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（内容の要旨）

　量子 算機は、１９８５年に Deutsch によって明確に定式化された、量子
力学の原理に基づく全く新しい 算機の概念である。古典力学に従う従来の

算機では、０または１のどちらかのみの状態をとるビットを基本の 算要

素としている。量子 算機では、古典 算機の０にあたるビットを２準位系

の基底状態、１にあたるものを第一励 状態と対応させ、０と１の重ね合わ

せ状態に拡張したビットを用いる。このビットは qubit と呼ばれている。ま
た量子 算機ではその 算にあたる操作を、ユニタリ－変換による量子状態

の遷移として行う。このとき初期状態としてお互いに量子的な相関を持つ

qubit を複数用意することによって、同時に重ね合わせ状態を並列 算できる

ことが量子 算機の利点である。

　この概念を利用した量子 算機の実現にあたっては、量子的な重ね合わせ

状態を良 に維持するために、環境系との相互作用によるデコヒ－レンス時

間が いことが必要となる。この要求に対する新しい方法が１９９８年に

Kane によって提案された。それはシリコン中にド－プした

† 

3 1Pの核スピンを
qubit として用いることにより、qubit が環境系と相互作用することによる緩
和を ぐものである。この提案におけるゲート操作は NMR で行われている
方法と同様に外 磁場によって誘 されたゼ－マン分裂に、共鳴した 周波

磁場を照射することによって行う。

　本研究では、Kane の提案した半導体量子コンピュータのゲート操作を数
値的に再現することを みた。これを行う方法として、まず半導体デバイス

中にド－プされた

† 

3 1Pは水素 似原子であると仮定した。z 方向の 磁場中

における核- 子系のスピンハミルトニアンに、 周波磁場を時間に依存する

摂動として加え、エネルギー準位間の遷移確率を求めた。
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  Deutsch formulated in 1985 a new computer based on the quantum mechanics. In
quantum computers, the ones and zeros of classical digital computers are replaced by
the quantum state of a two-level system which is named qubit. Computation, i.e., a
sequence of unitary transformations, simultaneously affects each element of the
superposition, generating a massive parallel data processing, albeit within one piece
of quantum hardware.
  Practical of quantum computer,  requires preventing decoherence (uncontrolled
interaction of a quantum system with its surrounding environment) in order to
maintain the superposition. In 1998, Kane  proposed the scheme of implementing a
quantum computer on an array of nuclear spins lacated on donors in silicon. Because
nuclear spins are extremely well isolated from environment, operations on nuclear-
spin qubits could have low error rates. Quantum logic gate is performed by
transitions between the different energy levels of the electron-nuclear spin states,
which is induced by a radio-frequency magnetic field B applied at a frequency
resonant with the energy level difference.
  In this study, we numerically simulated the quantum logic gate of Kane’s quantum
computer, In by neglecting, the complications generated from the band structure in Si.
For the calculation of the time evolution of the quantum logic gate, we obtain the
transition probabirity between the energy levels of electron-nuclear spin states under
the influence of a time-dependent perturbation 

† 

ˆ V (r,t).
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Abstract

Deutsch formulated in 1985 a new computer based on quantum me-
chanics. In quantum computers, the ones and zeros of classical digital
computers are replaced by the quantum state of a two-level system
which is named qubit. Computation, i.e., a sequence of unitary trans-
formations, simultaneously affects each element of the superposition,
generating a massive parallel data processing, albeit within one piece
of quantum hardware.

Practical quantum computer requires preventing decoherence (un-
controlled interaction of a quantum system with its surrounding envi-
ronment) in order to maintain the superposition. In 1998, Kane pro-
posed the scheme of implementing a quantum computer on an array
of nuclear spins located on donors in silicon. Because nuclear spins are
extremely well isolated from environment, operations on nuclear-spin
qubits could have low error rates. Quantum logic gate is performed by
transitions between the different energy levels of the electron-nuclear
spin states, which is induced by a radio-frequency magnetic field B
applied at a frequency resonant with the energy-level difference.

