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In experiments, quantum objects are inevitably open systems influenced by their 

surrounding environment. Contemporary physics has significantly emphasized 

the shift from closed to open systems in integrating quantum theory into real-

world applications. However, the introduction of the environment causes 

quantum systems to be affected by quantum noise and dissipation, leading to 

decoherence. Protecting quantum systems from decoherence is crucial in open 

quantum systems. In this thesis, we investigate how resonance and topological 

effects can be utilized to suppress decoherence in open quantum systems. We 

focus on tackling two key challenges in advancing quantum information 

processing: protecting continuous-variable entanglement and reducing energy 

loss in photon transmission. 

With the aid of quantum resources, quantum systems often investigate 

potential advantages in information processing compared to their classical 

counterparts. Entanglement is a crucial resource in quantum information 

processing. Unfortunately, it is fragile due to decoherence. First, motivated by 

entanglement protection, we propose a resonant filtering mechanism to protect 

optomechanical entanglement. We demonstrate that our filtering model enhances 



the robustness of the stationary maximum optomechanical entanglement to 

thermal fluctuation noise and mechanical damping.  

On the other hand, long-distance transmission of photons is essential for 

building large-scale quantum networks. However, photons typically disperse 

throughout the photonic waveguide and are depleted due to environment-induced 

decoherence. Second, inspired by the development of topological waveguides, we 

demonstrate how to utilize topological waveguides to achieve near-perfect photon 

transfer in the topologically nontrivial phase. We also find that when two-level 

systems are coupled at the same sublattice within a unit cell, the ergotropy 

becomes immune to dissipation at that location, facilitated by a dark state and a 

topologically robust dressed bound state. The results of this Thesis are highly 

relevant to the development of state-of-the-art miniaturized devices and serve as 

fundamental paradigms for further studies on decoherence suppression in open 

quantum systems. 

In Chapter 2, motivated by the imperative need for optomechanical 

entanglement protection in open quantum systems, our study delves into using 

resonance effects to protect thermal entanglement between photon and phonon. 

The essential innovation lies in our proposed filtering model, designed to 

selectively filter significant detuning components between a thermal-mechanical 

mode and its surrounding heat baths, thereby resilience against decoherence.  

Our study emphasizes the crucial role of protecting continuous-variable 

entanglement by filtering the degrees of freedom associated with significant 

detuning elements. We develop a comprehensive nonlinear Langevin equation for 

the filtering model. Through numerical analysis, we demonstrate that the 

resonance effect effectively doubles the robustness of stationary maximum 

optomechanical entanglement to thermal fluctuation noise and mechanical 

damping with our approach. Moreover, we extend the scope of our results to an 

optical cavity array with an oscillating end-mirror, investigating the potential for 

long-distance optimal optomechanical entanglement transfer. Our study breaks 

new ground in applying the resonance effect to protect optomechanical 



entanglement from decoherence, providing valuable insights that advance the 

possibilities of large-scale quantum information processing and quantum network 

construction. 

In Chapter 3, advancements in nanotechnology have driven miniaturization, 

leading to the rise of quantum devices where quantum effects become prominent. 

As a novel energy storage device at the atomic scale, the concept of quantum 

batteries was formally introduced by Alicki and Fannes in 2013. Quantum 

batteries exploit unique quantum properties, such as entanglement and coherence, 

for energy storage and release, potentially outperforming classical counterparts 

by optimizing the charging and discharging processes. Fundamentally distinct 

from traditional chemical batteries, quantum batteries are renewable, eco-friendly, 

and have a longer lifespan, offering a promising solution to the global energy and 

environmental crisis. From an engineering perspective, quantum batteries provide 

a practical platform to incorporate quantum effects into thermodynamics, 

sparking a significant interest in theoretical and experimental research over the 

past decade, with enthusiasm continuing to grow. In particular, a minimal yet 

widely favored quantum battery model based on a two-level system has been 

extensively studied.  

Recently, the setup of coupling emitters (two-level systems) with a specific 

waveguide, such as a rectangular hollow metal waveguide, for efficient remote 

charging has gained significant attention. However, conventional photonic 

waveguide transport inevitably causes photon dispersion throughout the 

waveguide, leading to low energy storage and diminished ergotropy in quantum 

batteries. Motivated by this, a related challenge is whether a structured reservoir 

exists that can effectively enhance the stored energy and the ergotropy of quantum 

batteries. Additionally, a significant obstacle to implementing quantum batteries 

in practical applications is environmental-induced decoherence caused by 

dissipation, noise, and disorder, which typically degrades quantum battery 

performance. This raises a natural question: whether a configuration exists that 

makes quantum batteries more robust against decoherence. Our study provides a 



comprehensive solution to substantially address these critical issues, paving the 

way for the practical application of quantum batteries.  

Inspired by the advantages of topological baths and building on recent 

experimental advancements, we propose a minimal topological quantum battery 

to optimize the thermodynamic performance of quantum batteries 

comprehensively. We develop a general framework for analyzing the atomic 

dynamics of two-level systems coupled to a topological photonic waveguide. 

First, we demonstrate that in the long-time limit, only bound states significantly 

contribute to the stored energy of quantum batteries. We point out that topological 

properties determine the charging process, and near-perfect energy transfer can 

occur in the topologically nontrivial phase. Moreover, the maximum stored 

energy exhibits singular behavior at the phase boundaries, where the number of 

bound states undergoes a transition. Second, we observe that when a quantum 

battery and a quantum charger are placed within the same sublattice of a unit cell, 

the performance of the quantum battery, for instance, ergotropy becomes immune 

to dissipation and against disorder at that location, even with an extremely weak 

coupling between the quantum battery and the quantum charger, facilitated by a 

dark state and a topologically robust dressed bound state. Third, we show that as 

dissipation intensifies along with the emergence of the quantum Zeno effect, the 

charging power of quantum batteries experiences a temporary boost. Our findings 

offer valuable guidance and insight for improving quantum battery performance 

through structured reservoirs, facilitating the development of remote-charging 

and dissipation-immune engineering for quantum batteries. 

Finally, we provide a summary and outlook in Chapter 4. Overall, 

controlling and suppressing decoherence in open quantum systems is 

fundamental to unlocking the potential of quantum technologies. While exploring 

the theoretical mechanisms of decoherence suppression may have a limited 

immediate impact on society and industry, the long-term implications are 

significant. Continued research and development in this area will pave the way 

for more reliable and efficient quantum devices, bringing us closer to realizing 

the transformative benefits of quantum computing, communication, and sensing. 
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Abstract

In experiments, quantum objects are inevitably open systems influenced by their surround-

ing environment. Contemporary physics has significantly emphasized the shift from closed to

open systems in integrating quantum theory into real-world applications. However, the intro-

duction of the environment causes quantum systems to be affected by quantum noise and dissi-

pation, leading to decoherence. Protecting quantum systems away from decoherence is crucial

in open quantum systems. In this Thesis, we investigate how resonance and topological effects

can be utilized to suppress decoherence in open quantum systems. We focus on tackling two

key challenges in advancing quantum information processing: protecting continuous-variable

entanglement and reducing energy-loss in photon transmission.

With the aid of quantum resources, quantum systems often investigate potential advantages

in information processing compared to their classical counterparts. Entanglement is a crucial

resource in quantum information processing. Unfortunately, it is fragile due to decoherence.

First, motivated by entanglement protection, we propose a resonant filtering mechanism to

protect optomechanical entanglement. We demonstrate that our filtering model enhances the

robustness of the stationary maximum optomechanical entanglement to thermal fluctuation

noise and mechanical damping. On the other hand, long-distance transmission of photons

is essential for building large-scale quantum networks. However, photons typically disperse

throughout the photonic waveguide and are depleted due to environment-induced decoherence.

Second, inspired by the development of topological waveguides, we demonstrate how to utilize

topological waveguides to achieve near-perfect photon transfer in the topologically nontrivial

phase. We also find that when two-level systems are coupled at the same sublattice within a unit

cell, the ergotropy becomes immune to dissipation at that location, facilitated by a dark state

and a topologically robust dressed bound state. The results of this Thesis are highly relevant to

the development of state-of-the-art miniaturized devices and serve as fundamental paradigms

for further studies on decoherence suppression in open quantum systems.
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Chapter 1

Overview

A significant trend in contemporary physics is expanding quantum theory from closed to

open systems for advanced quantum technology. A quantum system influenced by external

factors is considered open. The external influences are often called an environment or a bath.

Open quantum systems are microscopic quantum systems that interact with macroscopic ma-

terials. In experiments, macroscopic measurement probes interact with experimental objects,

leading to quantum systems being unavoidably open. An open systemmay undergo phase loss,

energy, and particle exchange with the surroundings; thus, being open drastically impacts its

dynamics [1]. Quantum coherence is a fundamental characteristic of quantum mechanics that

accounts for the distinction between the classical and quantum worlds [2, 3]. If a quantum

system is perfectly isolated, it will maintain coherence indefinitely. However, manipulating or

investigating it would be impossible. For open quantum systems, introducing quantum noise

and dissipation leads to environment-induced decoherence, thereby causing the system to lose

its quantum nature [4]. Since quantum sources are fragile, even slight external influences can

cause them to undergo inevitable decoherence. The theory of decoherence suppression in open

quantum systems plays a crucial role in understanding fundamental quantum theory and ad-

vancing practical quantum applications [5].

This thesis is devoted to unveiling new mechanisms and establishing innovative frame-

works for suppressing decoherence in open quantum systems. We explore how resonance and

topological effects can be employed to mitigate decoherence in open quantum systems. We

focus on two specific scenarios to protect optomechanical entanglement and enhance quantum

1



battery performance by utilizing resonant filtering and topological waveguides, respectively.

The finding and structure of this thesis is outlined as follows.

In Chapter 2, motivated by entanglement protection, we leverage a resonance effect to

enhance optomechanical entanglement in the coherent-state representation. We propose a fil-

tering model to filter out the significant detuning components between a thermal-mechanical

mode and its surrounding heat baths in the weak coupling limit. We reveal that protecting

continuous-variable entanglement involves the elimination of degrees of freedom associated

with significant detuning components, thereby resisting decoherence. We construct a nonlin-

ear Langevin equation of the filtering model and numerically show that the filtering model

doubles the robustness of the stationary maximum optomechanical entanglement to the ther-

mal fluctuation noise and mechanical damping. Furthermore, we generalize these results to

an optical cavity array with one oscillating end-mirror to investigate the long-distance optimal

optomechanical entanglement transfer. Our study breaks new ground by applying the reso-

nance effect to protect quantum systems from decoherence and advance the possibilities of

large-scale quantum information processing and quantum network construction.

In Chapter 3, We propose an innovative design for topological quantum batteries that in-

volves coupling two atoms to a one-dimensional lattice with topological features. First, we

demonstrate that only coherent bound states significantly contribute to the stored energy of

quantum batteries. We observe near-perfect energy transfer from the quantum charger to the

quantum battery in the topologically nontrivial phase. Conversely, in the topologically triv-

ial phase, we reveal that under the Markov limit, the charging process of the quantum battery

is almost completely prohibited due to the emergence of degenerate zero-energy bound states.

Moreover, we discover that themaximum energy storage exhibits singular behavior at the phase

boundaries. Second, we find that direct coupling between the quantum battery and quantum

charger renders the ergotropy immune to sublattice dissipation, facilitated by the presence of a

dark state and a vacancy-like dressed bound state. Further, we show that as dissipation inten-

sifies along with the emergence of the quantum Zeno effect, the charging power of quantum

batteries is transiently enhanced. Our findings provide insightful guidelines for practically

improving the performance of quantum batteries through structured reservoir engineering.

In Chapter 4, I summarize the thesis and discuss possible advancements in future studies.
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In the remainder of this chapter, to analyze the dynamic behavior of open quantum systems,

I introduce two powerful techniques central to my thesis for studying dissipative dynamics and

spectral properties of interest. By prioritizing a simple setup, I establish a solid foundation in

core derivation before progressing to more intricate applications and consequences in subse-

quent Chapter 2 and Chapter 3.

• Heisenberg-Langevin equation: The quantum master equation is a crucial tool for study-

ing the non-equilibrium dynamics of open quantum systems. To describe the dissipative dy-

namics of open quantum systems, Gorini, Kossakowski, Sudarshan, and Lindblad proposed

the GKSL master equation in 1976, which characterizes the evolution of quantum states [6,7].

The Heisenberg-Langevin equation, which describes stochastic motion, is derived from the

perspective of operator evolution by combining the Heisenberg equation and the Langevin

equation [8–12]. The Heisenberg-Langevin equations offer exact solutions for the system and

bath parameters, enabling direct calculation of correlation functions at different times and all

temperatures in terms of the spectral density of the bath. For example, an Ohmic bath with a

Drude spectral density enables an exact analytical solution [13].

To lay the technical groundwork for Chapter 2, my goal here is to provide a detailed deriva-

tion of the Heisenberg-Langevin equations. Here, I consider a paradigmatic model of open

quantum systems called quantum Brownian motion [14]. In this model, the system is consid-

ered a harmonic oscillator with linear coupling to a large number of harmonic oscillators that

form a bath with a continuous density of states. The spectral density determines the proper-

ties of the bath. This simple model has significantly advanced our understanding of how an

environmental bath affects the decoherence and dissipation of quantum mechanical degrees of

freedom. It sheds light on fundamental decoherence issues and plays a crucial experimental

role in designing nanomechanical resonators that operate at the quantum limit [15, 16]. After

applying the rotating wave approximation, the total Hamiltonian of the system reads

Htot = Hsys +Hbath +Hint = ω0a
†a+

∑
j

ϖjΓ
†
jΓj +

∑
j

(
κja

†Γj + κ∗jaΓ
†
j

)
, (1.1)

where a† (a) andΓ†
j (Γj) are the creation (annihilation) operators of the system and the jthmode

of the reservoir, respectively, with (ℏ = 1) here and hereafter. The characteristic frequency of

the system is ω0, while the reservoir consists of many harmonic oscillators with closely spaced
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frequencies ϖj . The coupling strength between the jth mode of the reservoir and the system

is represented by the complex parameter κj .

The Heisenberg equations of motion for the system operator a and its corresponding reser-

voir operators Γj are given by

da

dt
= −iω0a− i

∑
j

κjΓj,
dΓj

dt
= −iϖjΓj − iκ∗ja. (1.2)

I am interested in a closed equation for the system operator a. The reservoir operator Γj can

be formally integrated to yield

Γj (t) = Γj (t0) e
−iϖj(t−t0) − iκ∗j

∫ t

t0

dτa (τ) e−iϖj(t−τ). (1.3)

Here, the first term describes the free evolution of the reservoir modes, while the second term

arises from their interaction with the system. I eliminate the reservoir operators Γj by substi-

tuting Eq. (1.2) into Eq. (1.3), obtaining

da

dt
= −iω0a− i

∑
j

κjΓj (t0) e
−iϖj(t−t0) −

∑
j

|κj|2
∫ t

t0

dτa (τ) e−iϖj(t−τ). (1.4)

I observe that the evolution of the system operator depends on the fluctuations from the reser-

voir, as described in Eq. (1.4). Next, I make some approximations. Following the Weisskopf-

Wigner approximation [17], I assume that the spectrum is defined by the normal modes of a

large scale, with these modes being very close in frequency. I then approximate this spectrum

as a continuous one. Consequently, the summation in Eq. (1.4) can be rewritten as

da

dt
= −iω0a+ F (t)−

∫ t

t0

∫ +∞

0

κ2 (ω)D (ω) a (τ) e−iω(t−τ)dωdτ, (1.5)

where D (ω) is the mode density of the reservoir, and the Langevin noise operator is

F (t) = −i
∫ +∞

0

κ (ω)D (ω) Γ (ω, t0) e
−iω(t−t0)dω. (1.6)

Under the Born-Markov approximation [18], I assume for simplicity that κ2 (ω)D (ω) =

4



γ/2π > 0 is constant, so that Eq. (1.5) is reduced to a first-order differential equation

da

dt
= −iω0a+ F (t)− γ

2π

∫ t

t0

∫ +∞

0

a (τ) e−iω(t−τ)dωdτ. (1.7)

Using the relation
∫ +∞
0

dωe−iω(t−τ) = πδ (t− τ), I derive the Heisenberg-Langevin equation,

which satisfies the fluctuation-dissipation theorem, as follows

da

dt
= −

(
iω0 +

γ

2

)
a+ F (t) . (1.8)

Here, the noise operators in 〈F (t)F † (t′)〉 = γ (n̄+ 1) δ (t− t′)/2, also 〈F † (t)F (t′)〉 =

γn̄δ (t− t′)/2 satisfy the correlation function form of Markovian white noise, where n̄ repre-

sents the average number of bosons in the reservoirs, and γ denotes the decay rate that depends

on the coupling strength κj . Note that white noise implies frequency resonance between the

environment and the system. Moreover, the Markov approximation generally applies when

there is weak coupling between the system and the environment. When the system and the en-

vironment are strongly coupled, the spectral density typically shows a generalized Lorentzian

type, which indicates non-Markovian behavior [1, 19, 20].

• Resolvent formalism: The concept of resolvent formalism is vital for analyzing the spec-

trum of operators on Banach and other general spaces. This method is well-supported within

the context of holomorphic functional calculus. Ivar Fredholm was the first to use the re-

solvent operator as a series, notably the Liouville-Neumann series, in his influential 1903

work [21]. Today, this approach is widely used in the spectral analysis of open quantum

systems, encompassing fields such as quantum chemistry and quantum thermodynamics [22].

