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Abstract

Various natural and social systems develop complex networks and
many of them have directed links. In recent years, many studies ana-
lyze the topology and dynamics of complex networks. Most of them,
however, focus on the property of undirected networks; directed net-
works are treated as a naive extension of undirected networks. Our
main question is the following: what could possibly happen if a net-
work has directed edges? Do they really act like the undirected ones?

In the present thesis, we discuss properties of networks generated
by the directed edges. We particularly focus on a typical direction
of links, which we call the flow in a network. We expect that some
of real networks have flows. We show that we can detect a flow in a
directed network by analyzing the complex spectrum of the adjacency
matrix of the network. We also report further results obtained from
the spectral analysis.
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1 Introduction

Many complex systems in nature as well as in our society have complex
network structure in them. The network structure is an important feature
of the complex systems and worth an extensive study. We can treat the
network structure of many complex systems with a common mathematical
tool, namely the “graph theory,” by defining the nodes (vertices) and the
links (edges) connecting the nodes. For example, the World Wide Web is well
described as a graph by taking the web pages as nodes and the hyperlinks
connecting the pages as edges. The Internet is also a complex network with
computers and routers as nodes and the physical links between them as edges.
The network of scientific collaboration is an example of the network in social
systems. In this network the nodes are the scientists and two nodes are
connected by an edge if the two scientists have written an article together.

Traditionally, the structural property of complex systems has been mod-
elled as random graphs. Until recently, the uncorrelated random graph
model, which was first studied by Erdős and Rényi [1] in the 1950s, has
been the main tool of analyzing the complex systems. In the Erdős-Rényi
model, we start with N nodes and connect every pair of nodes with a prob-
ability p. Then we obtain a graph with approximately pN(N − 1)/2 edges
randomly distributed; The graph seems like a complex network for large N .
The Erdős-Rényi model has itself many interesting properties and has been
studied much in the mathematical literatures.

It recently turns out, however, that many of the actual networks show
common statistical properties which are significantly different from the un-
correlated random-graph model. Motivated by the fact that the real systems
show common correlated properties, many studies have tried to clarify the
structure of networks in the real world. These efforts have resulted in char-
acterization of the real networks from the viewpoint of the following three
concepts: small world, clustering and degree distribution.

In the next section, we discuss the three main concepts of real networks
and introduce the models which we use for calculation. In section 3, we ana-
lyze the spectra of undirected network models. Finally in section 4, we show
the spectral analysis of directed network models. We discuss the relation be-
tween the network flow and the structure of the spectrum and some further
results we obtained from the spectra.
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2 Characterization and modeling of real net-

works

2.1 Topology of real networks

In this section, we briefly discuss the three main concepts of the real networks.
Small world : The concept of the small world is based on the fact that in

most networks there is a relatively short path between any two nodes despite
their often large size [2, 3]. The distance between two nodes is defined as the
number of edges along the shortest path connecting them. The average path
length ` of a network is the average of the distance between all the possible
pairs of nodes in the network. Recent studies have shown that a relatively
small ` is a basic character of the real networks. For example, Broder et
al. [4] analyzed 2× 108 web pages on the WWW and found that the average
path length ` is about 16.

Note that the small-world behavior does not necessarily indicate the cor-
related property of the real networks. In fact the Erdős-Rényi random-graph
model also displays the small-world character. In a random graph with N
nodes and 〈k〉 edges on average for each node, the number of steps d which
satisfies

〈k〉d ≈ N (1)

is enough to connect any two nodes in the network. Thus the typical dis-
tance between any two nodes in a random graph scales as the logarithm
of the number of nodes. As explained below, many real networks have the
characters of the small world and high clustering.

Clustering : Clusters of nodes appear in many systems: for example, re-
search groups in the network of scientific collaboration and circles of friends in
the network of human relationship. To quantify the extent of the cluster, the
clustering coefficient is often used [2, 3]. The clustering coefficient of a node
i with ki edges is defined as follows: first, we consider a subgraph consisting
of the ki neighbors of the node i. Note that the subgraph excludes the node
i. If all the ki nodes are connected to each other, there are ki(ki−1)/2 edges
in the subgraph. The ratio between the number Ei of the edges that actually
exists in the subgraph and the maximum possible number ki(ki − 1)/2 gives
the clustering coefficient of the node i:

Ci =
2Ei

ki(ki − 1)
. (2)

In other words, the clustering coefficient of the node i is the probability
that two of the neighbors of the node i are also connected. The clustering
coefficient C of the whole network is the average of Ci over all i.
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In the random graph the probability that two of the neighbors of a node
are connected is equal to the probability that two randomly chosen nodes
are connected. Thus the clustering coefficient of a random graph is

Crand = p =
〈k〉
N

, (3)

which becomes very small for large N . The clustering coefficient of most real
networks are known to be much larger than that of a random network with
the same N and 〈k〉. This directly indicates the correlated nature of real
networks.

