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ラチェット機構における輸送効率の数値計算

（内容の要旨）

　本研究では分子モーター（例えば筋収縮のアクチン・ミオシン系）のモデルのひとつであるラチェ

ット機構の輸送効率を計算し、その空間周期、時間周期、温度への依存性について議論する。

　ラチェットとは非対称な歯を持つ歯車とその回転を止める爪からなる機械であり、爪には歯車の回

転を一方向に整流する能力がある。これにヒントを得て非対称な周期ポテンシャル中の粒子の熱運動

を考える。熱ゆらぎによるブラウン運動、ポテンシャルの非対称性、外からのエネルギーの注入とい

う３つの要素により分子モーターは一方向へ運動する。これが分子モーターのラチェットモデルであ

る。エネルギーがどのように系に注入されるかによっていろいろなモデルが提案されているが、本研

究では最も簡単な Stochastic ratchet model を用いる。
　本研究で議論する輸送効率には二つの意味が考えられる。一つは単位時間当たりにどれだけ粒子が

一方向へ進むかという意味での効率であり、もう一つは外から入力したエネルギーに対しどれだけ粒

子が仕事を出力するかという意味での効率である。前者はスピード、後者はエネルギー効率と言い換

えることができる。

  まずスピードについて考えてみる。拡散距離が小さいと、粒子はポテンシャルの山を越えることが
できないし、また拡散距離が大きすぎれば、粒子は左右両側のポテンシャルの山を越えることになる

ので一方向へ進むスピードは遅くなる。つまり粒子が一方向へ速く進むには、ポテンシャルがオフの

間にブラウン運動によって拡散する距離が、ポテンシャルの空間周期

€ 

Lとおおむね等しくなる場合で
あると予想される。粒子の拡散距離は時間周期

€ 

tの平方根に比例することを考慮すれば、
　　　　　　　　　　　　　　　　　　　　

€ 

L ≈ Dt
が満たされる時にスピードはピークを取ると考えられる。ここで

€ 

Dは拡散係数という温度に比例した
パラメーターである。これは温度が高ければ粒子の拡散距離が大きくなり、低ければ拡散距離が小さ

くなることに対応している。以上を総合すれば粒子のスピードのピークは

　　　　　　　　　　　　　　　　　　　　

€ 

L ≈ ′ D Tt 　　　　
を満たすように推移して行くと考えられる。ここで

€ 

D = ′ D Tとおいた。本研究のシミュレーションで
これが確かめられた。

　つぎにエネルギー効率

€ 

ηについて考える。

€ 

ηを次式のように定義する。
　　　　　　　　　　　　　　　　　　　　

€ 

η =W /EIN
ここで

€ 

W 、

€ 

EINはそれぞれ系のする仕事、系への入力エネルギーである。まず

€ 

W は粒子のスピードに
比例すると考えられる。それは粒子のスピードが速いほど仕事も大きくなるためである。したがって

上と同じ考察ができる。一方、

€ 

EINについては以下のように考察できる。

€ 

EINはポテンシャルが粒子に

する仕事と粒子がポテンシャルにする仕事の差である。このような考察から、

　　　　　　　　　　　　　　　　　　　

€ 

Ein ∝ τT
が得られ、エネルギー効率

€ 

ηは有限の温度でピークを取ると予想される。我々はこの考察をシミュレー
ションにより確認する。
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We calculate the speed and the energy efficiency of the stochastic ratchet system, a model of a

molecular motor. We show their dependence on the spatial period, the temporal period, and the temperature by

carrying out an extensive Monte Carlo simulations.

The stochastic ratchet model is a system of Brownian particles in an oscillating asymmetrical potential,

so-called the ratchet potential. The particles can move in one direction even when the time and space averages of

all macroscopic forces and gradients are zero.

We first consider the speed of the particles. The particles cannot move over the potential teeth, if the

diffusion distance

€ 

Dτ  is too small when compared with the spatial period L of the ratchet potential, where D is
the diffusion coefficient and τ is the temporal period. On the other hand, the particles move over the potential

teeth on both sides regardless of the potential asymmetry, when the diffusion distance is too large. The speed of

the particle must be small in both cases. In order for the particles to progress quickly in one dimension, the

diffusion distance must be comparable to the spatial period of the potential. Thus we have

€ 

L ≈ Dτ
as the optimal condition for the speed. We confirm this condition in our simulation.