Here, we present a paradigmatic model of a quantum battery to lay the groundwork for Chap-

ter 3, offering the exact dynamical expression for two-level systems coupled with a structured

bosonic bath. The Hamiltonian of the system under the rotating-wave approximation reads

Htot = Hsys +Hbath +Hint, where

Hsys =
ωe

2

(
σBz + σCz

)
+ Ωαβ

12 (σ
B
+σ

C
− + σC+σ

B
−), Hint = g(σB−o

†
x1,α

+ σC−o
†
x2,β

+ H.c.), (1.9)

and Ωαβ
12 = Ωδx1,x2δα,β with Ω ∈ R. Here, Hsys represents the Hamiltonian of the quantum

battery and the quantum charger, whileHbath is the Hamiltonian of the structured bosonic bath.
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The interaction Hamiltonian between the system and the bath is represented by Hint, where

σB+ (σC+) and σB− (σC−) represent the raising and lowering Pauli operators of quantum battery

(quantum charger), respectively, while oxj,α
and o†xj,α

denote the annihilation and creation op-

erators at the position xj,α of bath, respectively. I assume that the spectrum of Hbath possesses

an energy-band structure. The second subscript α ∈ {A,B} of oxj,α
is used to emphasize

different sublattices, i.e., oxj,A
≡ aj and oxj,B

≡ bj .

To analytically solve the dynamics of the two-level system, I assume that the bath is in the

thermodynamic limit in the following derivations. Consequently, the time-evolution operator

of the system can be obtained by the inverse Fourier transform of the Green’s function

U (t) = e−iHtott =
1

2πi

∫
C
Gtot (z)e

−iztdz =
1

2πi

∫
C

1

z −Htot
e−iztdz, (1.10)

where the integration path C lies just above the real axis in the complex plane, extending in-

finitely from right to left. In the single-excitation subspace, in order to explore the dynamics of

quantum battery, I need to project the evolution operator U (t) onto the subspace of the system

involving quantum battery and quantum charger. Thus, I define

P ≡ (|e, g〉〈e, g|+ |g, e〉〈g, e|)⊗ |vac〉〈vac| , Q ≡ |g, g〉〈g, g| ⊗
∑
j,α

o†j,α |vac〉〈vac| oj,α, (1.11)

which satisfy P + Q = I1, where I1 is the identity operator in the single-excitation subspace.

For the sake of simplicity, we define |e1〉 ≡ |e, g〉 and |e2〉 ≡ |g, e〉. As a result, the evolution

operator projected onto the subspace of the system can be written as

PU (t)P =
1

2πi

∫
C
PGtot (z)Pe

−iztdz, (1.12)

where

PGtot (z)P =
P

z − PHsysP − PΣ (z)P
. (1.13)

Since PHintP = QHintQ = QHsysQ = 0, the term PΣ (z)P in Eq. (1.13) reads

PΣ (z)P = PHint
Q

z −Hbath
HintP = PHintGbath (z)HintP (1.14)

6



withGbath (z) = Q(z −Hbath)
−1Q. In the basis {|e1; vac〉 , |e2; vac〉}, Eq. (1.13) can be written

in a matrix form as G11 (z) G12 (z)

G21 (z) G22 (z)

 =

 z − ωe − Σ11 (z) −Ωαβ
12 − Σ12 (z)

−Ωαβ
12 − Σ21 (z) z − ωe − Σ22 (z)

−1

, (1.15)

whereGmn (z) = 〈em; vac|PGtot (z)P |en, ; vac〉, and Σmn (z) = 〈em; vac|PΣ (z)P |en; vac〉

refers to the self-energy of the two-level systems. According to Eq. (1.14), by inserting Hint

into Σmn (z), I have

Σαα
11 (z) = Σ11(z) = g2 〈vac|ox1,α

(z −Hbath)
−1o†x1,α

|vac〉 ≡ g2G(x1,α, x1,α; z),

Σαβ
12 (z) = Σ12(z) = g2 〈vac|ox1,α

(z −Hbath)
−1o†x2,β

|vac〉 ≡ g2G(x1,α, x2,β; z),

Σβα
21 (z) = Σ21(z) = g2 〈vac|ox2,β

(z −Hbath)
−1o†x1,α

|vac〉 ≡ g2G(x2,β, x1,α; z),

Σββ
22 (z) = Σ22(z) = g2 〈vac|ox2,β

(z −Hbath)
−1o†x2,β

|vac〉 ≡ g2G(x2,β, x2,β; z), (1.16)

where G represents the single-particle Green’s function of the bath. As a result, according to

Eq. (1.15), the projected evolution operator in Eq. (1.12) is given by PU (t)P :

1

2πi

∫
C
dz

e−izt

D(z)

|e1; vac〉
|e2; vac〉

Tz − ωe − Σββ
22 (z) Ωαβ

12 + Σβα
21 (z)

Ωαβ
12 + Σαβ

12 (z) z − ωe − Σαα
11 (z)

〈e1; vac|
〈e2; vac|

, (1.17)

where

D(z) = [z − ωe − Σαα
11 (z)][z − ωe − Σββ

22 (z)]− [Ωαβ
12 + Σαβ

12 (z)][Ω
αβ
12 + Σβα

21 (z)]. (1.18)

Now let us assume that the total system is prepared in the initial state, |ψ (0)〉 = |e1; vac〉,

i.e., the quantum charger is in the excited state, the quantum battery is in the ground state, and

the environment is in the vacuum state. According to Eq. (1.17), the probability amplitude for

the quantum battery to be excited at t time is given by

cB(t) = 〈e2; vac|PU(t)P |e1; vac〉 =
1

2πi

∫
C

Σαβ
12 + Ωαβ

12

D(z)
e−iztdz. (1.19)

The reduced density matrix of the quantum battery is ρB(t) = Trcharger⊗bath[|ψ(t)〉〈ψ(t)|] =

|cB(t)|2 |e〉〈e|+ [1− |cB(t)|2] |g〉〈g|.
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Chapter 2

Resonance-dominant optomechanical

entanglement in open quantum systems

2.1 Introduction

Entanglement is an essential feature of quantum systems and one of the most striking phe-

nomena of quantum theory [23], allowing for inseparable quantum correlations shared by dis-

tant parties [24]. Entanglement is crucial in quantum information processing and network

building [25–27]. Studying entanglement properties from the perspectives of discrete and

continuous variables is significant for further understanding the quantum-classical correspon-

dence [28,29]. So far, the bipartite entanglement for a microscopic system of discrete variables

with a few degrees of freedom has been studied in detail [30]. A primary example of this is

a two-qubit system. To quantify entanglement, the concurrence [31], the negativity [32], and

the von Neumann entropy [33] are frequently used in previous studies.

Nevertheless, exploring bipartite entanglement in a macroscopic system of continuous vari-

ables with a large number of degrees of freedom has remained elusive [34–37]. Unfortunately,

entanglement is fragile due to decoherence from inevitable dissipative couplings between an

entangled system and its surrounding environment. Therefore, generating, measuring, and

protecting entanglement in open quantum systems have raised widespread interest in various

branches of physics and have been expected to be demonstrated to date [38].
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Cavity optomechanical systems are based on couplings due to radiation pressure between

electromagnetic and mechanical degrees of freedom [39]. They provide a desirable meso-

scopic platform for studying continuous-variable entanglement between optical cavity fields

and macroscopic mechanical oscillators with vast degrees of freedom in open quantum sys-

tems [40, 41]. Thanks to the rapidly developing field of microfabrication, quantum effects are

becoming more significant as the size of the device shrinks [42,43]. Remarkable progress has

been made in generating entanglement by manipulating macroscopic nanomechanical oscil-

lators with high precision [44, 45]. Some landmark contributions have been achieved for an

optomechanical entanglement measure [46,47], such as using logarithmic negativity to calcu-

late an upper bound of distillable optomechanical entanglement [48].

Protecting the maximum optomechanical entanglement in open quantum systems has re-

cently become a research focus. Many schemes have been proposed, such as protecting entan-

glement via synthetic magnetism in loop-coupled cavity optomechanical systems from thermal

noise and the dark mode [49], realizing phase-controlled asymmetric entanglement in cavity

optomechanical systems of the whispering-gallery mode [50], achieving and preserving the

optimal quality of nonreciprocal optomechanical entanglement via the Sagnac effect in a spin-

ning cavity optomechanical systems evanescently coupled with a tapered fiber [51,52], as well

as via general dark-mode control to accomplish thermal-noise-resistant entanglement [53].

However, the auxiliary protection of optomechanical entanglement in these schemes all

work in hybrid cavity optomechanical systems, which inevitably brings about trilateral and

evenmultilateral entanglement problems [54], such as photon-phonon-atom entanglement [55].

In this sense, it is essential to develop methods of protecting the intrinsic bilateral optomechan-

ical entanglement in hybrid cavity optomechanical systems from potential interference caused

by additional types of degrees of freedom [56]. With this motivation, we aim to protect a

prototypical optomechanical entanglement in cavity optomechanical systems.

Currently, intriguing schemes have been proposed to achieve the frequency resonance of

the system by using laser driving, thereby protecting bilateral mechanical entanglement in dou-

bly resonant cavity optomechanical systems [57, 58] and photon-atom entanglement in the

Rabi model [59]. Inspired by this, we propose to utilize the high-frequency resonance ef-

fect in a Fabry-Pérot cavity to protect the maximal value of optomechanical entanglement.
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In the weak-coupling limit, a clear-cut physical mechanism is employed to reduce Brownian

noise and dissipation, which involves filtering out components with significant mismatched

coupling frequencies between a mechanical mode and its thermal reservoir by leveraging the

high-frequency resonance effect. The present theoretical conjecture can be materialized in

an experiment by laser-driving the optical cavity field to resonate with a high-frequency and

high-quality-factor mechanical resonator coupled to a Markovian structured environment. We

can observe resonance-dominant optomechanical entanglement using a homodyne detection

scheme [60, 61] or a cavity-assisted measurement scheme [62, 63].

To attain our goal, we start by constructing the Hamiltonian of the cavity optomechani-

cal system under the coherent-state representation. We then derive its associated nonlinear

Langevin equations, which are consistent with the results in Ref. [46] but originate from the

coherent-state representation. We finally propose a theory of resonance-dominant optomechan-

ical entanglement in continuous-variable systems. When themechanical mode and surrounding

heat baths satisfy the conditions of a weak coupling and a high-frequency resonance, we point

out that the filtering model protects the stationary maximum optomechanical entanglement. In

particular, we quantitatively observe that a resonance effect doubles the robustness of the me-

chanical damping and thermal fluctuation noise from the environment and reveals its physical

reason. This result first unveils a hitherto overlooked aspect of applying a resonance effect to

entanglement protection. We further extend these results to an array of optical cavities with one

oscillating end-mirror and investigate the remote optomechanical entanglement, which helps

achieve optimal optomechanical entanglement transmission for quantum information process-

ing.

The remainder of this chapter is organized as follows. In Sec. 2.2, we construct the Hamil-

tonian of the physical system and reproduce the results of nonlinear Langevin equations in

Ref. [46] in the coherent-state representation. In Sec. 2.3, we propose a theory of resonance-

dominant optomechanical entanglement in continuous-variable systems and show the results

for maximum optomechanical entanglement protection. In addition, we present a potential ex-

perimental implementation of this scheme. In Sec. 2.4, we extend these findings to an array of

optical cavities with one oscillating end-mirror, investigating the remote optimal optomechan-

ical entanglement transmission for application purposes. Finally, in Sec. 2.5, we summarize

our findings and discuss the outlook for future research.
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2.2 Dynamics in coherent state representation

2.2.1 Construction of Hamiltonian

Figure 2.1: A cavity optomechanical system driven by a monochromatic laser. The optical

and mechanical modes are coupled via radiation pressure while independently coupled to their

respective reservoirs.

We first construct an open-quantum-system description of a cavity optomechanical system

in the coherent-state representation as shown in Fig. 2.1. The Fabry-Pérot cavity, known as

the simplest optical resonator structure, is additionally driven by a monochromatic laser, de-

scribed by the radiation-pressure interaction between an optical cavity field and a vibrating end

mirror, which applies to a wide variety of optomechanical devices, including microwave res-

onators [64], optomechanical crystals [65], and setups with the membrane inside a cavity [66].

Meanwhile, we assume that a cavity optomechanical system is coupled to two reservoirs.

The optical mode is coupled to a reservoir characterized by zero-temperature electromagnetic

modes, while the mechanical mode is coupled to another reservoir consisting of harmonic os-

cillators at thermal equilibrium [17]. In the Heisenberg picture, the system and environment

evolve in time under the influence of the total Hamiltonian, which reads [67]

HT = HS +HB, (2.1)
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where

HS =+ ℏ∆0a
†a+ ℏωmb†b− ℏ

G0√
2
a†a

(
b† + b

)
+ iℏ

(
Ea† − E∗a

)
, (2.2)

HE =+ ℏ
∑
k

ωkΓ
†
kΓk + ℏ

∑
k

gk

(
Γ†
ka+ a†Γk

)
+ ℏ

∑
n

ωnΛ
†
nΛn − iℏ

∑
n

ℓn
2

(
Λ†

n − Λn

) (
b† + b

)
, (2.3)

with a† (a) denoting b† (b) are the creation (annihilation) operators of the optical mode and the

mechanical mode, respectively. Laser detuning from the cavity resonance is ∆0 = ωc − ωL,

where ωc is the cavity characteristic frequency and ωL the is driving laser frequency. The

characteristic frequency and effective mass of the mechanical oscillator are ωm andm, respec-

tively. The optomechanical coupling coefficient is G0 = (ωc/L)
√
ℏ/mωm, with L being the

cavity length. The complex amplitude of the driving laser is E. In addition, Γ†
k (Γk) and

Λ†
n (Λn) for k ∈ {1, 2, 3 · ··,+∞} and n ∈ {1, 2, 3 · ··,+∞} are, respectively, the creation

(annihilation) operators of the reservoirs for the optical mode and the mechanical mode. The

harmonic-oscillator reservoirs have closely spaced frequencies corresponding to photons and

phonons, denoted by ωk and ωn, respectively. The real numbers gk and ℓn represent the cou-

pling strengths between the subsystem and the nth reservoir mode, respectively. Details of the

derivations of the total Hamiltonian (2.1) are given in Appendix A.1 [8, 64].

2.2.2 Nonlinear Langevin equations

A reasonable description of the dynamics in an open quantum system should include pho-

ton losses in the optical cavity field and the Brownian noise acting on the vibrating end mirror.

By substituting the total Hamiltonian (2.1) into the Heisenberg equation and taking into ac-

count the dissipation and noise terms, we obtain a set of closed integrodifferential equations

(see Appendix A.2 for the derivation [8, 17, 18, 68]) for the operators of the optical mode and
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mechanical mode as follows:

q̇ = ωmp, (2.4)

ṗ = −ωmq − γmp+G0a
†a+ ξ, (2.5)

ȧ = − (κ+ i∆0) a+ iG0aq + E +
√
2κain, (2.6)

where q =
(
b† + b

)
/
√
2 and p = i

(
b† − b

)
/
√
2 are the dimensionless position and momentum

operators of the vibrating end mirror. We assume that the decay rate of the optical cavity

is κ and set the mechanical damping rate as γm = ωmγ. The dissipative terms κ and γ are

proportional to the square of the coupling strength between the subsystem and the reservoir

gk and ℓn, respectively. The optical Langevin force ain represents the field incident to the

cavity and is assumed to be in the vacuum state. Its specific expression and the correlation

function [69] are

ain (t) =
−i√
2π

∑
k

gkΓ (t0) e
−iωk(t−t0), 〈ain (t) a†in (t

′)〉 = δ (t− t′) , (2.7)

where t0 represents the initial time. This correlation function is true for optical fields at room

temperature or microwaves at a cryostat.

In contrast, the Brownian noise operator is given by

ξ (t) =
∑
n

iℓn√
2

[
Λ†

n (t0) e
iωn(t−t0) − Λn (t0) e

−iωn(t−t0)
]
, (2.8)

The mechanical damping force ξ is non-Markovian in general [70], but it can be treated as

Markovian if the following two conditions are met: the thermal bath occupation number satis-

fies n̄ � 1; the mechanical quality factor satisfies Q = ωm/γm = 1/γ � 1. These conditions

are well satisfied in the majority of contemporary experimental setups, which validates the use

of the standard Markovian delta-correlation [68, 71]:

〈ξ (t) ξ (t′) + ξ (t′) ξ (t)〉
2

≈ γm (2n̄+ 1) δ (t− t′) , (2.9)

where n̄ = [exp (ℏωm/kBT )− 1]−1 is the mean thermal excitation number with the Boltzmann

constant kB and the end-mirror temperature T .
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So far, we have constructed the total Hamiltonian of the optomechanical system under the

coherent-state representation and completely reproduced the results of the nonlinear Langevin

equations in Ref. [46], which provides solid support for the filtering model dominated by the

resonance effect discussed later. We stress that deriving the Langevin equation from the total

Hamiltonian provides a clear picture in explicitly revealing the specific form of the interaction

between the system and the environment and the physical origin of each term in nonlinear

Langevin equations, in comparison to the implicit treatment of such interactions in the Lindblad

master equation.

2.3 Resonance-dominant optomechanical entanglement

2.3.1 Filtering model

In the preceding section, the total Hamiltonian (2.1) describes an original interaction be-

tween an optomechanical system and its surrounding environment. This section proposes a

resonant filtering model in the weak-coupling limit between the system and the heat bath. It

uses a high-frequency resonance between the mechanical mode and its thermal reservoirs to

filter out nonresonant degrees of freedom and achieve quantum coherence protection.

