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　 エルミートなハミルトニアンを用いた共鳴状態の 析

（内容の要旨）

　ある特定のエネルギー（共鳴準位）を持った 子が、量子ドットなどのメ

ゾスコピックな素子に入射すると、ある程度 い時間ドット内に閉じ込めら

れるという現象が こる。これは一種の共鳴散乱と捉えることができる。

　この の散乱現象を開放系の定常状態問題として扱うと、共鳴状態におけ

る波動関数は遠方で発散するため、数値 算が困難となる。

　我々は、この波動関数と複素数のエネルギー固有値を具体的に求めるため

に、複素ゲージ変換を施した エルミートなハミルトニアンを用いる新しい

方法を提案する。従来は複素スケーリング法と呼ばれる手法が使われてきた

が、この方法には、スケール変換する領域においてポテンシャルが少なくと

も 析的でなければ使えない、という制約があった。複素ゲージ変換にはそ

のような限界がなく、 常に広汎にわたる問題に対して適用が可能である。

　本研究においては、共鳴状態を与えるポテンシャル模型として一次元の井

戸型ポテンシャルと、ガウス関数を２つ組み合わせたポテンシャルを扱った。

　前者の問題については、適切な境界条件の下でシュレーディンガー方程式

を くことにより、複素ゲージ変換を用いることなく共鳴状態の波動関数と

寿命を求めた。

　後者の問題については、 エルミートなハミルトニアンの固有関数を調和

振動子の固有関数であるエルミート多項式で展開し、共鳴エネルギーと寿命

を行列の複素固有値として直接求めた。結果として、連続空間模型を扱うこ

とにより、格子模型では求めるのが困難であった共鳴点を比 的精度よく得

られることが示された。
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 If the incident energy of an electron is equal to a resonant level, the
electron is trapped for a while in a quantum dot. This phenomenon can be
viewed as a kind of resonant scattering. The wave function of the resonant
state is a divergent function if we treat this type of scattering phenomena
as a stationary-state problem of an open system and hence numerical
computing is very difficult.
 We propose the use of a novel type of non-Hermitian Hamiltonian for
calculating the resonant wave functions and corresponding complex
energy eigenvalues concretely. The method of complex scaling has been
conventionally used. However, there is a limitation in its applicability. In
contrast, the present method of the imaginary gauge transformation is
general and can be applicable to extensive problems.
 In the present study, we treat two types of the potential, a one-
dimensional square well and a combination of two Gaussian functions. In
the former problem, we obtained the resonant wave functions and its
lifetime by solving the Schr

† 

˙ ̇ o dinger equation under an appropriate
boundary conditions without the help of the imaginary gauge
transformation. In the latter problem, we obtained the resonant energy and
the lifetime directly as complex eigenvalues of a non-Hermitian matrix.
We claim that the imaginary gauge transformation provides a unique way
of defining resonant states.
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Abstract
If the incident energy of an electron is equal to a resonant level, the

electron is trapped for a while in a quantum dot. This phenomenon
can be viewed as a kind of resonant scattering. The wave function
of the resonant state is a divergent function if we treat this type of
scattering phenomena as a stationary-state problem of an open system
and hence numerical computing is very difficult.

We propose the use of a novel type of non-Hermitian Hamiltonian
for calculating the resonant wave functions and corresponding com-
plex energy eigenvalues concretely. The method of complex scaling
has been conventionally used. However, there is a limitation in its
applicability. In contrast, the present method of the imaginary gauge
transformation is general and can be applicable to extensive problems.

In the present study, we treat two types of the potential, a one-
dimensional square well and a combination of two Gaussian functions.
In the former problem, we obtained the resonant wave functions and
its lifetime by solving the Schrödinger equation under an appropriate
boundary conditions without the help of the imaginary gauge trans-
formation. In the latter problem, we obtained the resonant energy
and the lifetime directly as complex eigenvalues of a non-Hermitian
matrix. We claim that the imaginary gauge transformation provides
a unique way of defining resonant states.
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1 Introduction

Resonant scattering is one of the most interesting phenomena in quantum
physics. A well-known example is the Ramsauer-Townsent effect, which gives
anomalously large transmission in the scattering of low-energy electrons. Res-
onant behavior can also emerge when a photon is scattered by an atom in its
ground state if the incident energy of the photon is equal to the excitation
energy of the atom. In this case, the scattering amplitude shows a very sharp
peak.