In this study, we numerically simulated the quantum logic gate of
Kane’s quantum computer, by neglecting the complications generated
from the band structure in Si. For the calculation of the time evolu-
tion of the quantum logic gate, we compute the transition probability
between the energy levels of electron-nuclear spin states under the
influence of a time-dependent perturbation.
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1 Introduction

The concepts of information and computation can be properly formulated
only in the context of a physical theory—information is stored, transmit-
ted, and processed always by physical means. When quantum effects become
important, at the level of single atoms and photons, existing, purely ab-
stract classical theory of computation becomes fundamentally inadequate.
Entirely new modes of computation and information processing become pos-
sible. Phenomena such as quantum interference and quantum entanglement
can be exploited for computations.

The idea of a quantum computer has been developed theoretically over
several decades to elucidate fundamental questions concerning the capabil-
ities and limitations of mechanics in which information is treated quantum
mechanically. Specifically, in quantum computers the ones and zeros of classi-
cal digital computers are replaced by the quantum state of a two-level system,
namely a qubit. Computation, i.e., a sequence of unitary transformations si-
multaneously affects each element of the superposition, generating a massive
parallel data processing, albeit within one piece of quantum hardware. Con-
sequently, quantum computers can efficiently solve some problems that are
believed to be intractable on any classical computer.

Quantum computation can, in principle, only occur in system that are
almost completely isolated from their environment and which consequently
must dissipate no energy during the process of computation, conditions that
are extraordinarily difficult to fulfill in practice. Interest in quantum compu-
tation has increased dramatically in the past years because of two important
insights: first, quantum algorithms (most notably for prime factorization[1]
and for exhaustive search[2]) have been developed that outperform the best
known algorithms doing the same tasks on the classical computer. These
algorithms require that the internal state of the quantum computer be con-
trolled with extraordinary precision, so that the coherent quantum state upon
which the quantum algorithms rely is not destroyed. Because completely pre-
venting decoherence (uncontrolled interaction of a quantum system with its
surrounding environment) is impossible, the existence of quantum algorithms
does not prove that they can ever be implemented in a real machine. The
second critical insight has been the discovery of quantum error-correcting
codes[3, 4] that enable quantum computers to operate despite some degree
of decoherence and which may make quantum computers experimentally re-
alizable.
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The variety of physical system is proposed. The state of spin 1/2 particles
that are two-level systems can potentially be used for quantum computation.
Nuclear spins have been incorporated into several quantum computer pro-
posals, because they are extremely well isolated from environment and so
operations on nuclear-spin qubits could have low error rates. The primary
challenge using nuclear spins in quantum computers lies in measuring the
spins. The bulk spin resonance approach to quantum computation circum-
vents the single-spin detection problem essentially by performing quantum
calculation in parallel in a large number of molecules and determining the
result from macroscopic magnetization measurements. The measurable sig-
nal decreases with the number of qubits, however, and scaling this approach
above about ten qubits will be technically demanding. To attain the goal
of large number qubits quantum computer, Kane proposed a scheme for im-
plementing a quantum computer on an array of nuclear spins located on
donors in silicon. Logical operations and measurements can in principle be
performed independently and in parallel on each spin in the array. Here in
order to analyze the principles of Kane’s quantum computer, we simulate
numerically the time evolution of the Hamiltonian with the Kane’s quantum
computer.

In section 2, we describe the quantum computation with a P array in
silicon. The transition probability which describes the time evolution of the
quantum logic gate is explained in section 3. In section 4 we discuss the
implementation of the ‘single spin rotation’ with a P atom in a magnetic
field Bz, and the ‘two-qubit controlled rotation’ is discussed in section 5. In
section 6, we described the measurement of individual nuclear-spin states.
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2 Quantum computation with a P array in

silicon

In this section, we describe a scheme of implementation of silicon-based quan-
tum computer. The basic requirement and performing of the quantum gate
is described.

2.1 Basic requirements for semiconductor

Recently, Kane proposed[5] a new implementation of a solid-state quantum
computer. Kane’s idea is to use a semiconductor MOS structure on a 28P
spinless substrate into a thin layer of which 31P stable phosphorus isotopes,
acting as donors, are implanted. An important requirement for a quantum
computer is to isolate the qubits from any degrees of freedom that may
lead to decoherence. If the qubits are spins on a donor in a semiconductor,
nuclear spins in the host are a large reservoir with which the donor spins can
interact. Consequently, the host should contain only nuclei with spin I = 0.
This simple requirement unfortunately eliminates all III-V semiconductors as
host candidates, because none of their constituent elements possesses stable
I = 0 isotopes[6]. Group IV semiconductors are composed primarily of I = 0
isotopes and can in principle be purified to contain only I = 0 isotopes.