To discuss the frequency relation between the mechanical mode and its thermal reservoirs,

we introduce the frequency transformation b̃ (t) = b (t) exp (iωmt) and Λ̃n (t) = Λn (t) exp (iωnt)

for b (t) and Λn (t) [17] in the interaction picture. After that, the Hamiltonian (2.1) reads

HT =+ ℏ∆0a
†a+ ℏωmb†b+ iℏ

(
Ea† − E∗a

)
− ℏ

G0√
2
a†a

(
b̃
†
eiωmt + b̃e−iωmt

)
+ ℏ

∑
k

ωkΓ
†
kΓk + ℏ

∑
k

gk

(
Γ†
ka+ a†Γk

)
+ ℏ

∑
n

ωnΛ
†
nΛn

− iℏ
∑
n

ℓn
2

[
Λ̃†

nb̃e
i(ωn−ωm)t − b̃

†
Λ̃ne

−i(ωn−ωm)t
]

− iℏ
∑
n

ℓn
2

[
Λ̃†

nb̃
†
ei(ωn+ωm)t − b̃Λ̃ne

−i(ωn+ωm)t
]
. (2.10)

As mentioned above, our physical model describes a Markovian process in the weak-coupling

limit γ � 1, which corresponds to Eq. (2.10) satisfying the weak-coupling limit ℓn � 1 for
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Figure 2.2: Schematic diagram of the filtering model. (a) The coupling between a high-

frequency mechanical oscillator and codirectional thermal reservoirs. The frequency of the

thermal reservoirs sequentially transits from zero to positive infinity in rainbow color order.

(b) The terms of Λ̃†
nb̃ and b̃

†
Λ̃n show the high-frequency resonance effect. (c) The terms of

Λ̃†
nb̃

†
and b̃Λ̃n exhibit large detuning effects. The black, gray, and white colors correspond to

the high-frequency resonance, moderately detuned, and highly detuned modes of the heat bath

compared to the frequency of the single-mode mechanical oscillator ωm. The parameters δ and

ωm can be modulated by coherent laser driving [72, 73].

n ∈ {1, 2, 3 · ··,+∞} [74]. See Fig. 2.2 for a schematic diagram of the filtering model. We

eliminate the relatively fast-oscillating terms from Eq. (2.10) and then perform the inverse fre-

quency transformation as b (t) = b̃ (t) e−iωmt and Λn (t) = Λ̃n (t) e
−iωnt. Through this process,

we classify the filtering model reduced from Eq. (2.10) into the following two cases.

The high-frequency resonance region commonly exists in the coupling between the me-

chanical mode and a heat bath composed of positive energy modes denoted as ωmωn > 0

and ωn ∈ (0,+∞). The high-frequency resonance results in level repulsion between ωm and

ωn [75]. We here propose to filter out the strongly non-resonant contributions Λ̃†
nb̃

†
and b̃Λ̃n

mechanically; see Sec. 2.3.4 for possible experimental realizations. Keeping only the reso-

nant terms Λ̃†
nb̃ and b̃

†
Λ̃n, the filtering model is HF = HT + iℏ

∑
n ℓn

(
Λ†

nb
† − Λnb

)/
2. The

resonance terms Λ̃†
nb̃ and b̃

†
Λ̃n in this region describe the exchange of quanta between the me-

chanical mode and its nth thermal reservoir mode [42].

In contrast, the high-frequency inverse-resonance region occurs in the coupling between the

mechanical mode and an unstable heat bath composed of negative energy modes, denoted as

ωmωn < 0 and ωn ∈ (−∞, 0). The high-frequency inverse resonance results in level attraction

between ωm and ωn, details can be found in Appendix A.3 [52,76–84]. Keeping only the terms
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of Λ̃†
nb̃

†
and b̃Λ̃n, the inverse-filtering model readsH I

F = HT+ iℏ
∑

n ℓn
(
Λ†

nb− b†Λn

)/
2. The

inverse-resonance terms Λ̃†
nb̃

†
and b̃Λ̃n in this region represent a two-mode squeezing inter-

action between the mechanical mode and its nth thermal reservoir mode, and the parametric

amplification relies on the two-mode squeezing interaction [85]. In the following, we focus

on discussing the high-frequency resonance range since its physical significance is clear and

universal.

2.3.2 The Lyapunov equation for the steady-state correlation matrix

In order to comprehend the impact of resonance effects between a mechanical mode and its

thermal reservoirs on the strength of an optomechanical system, it is crucial to gain insight into

the structure of optomechanical correlation in open quantum systems. For this purpose, we use

the Lyapunov equation to compute the steady-state correlation matrix between subsystems and

obtain the optomechanical entanglement strength [86]. Without loss of generality, we take the

high-frequency resonance regime as an example of deriving the Lyapunov equation in terms

of the steady-state correlation matrix.

By deriving the Heisenberg equation of motion of the resonant HamiltonianHF, we obtain

nonlinear Langevin equations that govern the dynamical behavior of the optomechanical sys-

tem in the high-frequency resonance regime. The nonlinear Langevin equations are written as

(see Appendix A.4 for details)

q̇ = ωmp+
γ

4
ṗ+

1

2
ξ′, (2.11)

ṗ = −ωmq −
γ

4
q̇ +G0a

†a+
1

2
ξ, (2.12)

ȧ = − (κ+ i∆0) a+ iG0aq + E +
√
2κain, (2.13)

where the Brownian noise operator reads

ξ′ (t) =
∑
n

ℓn√
2

[
Λ†

n (t0) e
iωn(t−t0) + Λn (t0) e

−iωn(t−t0)
]
, (2.14)

which has the same delta-correlated form as ξ (t) under the weak-coupling limit γ � 1. The

nonlinear Langevin equations (2.11)-(2.13) are inherently nonlinear as they contain a product

16



of the photon operator and dimensionless position operator of the mechanical phonon, aq, as

well as a quadratic term in photon operators, a†a. Using the standard mean-field method [87]

to solve Eqs. (2.11)-(2.13), we start by splitting each Heisenberg operator into the classical

mean values and quantum fluctuation operators, i.e., a = αs + δa as in a† = α∗
s + δa†, q =

qs + δq, and p = ps + δp, thereby linearizing these equations. Adopting the above approach

and inserting these expressions into nonlinear Langevin equations (2.11)-(2.13), we find the

solution of the mean values for the classical steady state given by ps = 0, qs = G0α
∗
sαs/ωm,

and αs = E/(κ+ i∆), where we set normalization of the detuning frequency of the optical

field as ∆ = ∆0 −G2
0α

∗
sαs/ωm.

The parameter regime for generating optomechanical entanglement is the one with a large

amplitude of the driving laser E, i.e., αs � δa and α∗
s � δa†. By dropping the contribution

from the second-order small terms, as described in Appendix A.5, we obtain the linearized

Langevin equations

δq̇ = ωmδp−
γm
4
δq +

1

2
ξ′, (2.15)

δṗ = −ωmδq −
γm
4
δp+G0

(
α∗
s δa+ αsδa

†)+ 1

2
ξ, (2.16)

δȧ = − (κ+ i∆) δa+ iG0αsδq +
√
2κain. (2.17)

By assuming the driving laser amplitude E = |E| exp (iφ), where |E| is related to the input

laser power P by |E| =
√
2Pκ/ℏωL and φ denotes the phase of the laser field coupling to the

optical cavity field, we choose φ to satisfy tan (φ) = ∆/κ so that αs may be real.

The quadratures play an essential role in studying entanglement because they are used to

quantify the correlations between differentmodes. We define the cavity field quadratures δX =(
δa+ δa†

)
/
√
2 and δY = i

(
δa† − δa

)
/
√
2 as two observables that describe the quantum state

of a cavity field mode, which can be measured using homodyne detection techniques.

Accordingly, we define the orthogonal input noise operators Xin = (δa†in + δain)/
√
2 and

Yin = i(δa†in − δain)/
√
2, and thereby Eqs. (2.15)-(2.17) can be written as a matrix form as

µ̇ (t) = Aµ (t) + n (t) . (2.18)

Here the components of each matrix are as follows: the transposes of the column vector of con-
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tinuous variables fluctuation operators are written as µT (t) = [δq (t) , δp (t) , δX (t) , δY (t)];

the transposes of the column vector of noise operators are denoted by

nT (t) =
[
0.5ξ′ (t) , 0.5ξ (t) ,

√
2κXin (t) ,

√
2κYin (t)

]
; (2.19)

and the coefficient matrix A in terms of system parameters takes the form

A =


−0.25γm ωm 0 0

−ωm −0.25γm G 0

0 0 −κ ∆

G 0 −∆ −κ

 , (2.20)

where the effective optomechanical coupling is given by G =
√
2αsG0.

The solution of Eq. (2.18) can be expressed as

µ (t) =M (t)µ (t0) +

∫ t

t0

M (τ)n (t− τ) dτ, (2.21)

whereM is the matrix exponentialM (t) = exp (At) and we assume the initial time as t0 = 0.

The system is stable if and only if the real parts of all the eigenvalues of the matrix A are

negative. The eigenvalue equation det|A− λI4| = [(0.25γm + λ)2 + ω2
m][(κ+ λ)2 +∆2] −

ωmG
2∆ = 0, where I4 denotes the four-dimensional identity matrix, can be reduced to the

fourth-order equation C0λ
4 + C1λ

3 + C2λ
2 + C3λ + C4=0. The stability conditions can be

derived by applying the Routh-Hurwitz criterion [88] as follows: C0 > 0, C1 > 0, C1C2 −

C0C3 > 0, (C1C2 − C0C3)C3 − C2
1C4 > 0, C4 > 0, yielding the following two nontrivial

conditions: (ω2
m + γ2m/16) (∆

2 + κ2)− ωmG
2∆ > 0 and

+ γmκ

{
∆4 +∆2

(
γ2m
8

+ γmκ+ 2κ2 − 2ω2
m

)
+

1

256

[
16ω2

m + (γm + 4κ)2
]2}

+ ωmG
2∆

(γm
2

+ 2κ
)2

> 0. (2.22)

The following numerical simulation shows that realistic experimental parameter configurations

always meet these stability conditions. When the system is stable, it reaches a unique steady

state in the long-time limit t→ +∞ independently of the initial condition.
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We set the initial state to a Gaussian one, and the linear dynamics preserve the noise opera-

tors ξ′, ξ, and ain. Thus, the correlation properties of the system can be completely characterized

by its two first moments, of which we are interested in the second one, namely the covariance

matrix with elements defined as

Vij =
1

2
〈µi (+∞)µj (+∞) + µj (+∞)µi (+∞)〉

=
∑
k,l

∫ +∞

t0

dτ

∫ +∞

t0

dτ ′Mik (τ)Mjl (τ
′) Φkl (τ − τ ′) , (2.23)

where Φkl (τ − τ ′) = 〈nk (τ)nl (τ
′) + nl (τ

′)nk (τ)〉/2 is the matrix of the stationary noise

correlation functions. Because thematrix elements are independent ofn (t), we findΦkl (τ − τ ′)

= Dklδ (τ − τ ′), where D = Diag [γm (2n̄+ 1)/4, γm (2n̄+ 1)/4, κ, κ] is a diagonal matrix.

According to Eq. (2.23) and the form of Φkl (τ − τ ′), we find that the expression of the matrix

V is equivalent to

V =

∫ +∞

t0

M (τ)DM(τ)Tdτ , (2.24)

which leads to a linear Lyapunov equation with respect to V , i.e., AV + V AT = −D. See

Appendix A.6 for a detailed derivation of the Lyapunov equation.

In addition, we can derive a Lyapunov equation satisfied by the high-frequency inverse-

resonance HamiltonianH I
F similarly to the form of the high-frequency resonance Hamiltonian

HF. Moreover, we show that the analysis and results concerning optomechanical entanglement

in the high-frequency inverse-resonance regime are equivalent to those in the high-frequency

resonance regime. Therefore, we do not elaborate on it further here.

2.3.3 Optomechanical entanglement

Cavity optomechanical systems naturally exhibit complex entanglement structures and al-

ways involve mixed states and continuous variable entanglement, which are affected by dissi-

pation and noise. In this sense, the logarithmic negativity is a powerful tool that can provide

valuable insights into the nature of optomechanical entanglement [89], which can be exper-

imentally measured using homodyne detection. Thus, we use the logarithmic negativity EN
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Figure 2.3: Plot of the logarithmic negativity EN as a function of the normalized detuning fre-

quency of the optical field |∆| (in units of ωm) for seven values of the mechanical damping rate:

γm = 0 (blue circular line), γm = 200πHz (orange solid line), γm = 400πHz (yellow square

line), γm = 600πHz (purple dashed line), γm = 800πHz (green triangle line), γm = 1000πHz

(brown dotted line), and γm = 2000πHz (red cross line), where (a) and (b) correspond to the

original modelHT and the filtering modelHF, respectively. The length of the black downward-

pointing arrows indicates how sensitive optomechanical entanglement is to γm. The other pa-

rameters for (a) and (b) are chosen as follows: the optical cavity of length L = 1mm and the

drives laser with wavelength λ = 810nm and power P = 50mW. The decay rate of the optical

cavity is chosen to be κ = 8.8π × 106Hz, the optical finesse F = πc/Lκ ≈ 3.4 × 104 with

c = 3×108m/s, and the driving laser frequency is resonant with the characteristic frequency of

the cavity field, ωL = ωc = 2πc/λ. The mechanical oscillator has the characteristic frequency

ωm = 20πMHz, the effective massm = 50ng, and its temperature is T = 400mK [46].

to measure optomechanical entanglement between the optical cavity field and the mechani-

cal oscillator. It provides an obvious easy way to compute an upper bound for the distillable

optomechanical entanglement [48].

As mentioned in the continuous-variable scenario, the bipartite optomechanical entangle-

ment can be quantified as [86]

EN = max [0,− ln (2Ξ)] , (2.25)
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Figure 2.4: Comparing the optomechanical entanglement properties under different mecha-

nisms, the high-frequency resonance of the filtering model HF (blue circular line), the high-

frequency inverse-resonance of the filtering modelH I
F (red dashed line), and the original model

HT (green solid line). (a) Plot of the logarithmic negativity EN as a function of the normal-

ized detuning frequency of the optical field |∆| (in units of ωm). We set γm = 200πHz and

T = 400mK. (b) Plot of the logarithmic negativity EN versus the mirror temperature T . We

set γm = 200πHz and ∆ = 0.5ωm = 10πMHz. In both panels, the other parameter values are

the same as in Fig. 2.3.

where

Ξ =
1√
2

{
Σ (V )−

√
[Σ (V )]2 − 4 det (V )

} 1
2

(2.26)

is the lowest symplectic eigenvalue of the partial transpose of the 4×4 steady-state correlation

matrix [90]. For simplicity, we denote the 4×4 steady-state correlation matrix in a 2×2 block-

matrix form as V =
[
(Θ, β) ,

(
βT , η

)]
, andΣ (V ) = det (Θ)+det (η)−2 det (β). We note that

a Gaussian state is entangled if and only ifΞ < 1/2. This is equivalent to Simon’s entanglement

criteria for all bipartite Gaussian states [91], which can be written as 4 det (V ) < Σ(V )− 1/4.

We numerically calculated the negativity for cavity optomechanical systems as shown in

Figs. 2.3 and 2.4. In our numerical simulation, we utilized the parameter values identical to

those outlined in Ref. [46], which agree with the current optomechanical experiments config-

urations [92–95] and satisfy the stability conditions (2.22). To begin with, we set the initial

closed-optomechanical system in the maximum optomechanical entangled state. For simplic-

ity, we assumed that the driving laser frequency ωL is resonant with the characteristic frequency
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ωc of the cavity field, that is, the laser detuning from the cavity resonance satisfies ∆0 = 0.

In Fig. 2.3, we compare the sensitivity of the optomechanical entanglement EN to the me-

chanical damping rate γm for the two optomechanical systems, HT and HF. We show a sig-

nificant enhancement of the robustness of optomechanical entanglement for HF against γm.

Specifically, we observe the decrease of EN due to γm = 2000πHz in Fig. 2.3(b) is approxi-

mately half of that in Fig. 2.3(a), which implies that the optomechanical entanglement of the

filtering modelHF is almost twice as robust to γm as the original modelHT. Additionally, it is

worth noting that the presence of optomechanical entanglement is only within a limited range

of |∆| around |∆| ≈ ωm, which means that the frequency resonance between the normalization

of the detuning frequency of the optical field |∆| and the frequency of the mechanical oscillator

ωm plays a dominant role in the generation of optomechanical entanglement.

We further examine the impact of the resonance effect between the mechanical mode and

its thermal reservoir on the properties of optomechanical entanglement. For this purpose, we

set γm = 200πHz according to the actual laboratory conditions.

Figure 2.4(a) shows the logarithmic negativity EN versus the normalized detuning fre-

quency of the optical field |∆| (in units of ωm) for cases models, the high-frequency resonance

of the filtering modelHF, the high-frequency inverse-resonance of the filtering modelH I
F, and

the original systemHT. It shows that the maximum optomechanical entanglements forHF and

H I
F are equal to each other while that for HT is less than it. The results indicate that the res-

onance effect can safeguard the maximum optomechanical entanglement by filtering out the

contributions from a largely detuned part of the degree of freedom, ultimately reducing both

the Brownian noise ξ (ξ′) and the mechanical dissipation γm.