In fact, the resonance is an intrinsic feature of general open quantum sys-
tems. In recent years, the conduction properties of mesoscopic systems have
been studied both theoretically and experimentally [1, 2]. Among others,
in ballistic transport regime, the effects of the resonance are actually ob-
served [3, 4]. This phenomenan is known as resonance trapping. The energy
dependence of the conductance is strongly affected by this effect. However,
a general theory that can clarify how the resonance contributes to the con-
ductance has not been constructed yet. The crucial difficulty lies in the
treatment of the open systems.

The Hamiltonian of an open quantum system is fundamentally non-
Hermitian because the probability density does not need to be conserved.
Many theoretical studies of non-Hermitian systems have been made in the
framework of different models. In particular, the computation of the reso-
nant states is performed by the method of complex scaling, mainly in the
context of nuclear physics [5, 6].

In the present thesis, we propose the use of a new type of non-Hermitian
Hamiltonian for the measurement of the location and width of resonant
states. This Hamiltonian contains an imaginary vector potential, which plays
a very important role in separating the resonant states from the continuum of
the scattering states. In addition, in contrast to the optical model, this model
precisely reflects the actual scalar potential. The imaginary vector potential
was introduced originally in the study of the Anderson localization and has
made rapid progress in this field [7–10], whereas it has been hardly used in
the study of open quantum systems including mesoscopic systems [11].

In Sec. 2, the physical meaning of the non-Hermiticity is briefly reviewed.
We emphasize the importance of boundary conditions. Sec. 3 shows a simple
example of resonant scattering. The numerical results are also presented. In
Sec. 4, a general theory of the imaginary gauge transformation is formulated.
This theory provides a unique way of defining the resonant states. In Sec. 5,
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the imaginary gauge transformation is applied to a one-dimensional system
and the numerical results are discussed. Finally in Sec. 6, concluding remarks
are given.

2 Non-Hermiticity of Hamiltonian

In the present section, we review how the Hermiticity of the Hamiltonian de-
pends on boundary conditions. The physical meaning of the complex eigen-
values is mentioned as well.

2.1 Boundary Condition for Open Quantum Systems

The usual time-independent Hamiltonian describing stationary states is given
by

H = − h̄2

2m
∇2 + V (x), (2.1)

where the potential V (x) is real. Whether this Hamiltonian is Hermitian or
not depends on boundary conditions imposed on its eigenfunctions.

If H is Hermitian, the following equality must hold for an arbitrary state
φ(x): ∫

φ∗Hφdx =
∫

(Hφ)∗φdx. (2.2)

Here the integration is done over the entire region that we are interested in.
This is none other than the definition of the Hermitian operator. Of course,
the eigenvalues must be real in this case. Using the identity for arbitrary
scalar fields f and vector fields A,

∇ · (fA) = A · ∇f + f∇ · A, (2.3)

we rewrite Eq. (2.2) as follows:

∫
∇ · (φ∗∇φ− φ∇φ∗)dx = 0. (2.4)

From Gauss’s theorem, we can convert this volume integral to the surface
integral, ∫

S
(φ∗∇φ− φ∇φ∗) · dS = 0, (2.5)
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where S denotes a closed surface enclosing the sufficiently large region and dS
is the surface element vector. Therefore, the Hermiticity (2.2) is equivalent to
the boundary condition (2.5). Actually, this condition holds in most cases.
For this reason, the Hamiltonian (2.1) is generally treated as a Hermitian
operator.

In the following, we consider a one-dimensional space, in paticular. If
we define all wave functions {φ(x)} within a large box of length L, the
Hermiticity condition (2.5) can be written in the form

lim
L→∞

[
φ∗dφ
dx

− dφ∗

dx
φ

]L/2

−L/2

= 0. (2.6)

Needless to say, for bound states, the condition (2.6) holds obviously because
its boundary condition is φ(∞) = φ(−∞) = 0. Moreover, for a free particle
with the periodic boundary condition φ(x) = φ(x + L), the condition (2.6)
holds as well. Let us also consider the important boundary condition that is
used frequently in scattering problem:

φ(x) ∼ eikx +Re−ikx as x→ −∞, (2.7)

and
φ(x) ∼ Teikx as x→ ∞, (2.8)

where R and T are the reflection and transmission coefficient respectively
and the wave number k is assumed to be real. If the scattering potential is
localized near x = 0, we can prove the Hermiticity of the Hamiltonian (2.1).
Consequently, under all these three types of boundary conditions, which
appear commonly in quantum mechanics, the Hamiltonian (2.1) should be
Hermitian.