The only I = 1/2 shallow (Group V) donor in Si is 31P . At sufficiently
low 31P concentrations at temperature T = 1.5K, the electron spin relaxation
time is thousands of seconds and the 31P nuclear spin relaxation time exceeds
ten hours. It is likely that at millikelvin temperature the phonon-limited 31P
relaxation time is of the order of 1018 seconds[7], making this system ideal
for quantum computation.

2.2 Gate operation of electron-nuclear spin system of

a donor

The quantum computer proposed by Kane comprises an array of such donors
positioned beneath the surface of a semiconductor host (Fig.1). Quantum
calculation proceeds by the control of three external parameters: (1) A-gates
above the donors control the strength of the hyperfine interactions and hence
the resonance frequency of the nuclear spins beneath them; (2) J-gates be-
tween the donors turn on and off electron-mediated coupling between the
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A-gate A-gateJ-gate

Si

P31 P31e e

JA A nuclear spin 

electron spin

Figure 1: Two 31P donors in silicon. The nuclear spins are coupled to the
outer electrons by the hyperfine interactions A, which can be controlled by
the A-gates. The electrons are mutually coupled via an exchange interaction
J , which can be controlled by the J-gate.
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nuclear spins; (3) a globally applied magnetic field Bac flips nuclear spins at
resonance.

The spin Hamiltonian for the nucleus-electron system in SI:P with mag-
netic field Bz is

Hen = µBBzσ
e
z − gnµnBzσ

n
z + A�σe · �σn, (1)

where �σ denotes the Pauli spin matrices (with eigenvalues ±1), µB = 9.27×
10−24[J/T] and µn = 5.05×10−27[J/T] are respectively the Bohr and nuclear
magneton, gn is the nuclear g-factor (=1.13 for 31P ), and

A =
8

3
πµBgnµn|Ψ(0)|2

is the contact hyperfine interaction energy, with |Ψ(0)|2 the probability den-
sity of the electron wave function evaluated at the nucleus[8]. Application of
the field Bz leads to evolution of the states as first the electron and then the
nuclear Zeeman energies exceed.

Transitions between the different energy levels are induced by a radio fre-
quency magnetic field Bac applied at a frequency resonant with the energy-
level difference. The spin Hamiltonian for the electron-donor system with an
electric field E and a magnetic field Bac is

Hen = µB
�B · �σe − gnµn

�B · �σn + Ã(E)�σe · �σn, (2)

where
�B = Bz ẑ +Bac(x̂ cosωt+ ŷ sinωt),

and Ã(E) is the contact hyperfine interaction energy affected by the external
electric field E induced by the A-gate. A donor nuclear-spin-electron system
close to an ‘A-gate’ functions as a voltage-controlled oscillator. The preces-
sion frequency of the nuclear spin is controllable externally and spins can be
selectively brought into resonance with Bac, allowing arbitrary rotations to
be performed on each nuclear spin.

Quantum computation requires, in addition to single spin rotations, the
SWAP operation of quantum logic, in which the spin quantum numbers of
two qubits are interchanged. The SWAP operation in combination with
the single-spin rotation can be used as the primitive operation of a univer-
sal quantum computer[10]. The Hamiltonian of two coupled donor nucleus-
electron systems is

H = H(B) + A1�σ
1e · �σ1n + A2�σ

2e · �σ2n + J�σ1e · �σ2e, (3)
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where

H(B) = µB
�B · �σ1e − gnµn

�B · �σ1n + µB
�B · �σ2e − gnµn

�B · �σ2n,

contains the magnetic field interaction terms for the spins. The coefficients
A1 and A2 are the hyperfine interaction energies of the respective nucleus-
electron system, while J is the exchange energy of the two electrons, which
depends on the overlap of the electron wave functions. Two-qubit operations
are performed by lowering the potential barrier between donor sites with the
J-gate and turning on the exchange coupling between the donors. Electron-
mediated nuclear-spin exchange will then occur between the donor nuclei.

3 Transition probability

In this section, we describe the calculation of the transition probability. We
represent the time evolution of the quantum logic gates with the transition
probability.