The robustness of the entanglementEN with respect to the environmental temperature T of

themirror is shown in Fig. 2.4(b). We find that the optomechanical entanglement of the filtering

modelHF remains even at temperatures around 10K and is twice themagnitude of the persistent

temperature in the original model HT. In addition, we observe that the high-frequency reso-

nance and the high-frequency inverse-resonance regimes have completely equivalent effects

on optomechanical entanglement.

In summary, we have discussed the impact of the high-frequency resonance effect between
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Figure 2.5: A circuit consisting of a resistor, inductor, and capacitor can be used to build an

oscillatory filteringmodel for high-frequency resonance. This experimental setup comprises an

on-chip optical cavity (green) coupled with a high-quality-factor nano-mechanical resonator.

By turning on the switch S1 and turning off the switch S2, the thermistor (orange) will provide

a thermal environment that couples with the resonator, corresponding to the original modelHT.

Conversely, the thermistor and the oscillator (black) will generate a thermal environment with

high-frequency oscillation that couples with the resonator, corresponding to the filtering model

HF. Direct current, abbreviated as DC, is used for signal frequency readout.

the mechanical oscillator and its thermal reservoir on optomechanical entanglement. We have

found that the resonance effect doubles the robustness of optomechanical entanglement to the

mechanical dissipation and the mirror temperature. We have achieved the maximum protection

of optomechanical entanglement by constructing a filtering model using resonance effects.

We have observed numerically that both the high-frequency resonance and the high-frequency

inverse-resonance regimes have equivalent effects on optomechanical entanglement.
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2.3.4 Experimental implementation

We propose materializing the present theoretical filtering model in a resistor-inductor-

capacitor circuit [64,96,97] or superconducting quantum interference device experiments [98].

Here, we focus on the high-frequency resonance region. As shown in Fig. 2.5, we build an os-

cillatory circuit consisting of a capacitor C, an inductor L, a thermistor RT , and an oscillator

X . We set the normalized detuning frequency of the optical field of the LC circuit to satisfy

|∆| = 1/(2π
√
LC) = 20πMHz.

First, the mechanical resonator (blue) and the optical cavity (green) are connected via an

inductor. Second, an extensive AC voltage bias VAC is applied in order to excite the me-

chanical resonator, represented as a movable capacitance Cg (x). To obtain the maximum

optomechanical entanglement, the frequency of the applied voltage should be close to |∆|,

namely |∆| ≈ ωm. Next, as the LC circuit oscillates, a current is induced in the thermistor,

generating a temperature change due to the Joule heating effect. Therefore, by turning on the

switch S1 and turning off the switch S2 simultaneously, the mechanical resonator is coupled

to a full-frequency thermal reservoir, corresponding to the original model HT. In contrast, the

largely detuned part of the degree of freedom can be filtered by applying the oscillator X if

we turn off the switch S1 while turning on the switch S2. The oscillator X is an electronic cir-

cuit component capable of generating a specific frequency signal and can be utilized as a filter

to filter out unwanted frequency components selectively. Specifically, when the input signal

matches the resonant frequency of the oscillator, it amplifies the input signal and outputs a

near-resonant signal, thereby achieving high-frequency oscillatory wave filtering. Thus, the

resistor-inductor-capacitor oscillatory circuit can be described by the filtering model HF.

In addition, we need to choose amechanical resonator with a giantmechanical quality factor

to ensure that significant quantum effects are achievable, that is, Q = ωm/γm = 1/γ � 1

corresponding to the weak-coupling limit γ � 1. The remaining parameter values for the

simulation of the circuit experiment are the same as in Fig. 2.4(a). Furthermore, we note

that with optical interferometry techniques [99, 100], we can observe the resonance response

of a mechanical resonator to its thermal environment. The homodyne detection techniques

[101,102] can be used to measure an optomechanical entanglement.
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Figure 2.6: Schematic diagram depicting a one-dimensional array of optical cavities coupled

via linear hopping between each cavity, with an oscillating end mirror.

It is important to note that experimental studies on open-system dynamics with linear opti-

cal setups often use approximated simulations of quantum channels, such as amplitude decay or

phase-damping channels [103–106] These simulations rely on the rotating-wave approxima-

tion for system-bath interactions and the weak-coupling approximation. Recently, we noted

that a study aims to test the difference between channels with and without the rotating-wave

approximation by studying the varying dynamics of quantum temporal steering was demon-

strated experimentally [107,108].

2.4 Generalized extension and application

We are now extending the theory of resonance-dominant entanglement to a multi-mode

optomechanical system. Specifically, we discuss an optical-cavity array with one oscillating

end mirror and investigate optimal optomechanical-entanglement transmission.

As schematically shown in Fig. 2.6, the system comprises an oscillating end mirror cou-

pled to an array of optical cavities. The adjacent optical cavities are linearly coupled with an

interaction strength of J [109]. A laser field drives the left end of the optical cavity, while the

right end is connected to a vibrating end mirror.

If we consider this system to be in the high-frequency resonance regime, the total Hamil-

tonian of this open quantum system can be expressed as
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H =+ ℏ∆0a
†
1a1 +

N∑
j=2

ωcja
†
jaj + ℏωmb†b+ iℏ

(
Ea†1 − E∗a1

)
+ ℏ

N−1∑
j=1

J
(
a†jaj+1 + a†j+1aj

)
− ℏ

G0√
2
a†NaN

(
b† + b

)
+ ℏ

N∑
j=1

∑
k

ωjkΓ
†
jkΓjk + ℏ

N∑
j=1

∑
k

gjk

(
Γ†
jkaj + a†jΓjk

)
+ ℏ

∑
n

ωnΛ
†
nΛn − iℏ

∑
n

ℓn
2

(
Λ†

nb− b†Λn

)
, (2.27)

where a†j (aj) and Γ
†
jk (Γjk) are the corresponding creation (annihilation) operators for the jth

optical cavity mode and its thermal reservoir modes with frequencies ωcj and ωjk, respectively,

and the coupling strength between them is gjk.

Similarly, nonlinear Langevin equations for the operators of the mechanical and optical

modes are given as follows:

q̇ = ωmp−
γm
4
q +

1

2
ξ′,

ṗ = −ωmq −
γm
4
p+G0a

†
NaN +

1

2
ξ, (2.28)

ȧ1 = − (κ+ i∆0) a1 − iJa2 + E +
√
2κain1 , · · · ,

ȧj = −
(
κ+ iωcj

)
aj − iJ (aj−1 + aj+1) +

√
2κainj , · · · ,

ȧN = − (κ+ iωcN ) aN − iJaN−1 + iG0qaN +
√
2κainN ,

where we assume that all optical-cavity fields share the same coupling strength: gjk = gk, i.e.,

κj = κ. As the simplest case, we consider N = 2 to study the optomechanical entanglement

properties of this system. Similarly, we use the logarithmic negativity to measure the entan-

glement between two arbitrary bosonic modes in the system. Now, we focus on the numerical

evaluation of the bipartite entanglement Emc·1
N to show the optimal remote optomechanical en-

tanglement transfer.

In the two-cavity case, we let Emc·1
N , Emc·2

N , and Ecc·12
N denote the logarithmic negativity

between the mirror and the cavity 1, the mirror and the cavity 2, and the cavity 1 and the cavity

2, respectively. In Fig. 2.7(a), we plot Emc·1
N , Emc·2

N , and Ecc·12
N as functions of the normalized

detuning |ϖ| (in units of ωm) with the other parameters set to ∆0 = 0, J = 0.7ωm, and T =

400mK. The normalized detuning ϖ = ωc2 − G0Qs depends on the steady-state mean values

Qs = G0α
∗
2sα2s/ωm, and α2s = −iJα1s/ (κ+ iϖ) with α1s = E/ [κ+ i∆0 + J2/ (κ+ iϖ)],
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Figure 2.7: The optimal remote optomechanical-entanglement transmission. (a)The negativity

entanglements Emc·1
N (pink dotted line), Emc·2

N (black solid line), and Ecc·12
N (blue dashed line)

as a function of the normalized detuning |ϖ| (in units of ωm) with the other parameters set to

∆0 = 0 and J = 0.7ωm. (b) The negativity entanglements Emc·1
N , Emc·2

N , and Ecc·12
N versus

the linear hopping strength J (in units of ωm) with the other parameters set to ∆0 = 0 and

|ϖ| = 0.6ωm. (c) The negativity entanglements Emc·1
N as a function of |ϖ| (in units of ωm)

for different values of the linear hopping rate: J = 0 (blue circular line), J = 0.2ωm (pink

solid line), J = 0.4ωm (orange square line), J = 0.6ωm (purple dashed line), J = 0.7ωm

(green triangle line), J = 0.8ωm (brown dotted line), and J = ωm (red cross line). (d) The

negativity entanglements Emc·1
N as a function of J (in units of ωm) for different values of the

normalized detuning: |ϖ| = 0.2ωm (blue solid line), |ϖ| = 0.4ωm (red square line), |ϖ| =

0.6ωm (orange circular line), |ϖ| = 0.8ωm (purple dashed line), and |ϖ| = ωm (green cross

line). The remaining parameter values for all panels are set to be the same as those in Fig. 2.4.
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which can be obtained by setting the time derivation to zero in the nonlinear Langevin equa-

tion (2.28) forN = 2. Our numerical findings show that by tuning the magnitude ofϖ, we are

able to achieve long-distance optomechanical-entanglement transfer. As |ϖ| increases approx-

imately from 0.50ωm to 0.65ωm, the distant optomechanical entanglement Emc·1
N correspond-

ingly increases at the expense of the decrease of the neighboring optomechanical entanglement

Emc·2
N , due to the adjacent cavities acting as entanglement transmitters.

In Fig. 2.7(b), we plot Emc·1
N , Emc·2

N , and Ecc·12
N as functions of the linear hopping strength

J (in units of ωm) with the other parameters set to ∆0 = 0, |ϖ| = 0.6ωm, and T = 400mK.

In a similar analysis, we can also implement distant optomechanical entanglement transfer by

adjusting the strength of J approximately from 0.5ωm to 0.75ωm. In particular, when T =

400mK, we find that the optimal remote optomechanical entanglement transfer occurs around

|ϖ| = 0.6 and J = 0.7 (in units of ωm), and the maximum value of remote entanglement Emc·1
N

is approximately evaluated at 0.045; see Fig. 2.7(c)-(d).

2.5 Summary and prospect

In summary, we have demonstrated that resonance effects between a mechanical mode

and its thermal environment can protect optomechanical entanglement. Specifically, we have

shown that resonance effects nearly double the robustness of the optomechanical entangle-

ment against mechanical dissipation and its environmental temperature. The mechanism of

optomechanical-entanglement protection involves the elimination of degrees of freedom as-

sociated with significant detuning between the mechanical mode and its thermal reservoirs,

thereby counteracting the decoherence. We have revealed that this approach is particularly

effective when both near-resonant and weak-coupling conditions are simultaneously satisfied

between a mechanical mode and its environment. We have also proposed a feasible experi-

mental implementation for the filtering model to observe these phenomena. Furthermore, we

extended this theory to an optical cavity array with one oscillating end mirror and investigated

optimal optomechanical entanglement transfer. This study represents a significant advance-

ment in the application of resonance effects for protecting quantum systems against decoher-

ence, thereby opening up new possibilities for large-scale quantum information processing and

the construction of quantum networks.

28



In addition, extending the resonance-dominant entanglement theory to non-Markovian and

non-Hermitian optomechanical systems is also challenging and expected to be impactful. Specif-

ically, we ensure that studying non-Markovian effects [110–114], exceptional points [115],

parity-time symmetry [116], and anti-parity-time symmetry [117] on optomechanical entangle-

ment is exciting. In particular, we are interested in future investigations of the optomechanical

entanglement properties between resonance states [118, 119] in non-Hermitian systems. This

work aims to develop an innovative approach for protecting continuous variable entanglement.
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Appendix A

Appendix for Chapter 2

A.1 Derivation of the Hamiltonian (2.1)

Here, we show the origin of the total Hamiltonian (2.1) [8,64]. The total Hamiltonian (2.1)

of this field reservoir consists of two parts, the system (2.2) and the environment (2.3). There-

fore, to obtain Eq. (2.1), we need to demonstrate the specific origins of Eqs. (2.2) and (2.3)

separately.

To begin with, we show the origin of the system Hamiltonian (2.2). As usual, for an op-

tomechanical system driven by an optical laser, the Hamiltonian of the composite system can

be written as

H0
S = ℏωca†a+

p′2

2m
+

1

2
m(ωmq

′)
2 − ℏGa†aq′ + iℏ

(
Ee−iω0ta† − E∗eiω0ta

)
, (A-1)

where a monochromatic field drives the optical mode with the driving frequency ω0, and the

complex amplitude of the driving laser is denoted by E. The optical frequency shift per dis-

placement is given by G = −∂ωc (x)/∂x = ωc/L. To make the Hamiltonian independent of

time, we then move to the rotating frame of the frequency, which changes Eq. (A-1) to the
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following:

H ′
S = U (t)H0

S (t)U
† (t)− iU (t) U̇

†
(t)

= ℏ∆0a
†a+

p′2

2m
+

1

2
m(ωmq

′)
2 − ℏGa†aq′ + iℏ

(
Ea† − E∗a

)
, (A-2)

where we used the unitary transformation of the formU (t) = exp
(
iω0a

†at
)
and∆0 = ωc−ω0

denotes the detuning of the cavity characteristic frequency ωc of the optical cavity from the

driving laser frequency ω0.

We make the position and momentum operators dimensionless by defining the zero-point

fluctuation amplitude of the mechanical oscillator asXZPF =
√
ℏ/2mωm. Then, we define the

dimensionless position operator q and momentum operator p as follows:

q =
q′√
2XZPF

=
1√
2

(
b† + b

)
, p =

p′√
2mωmXZPF

=
i√
2

(
b† − b

)
. (A-3)

Substituting Eq. (A-3) into Eq. (A-2), we arrive at

HS = ℏ∆0a
†a+

ℏ
2
ωm

(
p2 + q2

)
− ℏG0a

†aq + iℏ
(
Ea† − E∗a

)
= ℏ∆0a

†a+ ℏωmb†b− ℏG0a
†a

(
b† + b

)
√
2

+ iℏ
(
Ea† − E∗a

)
, (A-4)

where G0 =
√
2GXZPF = ωc

√
ℏ/mωm/L is the vacuum optomechanical coupling strength,

expressed as a frequency. It quantifies the interaction between a single phonon and a single

photon. This produces Eq. (2.2) in the main text.

Next, we give the origin of the environment Hamiltonian (2.3) for the first time. As is well

known from the Bose-Einstein statistics, a heat bath associated with a boson system can be

considered as an assembly of harmonic oscillators. This type of heat bath can serve as a model

for various physical systems, such as elastic solids (mechanical reservoirs) and electromagnetic

fields (optical reservoirs).

Firstly, since in the optomechanical system, both the photons in the optical cavity and the

phonons in the mechanical oscillator obey the Bose-Einstein statistics, the free part of the en-
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vironment can be written in the simple form

H0
E =

1

2

∑
k

[
1

mc
k

(p̃ck)
2 +Θc

k(q̃
c
k)

2

]
+

1

2

∑
n

[
1

mm
n

(p̃mn )
2 +Θm

n (q̃
m
n )

2

]
, (A-5)

wheremc
k andmm

n correspond to the effective mass of the kth optical reservoir and nth mechan-

ical reservoir, respectively. The momentum and position operators corresponding to the kth

optical reservoir and the nth mechanical reservoir are denoted by p̃ck p̃mn and q̃ck q̃mn , respectively.

We set Θc
k = mc

k(ωk)
2 and Θm

n = mm
n (ωn)

2 as the optical and mechanical potential-force con-

stants. The harmonic-oscillator reservoirs have closely spaced frequencies corresponding to

photons and phonons, denoted by ωk and ωn, respectively. Through the process of removing

the dimensions from the operators, we define the dimensionless momentum operators pck and

pmn as well as position operators qck and qmn as follows:

pck =

√
ωk

Θc
kℏ
p̃ck =

√
1

mc
kωkℏ

p̃ck, qck =

√
Θc

k

ωkℏ
q̃ck =

√
ωk

ℏ
p̃ck, (A-6)

pmn =

√
ωn

Θm
nℏ
p̃mn =

√
1

mm
nωnℏ

p̃mn , qmn =

√
Θm

n

ωnℏ
q̃mn =

√
ωn

ℏ
p̃mn . (A-7)

Substituting Eqs. (A-6) and (A-7) into Eq. (A-5), we have

H ′
E =

ℏ
2

∑
k

ωk

[
(pck)

2 + (qck)
2]+ ℏ

2

∑
n

ωn

[
(pmn )

2 + (qmn )
2], (A-8)

Secondly, we consider the coupling between the system and the environment. The Hamilto-

nian of a system can be left arbitrary, such as an atom, as in quantum optics, or a macroscopic

LC-circuit. In our case, we treat the optomechanical system as a perturbation to the baths, by

writing

H ′′
E =+

ℏ
2

∑
k

ωk

[
(pck)

2 + (qck + εckqc)
2]+ ℏ

2

∑
n

ωn

[
(pmn − χmn qm)

2 + (qmn )
2]

=+
ℏ
2

∑
k

ωk

[
(pck)

2 + (qck)
2]+ ℏ

2

∑
k

ωk(ε
c
kqc)

2 + ℏ
∑
k

ωkε
c
kq

c
kqc (A-9)

+
ℏ
2

∑
n

ωn

[
(pmn )

2 + (qmn )
2]+ ℏ

2

∑
n

ωn(χ
m
n qm)

2−ℏ
∑
n

ωnχ
m
np

m
n qm,
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or

H̃ ′′
E =+

ℏ
2

∑
k

ωk

[
(pck + εckpc)

2 + (qck)
2]+ ℏ

2

∑
n

ωn

[
(pmn − χmn qm)

2 + (qmn )
2]

=+
ℏ
2

∑
k

ωk

[
(pck)

2 + (qck)
2]+ ℏ

2

∑
k

ωk(ε
c
kpc)

2 + ℏ
∑
k

ωkε
c
kp

c
kpc (A-10)

+
ℏ
2

∑
n

ωn

[
(pmn )

2 + (qmn )
2]+ ℏ

2

∑
n

ωn(χ
m
n qm)

2−ℏ
∑
n

ωnχ
m
np

m
n qm.