However, if we remove the incident wave eikx from the boundary condi-
tion (2.7), the Hermiticity condition (2.6) does not hold any longer. There-
fore, when we adopt the boundary condition

φ(x) ∼ eik|x| as |x| → ∞, (2.9)

the Hamiltonian (2.1) is non-Hermitian. This boundary condition is appro-
priate for describing a scattering state in an open quantum system, since this
well expresses the situation that an incident particle eventually goes through
the potential barriers.
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2.2 Physical Meaning of the Complex Energy Eigen-
values

Because of the non-Hermiticiy, the energy eigenvalues E are generally com-
plex under the boundary condition (2.9). Furthermore, the correspond-
ing eigenfunctions are not square-integrable. Assuming that the relation
E = h̄2k2/2m is valid far away from the scattering potential, the wave num-
ber k must be also complex. Let us write the complex energy and the complex
wave number as

E = Er − i
Γ

2
, (2.10)

k = kr − iγ, (2.11)

where Er, Γ, kr, and γ are related to each other as follows:

Er =
h̄2(k2

r − γ2)

2m
, (2.12)

and

Γ =
2h̄2krγ

m
. (2.13)

Then we have the wave function

φ(x) ∼ eikr |x|+γ|x|, (2.14)

which is diverging as |x| → ∞. Conversely, if we allow divergent functions
as solutions of the Schrödinger equation, the corresponding eigenvalues are
generally complex as we explained in Sec. 2.1.

The real part of the energy, (2.12), gives the resonant level. Substituting
Eq. (2.10) in the time-dependent factor of the stationary state e−iEt/h̄, we
have the wave function of the energy eigenstate in the form

ΦE(x, t) = φE(x)e−iErt/h̄e−Γt/2h̄. (2.15)

By taking the squared magnitude of the both sides of Eq. (2.15), we obtain
the probability density

|ΦE(x, t)|2 = |φE(x)|2e−Γt/h̄. (2.16)

Thus the quantity h̄/Γ yields the lifetime of the eigenstate corresponding to
the eigenvalue E. The lifetime is infinite if the Hamiltonian is Hermitian,
i.e. if Γ = 0.
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3 A Simple Problem of Resonant Scattering

In the present section, we restrict ourselves to one of the simplest models that
causes resonant scattering, namely scattering due to a square-well potential.
This model is also one of the rare solvable examples without the help of the
imaginary gauge transformation, which we will formulate in the next section.

3.1 Square-Well Potential

We consider a finite potential well given by (Fig. 1)

V(x)

x

-V0

a-a

Figure 1: The square-well potential.

V (x) =




0 (x < −a),
−V0 (−a < x < a),
0 (a < x),

(3.1)

with V0 > 0. In this model, transmission resonance occurs when the incident
energy is equal to

Eres = −V0 +
n2π2h̄2

8ma2
(n = 1, 2, 3, · · ·), (3.2)

as long as Eq (3.2) has a positive value.
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In the following, we solve the Schrödinger equation

d2ψ(x)

dx2
+

2m

h̄2 [E − V (x)]ψ(x) = 0 (3.3)

with the potential (3.1) under the boundary condition (2.9), which allows
resonant states. In fact, we can obtain not only the resonant states but also
the bound states. As usual, we introduce the parameters

k2 =
2mE

h̄2 , (3.4)

and

κ2 =
2m(E + V0)

h̄2 . (3.5)

However, both k and κ are complex in general, since we wish to obtain the
resonant states, which are characterized by complex energy eigenvalues E.
Hence we write

k = kr − iγ, (3.6)

κ = κr − iλ, (3.7)

where kr, γ, κ and λ are real.
Using these parameters, we can write down the solution in each region of

the potential (3.1) immediately as follows:

ψ(x) =



Ae−ikx (x < −a),
Beiκx + Ce−iκx (−a < x < a),
Deikx (a < x),

(3.8)

where A, B, C and D are in general complex coefficients. Then we require
the conditions that the wave functions and its first derivatives are continuous
at x = ±a. Because of the symmetry V (−x) = V (x), we expect solutions of
a definite parity. Therefore it is sufficient to apply the matching conditions
to the solutions and its derivatives only at x = a. Thus we obtain