We next consider the energy efficiency. We define the efficiency η as

€ 

η ≡W /E in ,

where W represents the work by the particle against a load potential, while Ein is the input energy. First, W should

be proportional to the speed of the particle. Therefore, the same consideration as above applies here. On the other

hand, Ein is the difference between the work by the ratchet potential to the particle and the work by the particle to

the ratchet potential. After some consideration, we have

€ 

E in ∝ Tτ .
Hence the energy efficiency is maximized at a temperature different from the one that maximizes the speed. We

also confirm this in our simulation.



MASTER THESIS
Numerical Calculation of the Efficiency

of a Ratchet System

Masaru Yoshiwara
(35102041)

Department of Physics,
Graduate School of Science and Engineering,

Aoyama Gakuin University
5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-0006, Japan

Supervisors: Kubo Kenn and Hatano Naomichi

February 25, 2004

1



Abstract

We calculate the average velocity and the energy efficiency of the
stochastic ratchet system, a model of the molecular motor. We show
the dependence of the efficiency on the spatial period, the temporal
period, and the temperature by carrying out an extensive Monte Carlo
simulations.

We first argue that, in order for the particles to progress quickly
in one direction, the diffusion distance must be comparable to the
spatial period of the potential; in other words, we have L ≈ √

Dτ , as
the optimal condition for the average velocity, where L is the spatial
period of the ratchet potential, τ is the temporal period, and D is the
diffusion constant. We confirm this condition in our simulation.

We next consider the energy efficiency. We argue that the energy
efficiency is maximized at a temperature different from the one that
maximizes the average velocity. We also confirm this in our simulation.

We find unfortunately that the efficiency of the stochastic ratchet
system is quite lower than the experimental estimate of the myosin-
actin system.
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Figure 1: A myosin moves along actin filaments (from NIKKEI SCIENCE).

1 Introduction

1.1 Molecular motors

Molecular motors in biological systems are known to work with
high efficiency in water at the room temperature. The work
done by a molecule motor is from several times to dozen times
greater than thermal energy. We hence cannot ignore influence
of thermal fluctuation. 　

The myosin-actin system, for example, is a famous molecular
motor (Fig.1). Actin filaments have a periodic structure with the
period of about 5.5nm. It has been found experimentally that a
myosin molecule moves along an actin filament in a fluctuating
number of steps while one ATP (adenosine triphosphate) is used
up [1]. This suggests that the myosin-actin system is strongly
affected by thermal fluctuation. Since thermal fluctuation is
usually a cause of incorrect operation, we try to make the influ-
ence small. Then, in spite of thermal fluctuation influencing the
molecule motor, why can the molecular motor work efficiently?
Do the principles of the molecular motor and the usual machine
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Figure 2: A ratchet wheel and a pawl (from http://www.automata.co.uk/).

differ? In order to answer these questions, motion induced by
thermal fluctuation in ratchet systems have been investigated.

Many studies of the molecular motors have been carried out
from the viewpoint of statistical physics [2, 3]. Much has been
studied for ratchet models in order to determine how the di-
rected motion emerges out of nonequilibrium fluctuation.

1.2 Ratchet systems

The ratchet is a machine which consists of a gear with asym-
metrical teeth, and a pawl which restricts the rotation of the
gear into one of the two directions as shown in Fig. 2. Taking
a hint from this structure, we consider the thermal dynamics
of Brownian particles in an oscillating asymmetrical potential.
Brownian particles in an oscillating asymmetric potential can
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on average drift in one direction even when the time and space
averages of all macroscopic forces and gradients are zero.

Much has been studied for ratchet models to determine how
the directed motion emerges out of nonequilibrium fluctuation.
Most of the studies of the ratchet systems has been focused
on analyses of the probability current [4]. Unfortunately, the
energy efficiency has not been studied much, mostly because
systematic methods of studying energetics have not been avail-
able for systems described by the Langevin equation. Recently,
a method called stochastic energetics was proposed, in order to
discuss the energy efficiency in the framework of the Langevin
equation [5]. This method enables us to discuss the energetics
of various ratchet systems [6, 7].