The orthogonal relationship for the dimensionless position and momentum operators of the

system and the environment read:

qc =
1√
2

(
a† + a

)
, pc =

i√
2

(
a† − a

)
; qck =

1√
2

(
Γ†
k + Γk

)
, pck =

i√
2

(
Γ†
k − Γk

)
; (A-11)

qm =
1√
2

(
b† + b

)
, pc =

i√
2

(
b† − b

)
; qmn =

1√
2

(
Λ†

n + Λn

)
, pmn =

i√
2

(
Λ†

n − Λn

)
. (A-12)

By substituting Eqs. (A-11) and (A-12) into the Eqs. (A-9) and (A-10), absorbing terms only

of the system operators ℏ
∑

k ωk(ε
c
kpc)

2/2, ℏ
∑

k ωk(ε
c
kqc)

2/2, and ℏ
∑

n ωn(χ
m
n qm)

2/2 into the

system Hamiltonian, and further neglecting these higher-order perturbations quantities con-

taining (εck)
2 and (χmn )

2, we obtain

H̃ ′′
E 7→ Hqc

E = +ℏ
∑
k

ωkΓ
†
kΓk + ℏ

∑
k

gk

(
Γ†
ka

† + Γka
)
+ ℏ

∑
k

gk

(
Γ†
ka+ Γka

†
)

+ ℏ
∑
n

ωnΛ
†
nΛn − iℏ

∑
n

ℓn
2

(
Λ†

n − Λn

) (
b† + b

)
, (A-13)

H̃ ′′
E 7→ Hpc

E = +ℏ
∑
k

ωkΓ
†
kΓk − ℏ

∑
k

gk

(
Γ†
ka

† + Γka
)
+ ℏ

∑
k

gk

(
Γ†
ka+ Γka

†
)

+ ℏ
∑
n

ωnΛ
†
nΛn − iℏ

∑
n

ℓn
2

(
Λ†

n − Λn

) (
b† + b

)
, (A-14)

where we set gk = εckωk/2 and ℓn = χm
n ωn. The real numbers gk and ℓn represent the coupling

strengths between the subsystem and thenth reservoir mode, respectively. Finally, we apply the

rotating-wave approximation and neglect the counter-rotating terms Γ†
ka

† and Γka in Eqs. (A-

13) and (A-14), yielding Hqc
E ≈ H̃qc

E = HE = H̃pc
E ≈ Hpc

E , where H̃
qc
E and H̃qc

E represent

the Hamiltonian after the rotating-wave approximation. This process produces Eq. (2.3) in the

Chapter 2.

In conclusion, we have physically revealed that photon and phonon perturbations interact
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with the reservoirs differently. The coupling between photons and the bosonic reservoirs re-

sults in the potential energy of the bath depending on the deviation of qc from all the qck, while

the kinetic energy of the bath depends on the derivation of pc with respect to all pck as well. In

other words, it is as if each coordinate qck or pck is harmonically bound to qc or pc, respectively.

In contrast, the coupling between phonons and the bosonic reservoirs makes the potential en-

ergy of the bath depending on the deviation of qm from all the pmn . The kinetic energy of the bath

depends on the derivation of pm with respect to all qmn as well. In other words, it is as if each

coordinate qmn or pmn is harmonically bound to pm or qm, respectively. In addition, we point out

that this difference between perturbations of photons and phonons on the bosonic reservoirs

also results in the fact that in the rotating-wave approximation, neglecting the rotating-wave

terms Γ†
ka

† and Γka in the coupling between photons and the electromagnetic field leads to the

simplification of
∑

k ωk[(p
c
k + εckpc)

2 + (qck)
2] ≈

∑
k ωk[(p

c
k)

2 + (qck + εckqc)
2], while neglect-

ing the counter-rotating terms Λ†
nb and Λnb

† in the coupling between phonons and elastic solid

simplifies
∑

n ωn[(p
m
n − χmn qm)

2 + (qmn )
2] ≈

∑
n ωn[(p

m
n )

2 + (qmn − χmnpm)
2].

A.2 Details of the derivation of Eqs. (2.4)-(2.6)

In this Appendix, we derive the nonlinear Langevin equations that the total Hamiltonian

HT in Eq. (2.1) satisfies. To begin with, let us derive the nonlinear Langevin equations satisfied

by the optical cavity field. The Heisenberg equations of motion for the operator a of the optical

cavity field and its corresponding reservoir operators Γk are given by

ȧ =
1

iℏ
[a,HT] = −i∆0a+ iG0a

(
b† + b

)
√
2

+ E − i
∑
k

gkΓk, (A-15)

Γ̇k =
1

iℏ
[Γk, HT] = −iωkΓk − igka. (A-16)

We are interested in a closed equation for a. Equation (A-16) for Γk can be formally integrated

to yield

Γk (t) = Γk (t0) e
−iωk(t−t0) − igk

∫ t

t0

a (τ)e−iωk(t−τ)dτ. (A-17)
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Here the first term describes the free evolution of the reservoir modes, whereas the second

term arises from their interaction with the optical cavity field. We eliminate Γk by substituting

Eq. (A-17) into Eq. (A-15), finding

ȧ = −i∆0a+ iG0a

(
b† + b

)
√
2

+ E −
∑
k

(gk)
2

∫ t

t0

a (τ)e−iωk(t−τ)dτ + fa (t) (A-18)

with fa (t) = −i
∑

k gkΓk (t0) exp [−iωk (t− t0)]. In Eq. (A-18), we see that the evolution of

the system operator depends on the fluctuations in the reservoir.

To proceed, we introduce approximations. Following the Weisskopf-Wigner approxima-

tion [17], we replace the summation over k in Eq. (A-18) with an integral term, thereby tran-

sitioning from a discrete distribution of modes to a continuous one,
∑

k 7→ (L/2π)3
∫
d3k,

where L is the length of the sides of the assumed cubic cavity with no specific boundaries,

and
⇀

k ≡ (kx, ky, kz) is the wave vector. The density of modes between the frequencies ω

and ω + dω can be obtained by transferring from the Cartesian coordinate to the polar coordi-

nate as in
⇀

k ≡ (kx, ky, kz) 7→ [k sin (θ) cos (ϕ) , k sin (θ) sin (ϕ) , k cos (θ)]. The correspond-

ing volume element in the
⇀

k space is d3k = k2 sin (θ) dkdθdϕ = (ω2/c3) sin (θ) dωdθdϕ.

The total number of modes Na in the range between ω and ω + dω is given by dNa =

(L/2πc)3ω2dω
∫ π

0
sin (θ)dθ

∫ 2π

0
dϕ = (L3ω2/2π2c3)dω. Amode density parameter at frequency

ω is therefore given byDa (ω) = dNa (ω)/dω =L3ω2/2π2c3. We then approximate this spec-

trum by a continuous spectrum. Thus, the summation in Eq. (A-18) can be written as

ȧ = −i∆0a+ iG0a

(
b† + b

)
√
2

+E−
∫ t

t0

∫ +∞

0

g2 (ω)Da (ω) e
−iω(t−τ)a (τ) dωdτ+fa (t) , (A-19)

where g (ω) = gk = g [k (ω)] is the coupling constant evaluated at k = ω/c. Considering an

ideal situation, we assume for simplicity that [g (ω)]2Da (ω) = κ/π > 0 is constant, so that

Eq. (A-19) is reduced to a simple first-order differential equation [8]:

ȧ = −i∆0a+ iG0a

(
b† + b

)
√
2

+ E − κ

π

∫ t+0+

t0

∫ +∞

0

e−iω(t−τ)a (τ) dωdτ + fa (t) . (A-20)

Using the relations

∫ +∞

0

e−iω(t−τ)dω = πδ (t− τ) , (A-21)
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we arrive at Eq. (2.6) in the main text:

ȧ = − (κ+ i∆0) a+ iG0a

(
b† + b

)
√
2

+ E +
√
2κain (A-22)

with

ain (t) =
fa (t)√
2κ

=
−i√
2π

∑
k

gkΓ (t0) e
−iωk(t−t0), (A-23)

where ain (t) is a noise operator which depends upon the environment operators Γ (t0) at the

initial time and κ is the decay rate of the optical cavity field, which depends on the cou-

pling strength gk of the optical cavity field and its corresponding reservoirs. We have q =(
b† + b

)
/
√
2 (quadrature definition), and thus we obtain

ȧ = − (κ+ i∆0) a+ iG0aq + E +
√
2κain. (A-24)

Similarly, the Heisenberg equations of motion for the mechanical operator b and it is corre-

sponding reservoir operators Λn are given by

ḃ =
1

iℏ
[b,HT] = −iωmb+ i

G0√
2
a†a− 1

2

∑
n

ℓn
(
Λ†

n − Λn

)
(A-25)

ḃ
†
=

1

iℏ
[
b†, HT

]
= iωmb

† − i
G0√
2
a†a+

1

2

∑
n

ℓn
(
Λ†

n − Λn

)
(A-26)

Λ̇n =
1

iℏ
[Λn, HT] = −iωnΛn − ℓn

(
b† + b

)
2

(A-27)

Λ̇†
n =

1

iℏ
[
Λ†

n, HT
]
= iωnΛn − ℓn

(
b† + b

)
2

. (A-28)

Since we have the orthogonal relationship q =
(
b† + b

)/√
2 and p = i

(
b† − b

)/√
2, where

p and q are the dimensionless position and momentum operators of the mirror that satisfy the

commutation relation [q, p] = i. The derivatives of q and p with respect to time read

q̇ =
1√
2

(
ḃ
†
+ ḃ

)
= ωmp, (A-1)

ṗ =
i√
2

(
ḃ
† − ḃ

)
= −ωmq +G0a

†a+ i
∑
n

ℓn

(
Λ†

n − Λn

)
√
2

. (A-2)

Equation (A-1) corresponds to Eq. (2.4) in the main text.
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We now focus on a closed equation for p. Equations (A-27) and (A-28) for Λn and Λ†
n can

be formally integrated to yield

Λn (t) = Λn (t0) e
−iωn(t−t0) − 1

2
ℓn

∫ t

t0

[
b† (τ) + b (τ)

]
e−iωn(t−τ)dτ, (A-3)

Λ†
n (t) = Λ†

n (t0) e
iωn(t−t0) − 1

2
ℓn

∫ t

t0

[
b† (τ) + b (τ)

]
eiωn(t−τ)dτ. (A-4)

We then eliminate the reservoir operators Λn and Λ†
n by substituting Eqs. (A-3) and (A-4) into

Eq. (A-2), and thereby obtain

ṗ = −ωmq +G0a
†a+Θ+ ξ, (A-5)

where

ξ (t) =
i√
2

∑
n

ℓn
[
Λ†

n (t0) e
iωn(t−t0) − Λn (t0) e

−iωn(t−t0)
]

(A-6)

and

Θ(t) =
∑
n

(ℓn)
2

∫ t

t0

q (τ) sin [ωn (t− τ)] dτ. (A-7)

Equation (A-6) is the same as Eq. (2.8) in the main text [68].

We then integrate Eq. (A-7) by parts and obtain

Θ(t) =
∑
n

(ℓn)
2

ωn

{q (t) cos [ωn (t− t0)]}tt0 −
∑
n

(ℓn)
2

ωn

∫ t

t0

q̇ (τ) cos [ωn (t− τ)] dτ. (A-8)

The integrand function ς (t) =
∑

n [(ℓn)
2 cos (ωnt)]/ωn can be seen to have the form of a

memory kernel since it makes the equation of motion at time t depend on the values of q̇ (t)

for the previous time. Within the Born-Markov approximation [18], we assume that ς (t) is

a rapidly decaying function and that the system has a short memory. More precisely, if ς (t)

goes to zero in a time scale that is much less than the time over which q̇ (t) changes, then we

can replace q̇ (τ) by q̇ (t). For t not close to the initial time t0, we can drop the first term in
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Eq. (A-8). Thus, Eq. (A-8) reads

Θ(t) ≈ −
∑
n

(ℓn)
2

ωn

∫ t

t0

q̇ (t) cos [ωn (t− τ)] dτ. (A-9)

Similarly to the optical cavitymode a, using theWeisskopf-Winger approximation, we consider

the spectrum to be given by the normal modes of a large scale, L → +∞. The difference

between phonons and photons is that gk = g [k (ω)] = g (ω) is the coupling constant evaluated

at ω ∝ k2 instead of k = ω/c. We then approximate this spectrum by a continuous spectrum.

Thus, the summation in Eq. (A-9) can be written as

Θ(t) ≈ −
∫ +∞

0

∫ t

t0

dωdτ
[ℓ (ω)]2

ω
q̇ (t) cos [ω (t− τ)]Db (ω) . (A-10)

Considering an ideal situation, by setting [ℓ (ω)]2Db (ω)
/
ω = γ/π, we thereby obtain

Θ(t) ≈ −γ
π

∫ +∞

0

∫ t+0+

t0

dωdτ q̇ (t) cos [ω (t− τ)] . (A-11)

Using the relations

∫ +∞

0

cos [ω (t− τ)] dω = πδ (t− τ) , (A-12)

and by substituting Eq. (A-1) into Θ(t) ≈ −γq̇ (t), we arrive at Eq. (2.5) in the main text:

ṗ = −ωmq − γmp+G0a
†a+ ξ, (A-13)

where the mechanical damping rate is γm = ωmγ, which depends on the coupling strength ℓn

and the characteristic frequency of mechanical oscillator ωm.

A.3 A detailed description of the inverse-resonance region

In our work, we mainly focus on discussing the high-frequency resonance range since its

physical significance is clear and universal. However, the high-frequency inverse-resonance

range does indeed exist and holds a specific physical meaning as explained below.
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A high-frequency inverse-resonance range requires a heat bath consisting of harmonic os-

cillators with negative-energy modes. Such oscillators are equivalent to those with a negative

mass, which have been studied in schemes to evade quantummeasurement backaction [79,80].

Such a scheme was experimentally demonstrated using an atomic spin ensemble initially in its

maximal-energy spin state within a magnetic field. Spin flips decrease the energy and corre-

spond to excitations of a harmonic oscillator with a negative mass [81]. Alternatively, a frame

rotating faster than the mode itself can effectively realize the negative-energy mode, such as

quantum back-action evading measurement of collective mechanical modes [82, 83]. In our

setup, a heat bath with negative frequencies can be implemented through engineering dissipa-

tion in a multimode optomechanical circuit [52, 76, 77].

We consider a mechanical mode coherently coupled to a heat bath comprising negative-

energy modes in the inverse-resonance region ωm (λ)ωn (λ) ⩽ 0, which is described by the

Hamiltonian

H = ℏ
∑
n

ωn (λ) Λ
†
nΛn + ℏωm (λ) b†b− iℏ

∑
n

ℓn
2

(
Λ†

n − Λn

) (
b† + b

)
. (A-14)

with the same symbols defined in the manuscript. Here the bare frequencies ωn (λ) ⩽ 0 and

ωm (λ) ⩾ 0 vary with respect to a parameter λ. To achieve a filter design, we introduce a

frequency transformation

Λ̃n (t) = Λn (t) exp [−i |ωn (λ)| t] and b̃ (t) = b (t) exp [iωm (λ) t] (A-15)

for Λn (t) and b (t) in the interaction picture [17]. After the transformation, it becomes clear

that the mechanical mode has a positive phase (i.e., counterclockwise rotation), whereas its

corresponding heat-bath mode exhibits a negative phase (i.e., clockwise rotation). In the pres-

ence of high-frequency inverse-resonance dominance, we effectively eliminate the terms Λ̃nb̃
†

and Λ̃†
nb̃ associated with high-frequency oscillations. After the filtering process, we keep only

the terms of Λ̃†
nb̃

†
and Λ̃nb̃, and hence Eq. (A-14) becomes

H ′ = −ℏ
∑
n

|ωn (λ)|Λ†
nΛn + ℏωm (λ) b†b− iℏ

∑
n

ℓn
2

(
Λ†

nb
† − Λnb

)
, (A-16)

which satisfies a typical coupling between a positive-energy mode and negative-energy modes.
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Despite the negative frequency of the heat bath mode implying a negative mean thermal

phonon number, it does harbor intriguing physical features, namely level attraction [78]. With-

out loss of generality, let us now show it by two minimal models: one is for the usual level

repulsion of two coherently coupled positive-energymodes in the high-frequency resonance re-

gion, namely a general red-detuned regime, where the dominant term is−iℏℓ1(Λ†
1b− Λ1b

†)/ 2,

describing the exchange of quanta between them [40]; the other is for level attraction of a

negative-energy mode coherently coupled to a positive-energy mode in the High-frequency

inverse-resonance region, namely a general blue-detuned regime, where the dominant term is

−iℏℓ1(Λ†
1b

† − Λ1b)/ 2, representing a two-mode squeezing interaction that lies at the heart of

parametric amplification [85]. There is a symmetry relation linking the two cases, as they are

images of each other.