Deika = Beiκa + Ce−iκa, (3.9)

ikDeika = iκBeiκa − iκCe−iκa. (3.10)

Now let us examine even solutions and odd solutions separately.
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Even solutions: In this case, we can set A = D and B = C. Thus we
rewrite Eqs. (3.9) and (3.10) as follows:

αeika = 2 cos(κa), (3.11)

ikαeika = −2κ sin(κa), (3.12)

where α = A/B. From the above equations, we obtain

ik = −κ tan(κa). (3.13)

On the other hand, we obtain from (3.4) and (3.5), the relation

κ2 − k2 =
2mV0

h̄2 . (3.14)

Let us introduce the dimensionless parameters

ξ = ka, (3.15)

η = κa. (3.16)

Using these parameters, Eqs. (3.13) and (3.14) can be rewritten in the form:

iξ = −η tan η, (3.17)

η2 − ξ2 = ρ2, (3.18)

where

ρ2 =
2mV0a

2

h̄2 . (3.19)

Eliminating the variable ξ, we obtain

η = ±ρ cos η. (3.20)

Now let us write the complex variable η explicitly as

η = µ− iν, (3.21)

where

µ = aκr, (3.22)

ν = aλ. (3.23)
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Equating the real parts and the imaginary parts of the both sides of Eq. (3.20)
respectively, we obtain a set of simultaneous equations

µ = ±ρ cosµ cosh ν, (3.24)

ν = ∓ρ sin µ sinh ν. (3.25)

Although we cannot proceed to solve this equation analytically any longer,
the desired energy eigenvalues can be obtained numerically. If we plot the
function

ν = cosh−1

(
µ

±ρ cosµ

)
, (3.26)

and Eq. (3.25) as functions of µ, the intersections of these curves (Fig. 2)
determine the eigenvalues from (3.5) as

E = −V0 +
V0

ρ2
(µ− iν)2, (3.27)

for a given ρ. Thus Eq. (3.27) yields the resonant level and the inverse lifetime
respectively:

Er = −V0 +
V0

ρ2
(µ2 − ν2), (3.28)

Γ =
4V0µν

ρ2
. (3.29)

To obtain the wave functions for x > |a|, we must also determine the
complex wave number k. From Eq. (3.17), we can calculate kr and γ as
follows:

akr =
ν sin(2µ) + µ sinh(2ν)

cos(2µ) + cosh(2ν)
, (3.30)

aγ =
ν sinh(2ν) − µ sin(2µ)

cos(2µ) + cosh(2ν)
. (3.31)

For simplicity of the calculation, we write, using Eq. (3.11),

A = 2 cos(κa), (3.32)

B = eika. (3.33)
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Figure 2: Equations (3.24) and (3.25). The intersections indicate the location
of discrete complex eigenvalues for even solutions in squre well (ρ = 4 and
π ≤ µ ≤ 5π).

Thus the even wave function in the region of x > a, ψ(x) = Aeikx, is written
in the form

Reψ(x) = 2[cos(κra) cosh(λa) cos(krx)

− sin(κra) sinh(λa) sin(krx)]e
γx, (3.34)

Imψ(x) = 2[cos(κra) cosh(λa) sin(krx)

+ sin(κra) sinh(λa) cos(krx)]e
γx. (3.35)

whereas in the region of x < |a|, the wave function ψ(x) = 2B cos(κx) can
be written as follows:

Reψ(x) = 2eγa[cos(kra) cos(κrx) cosh(λx)

− sin(kra) sin(κrx) sinh(λx)], (3.36)

Imψ(x) = 2eγa[cos(kra) sin(κrx) sinh(λx)

+ sin(kra) cos(κrx) cosh(λx)]. (3.37)
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Odd solutions: We can also obtain the odd solutions by following the same
procedure for calculating the even solutions except for setting A = −D and
B = −C. In this case, Eqs. (3.9) and (3.10) are written in the form

−αeika = 2i sin(κa), (3.38)

−kαeika = 2κ cos(κa). (3.39)

Thus Eq. (3.17) is changed into

iξ = η cot η. (3.40)