In general, we cannot estimate the behavior of the average path length
from Eq. (1) because of the clustering. The number of nodes we can visit
by t steps is approximately (1 − C)t−1〈k〉t. Thus a network with a large
clustering coefficient seems to have a large path length. However, many of
the real networks show both the small-world character and the clustering
property, that is, a small path length and a large clustering coefficient at the
same time. In practice, the name “small-world network” is often used for
networks with these two properties.

Degree distribution: The degree distribution P (k) of a network is a distri-
bution function which gives the probability that a randomly chosen node has
exactly k edges. In the random graph with large N , the degree distribution
becomes a Poisson distribution. In many real networks, however, the degree
distribution has a power-law form:

P (k) ∼ k−γ. (4)

Such networks are called scale-free networks [5]. All the real networks we
introduced as examples are known as scale-free networks [4, 6, 7, 8, 9, 10, 11].

2.2 Model of the small-world network

Real networks have the small-world character like random graphs, but they
also have unusually large clustering coefficient. The first successful attempt
to generate graphs with a large clustering coefficient and a small path length
was made by Watts and Strogatz [2]. They proposed a one-parameter model
that interpolates between an ordered finite dimensional lattice and a random
graph. The generating algorithm of the Watts-Strogatz model is as follows
(Fig. 1): We start with a ring lattice with N nodes. Every node is connected
to its first k neighbors (k/2 on each side). Then we randomly rewire each
edge of the lattice with probability p. By varying p we can closely monitor
the transition between order (p = 0) and randomness (p = 1).
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Regular Small-world Random

p=0 p=1

Figure 1: An example of the Watts-Strogatz model with 〈k〉 = 4. The initial
state is the regular ring graph; We add randomness with probability p.

To understand the coexistence of a small path length and high clustering,
we study the behavior of the clustering coefficient C(p) and the average path
length `(p) as the functions of the rewiring probability p. As shown in Fig. 2,
the regular lattice (p = 0) yields a high clustering coefficient and a large path
length, while the random graph (p = 1) yields a low clustering coefficient
and a small path length. However, a large C and a small ` coexist in the
broad region of intermediate value of p, which characterizes the small-world
network. The reason of the appearance of the small-world network is that
`(p) drops rapidly at a small value of p, while C(p) stays almost unchanged.

The Watts-Strogatz model indicates that the small-world network exists
in the region between order and randomness, and so is the real networks.

2.3 Directed networks

Many complex networks that appear in natural and social sciences have di-
rected links. Consider the World Wide Web, for example; if the Web page
A has a hyperlink to the Web page B, it does not necessarily mean that the
Web page B has a hyperlink to the Web page A. The predator-prey relation-
ships in food webs is another example of directed links. Despite the existence
of directions in many real networks, most studies of complex networks have
focused mainly on undirected networks.
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Figure 2: The p dependence of ` and C of the Watts-Strogatz model. The
circles indicate `(p)/`(0) and the crosses C(p)/C(0). In an intermediate value
of p, the network shows a large C and a small ` at the same time, which is
a typical character of real networks.

In the present thesis, we investigate the effects of directed links in small-
world networks which interpolate between a regular lattice network and a
random network. We particularly focus on a typical direction of links, which
we call a flow in a network (Fig. 3). It is possible that small-world networks
have flows since small-world networks are not completely random. In a lim-
iting case, all links have the same direction in a directed regular lattice, and
hence there is a flow (See the right graph of Fig. 3).