In the present thesis, we use the stochastic ratchet model
among various ratchet models. We discuss two kinds of the
efficiency of this model by carrying out an extensive simulation.
One efficiency is the average velocity of the particle and the other
is the energy efficiency. We emphasize that we become able to
discuss the energy efficiency by introducing a load potential.

1.3 Outline of the thesis

In Section 2, we explain the stochastic ratchet model and define
two types of its efficiency, the average velocity and the energy
efficiency. The latter, in particular, is defined by introducing
a load potential. We then discuss the average velocity and the
energy efficiency qualitatively. We have L ≈ √

Dτ , as the op-
timal condition for the average velocity, where L is the spatial
period of the ratchet potential, τ is the temporal period, and
D is the diffusion coefficient. We also argue that the energy
efficiency is maximized at a temperature different from the one
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that maximizes the average velocity.
In Section 3, we explain our simulation procedure. In our sim-

ulation, the particle follows the Boltzmann distribution, when
the potential is on. When the potential is off, on the other hand,
the particle carries out a symmetrical movement. We give the
physical constants and simulation parameters, taking the exper-
iments into consideration.

In Section 4, we explain the details of our data analysis. In
our data analysis, we take the sample average as well as the time
average.

In Section 5, we discuss the results of our simulation and
data analysis. We discuss the average velocity and the energy
efficiency as functions of the temperature T and the potential
frequency ω = 1/τ . We confirm that the results are in agreement
with the arguments in Section 2.

In Section 6, we compare the results of our simulation with
experimental data sand discuss the difference between the the-
oretical model calculation and experiments. We conclude that
we cannot regard the stochastic ratchet model as a model of the
myosin-actin system. The myosin-actin system uses the thermal
energy much more effectively than the stochastic ratchet model.

7



Figure 3: The piecewise linear potential V (x) with a period L.

2 Stochastic ratchet model

2.1 Basic concepts

In this section, we explain the ratchet model studied in the
present thesis. We consider diffusive motion in a periodic, anisotropic,
piece-wise linear potential V (x) as shown in Fig. 3; this is called
a “ratchet” potential. If the potential did not change in time
we would obtain as the stationary solution a Boltzmann distri-
bution of the probability density,

P (x) = C exp(−V (x)/kBT ). (1)

In fact, we turn on and off the ratchet potential V (x) period-
ically as in Fig. 4. The application of such a two-state noise
can bring about a net flow of probability along the x axis, even
though no macroscopic force is ever applied. The induced flux
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Figure 4: The oscillation of the potential with a temporal period τ .

can change, when we change parameters of the ratchet poten-
tial, such as the spatial and temporal periods and the potential
height.

Particles diffuse in the ratchet potential due to thermal fluc-
tuations. We can observe in Fig. 5 how the movement takes
place; when the ratchet potential is on, the particles are concen-
trated near the bottoms of the potential valleys. When it is off,
the diffusion produces a symmetrical dispersion of the particles.
When it is turned on again, a portion of particles is displaced
towards the right due to the asymmetry of the potential. Thus
the probability flow is generated.

2.2 Average velocity

We now focus on two kinds of the efficiency of the ratchet sys-
tem. We first consider the average velocity of the particle. The
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Figure 5: A portion of particles is displaced towards the right in the stochastic
ratchet model.
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diffusion distance of the particle within one cycle of the poten-
tial oscillation is proportional to the square root of the temporal
period τ . The particle cannot go over the potential teeth if the
diffusion distance

√
Dτ is too small when compared with the

spatial period L of the potential as in Fig. 6(a), where D is
the diffusion coefficient. On the other hand, the particle goes
over the potential teeth on both sides regardless of the potential
asymmetry, when the diffusion distance is too large as in Fig.
6(b). The average velocity of the particle must be small in both
cases. In order for the particle to progress quickly in one di-
rection, the diffusion distance

√
Dτ must be comparable to the

spatial period L of the potential as in Fig 6(c).
Thus we have

L ≈
√

Dτ, (2)

as the optimal condition for the average velocity. Since the
coefficient D is proportional to the temperature T , we have

L ≈
√

D′Tτ, (3)

where D = D′T . We below confirm this condition in our simu-
lation.