Substituting this equation in the relation (3.18) yields

η = ±ρ sin η. (3.41)

The simultaneous equations corresponding to Eqs. (3.24) and (3.25) are ob-
tained as follows:

µ = ±ρ sin µ cosh ν, (3.42)

ν = ±ρ cosµ sinh ν. (3.43)

Once we know the solutions of the above equations numerically (Fig. 3),
from Eq. (3.40), we can determine kr and γ as

akr =
µ sinh(2ν) − ν sin(2µ)

cosh(2ν) − cos(2µ)
, (3.44)

aγ =
ν sinh(2ν) + µ sin(2µ)

cosh(2ν) − cos(2µ)
. (3.45)

As we mentioned above, the energy eigenvalues are given by Eq. (3.27).
Furthermore, the wave functions can be obtained from Eq. (3.38) by setting

A = −2i sin(κa), (3.46)

B = eika. (3.47)

The odd solution for x > a is given by

Reψ(x) = 2[cos(κra) sinh(λa) cos(krx)

− sin(κra) cosh(λa) sin(krx)]e
γx, (3.48)
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Figure 3: Equations (3.42) and (3.43). The intersections indicate the location
of discrete complex eigenvalues for odd solutions in squre well (ρ = 4 and
π ≤ µ ≤ 5π).

Imψ(x) = 2[cos(κra) sinh(λa) sin(krx)

+ sin(κra) cosh(λa) cos(krx)]e
γx. (3.49)

On the other hand, the solution for x < |a|, ψ(x) = 2iB sin(κx), is written
in the form

Reψ(x) = 2eγa[cos(kra) cos(κrx) sinh(λx)

− sin(kra) sin(κrx) cosh(λx)], (3.50)

Imψ(x) = 2eγa[cos(kra) sin(κrx) cosh(λx)

+ sin(kra) cos(κrx) sinh(λx)]. (3.51)

3.2 Numerical Results

Choosing the unit of h̄2/2m = 1, we obtained the resonance solutions nu-
merically for the special case ρ = 4, V0 = 4 and a = 2. The results of the
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first eight solutions are summarized in Table 1. The agreement between the
estimates |E| and the theoretical value (3.2) of the resonant level Eres is fairly
good, although there seems to be no simple reason why it should be so. The
divergent wave functions are also exemplified in Fig. 4.
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n Eres Er Γ/2 Γ−1 |E|

3 1.5517 0.9259 1.2142 0.41179 1.5269

4 5.8696 4.9552 3.0594 0.16343 5.8236

5 11.4213 10.2560 4.9354 0.10131 11.3817

6 18.2066 16.8183 6.9276 0.072175 18.1892

7 26.2257 24.6361 9.0328 0.055354 26.2398

8 35.4784 33.7049 11.2404 0.044482 35.5298

9 45.9649 44.0217 13.5401 0.036927 46.0570

10 57.6850 55.5842 15.9228 0.031402 57.8199

Table 1: Results of the square-well potential. Theoretical values Eres are
obtained from Eq. (3.2).
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Figure 4: The resonant wave functions. The solid line and the broken line
indicate the real part and the imaginary part of the solution respectively.
(a) Even solutions with the eigenvalue E = 16.8183− i6.9276. (b) Odd solu-
tions with E = 24.6361 − i9.0328.
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4 Imaginary Gauge Transformation

In the present section, the general formulation of the imaginary gauge trans-
formation is proposed. By means of this transformation, the usual Hamilto-
nians are converted to non-Hermitian operators. We can thereby expand the
region of the convergent solutions.

4.1 The General Formulation

First, we consider the standard one-body Hermitian Hamiltonian in the d-
dimensional continuum space,

H0 =
p2

2m
+ V (x), (4.1)

where p = (h̄/i)∇ is the momentum operator and V (x) is a potential. What
to obtain are the eigenfunctions of the resonant states of the Schrödinger
equation

H0ψ0(x) = E0ψ0(x), (4.2)

where ψ0(x) is a diverging wave function as |x| → ∞ and E0 is a complex en-
ergy eigenvalues. For this purpose, we treat the non-Hermitian Hamiltonian
of the form

Hg =
(p + ig(x))2

2m
+ V (x) (4.3)

instead of H0. Here g(x) is a spatially varying real vector referred to as
the imaginary vector potential. The Hamiltonian (4.3) can be written more
explicitly as

Hg = − h̄2

2m
∇2 +

h̄

m
g(x) · ∇ +

h̄

2m
∇ · g(x) − g(x)2

2m
+ V (x). (4.4)

Of course, in the case g(x) = 0, Eqs. (4.3) and (4.4) are reduced to the
standard Hamiltonian (4.1).

