

4 ) (B.60)

as perturbation in the second step. As the unperturbed states in the limit h1op → ∞, we first
use

{|↑1〉 ⊗ |φn〉}8
n=1, (B.61)

where |φn〉 denotes the eigenstates of the system of the spins 2, 3 and 4 and is defined by

|φn〉 = s′n|↑2〉|φ̃↑↑
n 〉|↑4〉 + t′n|↑2〉|φ̃↑↓

n 〉|↓4〉 + u′
n|↓2〉|φ̃↓↑

n 〉|↑4〉 + w′
n|↓2〉|φ̃↓↓

n 〉|↓4〉 (B.62)

for 1 ≤ n ≤ 8, which is the same as in Eq. (3.81). We define them so that their eigenvalues
{ϵn} are in the non-descending order.

We thereby calculate the first-order contribution of |↑1〉⊗|φn0〉 to the elements {F1, F2} and
{p↑↑, p↑↓, p↓↑, p↓↓}, which we define as {F n0,↑

1 , F n0,↑
2 } and {pn0,↑

↑↑ , pn0,↑
↑↓ , pn0,↑

↓↑ , pn0,↑
↓↓ }. We utilize the

perturbation calculation in the proof of Theorem 2. From Eqs. (3.86) and (3.87), we have the
elements {F n0,↑

1 , F n0,↑
2 } as

J

−2h1op

(
γs′n0

w′
n0
〈φ↓↓

n0
|φ↑↑

n0
〉 + u′

n0
t′n0

〈φ↓↑
n0
|φ↑↓

n0
〉
)

(B.63)

and

J

−2h1op

(
γt′n0

u′
n0
〈φ↓↑

n0
|φ↑↓

n0
〉 + w′

n0
s′n0

〈φ↑↑
n0
|φ↓↓

n0
〉
)
. (B.64)

From Eq. (3.88), we also have the elements {pn0,↑
↑↑ , pn0,↑

↑↓ , pn0,↑
↓↑ , pn0,↑

↓↓ } as

s′2n0
+ u′2

n0
, t′2n0

+ w′2
n0

,
J2

4h2
1op

(γ2s′2n0
+ u′2

n0
) and

J2

4h2
1op

(γ2t′2n0
+ w′2

n0
). (B.65)

Now, we move to the perturbation in the second step to obtain the eigenstates {|φn〉}
explicitly. Because hz

media ≫ T , out of eight states {|φn〉} we consider the perturbations of
only the four states |↑2↑3↓4〉, |↓2↑3↓4〉, |↑2↓3↓4〉 and |↑2↑3↑4〉 with the corresponding eigen-
values {h4op − 2hz

media, h4op, h4op,−h4op − 2hz
media}. We ignore the perturbation of the other

states |↓2↓3↑4〉, |↑2↓3↑4〉, |↓2↑3↑4〉 and |↓2↓3↓4〉 with the corresponding eigenvalues {−h4op +
2hz

media,−h4op,−h4op, h4op + 2hz
media}.

The perturbed form of the eigenstate |↑2↑3↓4〉 up to the second order of H̃int in (B.60) is
given by

|↑2↑3↓4〉 +
J

2h4op − 2hz
media

|↑2↓3↑4〉 +
J2

(−2h4op + 2hz
media)

2
|↓2↑3↑4〉, (B.66)

with the eigenvalue change

δϵ1 ≡
J2

−2h4op + 2hz
media

. (B.67)
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Suppose here that we choose h4op = −hz
media. Then, Eq. (B.66) reduces to

|↑2↑3↓4〉 +
J

−4hz
media

|↑2↓3↑4〉 +
J2

16hz2
media

|↓2↑3↑4〉. (B.68)

In the case of h4op = −hz
media, the eigenvalues of the three zeroth-order states |↓2↑3↓4〉, |↑2↓3↓4〉

and |↑2↑3↑4〉 are degenerate into −hz
media; we define them as {φ(0)

i }. The first order contribution

of the other states to the states {φ(0)
i } with i = 2, 3, 4 are given in the forms