For the calculation of the transition probabilities from one state ψm to an-
other state ψn under the influence of a time-dependent perturbation V̂ (�r, t),
we must solve the Schrödinger equation with V̂ (�r, t). General predictions
can only be made if the transition is caused by weak influences, i.e. weak
potential V̂ (�r, t). The Schrödinger equation with the perturbation is

ih̄
∂ψ

∂t
= Ĥ0ψ + V̂ (�r, t)ψ, (4)

where Ĥ0 is the operator for the total energy of the system without the
perturbation (the index 0 stands for the time independence) and V̂ (�r, t) is
the perturbation.

Assume that the stationary part of the normalized wave function satisfies
the equation

Ĥ0ψk(�r) = Ekψk(�r).

Then the time-dependent functions

ψ̃k(�r, t) = ψk(�r)e
− i

h̄
Ekt
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are the solution of the unperturbed system. They form a complete set of
functions and the solution of Eq.(4) can be expanded in terms of these func-
tions, i.e.

ψ(�r, t) =
∑
k

ak(t)ψ(�r)e−
i
h̄

Ekt (5)

Inserting this into Eq.(4) leads to

ih̄
∂am

∂t
=

∑
k

ak(t)Vmk(t)e
iωmkt, (6)

where

Vmk(t) = 〈ψm|V̂ (t)|ψk〉 and ωmk =
Em − Ek

h̄
.

By defining

�a ≡



a1

a2
...


 , A(t) ≡




V11 V12e
iω12t · · ·

V21e
iω21t V22 · · ·
...

...
. . .


 ,

we rewrite Eq.(6) as
d�a

dt
=
A(t)

ih̄
�a. (7)

This is the basic coupled differential equation that must be solved in order
to obtain the probability of finding ψm as a function of t.

The solution of Eq.(7) is given by

�a(t) = e
1
ih̄

∫ t

0
A(t′)dt′�a(0)

∼= e
∆t
ih̄

A( 2n−1
2

∆t) . . . . . . e
∆t
ih̄

A( 3
2
∆t)e

∆t
ih̄

A(∆t
2

)�a(0) (8)

By diagonalizing A(t) as

A(t) = U(t)




λ1(t)
λ2(t)

. . .

λn(t)


U †(t),

we obtain

�a(t) = U(
2n− 1

2
∆t)



e

∆t
ih̄

λ1( 2n−1
2

∆t)

e
∆t
ih̄

λ2( 2n−1
2

∆t)

. . .


U †(

2n− 1

2
∆t) · · ·
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×U(
3

2
∆t)



e

∆t
ih̄

λ1(
3
2
∆t)

e
∆t
ih̄

λ2( 3
2
∆t)

. . .


U †(

3

2
∆t)

×U(
∆t

2
)



e

∆t
ih̄

λ1(∆t
2

)

e
∆t
ih̄

λ2(∆t
2

)

. . .


U †(

∆t

2
) . (9)

The probability of finding ψm is obtained by evaluating |am(t)|2.

4 Electron-nuclear spin system of a donor in

a magnetic field

In this section, we discuss the electron-nuclear spin system of a donor. One-
qubit unitary transformation is discussed in this section.

In order to solve Eq.(1), we use the basis set

| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉,

where | 〉 stands for a ket vector that represents

|electron spin state, nuclear spin state〉.

The Hamiltonian (1) can readily be solved exactly with this basis set. The
energy levels for Si:P are shown in Fig.2(a) as a function of B z. (The con-
tact hyperfine interaction A is fixed to A0 = 7.62 × 10−26[J].) For Bz = 0,
the energy eigenstates of (1) are also the eigenstates of the spin-exchange
operator. The ground state is the singlet | ↑↓〉 − | ↓↑〉, lying 4A below the
threefold-degenerate triplet excited states. The energy difference between
the electron-nucleus spin states is shown in Fig.2(b). As the magnetic field
Bz is increased, the singlet makes a transition to the state | ↓↑〉 (Fig.3). Thus
the transition between the states | ↓↓〉 and | ↓↑〉, i.e., a rotation of the nuclear
spin can be performed with the radio frequency magnetic field Bac.