The eigenfunction of the Hamiltonian Hg corresponding to ψ0(x) is given
by the gauge-transformed function

ψg(x) = exp
[
1

h̄

∫ x

g(x′) · dx′
]
ψ0(x). (4.5)
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On the other hand, the eigenvalue E0 must remain the same as long as g(x)
can be expressed as the gradient of an arbitrary scalar function. The readers
can confirm

Hgψg(x) = E0ψg(x) (4.6)

by plugging (4.5) into (4.6) and making straightforward algebra. From now
on, we write the energy eigenvalue simply as E instead of E0.

Consequently, choosing an appropriate gauge g(x), we can obtain ψg(x)
as a bound state with the complex eigenvalue E even if ψ0(x) is a diverging
function. In other words, the problem of obtaining the resonant state is
reduced to the bound-state problem.

4.2 The One-Dimensional System

In the following, we focus on the one-dimensional case. Equation (4.3) is
reduced to the Hamiltonian

Hg =
(p+ ig(x))2

2m
+ V (x), (4.7)

where p = (h̄/i)d/dx. The Schrödinger equation (4.4) is written in the form

[
d2

dx2
− 1

h̄

d

dx
g(x) − g(x)

h̄

d

dx
+
g(x)2

h̄2 − 2m

h̄2 (V (x) − E)

]
ψg(x) = 0. (4.8)

Here we note that
d

dx
g(x) = g′(x) + g(x)

d

dx
, (4.9)

Thus we can rewite Eq. (4.8) as follows:

[
d2

dx2
− 2g(x)

h̄

d

dx
− g′(x)

h̄
+
g(x)2

h̄2 − 2m

h̄2 (V (x) − E)

]
ψg(x) = 0. (4.10)

Choice of the gauge: Now we must determine the imaginary vector poten-
tial g(x) concretely. Assuming that the wave function of resonant states has
an asymptotic form ψ0(x) ∼ eikr|x|+γ|x|, the gauge factor exp[ 1

h̄

∫ x g(x′)dx′]
should behave as e−c|x| as |x| → ∞. For this reason, we choose the gauge as
follows:

g(x) = −g0 tanh
(
g0x

h̄

)
, (4.11)
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where g0 is a positive constant, which determines the strength of the sup-
pression of the divergence of the wave function. In this case, Eq. (4.5) gives
the eigenfunction of the Schrödinger equation Hgψg(x) = Eψg(x) in the form

ψg(x) =
1

cosh(g0x/h̄)
ψ0(x). (4.12)

This gauge-transformed solution ψg(x) ∼ eikr |x|−(g0−γ)|x| is convergent for
g0 > γ and thus can be handled easily. The Hamiltonian Hg in Eq. (4.10)
takes the form

Hg = − h̄2

2m

d2

dx2
− h̄

m
g0 tanh

(
g0x

h̄

)
d

dx
− g2

0

2m
+ V (x). (4.13)

We treat this non-Hermitian Hamiltonian for a practical problem in the next
section.

5 Numerical Analysis

The methodology formulated in the previous section can be applicable to
extensive problems. Its application to a one-dimensional problem and all the
numerical results obtained are described in the present section.

5.1 Matrix Representation of the Hamiltonian

The problem to be solved is the Schrödinger equation

H̃gψg(x) = Ẽψg(x), (5.1)

where

H̃g = − d2

dx2
− 2g0

h̄
tanh

(
g0x

h̄

)
d

dx
− g2

0

h̄2 + Ṽ (x), (5.2)

and

Ṽ (x) =
2m

h̄2 V (x), (5.3)

Ẽ =
2m

h̄2 E, (5.4)

for a given V (x) under the boundary conditon that is the same as bound
states. This is essentially a bound-state problem except that the Hamiltonian
is not Hermitian.
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Figure 5: The potential (5.5) (A combination of two Gaussian functions).

We assume that the usual method of solving the bound-state problem is
still valid for this non-Hermitian case. Here we express the eigenfunctions
as a superposition of an appropriate function system. The merit of this
method is that the resonant energy and the lifetime can be obtained directly
as complex eigenvalues of the Hamiltonian matrix.