First, we derive the level repulsion of two coupled positive-energy modes with an energy

crossing, which has applications ranging from solid-state theory to quantum chemistry. Two

modes of positive energy interact with each other, as described by the Hamiltonian [78]

HLR = ℏ |ω1 (λ)|Λ†
1Λ1 + ℏωm (λ) b†b− iℏ

ℓ1
2

(
Λ†

1b− Λ1b
†
)
, (A-17)

The equation of motion in the Heisenberg picture are given by

d

dt

 Λ1

b

 = −i

 |ω1| 1
2
iℓ1

−1
2
iℓ1 ωm

 Λ1

b

 . (A-18)

The hybridized eigenmodes ω̃LR of the system are obtained by diagonalizing the coefficient

matrix in Eq. (A-18), and resulting in the eigenfrequencies

ω±
LR =

1

2

{
|ω1|+ ωm ±

√
(|ω1| − ωm)

2 + ℓ21

}
, (A-19)

where we dropped the explicit λ dependence. We now consider level attraction. A negative-

energy mode is coherently coupled to a positive-energy mode such that the system is described

by the Hamiltonian

HLA = −ℏ |ω1 (λ)|Λ†
1Λ1 + ℏωm (λ) b†b− iℏ

ℓ1
2

(
Λ†

1b
† − Λ1b

)
. (A-20)
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Figure A.1: Level repulsion and attraction are characterized by ω1 [78]. Two modes, whose

bare frequencies depend on a parameter λ, have a level crossing (dotted lines). When a co-

herent coupling is introduced, it generally lifts the degeneracy between these modes, leading

to distinct behaviors. In the more common scenario of level repulsion (a), the coupling opens

a gap between the frequencies of the hybridized eigenmodes ω̃LR (blue solid lines) and the

eigenfrequencies ω±
LR bend away from each other. In contrast, in the case of level attraction

(b), where one mode exhibits negative energy, level attraction occurs. The real components of

the eigenfrequencies ω±
LA (blue solid lines) bend towards each other, converging at two excep-

tional points marked by kinks. Simultaneously, finite imaginary components of the frequencies

emerge (orange dashed lines). Notably, the mode with a negative imaginary component be-

comes unstable, exhibiting exponential growth.

The equation of motion in the Heisenberg picture is given by

d

dt

 Λ1

b†

 = i

 |ω1| 1
2
iℓ1

1
2
iℓ1 ωm

 Λ1

b†

 (A-21)

with the eigenmodes ω̃LA and the corresponding eigenfrequencies

ω±
LA =

1

2

{
|ω1|+ ωm ±

√
(|ω1| − ωm)

2 − ℓ21

}
, (A-22)

where we dropped the explicit λ dependence.

The only difference between Eqs. (A-19) and (A-22) is the sign in front of ℓ21. However,

it dramatically impacts physics. The Hermitian Hamitonian (A-20) can result in a complex

eigenvalue and unstable dynamics, which the eigenoperators cannot be interpreted as Bogoli-
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ubov modes [120]. We depict the repulsion and attraction of levels in Fig. A.1. In contrast to

the level repulsion (A-17), the level attraction (A-20) has two prominent features. First, the

eigenfrequencies are drawn towards each other instead of avoiding each other. Second, to sat-

isfy condition (|ω1 (λ)| − ωm)
2 = ℓ21, the frequencies acquire negative and positive imaginary

parts, leading to exponential growth and decay. Thus, the heat bath consisting of a group of

harmonic oscillators with negative modes in Hamitonian (A-16) exhibits instability. Further-

more, we observe that the level attraction arises when the coupling term includes a Pauli matrix

with an imaginary coefficient.

In the case of the level attraction, the interaction term can be expressed as iℓ1σx/ 2 by de-

composing it in terms of Pauli matrices and omitting the term proportional to the identity; In

contrast to the level repulsion, for which the interaction term would be −ℓ1σy/ 2. In addition,

we decompose the coefficient matrix in Eq. (A-21) into [(|ω1| − ωm) σz + iℓ1σx]/ 2. If the first

term has a larger amplitude, the eigenfrequencies are real, while they are complex if the second

term dominates. It is worth noting that when the two Pauli matrices have coefficients of the

same amplitude, the matrix is proportional to σz + iσx. At this point, the two eigenvectors

coalesce, and a single eigenvector with a single eigenvalue subsists, marked by an exceptional

point, which corresponds to the point of maximal non-reciprocity, leading to a possible non-

reciprocal photon transmission and amplification via reservoir engineering [84]. More details

are explained in Ref. [78].

To sum up, we have shown that the negative frequency of the heat bath holds a particular

and significant physical meaning. First, the quantum back-action evading measurement of col-

lective mechanical modes provides the possibility to prepare an ensemble of effective negative

mass oscillators. Second, negative-energy modes coupled with a positive mode, having oppo-

site phases between a mechanical mode and modes of heat bath, can lead to an intriguing level

attraction of complex spectrums associated with exceptional points and unstable dynamics.

A.4 Details of the derivation of Eqs. (2.11) and (2.12)

In this Appendix, we focus on deriving the nonlinear Langevin equations (2.11) and (2.12)

satisfied by the filtering modelHF under the dominance of resonance effects. Specifically, we
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concentrate on the mechanical mode b, keeping the optical cavity mode a take the same form

as the dynamical Eq. (2.6). By substituting filtering model HF into the Heisenberg equation,

we obtain

ḃ =
1

iℏ
[b,HT] = −iωmb+ i

G0√
2
a†a+

1

2

∑
n

ℓnΛn, (A-23)

ḃ
†
=

1

iℏ
[
b†, HT

]
= iωmb

† − i
G0√
2
a†a+

1

2

∑
n

ℓnΛ
†
n, (A-24)

Λ̇n =
1

iℏ
[Λn, HF] = −iωnΛn −

ℓn
2
b, (A-25)

Λ̇†
n =

1

iℏ
[
Λ†

n, HF
]
= iωnΛ

†
n −

ℓn
2
b†. (A-26)

The derivatives of p and q with respect to time read

q̇ =
1√
2

(
ḃ
†
+ ḃ

)
= ωmp+

1

2

∑
n

ℓnqn, (A-27)

ṗ =
i√
2

(
ḃ
† − ḃ

)
= −ωmq +G0a

†a+
1

2

∑
n

ℓnpn. (A-28)

We are interested in the system operators p and q. Equations (A-25) and (A-26) for Λn and Λ†
n

can be formally integrated to yield

Λn (t) = Λn (t0) e
−iωn(t−t0) − ℓn

2

∫ t

t0

b (τ)e−iωn(t−τ)dτ, (A-29)

Λ†
n (t) = Λ†

n (t0) e
iωn(t−t0) − ℓn

2

∫ t

t0

b† (τ)eiωn(t−τ)dτ. (A-30)

The parts of Eqs. (A-27) and (A-28) that contain environmental operators qn and pn can be

written as

1

2

∑
n

ℓnqn =
1

2

∑
n

ℓn
Λ†

n + Λn√
2

=
1

2

∑
n

ℓn
1√
2

[
Λ†

n (t0) e
iωn(t−t0) + Λn (t0) e

−iωn(t−t0)
]

−
∑
n

(
ℓn
2

)2
1√
2

[∫ t

t0

b† (τ)eiωn(t−τ)dτ +

∫ t

t0

b (τ)e−iωn(t−τ)dτ

]
, (A-31)

1

2

∑
n

ℓnpn =
1

2

∑
n

ℓn
i
(
Λ†

n − Λn

)
√
2

=
1

2

∑
n

ℓn
i√
2

[
Λ†

n (t0) e
iωn(t−t0) − Λn (t0) e

−iωn(t−t0)
]

−
∑
n

(
ℓn
2

)2
i√
2

[∫ t

t0

b† (τ)eiωn(t−τ)dτ −
∫ t

t0

b (τ)e−iωn(t−τ)dτ

]
. (A-32)
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For convenience, we concisely express Eqs. (A-31) and (A-32) as

1

2

∑
n

ℓnqn =
1

2
ξ′ (t)− χ′ (t) ,

1

2

∑
n

ℓnpn =
1

2
ξ (t)− χ (t) , (A-33)

where

ξ′ (t) =
∑
n

ℓn
1√
2

[
Λ†

n (t0) e
iωn(t−t0) + Λn (t0) e

−iωn(t−t0)
]
, (A-34)

ξ (t) =
∑
n

ℓn
i√
2

[
Λ†

n (t0) e
iωn(t−t0) − Λn (t0) e

−iωn(t−t0)
]
, (A-35)

χ′ (t) =
∑
n

(
ℓn
2

)2 ∫ t

t0

{q (τ) cos [ωn (t− τ)] + p (τ) sin [ωn (t− τ)]}dτ , (A-36)

χ (t) =
∑
n

(
ℓn
2

)2 ∫ t

t0

{p (τ) cos [ωn (t− τ)]− q (τ) sin [ωn (t− τ)]}dτ . (A-37)

Next, we make approximations. In a similar way to Appendix A.2, under the Born-Markov

and Weisskopf-Wigner approximations, Eqs. (A-36) and (A-37) become

χ′ (t) =
1

4

∫ +∞

0

∫ t+0+

t0

dτdω {q̇ (t) sin [ω (t− τ)]− ṗ (t) cos [ω (t− τ)]} [ℓ (ω)]2Db (ω)

ω
, (A-38)

χ (t) =
1

4

∫ +∞

0

∫ t+0+

t0

dτdω {ṗ (t) sin [ω (t− τ)] + q̇ (t) cos [ω (t− τ)]} [ℓ (ω)]2Db (ω)

ω
. (A-39)

Furthermore, we set [ℓ (ω)]2Db(ω)/ω = γ/π. Then, by using the relation
∫ +∞
0

cos [ω (t− τ)] dω

= πδ (t− τ) and
∫ +∞
0

sin [ω (t− τ)] dω =0, we find χ′ (t) = −γṗ (t)/4 and χ (t) = γq̇ (t)/4.

Finally, Eqs. (A-27) and (A-28) can be rewritten as

q̇ = ωmp+
γ

4
ṗ+

1

2
ξ′, ṗ = −ωmq −

γ

4
q̇ +G0a

†a+
1

2
ξ (t) . (A-40)

We ultimately reproduce the same equations as Eqs. (2.11) and (2.12), which are presented in

the main text.

A.5 Details of the derivation of the Eqs. (2.15)-(2.17)

We set the mechanical damping rate as γm = ωmγ. For the part of the quantum fluctuation
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operators, we have

δq̇ = ωmδp+
γ

4
δṗ+

1

2
ξ′, (A-41)

δṗ = −ωmδq −
γ

4
δq̇ +G0

(
α∗
s δa+ αsδa

† + δaδa†
)
+

1

2
ξ, (A-42)

δȧ = − (κ+ i∆0) δa+ iG0 (αsδq + qsδa+ δaδq) +
√
2κain. (A-43)

In order to decouple δq̇ and δṗ, by substituting Eqs. (A-41) and (A-42) into each other, we

obtain

(
1 +

γ2

16

)
δq̇ = ωmδp−

γm
4
δq +

1

2
ξ′ +

γG0

4

(
α∗
s δa+ αsδa

† + δaδa†
)
+

1

8
γξ,(

1 +
γ2

16

)
δṗ = −ωmδq −

γm
4
δp+G0

(
α∗
s δa+ αsδa

†)+ 1

2
ξ +G0δaδa

† − 1

8
γξ′,

δȧ = − (κ+ i∆) δa+ iG0αsδq +
√
2κain + iG0δaδq, (A-44)

where γm = γωm. By dropping the second-order small terms, we obtain the linearized Langevin

equations

δq̇ = ωmδp−
γm
4
δq +

1

2
ξ′, (A-45)

δṗ = −ωmδq −
γm
4
δp+G0

(
α∗
s δa+ αsδa

†)+ 1

2
ξ, (A-46)

δȧ = − (κ+ i∆) δa+ iG0αsδq +
√
2κain, (A-47)

which are consistent with Eqs. (2.15)-(2.17) in the main text.

A.6 Details of the derivation of the Lyapunov equation

This Appendix derives the Lyapunov equation AV + V AT + D = 0. We begin with the

definition of the covariance matrix. According to the definition [121], any matrix element of

the covariance matrix can be expressed as

Vij (t) =
1

2
〈µi (t)µj (t) + µj (t)µi (t)〉 , (A-48)
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which satisfies the differential equation

dVij (t)

dt
=

1

2

〈
dµi (t)

dt
µj (t) + µi (t)

dµj (t)

dt
+
dµj (t)

dt
µi (t) + µj (t)

dµi (t)

dt

〉
. (A-49)

The matrix elements of the differential equation (A-49) read

µ̇i (t) =
∑
o

Aioµi (t) + ni (t). (A-50)

Substituting Eq. (A-50) into Eq. (A-49), we obtain

dVij (t)

dt
=+

1

2

〈[∑
o

Aioµo (t) + ni (t)

]
µj (t) + µi (t)

[∑
o

Ajoµo (t) + nj (t)

]〉

+
1

2

〈[∑
o

Ajoµo (t) + nj (t)

]
µi (t) + µj (t)

[∑
o

Aioµo (t) + ni (t)

]〉
=+

∑
o

Aio (t)Voj (t) +
∑
o

Ajo (t)Vio (t) +Dij (t), (A-51)

where

Dij (t) =
〈ni (t)µj (t)〉+ 〈µi (t)nj (t)〉+ 〈nj (t)µi (t)〉+ 〈µj (t)ni (t)〉

2
. (A-52)

We then calculate each term in Dij . For example, we have

〈ni (t)µj (t)〉 =
∑
o

Mjo (t, t0) 〈ni (t)µo (t0)〉+
∑
o

∫ t

t0

Mjo (t, τ ) 〈ni (t)nj (τ)〉 dτ

=
∑
o

∫ t

t0

Mjo (t, τ ) 〈ni (t)nj (τ)〉 dτ , (A-53)

whereM (t) = exp (At). Similarly, we obtain the other terms in Dij in the forms

〈µi (t)nj (t)〉 =
∑
o

∫ t

t0

Mio (t, τ ) 〈no (τ)nj (t)〉 dτ , (A-54)

〈nj (t)µi (t)〉 =
∑
o

∫ t

t0

Mio (t, τ ) 〈nj (t)no (τ)〉 dτ , (A-55)

〈µj (t)ni (t)〉 =
∑
o

∫ t

t0

Mjo (t, τ ) 〈no (τ)ni (t)〉 dτ . (A-56)
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Hence, Dij can be written as

Dij =
∑
o

∫ t

t0

Mjo (t, τ ) Φ
(1)
io (t, τ ) dτ +

∑
o

∫ t

t0

Mio (t, τ ) Φ
(2)
oj (t, τ ) dτ , (A-57)

where

Φ
(1)
io (t, τ ) =

1

2
〈ni (t)no (τ) + no (τ)ni (t)〉 , (A-58)

Φ
(2)
oj (t, τ ) =

1

2
〈no (τ)nj (t) + nj (t)no (τ)〉 . (A-59)

The transposes of the column vector of noise operators are given by Eq. (2.19). We note that

the non-zero correlation functions satisfy the following relations:

2 〈Xin (t)Yin (τ)〉 = −2 〈Yin (t)Xin (τ)〉 = −iδ (t− τ) , (A-60)

2 〈Xin (t)Xin (τ)〉 = 2 〈Yin (t)Yin (τ)〉 = (2n̄a + 1) δ (t− τ) , (A-61)

〈ξ (t) ξ (τ) + ξ (τ) ξ (t)〉 = 〈ξ′ (t) ξ′ (τ) + ξ′ (τ) ξ′ (t)〉 = 2γm (2n̄+ 1) δ (t− τ) . (A-62)

To be concise, we set n̄a = 0. Using the relation (A-60)-(A-62), we calculate each term of

Φ
(1)
io (t, τ ) and Φ(2)

oj (t, τ ). The result is given by

Φ
(1)
io =


Φ

(1)
11 Φ

(1)
12 Φ

(1)
13 Φ

(1)
14

Φ
(1)
21 Φ

(1)
22 Φ

(1)
23 Φ

(1)
24

Φ
(1)
31 Φ

(1)
32 Φ

(1)
33 Φ

(1)
34

Φ
(1)
41 Φ

(1)
42 Φ

(1)
43 Φ

(1)
44

 = Dioδ (t− τ) , (A-63)

where Dio= diag [γm (2n̄+ 1)/4, γm (2n̄+ 1)/4, κ, κ]. Similarly, we obtain

Φ
(2)
oj = Dojδ (t− τ) = diag [γm (2n̄+ 1)/4, γm (2n̄+ 1)/4, κ, κ] δ (t− τ) . (A-64)
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Therefore, Eq. (A-57) can be rewritten as

Dij =
∑
o

∫ t

t0

Mjo (t, τ ) Φ
(1)
io (t, τ ) dτ +

∑
o

∫ t

0

Mio (t, τ ) Φ
(2)
oj (t, τ ) dτ

=
∑
o

∫ t

t0

Mjo (t, τ )Dioδ (t− τ) dτ +
∑
o

∫ t

t0

Mio (t, τ )Dojδ (t− τ) dτ (A-65)

=
1

2

∑
o

IjoDio+
1

2

∑
o

IioDoj =
1

2

∑
o

DioIToj+
1

2

∑
o

IioDoj ≡ D,

where D = diag [γm (2n̄+ 1)/4, γm (2n̄+ 1)/4, κ, κ]. Hence, we obtain

AV =

∫ ∞

t0

AM(τ)DM(τ)Tdτ =

∫ ∞

t0

d

dτ
M(τ)DM(τ)Tdτ, (A-66)

V AT =

∫ ∞

t0

M(τ)D(AM(τ))Tdτ =

∫ ∞

t0

M(τ)D
d

dτ
M(τ)Tdτ. (A-67)

The combination of Eqs. (A-66) and (A-67) becomes

AV + V AT =+

∫ ∞

t0

d

dτ
[M(τ)DM(τ)T ]dτ −

∫ ∞

t0

M(τ)
d

dτ
DM(τ)Tdτ

=+ [M (τ)DM(τ)T ]|+∞
t0

= −D. (A-68)

When the stability conditions are satisfied, in the long-time limit, the derivative of the covari-

ance matrix with respect to time approaches zero, V̇ = 0, and the solutionM (+∞) converges

to zero. This produces the Lyapunov equation in the main text, AV + V AT = −D.
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Chapter 3

Topological quantum batteries

3.1 Introduction

With the decline of fossil fuels and the worsening of the global energy crisis, conven-

tional chemical batteries that charge and discharge through chemical reactions will gradually

be phased out. Instead, driven by the potential power of quantum effects and the demands

for nanotechnological miniaturization, the size of energy storage and conversion devices has

shrunk to atomic scales. With this background, Alicki and Fannes first proposed the con-

cept of quantum batteries in 2013 [122]. Fundamentally distinct from conventional batteries,

quantum batteries exploit unique quantum features for energy storage and release, potentially

outperforming classical counterparts with enhanced charging power [123–134], increased ca-

pacity [135–139], and superior work extraction [140–145]. Since then, a variety of possible

quantum batteries have been constructed, including Dicke type, spin-chain type, central-spin

type, etc [146–158]. In particular, a minimal yet favorite quantum battery model based on

two-level systems has been extensively studied both in theory [159–164] and experimental

implementation [165–168].