We expect that some of the real networks actually have flows. For exam-
ple, consider the hierarchical structure of a food web known as the pyramid
of food chain. The direction of the predator-prey relationship is from the top
of the pyramid to the bottom of it. Another example is the citation network.
In the citation network, nodes stand for published articles and a directed
edge represents reference to a previously published article. Since reference is
made only for an article previously published, the typical direction of links
are from future to past. If we follow the references of the latest article in a
field, we will soon get most of the important articles in that field. But we
never find the latest work if we start from an older paper. In other words, the
knowledge of science flows from past to future through the citation networks.

How can we detect the flow in a network? Since graphs have no spatial
measure, it is difficult to find a flow in a network with randomness (Fig. 4).
We show that complex eigenvalues of the adjacency matrix of directed net-
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Figure 3: If undirected, these two networks would be equal. With directions,
can we treat them equally? The left network does not have a flow, but the
right one does.

Figure 4: As a graph, these two networks are equivalent. The left network
however, seems to have no typical direction. How do we know whether there
is a flow in the left network?.
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works contain a lot of useful information, especially information on the flow
in the network.

2.4 Directed Watts-Strogatz model

In the present thesis, we introduce an extension of the Watts-Strogatz model
to make directed networks which interpolates between the regular network
and the random network. The directed Watts-Strogatz model is given as
follows: We first prepare a regular lattice as in the undirected model. We
then assign the direction to each edge in the following way: each edge may
be directed clockwise with probability p1, counterclockwise with probability
p2, and bidirectional with probability 1 − p1 − p2. Thus obtained directed
graph is the initial state. Then we randomly rewire each directed edge of
the lattice with probability p under the condition that self-connections and
multiple edges are excluded. To examine the effect of flow in the network,
we hereafter use two types of the initial state and refer to them as the models
A and B. Their initial states are chosen as

Model A: p1 = 0.5, p2 = 0.5,
Model B: p1 = 1, p2 = 0,

respectively (Fig. 5).
For any directed networks, the average degree of the incoming edges 〈kin〉

and the outgoing edges 〈kout〉 are always equal. Thus we write the average
degree of directed networks as

〈k〉 ≡ 〈kin〉 = 〈kout〉. (5)

In Fig. 5, we specifically chose the case 〈k〉 = 2.

3 Spectra of undirected networks

The spectra of undirected small-world networks were first analyzed by Farkas
et al. [12]. We review discussions on the spectra of undirected networks in
this section.

3.1 Definitions

The graph we consider in the present thesis is a set of points (nodes or
vertices) connected by lines (edges or links). The edges may be directed or
undirected. We refer to the graphs consisting only of undirected edges as
undirected graphs and to the graphs which include directed edges as directed
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model:Bmodel:A

Figure 5: The initial states of the models A and B have the same topology
but different directions of edges. These figures are an example of the regular
lattice with 〈k〉 = 2.

graphs. We consider only graphs without any unit loop which connect a node
to itself and any multiple edges between a pair of nodes.

Any graph can be represented by its adjacency matrix A. The definition
of the adjacency matrix of an undirected graph is as follows:

Aij = Aji =

{
1, if node i and node j are connected.

0, if node i and node j are not connected.

We analyze graphs using the spectrum of the graph, or the set of the eigenval-
ues of the graph’s adjacency matrix. The meaning of the eigenvalues and the
eigenvectors of a graph can be illustrated by the following example. Suppose
that each component of a vector ~v is a quantity vi on each node i. Operating
A to ~v means to rewrite the quantities on each node by the following rule:
the quantity on node i becomes the sum of the quantities on the nodes which
have an edge toward node i. If the resulting vector is a multiple of ~v, then
~v is an eigenvector and the multiplier is the corresponding eigenvalue of the
graph.

The spectral density of a graph is the density of the eigenvalues of its
adjacency matrix. For a finite system, this can be written as the sum of
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delta functions

ρ(λ) ≡ 1

N

N∑
j=1

δ(λ− λj), (6)

which converges to a continuous function as N →∞.
The spectral density of a graph can be directly related to the graph’s

topological features: the kth moment, Mk, of ρ(λ) can be written as

Mk =
1

N

N∑
j=1

(λj)
k =

1

N
Tr(Ak) =

1

N

∑
i1,i2,···ik

Ai1,i2Ai2,i3 · · ·Aik,i1 . (7)

From the topological point of view, Lk = NMk is the number of directed
paths (loops) in the graph that return to their starting node after k steps.
Note that these paths can contain nodes that were already visited. Since
〈λ〉 ∝ TrA = 0, the variance of ρ(λ) represents the number of edges and its
skewness represents the number of triangles in the network.