Now we consider the potential which is a combination of two Gaussian
functions (Fig. 5)

Ṽ (x) = 5(8e−(x/6)2 − 11e−(x/3)2). (5.5)

In terms of the eigenfunctions of the harmonic oscillator ϕn(x), we expand
ψg(x) as

ψg(x) =
∞∑

n=0

cnϕn(x), (5.6)

where cn is the expansion coefficient. The complete orthonormal set {ϕn(x)}
which satisfies (

− h̄2

2m

d2

dx2
+
mω2

2
x2

)
ϕn(x) = Eϕn(x), (5.7)
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is given by

ϕn(x) =
1√

β
√
π2nn!

Hn(ξ)e−ξ2/2 (n = 0, 1, 2, · · ·), (5.8)

where

β =

√
h̄

mω
, (5.9)

ξ =
x

β
, (5.10)

and Hn(ξ) is the Hermite polynomials. Adopting the Dirac bra-ket notation,
we obtain the matrix elements of H̃g as

(H̃g)ij = 〈ϕi|H̃g|ϕj〉. (5.11)

In practice, the expansion (5.6) must be truncated at a finite number of basis
in order to diagonalize the matrix (5.11) numerically.

On the basis of the argument in Sec. 4, the non-Hermitian matrix (5.11)
may have resonant states as complex eigenvalues which are independent of
g0. Once we find such solutions, we obtain the divergent wave functions ψ0(x)
from Eq. (4.12) by gauge-transforming back from ψg(x).

The resonant levels are approximately equal to the levels that would be
bound states if the potential barriers are infinitely high. Thus we can roughly
estimate the locations of the resonant states by approximating (5.5) in the
form Ṽ (x) 
 5x2 − 15. Therefore we expect that there are at least four
long-lived resonant states at

Ẽres 
 5.1, 9.6, 14.1, 18.5 (5.12)

and four bound states at

Ẽb 
 −12.8, −8.3, −3.8, 0. (5.13)

5.2 Results and Discussions

We present the eigenvalue spectrum of the non-Hermitian matrix (5.11) with
g0 = 0.0, 0.6 and 0.8 in Fig. 6. The discrete eigenvalues independent of g0

on the negative real axis correspond to bound states. There are four energy
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levels of the bound states at Ẽb = −12.8129, −8.5400, −4.4743, −0.6262,
which are consistent with (5.13).

The spectrum shows two resonant states at Ẽ 
 15.2 − i2.3, 18.9 −
i3.1, which are in fairly good agreement with the expected values (5.12).
We exemplify the corresponding eigenfunction ψg(x) and the divergent wave
function ψ0(x) in Fig. 7.

The eigenvalues located in the positive real axis at Ẽr 
 6.3, 9.4 presum-
ably correspond to the other two expected resonant levels. We expect that
these two eigenvalues become complex when we increase the dimensions of
the matrix (5.11).
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Figure 6: The energy spectrum of the non-Hermitian model (5.2) with di-
mensions 400 and β = 2. (ḡ0 = g0/h̄).
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Figure 7: The convergent and divergent eigenfunctions. The solid line and
the broken line indicate the real part and the imaginary part of the solu-
tion respectively. (a) The gauge-transformed convergent eigenfunction ψg(x)
with g0 = 0.6. (b) The divergent wave function of the resonant state ψ0(x)
with Ẽ = 15.2 − i2.3.
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6 Conclusion

We investigated resonant states numerically in the framework of non-Hermitian
quantum mechanics. In Sec. 3, we obtained the divergent wave functions
corresponding to the resonant states under the boundary conditions for the
open quantum system as we explained in Sec. 2. The modulus of the obtained
eigenvalues is in good agreement with the theoretically predicted values. In
Sec. 4, We introduced the imaginary vector potential in order to expand the
region of the convergent solutions of the Schrödinger equation. In Sec. 5,
we found resonant levels and their lifetimes directly as complex eigenvalues
of a non-Hermitian matrix. We confirmed that the divergent wave function
of the resonant states can be obtained as a gauge-transformed convergent
eigenfunction with the complex eigenvalues. We showed that the imaginary
gauge transformation is a convenient way of defining resonant states as well
as computing them.
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