2.3 Energy efficiency

Next, we consider the energy efficiency as another kind of the
efficiency of the ratchet system. For this purpose, we introduce
a load potential as in Fig. 7. The system converts the input
energy into the work against the load. We define the energy
efficiency η as

η = W/Ein, (4)

where W represents the work per unit time by the particle
against the load (Fig. 8(a)) and Ein is the input energy. The

11



Figure 6: (a) The particle cannot go over the potential teeth if L À √
Dτ .

(b) The particle goes over the potential teeth on both sides if L ¿ √
Dτ . (c)

The probability flow is expected to be maximal when the diffusion distance
is comparable to the spatial period of the potential, namely L ≈ √

Dτ .
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Figure 7: The ratchet system converts the input energy into the work against
the load.

input energy per unit time, Ein, is given by

Ein = (EA − EB)/τ, (5)

where EA is the work to the particle by the potential when we
turn on the potential, and EB is the work to the potential by
the particle when we turn off the potential (Fig. 8(b)).

Let us roughly estimate W and Ein. First, the output W

should be proportional to the distance covered by the particle
per unit time, namely the average velocity of the particle, if the
load potential is not too steep. Therefore, the same consider-
ation as in the previous subsection applies here. That is, the
work W is maximized when the condition

L ≈
√

Dτ (6)

is satisfied.
On the other hand, the input Ein can be estimated as fol-

lows. The diffusion distance
√

D′Tτ is small at low tempera-
tures. Since the particle moves slowly, EA and EB do not differ
much, and hence Ein is small. Thus we have, for the input energy

13



(a)

(b)

Figure 8: The definition of (a) the work W and (b) the input energy Ein.
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per unit time,

Ein ∝
√

τT

τ
=

√√√√T

τ
(7)

for small τ and T . For large τ and T , the particle moves much,
the energy difference EA − EB reaches its limit, and hence

Ein ∝ 1

τ
. (8)

In any case, the denominator of the energy efficiency is a de-
creasing function of τ and an increasing function of T .

By dividing W with Ein to obtain the energy efficiency η, the
maximum of the numerator must be shifted towards a lager τ

and a smaller T . We later see this in our simulation.
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pr = aexp(−E1 kBT)

pl = aexp(E2 kBT)
1

3 E1

E2 ∆x

∆x

Figure 9: The probability of the particle movements in the case where the
potential is on.

3 Simulation procedure

In this section, we explain our simulation procedure. A particle
moves at every time step ∆t on a one-dimensional lattice of mesh
size ∆x, according to the following rules.

A particle in the ratchet potential follows the Boltzmann dis-
tribution. When the potential is on, the probability pr of climb-
ing up the potential difference E1 over the distance ∆x is pro-
portional to exp(−E1/kBT ), while the probability pl of climbing
down E2 is proportional to exp(E2/kBT ), and the probability of
staying is fixed to 1/3 as is shown in Fig. 9. The normalization
constant a for pr and pl is given by

a =
2/3

exp(−E1/kBT ) + exp(E2/kBT )
. (9)

When the potential is off, a particle carries out a symmetrical
movement as in Fig. 10. Specifically, the probability of going

16



1
3

1
3

1
3

∆x∆x

Figure 10: The probability of the particle movements in the case where the
potential is off.

to the right over the distance ∆x, the probability of going to
the left over ∆x, and the probability of staying are all 1/3. The
probabilities defined in Fig. 9 are reduced to the ones in Fig.
10 for E1 = E2 = 0.

The temperature comes into the simulation as follows. The
probability that a particle exists at a position x at time t, P (x, t),
is expressed in the form of the following master equation:

P (x, t + ∆t) =
1

3
P (x + ∆x, t) +

1

3
P (x−∆x, t) +

1

3
P (x, t),(10)

or

P (x, t + ∆t)− P (x, t)

∆t

=
1

3

(∆x)2

∆t

P (x + ∆x, t) + P (x−∆x, t)− 2P (x, t)

(∆x)2 . (11)

By taking the limits ∆t → 0 and ∆x → 0, Eq. (11) is reduced
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to the diffusion equation

∂P

∂t
= D

∂2P

∂x2 , (12)

where the diffusion coefficient D = kBT/ζ is related to the tran-
sition probability 1/3 as

1

3
=

∆t

(∆x)2D =
∆t

(∆x)2

kB

ζ
T. (13)

Here, T is the temperature, kB is the Boltzmann constant, and
ζ is the viscous coefficient. By fixing ∆x, we can thus change
the temperature T by simply changing ∆t:

kBT =
1

3

ζ(∆x)2

∆t
. (14)

We now explain the outline of the simulation. We carried out
the simulation twice; once without the load potential, and once
with it. We calculate the average velocity from the former, and
the energy efficiency η from the latter.