Like quantum heat engines, quantum batteries offer a practical platform for incorporating

quantum effects into quantum thermodynamics [169–173]. Extensive studies have focused

on the performance of quantum batteries in terms of their charging power and stored energy

from the perspective of quantum thermodynamics. Notably, the concept of ergotropy―another
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crucial performance indicator for quantum batteries that describes the maximum extractable

energy―was introduced by Allahverdyan, Balian, and Nieuwenhuizen [174]. Very recent re-

search indicates that coupling a quantum battery and a charger to a specific waveguide, such

as a rectangular hollow metal waveguide, facilitates efficient remote charging of the quantum

battery but inevitably results in low stored energy and diminished ergotropy [175–177]. A re-

lated challenge is whether a configuration exists that can effectively enhance the stored energy

and the ergotropy of quantum batteries.

Towards implementing quantum batteries in practical applications, another natural obsta-

cle is environment-induced decoherence caused by inevitable dissipation, which in general,

decreases the performance of the quantum battery, such as the energy loss and aging of quan-

tum battery [178–183]. Recently, the study of quantum battery dynamics in the presence of an

environment has attracted a deal of attention, and several schemes have been proposed to mit-

igate the effects of decoherence, including feedback control [184], exploiting non-Markovian

effects [185, 186], Floquet engineering [187], etc. However, does there exist a configuration

that can completely isolate the quantum battery from the effects of dissipation? Our work offers

substantial answers.

Topological concepts discovered in electronic systems [188,189] have been translated and

studied as photonic analogs in diverse microwave and optical systems [190,191]. In particular,

the Su-Schrieffer-Heeger model and its extensions have been used in photonics to investigate

various optical phenomena [192–194]. On the other hand, using quantum emitters creates

new opportunities to explore topological properties involving interacting photons, especially

the topological protection exhibited by the Su-Schrieffer-Heeger model under single-excitation

dynamics, which has been recently investigated [195]. Similarly, a topological photonic bath

can be an effective substrate, imparting unique properties to quantum emitters. For instance,

a photonic waveguide that localizes and transports electromagnetic waves over long distances

can create a highly effective quantum light-matter interface [196–199], facilitating nontrivial

interactions between quantum emitters [200–203]. Inspired by topological waveguide quantum

electrodynamics advancements and advantages (QED) [204–207], we here propose a scheme

in this work that enhances the stored energy and the ergotropy by coupling two-level systems

with topological waveguide baths to overcome the above challenge fully. We also discover

that directly coupling the quantum charger and quantum battery enables the performance of

50



the quantum battery to resist decoherence, stemming from the presence of a dark state and

vacancy-like dressed bound state.

In the experiment, quantum emitters coupled to a topological waveguide, which acts as

a photonic analog of the Su-Schrieffer-Heeger model, were realized by connecting super-

conducting transmon qubits to an engineered superconducting metamaterial waveguide [208–

210]. This waveguide comprises an array of subwavelength microwave resonators with Su-

Schrieffer-Heeger topology. By integrating principles from waveguide quantum electrody-

namics and topological photonics [211, 212], researchers very recently observed qubit-photon

bound states with directional photonic envelopes within a band gap and cooperative radia-

tive emission from qubits within a passband, the findings demonstrate that coupling qubits to

the waveguide allows quantum control over topological edge states, enabling quantum state

transfer between distant qubits via a topological photonic waveguide [213]. Additionally, the

charging and discharging process of the battery can be experimentally verified through the

measurement layout inversion of a two-level atom [214].

In this Chapter, by leveraging topological properties, we develop a novel configuration

named topological quantum batteries, which consists of two two-level systems coupled to the

Su-Schrieffer-Heeger lattice. With the aid of this setting, we simultaneously address two ma-

jor challenges related to quantum batteries. One involves achieving near-perfect charging for

quantum batteries, while the other focuses on dissipation immunity engineering. Furthermore,

we demonstrate that utilizing the quantum Zeno effect boosts both the charging power and

ergotropy of quantum batteries in a short time.

3.2 Setup and dynamics

3.2.1 Setup

As shown in Fig. 3.1, we begin by considering a quantum charger and a quantum battery

that are linearly coupled, each modeled as a two-level atom. These two-level systems are con-

nected to a one-dimensional Su-Schrieffer-Heeger (SSH) [215, 216] photonic lattice designed

with engineered photon loss [217, 218]. Under the Markovian and rotating-wave approxima-
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Figure 3.1: Configuration illustration of the topological quantum battery. The quantum charger

and quantum battery, formed by linearly interacting two-level systems (TLSs), are coupled to

a one-dimensional topological photonic waveguide.

tions [219], the equation of motion (in the rotating frame) reads

ρ̇t = −i [Hsys +Hssh +Hint, ρt] + Laρt + Lbρt, (3-1)

where

Hsys = ∆
(
σBz + σCz

)/
2 + Ωαβ

12

(
σB+σ

C
− + H.c.

)
, (3-2)

Hssh =
N∑
j=1

(
J+a

†
jbj + J−b

†
jaj+1 + H.c.

)
, (3-3)

Hint = g
(
σB−o

†
x1,α

+ σC−o
†
x2,β

+ H.c.
)
, (3-4)

with Ωαβ
12 = Ωδx1,x2δα,β , which implies that two-level systems are placed in the same cavity

and are directly coupled with strength Ω. The Hamiltonian (3-2) describes a linear coupling

between two two-level systems, with detuning∆ between the resonance frequencies of the two-

level systems and the cavity-free frequency, under the assumption that the frequency of each

cavity is identical. The Hamiltonian (3-3) represents a structured bosonic bath with intracell

hopping J+ and intercell hopping J−. Here, we assume periodic boundary conditions aN+1 =

a1. The Hamiltonian (3-4) gives the atom-bath interaction with coupling strength g, where σB+
(σC+) and σB− (σC−) denote the raising and lowering Pauli operators of quantum battery (quantum

charger), respectively. Here, a†j (aj) or b
†
j (bj) are the creation (annihilation) operators of the

sites A or B at the jth unit cell, with ℏ = 1 here and hereafter. We note that for oxj,α(β)
with
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{α, β} ∈ {A,B}, we set oxj,A
≡ axj

and oxj,B
≡ bxj

. In other words, the quantum charger and

the quantum battery are placed at different sites. The photon dissipators of different sublattices

are given by La = κa
∑

j D [aj] and Lb = κb
∑

j D[bj], where κa (κb) controls the photon loss

rates of sublattice A (B), and D[L]ρ = LρL† − {L†L, ρ}/2 is the Lindblad superoperator.

The effective non-Hermitian Hamiltonian we obtain from Eq. (3-1) is given by Heff =

Hsys + Heff
ssh + Hint , where Heff

ssh = Hssh − (i/2)
∑

j (κaa
†
jaj + κbb

†
jbj). We suppose that the

initial state is in the single-excitation sector. To be specific, the charger is fully charged to the

excited state, whereas the quantum battery is depleted to the ground state. Additionally, the

bath is in the vacuum state |vac〉. Then, the solution to Eq. (3-1) reads ρt = e−iHefftρ0e
iH†

efft +

pt |g, g; vac〉 〈g, g; vac| with pt = 1−Tr[e−iHefftρ0e
iH†

efft] [220,221], in which the initial density

matrix is written as ρ0 = |ψ (0)〉 〈ψ (0)| with |ψ (0)〉 = |e, g; vac〉. Therefore, by limiting

our analysis to the single-excitation sector, we can concentrate on studying the effective non-

Hermitian Hamiltonian. Further, by defining ok = [ak, bk]
T with a†k =

∑N
j=1 e

ikja†j/
√
N and

b†k =
∑N

j=1 e
ikjb†j/

√
N , where k = 2πn/N for n ∈ (−N/2, N/2] within a lattice of cell

size N , the effective Hamiltonian of the bath, Heff
ssh, when moved to the momentum space, is

expressed as
∑

k o
†
kh̃kok with

h̃k = Re [fk] σx − Im [fk] σy − iκ−σz − iκ+σ0, (3-5)

where fk = J++J−e
−ik is the coupling strength in the momentum space between the bosonic

modes of ak and bk, and κ± = (κa ± κb)/4. In the subsequent discussions, we also set κa = κ

at odd sites (sublattice A) and κb = 0 at even (sublattice B). For Hint, by using the definitions

of ak and bk, it is only necessary to transform oxj,α(β)
(o†xj,α(β)

) into the momentum space. These

operations yield a generalized non-Hermitian effective Hamiltonian in the momentum space.

Appendix B.1 contains a full derivation of the setup. We emphasize that the bath, which is

a topological waveguide, is described by two interspersed photonic lattices with alternating

nearest-neighbor hopping J± = J (1± δ) between their bosonic modes, where J defines their

strength, while δ, the so-called dimerization parameter, controls the asymmetry between them.

When δ < 0, the accompanying winding number equals one, and the bath supports topologi-

cally nontrivial phases, belonging to the Bott-Dummit-Iverson class in the topological classi-

fication of phase [222]. Conversely, when δ > 0, the winding number is zero, corresponding

to a topologically trivial phase. It is worth mentioning that the rotating wave approximation
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is always applicable when both g and J are very small and comparable. The counter-rotating

terms cannot be neglected when the strong coupling condition g � {J,∆} is met. However,

even considering the contribution of the counter-rotating wave, it only leads to more substantial

dissipation, which does not affect the conclusions of work.

3.2.2 Dynamics

Let us move on to the study of the population dynamics of the quantum battery. Specifi-

cally, we focus on the nonunitary evolution |ψ (t)〉 = e−iHefft |ψ (0)〉 starting from the initial

state, |ψ (0)〉 = |e, g; vac〉 of the total system, for which the quantum charger is fully charged

while the quantum battery is empty, where |vac〉 denotes the vacuum state of the lattice of

bosonic modes. To analytically solve the dynamics of the quantum battery in this scenario,

we assume that the bath is in the thermodynamic limit (N → ∞). By using the resolvent

method [223,224], the probability amplitude for the quantum battery to be excited at any time

can be calculated

cB (t) =

∫
C

dz
2πi

Σαβ
12 (z) + Ωαβ

12

D (z)
e−izt, (3-6)

whereΣαβ
mn (z) = g2G (xm,α, xn,β; z) refers to the self-energy of the two-level systems. The de-

tailed derivations of the self-energy can be found in Appendix B.2. The single-particle Green’s

function of the bath is denoted as

G (xm,α, xn,β; z) = 〈vac| oxm,α(z −
∑

k
o†kh̃kok)−1o†xn,β

|vac〉 , (3-7)

and D (z) = [z −∆− Σαα
11 (z)] [z −∆− Σββ

22 (z)]− [Ωαβ
12 + Σαβ

12 (z)]2.

3.2.3 Bound state

Now, we introduce the bound state, a critical “hidden” physical quantity impacting quantum-

battery performance. By precisely solving the probability amplitude in Eq. (3-6), we find that

the time evolution of the two-level systems is fully contributed by three parts, including bound-

state energies, branch-cut detours, and unstable poles. Since the contributions from the branch-
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cut detours and the unstable poles decay quickly over time, only the bound-state energies sur-

vive in the long-time limit, and we obtain

cB (∞) =
∑
zk∈Eb

Res

[
Σαβ

12 (z) + Ωαβ
12

D (z)
, zk

]
e−izkt, (3-8)

where Eb represents the coherent bound-state energies [225], i.e., the completely real eigenen-

ergies of the bound states, which can be obtained by solving the real roots of the pole equation

D (Eb) = 0, or equivalently, by imposing the eigenstate conditionHeff |ψb〉 = Eb |ψb〉. Hence-

forth, we denote the residue in Eq. (3-8) as Res (zk), defined as Res[{Σαβ
12 (z) + Ωαβ

12 }/D (z) , zk].

Refer to Appendix B.3 for detailed derivations of Eq. (3-8).

We next undertake the task of characterizing various thermodynamic properties of quantum

batteries. We initially introduce three crucial thermodynamic quantities essential for quantum

battery performance evaluation: stored energy, ergotropy, and charging power. Subsequently,

we explore how dissipation impacts quantum-battery performance under different configura-

tions. Lastly, we confirm that with increasing dissipation, the emergence of the quantum Zeno

effect significantly improves the short-time performance of the quantum battery.

3.3 Quantum battery performance

3.3.1 Performance indicators of quantum battery

To quantify the performance of quantum batteries, we introduce three thermodynamic in-

dicators, starting with the stored energy. The energy of the quantum battery at time t is defined

as

E (t) = Tr [ρB (t)HB] = ωe|cB (t)|2, (3-9)

where HB = ωeσ
B
+σ

B
− describes the Hamiltonian of the quantum battery with a characteristic

frequency ωe, while ρB (t) denotes the reduced density matrix of the quantum battery.

Based on the stored energy, we can define the second thermodynamic indicator, the charg-
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ing power of the quantum battery, as P (t) = E (t)/t, which we will discuss the related perfor-

mance in 3.3.4.

The third key indicator is called the ergotropy, which is used to describe the maximum

energy that can be extracted at time t, defined by

W (t) = Tr [ρB (t)HB]− Tr [ρ̃B (t)HB] , (3-10)

where ρ̃B (t) =
∑

s rs (t) |εs〉 〈εs| is the passive state, rs (t) are the eigenvalues of ρB (t) ar-

ranged in descending order, while |εs〉 are the eigenstates ofHB with the corresponding egien-

values εs sorted in ascending order.

3.3.2 Phase diagram of quantum battery

By substituting Eq. (3-8) into Eq. (3-9), we see that the stored energy of quantum battery

in the long-time limit is only determined by the contributions of coherent bound-state ener-

gies. Thus, both the value of coherent bound-state energies and their corresponding residues

are crucial for quantum battery performance. In Fig. 3.2(a) and Fig. 3.2(c), we observe that un-

der resonance conditions (∆ = 0), the maximum stored energy (MSE) of the quantum battery

varies across different unit-cell distances d between the quantum charger and quantum battery,

showing a singular behavior (derivative discontinuity) precisely at phase boundaries

ℓ1 : |g| = 2J

√
(−1)Θ[d]δ(1− δ2)

(2d+ 1)δ − 1
; ℓ2 : |g| = 2J

√
(−1)Θ[d](1− δ2)

δ − (2d+ 1)
, (3-11)

where Θ [d] is the Heaviside step function.