3.2 Numerical results

In this section, we show the results for undirected network models. First,
we show the results for the undirected random graphs. Then, we show the
results for the undirected Watts-Strogatz model for various values of p and
discuss the relation between the network structure and the spectrum.

(1)Random graph: The spectrum of a random graph has been studied
mathematically in the random graph theory. It is known that in the N →∞
limit, the rescaled spectral density of the random graph converges to a semi-
circular distribution exemplified in Figs. 6 and 7 [12, 13].

A general form of the semi-circle law for real symmetric matrices is the
following [14]: If A is a real symmetric N ×N uncorrelated random matrix,
that is, 〈Aij〉 = 0 and 〈A2

ij〉 = σ2 for every i 6= j, and with increasing N each
moment of each |Aij| remains finite, then in the N → ∞ limit the spectral
density of A/

√
N converges to the semi-circular distribution:

ρ(λ) =

{
(2πσ2)−1

√
4σ2 − λ2, if |λ| < 2σ;

0, otherwise.
(8)

This theorem is also known as Wigner’s law.
Note that many of the semi-circle law’s conditions do not hold for the

adjacency matrix of the uncorrelated random graph; for example the expec-
tation value of the matrix elements is not zero. Nevertheless, the rescaled
spectral density of the uncorrelated random graph converges to the semi-
circle law in the N →∞ limit.
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Figure 6: The spectral density of a random graph with N = 100 and 〈k〉 = 10.
We used one hundred graphs for averaging.
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Figure 7: The spectral density of a random graph with N = 1000 and 〈k〉 =
50. We used one hundred graphs for averaging.
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Figure 8: The spectral densities of the undirected Watts-Strogatz model for
(a) p = 0, (b) p = 0.01, (c) p = 0.3 and (d) p = 1. We used the graphs with
N = 1000 and 〈k〉 = 10. In (b), (c) and (d) we used one hundred graphs for
averaging.

Further results on the behavior of the eigenvalues of the random graph
include the following [12, 13]: The principal eigenvalue (the largest eigen-
value, λ1) grows much faster than the second eigenvalue λ2. It is known that
λ1 scales as pN ≈ 〈k〉, while λ2 scales as

√
N . A similar relation holds for

the smallest eigenvalue λN , which also scales as
√

N . Thus, the “bulk” part
of the spectrum scales as σ

√
N , whereas the principal eigenvalue grows much

faster than that.
(2) Watts-Strogatz model : For p = 0, the graph of the Watts-Strogatz

model is regular and periodical. The spectral density ρ(λ) contains numer-
ous singularities because of the highly ordered structure of the initial state
(Fig. 8(a)). Note that ρ(λ) has a large third moment.

For p = 0.01, which is the small-world region of the model, the singular-
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ities are smeared, but the distribution still has strong peaks. This indicates
that the ordered structure is perturbed, but still dominant in the network
(Fig. 8(b)). In p = 0.3, there is no sign of sharp peaks characterizing the
local ordered structure. However, the third moment is still quite large. This
indicates that triangles are still dominant even after the ordered structure is
broken (Fig. 8(c)).

Finally, as p → 1, ρ(λ) approaches the semi-circle law characterizing
random graphs (Fig. 8(d)). While the details of the spectral density changes
considerably with p, the third moment of ρ(λ) is consistently large, indicating
a large number of triangles in the network. Thus we can conclude from the
results in Fig. 8 that a large number of triangles is a basic property of the
Watts-Strogatz model.

4 Spectra of directed networks

In this section, we show the results of our spectral analysis for the directed
random graph and the directed Watts-Strogatz model. We discuss the re-
lations between the network structure and the spectrum from the following
points of view: the flow in the network, comparison with the spectrum of
undirected network and the number of loops in the network.

4.1 Definitions

The adjacency matrix of a directed graph is defined as follows:

Aij =

{
1, if there is a directed edge from node i to node j.

0, if there is no edge from node i to node j.

Thus, if there is a directed edge from node i to node j and no edge from j
to i, Aij = 1 and Aji = 0. Note that in a directed network, the eigenvalues
can be complex since the adjacency matrix is generally asymmetrical.