We put all N particles at the origin in the beginning and let
them diffuse. The simulation begins when the potential is off.
The potential is turned on at time t = τ/2, turned off at time t =
τ , and so on. We continued the oscillation until t = 1.5× 105τ .
We varied the temporal period in the range 10−8s ≤ τ ≤ 10−7s.
The time scale of the fluctuation of the actin structure is known
from experiments [9] to be about 10−9 ∼ 10−3s. Unfortunately,
we did not have time to cover the entire range in this thesis.
We varied the temperature near the room temperature, namely
100K ≤ T ≤ 800K.

We set the simulation constants as in Table 1. We determined
the simulation parameters as follows. The coupling constant K

18



Physical Constants
Boltzmann constant kB 1.380658× 10−23J/K
Viscous coefficient ζ 90pN · ns/nm
Joule per electron volt 1.6021892× 10−19Je/V

Simulation Parameters
Potential height 2.56× 10−1eV
Step distance ∆x 0.1nm
Spatial period L 5.4nm
Particle number N 100
Load gradient l 1.8× 10−4eV/m

Table 1: The physical constants and the parameters in our simulation.

(which indicates the ease of the chemical reaction between the
myosin molecule and the actin filament) is known from experi-
ments [9] to be about 104mol−1. The quantity kBT ln K is the
free-energy difference between the state where the myosin and
the actin is connected by a chemical bond and the state where
they are disconnected. We regard the difference of the free en-
ergy as the potential difference between the two states. Thus the
potential height is estimated as kBT ln K ≈ 9kBT . We hence
set the potential height as 9kBT ≈ 2.56 × 10−1eV, by setting
T = 298K.

Experiments show that the spatial period of the actin fila-
ment is about 5.5nm. In order to make the discretization error
small, we put ∆x = 0.1nm. We set the ratio between the dis-
tance from the peak to the left bottom and the peak to the
right bottom as 1 : 8, in order to emphasize the asymmetry of
the potential so that the particle cannot go over the potential
teeth easily for large τ . Thus the distance from the peak to the
left bottom is set to 6∆x = 0.6nm, and the peak to the right
bottom to 48∆x = 4.8nm; hence L = 54∆x = 5.4nm

19
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Figure 11: The efficiency η as a function of the load gradient for T = 300K,
ω = 1/τ = 1.0× 108s−1.

The gradient of the load potential, l, must be smaller than
the potential gradient. We decide the load gradient so as not to
let the particles climb down the load potential for any temporal
periods and temperatures. For the purpose, we preliminarily
carried out a simulation and evaluated the energy efficiency, at
a fixed parameter set; see Fig. 11. Taking the margin, we set
l = 1.8× 10−4eV/m.
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4 Data Analysis

We explain in this section the details of our data analysis [8].
First, we explain our choice of data series.

After each temporal period τ , we took the sample average
with respect to the N particles:

〈v〉t =
1

N

N∑

i=1

xi(t)

t
, (15)

〈w〉t =
l

N

N∑

i=1

xi(t)

t
, (16)

ẼA,i(t) =
t− τ

2∑

t0= 1
2τ, 32τ,···

EA,i(t0), (17)

ẼB,i(t) =
t∑

t0=τ,2τ,···
EB,i(t0), (18)