In order to obtain the transition probability between the singlet and the
triplets, we represent the time-dependent perturbation V̂ in the form of the

10



4×4 matrix

V̂ =




0 −gnµBBace
−iωt µBBace

−iωt 0
−gnµnBace

iωt 0 0 µBBace
−iωt

µBBace
iωt 0 0 −gnµnBace

−iωt

0 µBBace
iωt −gnµnBace

iωt 0


 .(10)

Calculating the matrix elements Vmk with the eigenvectors and inserting
them into Eq.(7), we obtain the transition probability a(t) (Fig.4). The ini-
tial state is | ↓↑〉. The transition probabilities to the states | ↑↑〉 and | ↓↓〉
are nearly zero. In this calculation, we obtained the result that one-qubit
unitary transformation need to be controlled of the order 10−6[sec], when the
magnetic field are fixed to Bz = 1[T] and Bac = 0.001[T].

Nuclear spins must be selectively brought into resonance with Bac, allow-
ing arbitrary rotations to be performed on each nuclear spins. A donor
nuclear-spin electron system close to an ‘A-gate’ functions as a voltage-
controlled oscillator. The precession frequency of the nuclear spin is con-
trolled by changing the electric field E, and thereby changing the parameter
A(E). The energy level differences determined by the A(E) are also changed.

We simulate the transition probability for the contact hyperfine interac-
tion energy A(E) different from A0 = 7.62 × 10−26[J] (Fig.5). In this calcu-
lation, we obtained the result that the transition time depends on A. It is
possible to perform the nuclear-spin rotation selectively.
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Figure 2: (a) The spin energy levels of a 31P donor in Si. The spin states of
the energy E1, E2 and E4 is the triplet and E3 is the singlet. (b) the energy
differences of the levels as a function of the applied magnetic field Bz.
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the state | ↑↓〉. The transition probabilities to these states are nearly zero.
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5 Electron-nuclear spin system for two inter-

acting donor atoms

In this section, we discuss two interacting donor atoms. The SWAP operation
is discussed in this section.

Consider two donor atoms separated from each other by distance r. we use
the basis set

| ↑↑↑↑〉 | ↑↓↑↑〉 | ↓↑↑↑〉 | ↓↓↑↑〉
| ↑↑↑↓〉 | ↑↓↑↓〉 | ↓↑↑↓〉 | ↓↓↑↓〉
| ↑↑↓↑〉 | ↑↓↓↑〉 | ↓↑↓↑〉 | ↓↓↓↑〉
| ↑↑↓↓〉 | ↑↓↓↓〉 | ↓↑↓↓〉 | ↓↓↓↓〉,

where | 〉 stands for a ket vector that represents

|electron spin state in donor 1, electron spin state in donor 2,

nuclear spin state in donor 1, nuclear spin state in donor 2 〉.

The energy levels of the Hamiltonian (3) are shown in Fig.6 as a function of
Bz. Tunneling of electrons between the two sites becomes possible, leading
to an exchange interaction between the electron spins and also to an indirect
(or electron-mediated) exchange interaction between the nuclear spins.

The magnitude of the exchange interaction J between the electron spins
on donors as a function of their separation r can be approximated by equa-
tions derived for the case of well-separated H atoms[9],

J(r) ∼= 0.4
e2

εaB

(
r

aB

) 5
2

exp
(−2r

aB

)
, (11)

where r is the distance between the donors, ε = 11.9ε0 (ε0 = 8.85× 10−12[F ·
m−1]) is the dielectric constant of the semiconductor, and aB = 30[Å] is the
semiconductor Bohr radius. This function, with values appropriate for Si is
plotted in Fig.7. For two-electron systems, the exchange interaction lowers
the energy of the electron singlet | ↑↓〉 − | ↓↑〉 with respect to the triplets.

In the magnetic field, however, the state | ↓↓〉 is approximately the elec-
tron ground state for J � µBB. When the two electron spins are in the
state | ↓↓〉 and are each coupled to the donor nuclear spins by the same
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Figure 6: The electron-nuclear spin energy levels for two interacting donor
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Figure 7: The strength of the electron exchange coupling between the donor
sites, plotted as a function of their separation.

hyperfine interaction energy A, the nuclear spin exchange frequency νJ is
approximately[5] given by

hνJ = 2A2
(

1

µBB − 2J
− 1

µBB

)
, (12)

where J is the electron-spin exchange energy and 2J � µBB is assumed.
In order to perform the SWAP operation, we accomplish swapping the

nuclear spin state between the state | ↓↓↑↓〉 and the state | ↓↓↓↑〉 in the
following three-step processes:

(i) The positive voltage applied to the J-gate turns on the exchange in-
teraction J between two donor nucleus-electron spin systems. As the
exchange interaction J is increased (J < µBB), the nuclear-electron
spins make transitions to the state

| ↓↓↑↑〉 −→ | ↓↓↑↑〉,
| ↓↓↑↓〉 −→ | ↓↓〉(| ↑↓〉 + | ↓↑〉),
| ↓↓↓↑〉 −→ | ↓↓〉(| ↑↓〉 − | ↓↑〉),
| ↓↓↓↓〉 −→ | ↓↓↓↓〉;
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Figure 8: The electron-nuclear spin energy levels for two interacting donor
atoms as a function of J . In the ground state, the electrons are in the state
| ↓↓〉. The magnetic field is fixed to Bz = 1[T ].

(ii) We make a transition between the state | ↓↓〉(| ↑↓〉 + | ↓↑〉) and the
state | ↓↓〉(| ↑↓〉 − | ↓↑〉) with the magnetic field Bac;

(iii) We turn off the positive voltage applied to the J-gate.

We must determine the appropriate value of J to split the states | ↓↓〉(| ↑↓
〉 + | ↓↑〉) and | ↓↓〉(| ↑↓〉 − | ↓↑〉). The energy-level splitting is shown in
Fig.9 when Bz is 1[T] and two electron spin states is in the state | ↓↓〉.
Transition probability between the state | ↓↓〉(| ↑↓〉 + | ↓↑〉) and the state
| ↓↓〉(| ↑↓〉 − | ↓↑〉) is shown in Fig.10 for J/A0 = 27. The initial state is
| ↓↓〉(↑↓〉 − | ↓↑〉). The transition probabilities to the state | ↓↓↑↑〉 and the
state | ↓↓↓↓〉 are nearly zero.

Figure 10 shows that the SWAP operation needs to be controlled in the
time scale of the order 10−6[sec], when the magnetic field are fixed to Bz =
1[T] and Bac = 0.001[T].
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Figure 9: The electron-nuclear spin energy levels whose two electron spin
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Fig.4
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6 Measurement of nuclear spin state

In this section, we describe the measurement of the nuclear spin states.

The nuclear-spin state is set for J � 2µBB, where nuclear spins are handled
by NMR methods by applying AC pulses of the resonance frequency. Sup-
pose that after quantum computation at J � 2µBB, two electrons, both on
its donor atom, are initially in the triplet state, that is in the | ↓↓〉 state.
The whole electron-nuclear system is either in the state | ↓↓〉(| ↑↓〉 + | ↓↑〉)
or in the state | ↓↓〉(| ↑↓〉 − | ↓↑〉).

By adiabatically increasing the exchange parameter to J > 2µBB in
a process of the crossing point passage, we lead the electron-nuclear sys-
tem transition from one antisymmetric state | ↓↓〉(↑↓〉 − | ↓↑〉) to another
(| ↑↓〉 − | ↓↑〉)| ↓↓〉 at the same total spin projection and allow transfer the
information from the nuclear to the electron spin subsystem.

In addition, if the bound energy for an electron at one neutral donor (it
is usually small) is more than its energy of attraction to the neighboring ion-
ized donor (D+state), the electron will be found near the neutral (D−state
or helium-like atom) and charge transfer from one donor to the other will
occur. This may be reached also by the corresponding change of the A-gate
electric potential. Therefore, a charge transfer from one donor to another
takes place. It is supposed[5] that this process can be detected with highly
sensitive single-electron capacitive techniques.

7 Conclusion

In Section 4, we obtained the transition probability between the state | ↓↓〉
and the state | ↓↑〉 of the order 10−6[sec] using the perturbation V̂ explained
in Section 3. By appropriately modulating the transition time, we can obtain
the superposition state | ↓↓〉 + | ↓↑〉. To perform the nuclear-spin rotation
selectively, we calculated the transition probability with the parameter A
varied. We showed that the transition time depends on A. In Section 5, the
full energy spectrum of the electron-nuclear spin system of two interacting
donor atoms was calculated. To perform the transition between the state
| ↓↓↓↑〉 and the state | ↓↓↑↓〉, we split the energy levels with an appropriate
value of J . Then we observed the transition in the time scale of the order
10−6[sec].
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