We remark here some of the important characteristic of the adjacency
matrix of a directed graph: The kth moment Mk defined in Eq. (7) is still
proportional to the number of loops in the network even for a directed graph.
Another important characteristic is that the complex eigenvalues appear in
a conjugate pair since A is a real matrix. We can show this from a simple
calculation. An eigenvector ~φ and an eigenvalue λ of a real matrix A can be
written in the following form:

A~φ = λ~φ. (9)
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Figure 9: The spectral density of a directed random graph with N = 1000
and 〈k〉 = 10. We used one hundred graphs for averaging.

Taking the complex conjugate of Eq. (9), we obtain

A~φ∗ = λ∗~φ∗. (10)

From Eqs. (9) and (10) we see that if λ is a complex eigenvalue of A with the

eigenvector ~φ, then λ∗ is also an eigenvalue of A corresponding to eigenvector
~φ∗.

4.2 Numerical results

(1) Directed random graph: Directed random graphs are made by con-
necting every pair of nodes with a directed link with a probability p. The
spectrum of the directed random graph is a circular distribution in the com-
plex plane (Fig. 9) [14]. The eigenvalue with the largest absolute value λ1

appears on the real axis. It behaves like the largest eigenvalue of the undi-
rected random graph; that is, it grows much faster than the bulk part of the
spectrum.

(2) Directed Watts-Strogatz model : We show the results in two limiting
cases of the model: The model A starts from a graph with randomly directed
edges, whereas the model B starts from a graph with edges ordered clockwise.

(i) p = 0: In the initial state, the model A shows a bulk structure
(where the eigenvalues are randomly distributed) and a line on the real axis
(Fig. 10(a)). In contrast, the model B is well-ordered in the initial state
and shows a highly ordered spectrum with a ring structure (Fig. 11(a)). If
the edges were undirected, the two initial states would be equivalent. The
contrast between these spectra indicates that the spectrum of graphs reflects
the effect of directed links sensitively.
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Figure 10: The spectra of the model A for (a) p = 0, (b) p = 0.1, (c) p = 0.3
and (d) p = 1. We used graphs with N = 1000 and 〈k〉 = 5.
.
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Figure 11: The spectra of the model B for (a) p = 0, (b) p = 0.01, (c) p = 0.3
and (d) p = 1. We used graphs with N = 1000 and 〈k〉 = 5.
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(ii) 1 > p ≥ 0.1: As we increase p, The spectrum of the model A shows a
sign of unification of the bulk part and the line part (Fig. 10(b) and (c)). On
the other hand, the local ordered structure of the model B vanishes, but the
ring structure of its spectrum remains strongly even for large p (Fig. 11(b)
and (c)).

(iii) p = 1: Finally, the spectra of both models converge to the circular
distribution characterizing the random graph (Compare Fig. 10(d) and 11(d)
with Fig. 9). In the model A, the bulk part absorbs the line part and the
spectrum becomes circular. In the model B, on the other hand, the radius of
the ring structure becomes small and the circular distribution is formed. We
speculate that the ring structure reflects the flow in the network because the
most characteristic difference between the two spectra is the ring structure.

4.3 Discussion

(1) The flow in the network : The ring structure of a complex spectrum
represents the existence of a loop-like flow in the network. We can explain
this by considering the simplest network with a loop-like flow. Since the
initial state of the model B (Fig. 11(a)) has the translational symmetry, we
can calculate the eigenvalues analytically by using the Fourier transform.
The initial state of the model B is a regular ring graph with N nodes. Each
node is connected to its kth neighbors at farthest and the edges are ordered
in one direction. The eigenvalues of the graph can be written in the form

λn =
k∑

m=1

ei 2πn
N

m. (11)

In the case of k = 1, which is the simple one-dimensional directed chain with
a periodic boundary condition, we have

λn = ei 2πn
N . (12)

This forms the unit circle in the complex plane, the simplest ring structure
we can consider.

The one-dimensional directed chain is, in other words, a directed loop
of N steps. If there is a directed loop of N steps, we obtain N eigenvalues
which satisfy

λN = 1. (13)

They form a ring in the complex plane. In the case of more complicated
loops, that is, regular directed rings with k ≥ 2, the ring structure is still
dominant.
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Figure 12: The density of the real part of the eigenvalues of the model C for
(a) p = 0.01, (b) p = 0.3 and (c) p = 1. We used graphs with N = 1000 and
〈k〉 = 10. In all three cases, we used one hundred graphs for averaging.