〈ein〉t =
1

N

N∑

i=1

ẼA,i(t)− ẼB,i(t)

t
, (19)

where xi(t) is the position of the particle i at time t, l is the
load gradient, EA,i(t0) is the work to the particle i at the time
t0 by the potential when we turn on the potential and EB,i(t0)
is the work to the potential by the particle i at the time t0
when we turn off the potential (Fig. 8). Note that we calculate
Eq. (15) from the data without the load potential, whereas
Eqs. (16)-(19) from the data with it. The time dependence of
the averages is plotted in Fig. 12 with their statistical errors.
We see that the initial relaxation remains until t ≈ 0.3 × 105τ .
Hence we discarded the first 1/5 of the data series, which leaves
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(c)
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Figure 12: The initial relaxation of the expected values. (a) The average
velocity as a function of the time for T = 100K and ω = 1/τ = 9.0× 107s−1.
(b) The input Ein as a function of the time for T = 300K and ω = 1/τ =
9.0× 107s−1. (c) The output W as a function of the time for T = 200K and
ω = 1/τ = 8.0× 107s−1.
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us 1.2×105 pieces of data of each quantity. These data, however,
have a temporal autocorrelation. In order to use independent
data, we chose a point every 150 data, extracting 800 data points
of each quantity.

The final average velocity V and its statical error ∆V are
calculated as follows:

V =
1

800

∑

t

′〈v〉t, (20)

∆V =
1√

800(800− 1)

√∑

t

′
(〈v〉t − V )2, (21)

where
∑

t
′ denotes the sum of 800 extracted data of 〈v〉t.

Similarly, we have the output W and its statical error ∆W

as

W =
1

800

∑

t

′〈w〉t, (22)

∆W =
1√

800(800− 1)

√∑

t

′
(〈w〉t −W )2, (23)

and the input Ein and its statical error ∆Ein as

Ein =
1

800

∑

t

′〈ein〉t, (24)

∆Ein =
1√

800(800− 1)

√∑

t

′
(〈ein〉t − Ein)

2. (25)

The average energy efficiency was obtained as follows. We
first computed the quantity

η̃t =
〈w〉t
〈ein〉t (26)
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at every temporal period. The final estimate of the energy effi-
ciency η and its statical error ∆η are calculated as

η =
1

800

∑

t

′
η̃t. (27)

∆η =
1√

800(800− 1)

√∑

t

′
(η̃t − η)2. (28)
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5 Simulation results

We examine here two types of the efficiency defined in Section
2.

5.1 Average velocity

We first find in our simulation that the average velocity of the
particle is maximized at a finite temperature. We argued in
Section 2 that the the maximum average velocity is achieved
when

L ≈
√

Dτ ≈
√

D′τT ∝
√

T/ω, (29)

where ω is the frequency of the potential oscillation, ω = 1/τ .
Hence the optimal frequency ωopt and the optimal temperature
Topt should be related in the form

Topt ∝ ωopt, (30)

when we fix the spatial period L. We note in Fig. 13 that a
ridge indeed runs diagonally on the ω-T plane.

Let us plot in Fig. 14 how the ridge runs. We first look for the
maximum average velocity at a fixed temperature. For example,
the frequency giving the maximum average velocity is ωopt =
4× 107s−1 at T = 100K. We also plot the error as half the mesh
size. For example, we have the data points for ω = 3 × 107s−1

and ω = 5× 107s−1 besides the data for ωopt = 4× 107s−1, and
hence ∆ωopt = 0.5 × 107s−1. Likewise, the temperature giving
the maximum average velocity is Topt = 330K at ω = 2×107s−1.
We see in Fig. 14 that the maximum average velocity indeed
runs diagonally on the ω-T plane.
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Figure 13: The average velocity of the particle as a function of the temper-
ature T and the frequency ω.
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Figure 14: The maximum average velocity as a function of the frequency ω at
each fixed temperature T (orange line) and as a function of the temperature
T at each fixed frequency ω (red line).
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Figure 15: The work per unit time as a function of the temperature T and
the frequency ω.

5.2 Energy efficiency

Next, we consider the energy efficiency. In Section 2, we defined
the efficiency η as

η = W/Ein. (31)

The work W is maximized at a finite temperature as in Fig. 15.
We carried out the same data processing as we did to obtain
Fig. 14 from Fig. 13, and obtained Fig. 16 from Fig. 15.

We see in Fig. 16 that a ridge of the maximum work runs
diagonally on the ω-T plane. This behavior is the same as that
of the average velocity, as we discussed in Section 2.3.