φ
(1)
2 = |↓2↑3↓4〉, φ

(1)
3 = |↓2↑3↓4〉 +

J

−4hz
media

|↓2↓3↑4〉, φ
(1)
4 = |↑2↑3↑4〉 (B.69)

We define the perturbation matrix as

〈φ(0)
i |δH|φ(1)

j 〉, (B.70)

where δH is the perturbation Hamiltonian, namely the interaction H̃int. This is given by

0 J 0
J −J2/4hz

media 0
0 0 0

 . (B.71)

By diagonalizing this matrix, we thereby obtain the three states in the form

Un|↑2↓3↓4〉 + Vn

(
|↓2↑3↓4〉 +

J

−4hz
media

|↓2↓3↑4〉
)

+ Wn|↑2↑3↑4〉, (B.72)

where

{U ,V ,W}

≡
{
− 1√

2

(
1 − J

16hz
media

)
,

1√
2

(
1 +

J

16hz
media

)
, 0

}
, {0, 0, 1},{

1√
2

(
1 +

J

16hz
media

)
,

1√
2

(
1 − J

16hz
media

)
, 0

}
, (B.73)

with the eigenvalues

{ϵ2, ϵ3, ϵ4} =

{
−J − J2

8hz
media

, 0, J − J2

8hz
media

}
, (B.74)

respectively.

Now, we can calculate the explicit forms of the eigenstates {|φn〉}8
n=1 and the corresponding
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eigenvalues {ϵn}8
n=1:

|φ1〉 = |↑2↑3↓4〉 +
J

−4hz
media

|↑2↓3↑4〉 +
J2

16hz2
media

|↓2↑3↑4〉,

ϵ1 = −3hz
media +

J2

−4hz
media

,

|φ2〉 = − 1√
2

(
1 − J

16hz
media

)
|↑2↓3↓4〉 +

1√
2

(
1 +

J

16hz
media

)(
|↓2↑3↓4〉 +

J

−4hz
media

|↓2↓3↑4〉
)

,

ϵ2 = −hz
media − J − J2

8hz
media

,

|φ3〉 = |↑2↑3↑4〉, ϵ2 = −hz
media,

|φ4〉 =
1√
2

(
1 − J

16hz
media

)
|↑2↓3↓4〉 +

1√
2

(
1 +

J

16hz
media

)(
|↓2↑3↓4〉 +

J

−4hz
media

|↓2↓3↑4〉
)

,

ϵ4 = −hz
media + J − J2

8hz
media

,

|φ5〉 = |↓2↓3↓4〉, ϵ5 = hz
media,

|φ6〉 = |↑2↓3↑4〉, ϵ6 = hz
media,

|φ7〉 = |↓2↑3↑4〉, ϵ7 = hz
media,

|φ8〉 = |↓2↓3↑4〉, ϵ8 = 3hz
media. (B.75)

Using Eqs. (B.63)–(B.65) and (B.75), we obtain the matrix elements {F1, p↑↑, p↓↓} to calcu-
late Eq. (B.58):

F1 =
J

−2h1op

(
eβ(3hz

media+J2/4hz
media)

J2

16(hz
media)

2
+ eβ(hz

media+J2/8hz
media) J

4hz
media

sinh βJ

)
(B.76)

and

p↑↑ = eβ(3hz
media+J2/4hz

media) J2

16(hz
media)

2
+ eβhz

media + 2e−βhz
media ,

p↓↓ =
J2

4h2
1op

(
eβ(hz

media+J2/8hz
media) cosh(βJ) +

J

8hz
media

eβ(hz
media+J2/8hz

media) sinh(βJ) + e−βhz
media

)
.

(B.77)

Substituting these expressions into (B.58), we obtain the approximate phase boundary in the
upper right area of the phase diagram in Fig. 3.6 (a).
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