Thus, we arrive at the following conclusion: The ring structure of complex
spectrum represents the existence of some kind of a directed loop with many
steps, or the existence of a loop-like flow in the network.

(2) Comparison with undirected spectra: The real part and the imaginary
part of the complex eigenvalues have information of its own. Here, we focus
on the role of the real part of the eigenvalues and show that the real part
reflects the undirected topology of the graph. Figure 12 shows the density of
the real part of the eigenvalues of the directed Watts-Strogatz model starting
from an undirected regular lattice (p1 = p2 = 0) and randomly replace edges
with directed edges. Let us call this the model C.

Compare Fig. 12 with Fig. 8; we can see similarity between the spectral
density of the undirected Watts-Strogatz model and the density of the real
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part of the eigenvalues of the model C.
We can explain this by perturbation. Let us write the adjacency matrix

of the initial state in the following form

Hinitial = 2
N∑

x=1

k∑
n=1

|x〉〈x + n|. (14)

A periodic boundary condition is required for x. We perturb the system with
two different kinds of noise.

Case 1 : We randomly choose two nodes, a and b and add a new undirected
link between them, which has the following form

∆Hundirected = |a〉〈b|+ |b〉〈a|. (15)

In this case, we obtain the first-order correction to the eigenvalues as follows:

λ(1)
n =

1

N
cos

2πn

N
(b− a). (16)

Case 2 : We add a directed link between the randomly chosen nodes:

∆Hdirected = |a〉〈b|. (17)

In this case, we obtain the correction to the eigenvalues in the following form:

λ(1)
n =

1

N
e

2πn
N

(b−a) =
1

N

(
cos

2πn

N
(b− a) + i sin

2πn

N
(b− a)

)
. (18)

We can see from Eqs. (16) and (18) that the correction due to the undirected
noise (Eq. (15)) is the same as the real part of the correction due to the
directed noise (Eq. (17)). This can be summarized as follows: if we ignore
the directions of all edges of a directed graph, the spectral density of the
resulting undirected graph is the same in the first-order approximation as
the density of the real part of the eigenvalues of the directed graph. Thus,
the distribution of the real part of the eigenvalues reflects the undirected
topology of the graph and the imaginary part reflects the effect of directed
links

(3) Number of loops : In undirected graphs, the graph spectrum is directly
related to the number of loops in the network as shown in Eq. (7). Thus,
we have the relation that the variance of the spectral density corresponds to
the total number of edges in the network. In directed graphs, we can also
relate the spectrum with the number of loops and obtain a similar relation:
the variance of the distribution of the imaginary part of the eigenvalues
approximately gives the number of directed edges.
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Although it is more complicated than the undirected case, the number
of directed loops may give us useful information. The number of loops with
k steps, Lk, is given by calculating Lk = Tr(Ak), where A is the adjacency
matrix of the network. In terms of the complex eigenvalues λn = αn + iβn,
the number of kth-order loops is given by

Lk = Tr(Ak) =
N∑

n=1

λk
n =

N∑
n=1

(αn + iβn)k

=
N∑

n=1

{
αk

n +

<k/2∑
m=1

(
k

m

)
αk−2m

n β2m
n (−1)n

}
. (19)

In the above calculations, we used the fact that the complex eigenvalues
appear in a conjugate pair since A is a real matrix.

In directed networks, the number of loops with two steps L2 is the number
of bidirectional links:

L2 =
N∑

n=1

(α2
n − β2

n). (20)

Since 〈α〉 = 〈β〉 = 0, we can rewrite Eq. (20) as

L2 = Nσ2(<λ)−Nσ2(=λ), (21)

where σ2(x) is the variance of the distribution of x. As we argued above,
the distribution of the real part of the eigenvalues describes the undirected
topology of the graph. Therefore, Nσ2(<λ) approximately gives the total
number of links in the network. Thus we can see that the variance of the
imaginary part of the eigenvalues gives

Nσ2(=λ) = Nσ2(<λ)− L2

= The number of the directed non-bidirectional edges. (22)

5 Summary

We studied properties of directed networks, focusing on the flow in the net-
work, which does not appear in undirected networks. First, we showed that
directed small-world networks actually have a possibility of flow. We showed
that one can obtain by spectral analysis, useful information on directed net-
works including the information on the flow in the complex network.
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