On the other hand, the input Ein is a decreasing function of
the temporal period τ as in Fig. 17. This is also consistent with
our argument in Section 2.3.

The energy efficiency is hence maximized at a temperature
different from the one that maximizes the average velocity as
is seen when we compare Figs. 13 and 18. The ridge of η is
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Figure 16: The maximum work per unit time W as a function of the fre-
quency ω at each fixed temperature T (orange line) and as a function of the
temperature T at each fixed frequency ω (red line).

 2  3  4  5  6  7  8  9  10  100
 200

 300
 400

 500
 600

 700
 800

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

T [K]
ω =1 τ ×107[s−1]

E
in

[e
V

s−1
]

Figure 17: The input energy per unit time as a function of the temperature
T and the frequency ω.
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frequency ω.

plotted in Fig. 19. We see when we compare Figs. 14 and 19
that the maximum shifted. Furthermore, the efficiency η is also
an increasing function of the temporal period τ as in Fig 18,
because Ein is a decreasing function of the temporal period τ

whereas W is maximized at a finite frequency.
We see in Fig. 18 that the maximum of the energy efficiency

η at a fixed temperature vanishes. Let us consider the behavior
of the efficiency η in the limit τ → ∞, or ω → 0. The output
W should be negative in τ → ∞, because the particle simply
climbs down the load potential when the ratchet potential does
not oscillate. On the other hand, the input Ein should be 0 in
τ →∞, since the input occurs only when the potential changes
in time. Consequently, the efficiency η should be −∞ in τ →∞.
Therefore, η must be maximized at a finite temporal period τ .
Unfortunately, the maximum is not included in our parameter
range of ω.
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Figure 19: The maximum energy efficiency as a function of the temperature
T at each fixed frequency ω.
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6 Conclusions

We calculated the average velocity and the energy efficiency in
the stochastic ratchet model. Consequently, we have

L ≈
√

Dτ, (32)

as the optimal condition for the average velocity. We confirm
this condition in our simulation. Furthermore, we confirm that
the energy efficiency is maximized at a temperature different
from the one that maximizes the average velocity.

We here compare our simulation with the experimental data
given in Ref. [9]. We conclude that the myosin-actin system uses
the thermal energy much more effectively than the stochastic
ratchet model. Unfortunately, we cannot regard the stochastic
ratchet model as a model of the myosin-actin system as we below
compare the average velocity and the energy efficiency.

The average velocity in our simulation (≈ 10−2m/s) is much
greater than the experimental estimate (≈ 10−6m/s). The out-
put W in our simulation (≈ 104eV/s) is also much greater than
the experimental estimate (≈ 5eV/s). The input Ein in our sim-
ulation (≈ 106eV/s) is again greater than the experimental es-
timate (≈ 10eV/s). The efficiency η = W/Ein in our simulation
(≈ 0.01), however, is smaller than the experimental estimate
(≈ 0.4 ∼ 0.5).

We discuss why the stochastic ratchet model is inconsistent
with the myosin-actin system greatly. The myosin-actin sys-
tem produces a little output from a little input. On the other
hand, the particle produces much output from much input in
the stochastic ratchet model. In the stochastic ratchet model,
whenever the potential is on for τ/2 ≈ 10−8s, the particle often
goes over the potential teeth. In the real system, however, the
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myosin fluctuates much less frequently, namely of the frequency
∼ 10−3s.

The difference in the efficiency between the ratchet model
and the myosin-actin system becomes clear when we compare
the input energy with thermal energy. The input energy is from
several times to dozen times greater than thermal energy in
the myosin-actin system. In the stochastic ratchet model, the
input energy Ein is much greater than thermal energy. In other
words, the particle does not use the thermal energy effectively
in the stochastic ratchet model. The particle uses only the input
energy, which is wasted so much.

The stochastic ratchet model, unfortunately, cannot describe
the real myosin-actin system. Recently, the energetics of var-
ious ratchet model are studied [5], including a ratchet model
of higher efficiency [6]. In the near future, we hope that more
controlled experiments will be available, where we can know the
dependence of the energy efficiency on the diffusion coefficient
and the protein fluctuation. Then we will be able to know what
model is appropriate for molecular motors.
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