For detailed derivations of Eq. (3-11), see Appendix B.4.1. Specifically, this behavior orig-

inates from a jump in the number of bound states at the phase boundaries and a corresponding

discontinuity in the residues of these states. However, despite the occurrence of such jumps

at the topological phase boundary as well, the maximum stored energy remains continuous at

the boundary [see the inserts in Fig. 3.2(c)] due to the vanishing residue of degenerate zero-

energy bound states, as depicted by the middle black line in Fig. 3.2(b) and Fig. 3.2(d) for

δ > 0. Notably, we show that in the parameter region to the left of the phase boundary ℓ1,
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(a) (c)

(b) (d)

Figure 3.2: Panels (a) and (c) describe themaximum stored energymax [E (∞)] as a function of

the dimerization parameter δ and the atom-bath coupling strength g, for d = −1 and d = −2

respectively. The white dashed line represents the topological phase boundary of the bath

(ℓ0 : δ = 0), while the blue and green dashed lines, ℓ1 and ℓ2, respectively, represent two phase

boundaries of the maximum stored energy. In panel (c), the two insets at the bottom exhibit

singular behavior (the derivative is discontinuous) of the maximum stored energy at δ = ±0.5

upon crossing the phase boundary ℓ2, which is indicated by the arrow. The same conclusion

also appears at the phase boundary ℓ1. Panels (b) and (d) show that the coherent bound-state

energies varies with δ at different d = −1 and d = −2, respectively. Here, we set g/J = 1

for both panels (b) and (d). The residues at the coherent bound state energies are color-coded,

facilitating observation of the contribution in Eq. (3-8) of these bound states. We choose κ = 0

in (a)-(d). For (a)-(d) the other parameters are chosen as ∆ = 0, α = B, and β = A.
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Figure 3.3: The optimal charging mechanism involves achieving the optimal energy transfer

by placing the quantum charger and the quantum battery in different sublattices of distinct

unit cells within a topologically nontrivial regime. In the topologically nontrivial phase, the

bound states of two atoms have overlapping distributions. When a quantum charger is placed in

sublatticeA, the bound states emerge in sublatticeB, allowing the quantum battery in sublattice

B to be charged.

the majority of energy from the quantum charger is successfully transferred to the quantum

battery. Conversely, to the right of this boundary, energy transmission is nearly completely

obstructed. Additionally, we also observe that at d = −1 and d = −2, their intersection point

of phase boundaries (ℓ1 and ℓ2) have shifted, thereby greatly expanding the parameter region

for the optimal energy transmission, i.e.., the region to the left of phase boundary ℓ1 where the

intersection point can be obtained through Eq. (3-11). At the critical point δ = −1 where the

intracell hopping is absent, the quantum battery and the quantum charger become completely

decoupled as long as |d| > 1, which results in a complete blockade of energy transfer from

the quantum charger to the quantum battery. However, as δ approaches but does not reach the

critical point, energy from the quantum charger can be transferred almost completely to the

quantum battery, irrespective of the atom-bath interaction strength, as depicted in the insets of

Fig. 3.2(d). To deepen physical intuition, Figure 3.3 shows that the distribution of the edge

states is determined by the dimerization parameter δ and the placement of the atoms. Only

when the quantum charger and quantum battery are placed in different sublattices and in a

topologically non-trivial phase can photons be perfectly transmitted.
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(b)(a)

Figure 3.4: Panel (a) shows how dissipation κ affects the time-dependence of the ergotropy

W (t) of the quantum battery varies over time with the other parameters set to g/J = 0.1,

δ = −0.26, ∆ = 0, and d = −1. When the quantum charger and the quantum battery are

placed in the same unit cell of the sublattice, the maximum ergotropy maxt [W (∞)] varies as a

function of δ and g as shown in panel (b)with the other parameters set to∆/J = −Ω/J = 0.5.

The white dashed curve, defined by the equation (g/J)2 = 2 |δ|
√
2, depicts the boundaries

where maxt [W (∞)] = 0. Here, we set α = B and β = A in (a), while in (b) both α and β

set to A.

3.3.3 Dissipation immunity of quantum battery

As shown in Fig. 3.4(a), for Ωαβ
12 = 0 (without direct coupling), we plot the ergotropy of

the quantum battery (3-10) as a function of dissipation κ and time. We observe that dissipation

causes a decrease in the ergotropy of a quantum battery and that increasing the dissipation rate

further accelerates this decline. Specifically, when κ > 0, maxt [W (∞)] = 0. For Ωαβ
12 6= 0,

we are surprised to find that as long as the condition∆ = −Ω is met, even if the direct coupling

g between the quantum charger and the quantum battery is extremelyweak, the quantum battery

is still immune to direct dissipation κa = κ. This is evident from the analytical expression

maxt [W (∞)]=
ωe

2

8J4δ2 − g4

(2J2 |δ|+ g2)2
Θ
(
2

3
4J

√
|δ| − |g|

)
(3-12)

of the maximum ergotropy for ∆ = −Ω in the long-time limit, showing that it is independent

of κ. This result is only applicable to topological waveguides. For detailed derivations of

Eq. (3-12), see Appendix B.4.2.
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Physically, we reveal that when the condition ∆ − Ω 6= 0 is met, there always exists a

superposition called the dark state [226]:

|ψdark〉 =
1√
2
(|e, g〉 − |g, e〉)⊗ |vac〉 , (3-13)

which decouple from the environment. Meanwhile, when the condition∆+Ω = 0 also holds,

we identify a hidden non-degenerate zero-energy bound state, termed a vacancy-like dressed

bound state, also known as a topologically robust dressed bound state in the Su-Schrieffer-

Heeger model, which enhances the ability of the system to resist dissipation [227]. Addi-

tionally, in practical physical systems, disorder is inevitable and has profound effects on the

performance of quantum batteries. Notably, vacancy-like dressed bound states exhibit strong

robustness against off-diagonal disorder that does not break sublattice chiral symmetry, directly

resulting in ergotropy and demonstrating strong robustness to chiral-protected disorder. For a

detailed analysis, see the appendix B.4.3.

For Ωαβ
12 6= 0, the maximum ergotropy max [W (∞)] as a function of δ and g as shown in

Fig. 3.4(b). The white dashed curve, described by the equation (g/J)2 = 2 |δ|
√
2, represents

the boundaries where max [W (∞)] = 0. We observe that when Ωαβ
12 6= 0 but δ = 0, the

topological waveguide degenerates into a traditional waveguide, and the dissipation immunity

of the quantum battery is destroyed. While Ωαβ
12 6= 0 and δ 6= 0, as g/J decreases, we discern

an increase in the maximum ergotropy, which indicates its sensitivity to the direct coupling

strength between the quantum charger and the quantum battery.
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3.3.4 Performance boost in short time of quantum battery

(a) (c)

(b) (d)

QZE

QZEQZE

Figure 3.5: (a) Charging power P (t) as a function of dissipation κ and time t. The corre-

sponding maximum charging power maxt[P (t)] varies with κ as shown in (b). (c) and (d)

respectively represent the modulus |Res (z)| and the phase arg [Res (z)] of the residue at the

dissipative bound-state energies (Eκ,±) as they vary with κ, which Eκ,− and Eκ,+ are repre-

sented by the blue solid line and the orange dashed line, respectively. The critical point for the

occurrence of the quantum Zeno effect is marked as κQZE. The parameters for (a) to (d) are

chosen as ∆ = −Ω = J , g/J = 1, and δ = 0.9.

To assess the performance of quantum batteries, it is crucial to consider not only the stored

energy and the ergotropy as key physical quantities but also the charging power as an indis-

pensable indicator. Since the energy storage of a quantum battery composed of a two-level

system is bounded, i.e., 0 ≤ E (t) ≤ ωe, the charging power of quantum battery inevitably

approaches zero in the long-time limit. Thus, discussions on the charging power of quantum

batteries are primarily focused on short-time regions. Following the configuration of immu-
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nity to dissipation over long-time limits, we are curious whether it is possible to enhance the

charging power by utilizing dissipation in a short time. For Ωαβ
12 6= 0, the system is known to

contain two states immune to dissipation, i.e., a dark state and a vacancy-like dressed bound

state. Furthermore, when the system is free from dissipation, two additional coherent bound

states exist as well, whose energies areE0,± = ±
√
2J2(1 + δ2) + 2

√
g4 + J4(1− δ)2. When

dissipation is introduced, these two coherent bound states (i.e., Im[Ei] = 0) transform into dis-

sipative bound states (i.e., Im[Ei] < 0) with imaginary energy less than zero, whose energies

are

Eκ,± = − i

4
κ±

√
E2

0,± −
(κ
4

)2

. (3-14)

When κ � κQZE ≡ 4 |E0,±|, we find a dramatic change in the lifetimes of the two dissipative

bound states, i.e., Im [Eκ,+] ∝ −κ and Im [Eκ,−] ∝ −1/κ. Here, we note that the lifetime

of the dissipative bound states with energy Eκ,− is proportional to κ, and thus we may refer

to this phenomenon as the quantum Zeno effect [228]. Simultaneously, their corresponding

contribution to the residue is

Res (Eκ,+) ≈
−4R0E

2
0,±

κ2
, Res (Eκ,−) ≈ R0, (3-15)

where R0 = 2g4/
{[
E2

0,± − 2J2 (1 + δ2)
]
E2

0,±
}
. From Eq. (3-15), we see that the contribu-

tion of Res (Eκ,+) significantly decreases as κ increases, while Res (Eκ,−) remains unchanged.

According to Eq. (3-14), once κ exceeds κQZE, the energy of the dissipative bound states be-

comes purely imaginary. Furthermore, as κ increases, the imaginary parts of the energies of

these two bound states exhibit opposite trends: one decreases while the other increases. Conse-

quently, we refer to κQZE as the critical point where the quantum Zeno effect begins to emerge.

In Fig. 3.5(c) and Fig. 3.5(d), we intuitively observe how both the modulus and the phase of

Res (Eκ,±) varywith κ. In Fig. 3.5(a), we show that when κ is present, the charging powerP (t)

exhibits a rapid periodic oscillatory decay over time. In a short time scale i.e., t ∼ π/(2 |Ω|),

increasing κ can be accompanied by enhancing P (t). In Fig. 3.5(b), we observe that as κ

continues to increase and goes beyond κQZE, the emergence of the quantum Zeno effect leads

to a significant increase in maxt[P (t)]. In addition, it is worth mentioning that if we observe

the stroboscopic dynamics of the dissipative system at t = (2πZ)/|E0,±|, we should find it

nearly identical to the dynamics of a non-dissipative system. The detailed derivations in the
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subsection 3.3.4 can be found in Appendix B.4.4.

3.4 Summary and prospect

To summarize, we have developed a general framework for analyzing the atomic dynamics

of a battery-charger system comprised of two atoms coupled to a general bath. In particular,

in the single-excitation sector, we have considered a typical one-dimensional lattice exhibiting

topological properties as an environment, known as the Su-Schrieffer-Heeger model.

In the long-time limit, we have demonstrated that only the contributions from coherent

bound state energies are retained. We have pointed out that in a topologically trivial phase, the

zero-energy bound states exhibit twofold degeneracy at resonance, which results in the max-

imum stored energy approaching zero. In contrast, the maximum stored energy approaches

one in a topologically nontrivial phase, which means that the quantum charger almost com-

pletely transfers energy to the quantum battery. Moreover, we discover that the maximum

stored energy exhibits singular behavior at the phase boundary. We have also observed that the

phase diagrams have shown significant differences for different unit cell distances between the

quantum charger and the quantum battery.

Furthermore, we have discussed the performance of quantum batteries under different con-

figurations. We discovered that when two directly coupled atoms are placed within the same

cavity, the ergotropy is protected from the direct impact of sublattice dissipation due to the

presence of a dark state and a vacancy-like dressed bound state. This configuration overcomes

the environment-induced decoherence that causes energy loss and aging in quantum batteries.

Intriguingly, we have also demonstrated that with the increase in dissipation, the emergence

of the quantum Zeno effect significantly enhances the short-time performance of the quantum

battery.

A significant issue is to further explore the performance of quantum batteries in generalized

open quantum systems. As a concrete example, we will consider a one-dimensional tight-

binding model with asymmetric hopping as an environment, investigating the performance of

non-Hermitian quantum batteries through the perspective of the Hatano-Nelson model [229].

It would also be intriguing to understand the implicit relation between non-Markovian effects
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and the alterations in the phase boundary curves within our phase diagram. One may also be

interested in extending the study of quantum batteries to multi-excitation scenarios as another

direction for future research. Specifically, it would be valuable to investigate the performance

of multi-excitation [230, 231] using numerical techniques such as matrix product states [232]

or hierarchical equations of motion analogs [233].
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Appendix B

Appendix for Chapter 3

This Appendix contains four parts. B.1 and B.2: Exact dynamics of a quantum charger

and quantum battery coupled to a structured bosonic environment; B.3: The dynamics of a

quantum battery in a topological environment; B.4: Quantum battery performance in different

configurations.

B.1 The dynamics of a quantumbattery in a topological bath

In Appendix B.1, we show the full derivation of the setup in Sec. 3.2.1. We explore the

dynamics of a quantum battery in a topological environment, both with and without dissipation.

We begin with a detailed discussion of the topological environment in subsections B.1.1 and

B.1.2. Next, we derive an analytical expression for self-energy in the dissipative topological

environment and demonstrate the connection between bound state energies and the long-term

behavior of the quantum battery dynamics.

B.1.1 Su-Schrieffer-Heeger model without dissipation

Wechoose the simplest topologicalmodel, the non-dissipative Su-Schrieffer-Heegermodel,

as a topological environment. For simplicity, we employ two abbreviations oxj,A
≡ axj

and
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Figure B.1: (a) Dispersion relations ϵk,± of the Su-Schrieffer-Heeger environment with pe-

riodical boundary conditions. The parameter is set to |δ| = 0.3. (b) The winding number as

function of the dimerization strength δ. When δ < 0, the model is in a topologically nontrivial

phase with a winding number of one. Conversely, when δ > 0, the model is in a topologically

trivial phase with a winding number of zero.

oxj,B ≡ bxj
. By setting ℏ = 1, the Hamiltonian of the topological environment is given by

Hssh =
N∑
j=1

ωc

(
a†jaj + b†jbj

)
+ J+

N∑
j=1

(
a†jbj + b†jaj

)
+ J−

N∑
j=1

(
b†jaj+1 + a†j+1bj

)
, (B-1)

where aj (a†j) and bj (b
†
j) are the annihilation (creation) operators of boson on the sites a and b

at position j, respectively. The resonant frequency of these bosonic modes is ωc. The topolog-

ical waveguide consists of two interspersed photonic lattices with alternating nearest-neighbor

hopping J± = J (1± δ) between bosonic modes. Here, J defines the hopping strength, while

δ, known as the dimerization parameter, controls the asymmetry between the lattices. Under

the periodic boundary condition (i.e. aN+j = aj and bN+j = bj) and in the momentum space

with

a†k =
1√
N

N∑
j=1

eikja†j, b†k =
1√
N

N∑
j=1

eikjb†j, k =
2πn

N
, (B-2)

where n ∈ (−N/2, N/2], we have the environment Hamiltonian in the momentum space as

Hssh =
∑

k o
†
khkok, with ok = [ak, bk]

T , and the corresponding Bloch Hamiltonian reads

hk =

ωc fk

f ∗
k ωc

 = Re[fk]σx − Im[fk]σy + ωcσ0, (B-3)
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where fk = J(1 + δ) + J(1− δ)e−ik ≡ ωke
iϕk (with ωk > 0) is the coupling coefficient in the

momentum space between the bosonic modes of ak and bk. Hereafter, we set ωc as the energy

reference. By simply diagonalizing hk, the Hamiltonian Hssh in Eq. (B-1) can be written as

Hssh =
∑
k

[
u†k l†k

]ωk 0

0 −ωk

uk
lk

 =
∑
k

[ωku
†
kuk − ωkl

†
klk], (B-4)

where uk/lk = (±ak + bke
iϕk)/

√
2, ωk = J

√
2(1 + δ2) + 2(1− δ2) cos(k), and ϕk = arctan

[Im(fk)/Re(fk)]. The corresponding dispersion relations are given by ϵk,± = ±ωk, where the

subscript + (−) denotes the upper (lower) energy band of the Su-Schrieffer-Heeger environ-

ment.

In Fig. B.1(a), we present the dispersion relation for a dimerization parameter |δ| = 0.3.

The energy bands of the bath are observed to be symmetric with respect to the cavity resonant

frequencyωc. The energy bands span the range [−2J,−2 |δ| J ]∪[2 |δ| J, 2J ], featuring a central

bandgap of 4 |δ| J . These energy bands can be adjusted by varying the dimerization strength δ.

In the Su-Schrieffer–Heeger model, the topological properties of the system are characterized

by the winding number, which takes values of either one or zero, depending on the parameters

of the system. In Fig. B.1(b), we depict the winding number of the Su-Schrieffer-Heeger bath.

In the case in which the intracell hopping strength outweighs the intercell hopping strength (i.e.

δ > 0), the winding number equals to zero, corresponding to the so-called topologically trivial

phase. Conversely, when the intercell hopping strength dominates over the intracell hopping

strength (i.e. δ < 0), the winding number is one, indicating a topologically nontrivial phase.
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B.1.2 Su-Schrieffer-Heeger model with dissipation

0

1

0

Jump

No-Jump

Time
...

(a) (b)

B
ra

nc
h 

C
ut

s 
D

et
ou

r

Bound State
Energies

Dissipative Bound State
Energies

Unstable
Poles

Band RegionBand Region

Figure B.2: (a) The norm squared of the evolved state governed by the effective non-Hermitian

Hamiltonian Heff as a function of time. For a single trajectory, the occurrence of a quantum

jump at time t can be determined by comparing a random number δt with the norm squared at

that time, as indicated by the black dot falling within the red region. (b)An integration contour

(horizontal dark blue line) to calculate Eq. (3-6). One needs to close the contour of integra-

tion in the lower half of the complex plane (dashed and vertical dark blue line) in evaluating

the integration. Here, the information including dissipative bound-state energies, branch-cuts

detour, and unstable poles, within the lower half of the complex plane is given by the effec-

tive non-Hermitian Hamiltonian described by Subsection B.1.2. At the band edges the path

changes from the first to the second Riemann sheet of the integrand C (z) (brown areas).

Let us consider a realistic scenario: a one-dimensional Su-Schrieffer-Heeger photonic lat-

tice with engineered photon loss. Under the Born-Markov and rotating-wave approximations,

the equation of motion takes the form of Eq. (3-1), where Hsys, Hssh, and Hint are given by

Eqs. (3-2)-(3-4). Here, the photon dissipators of different sublattices are given by La =

κa
∑

j D [aj] and Lb = κb
∑

j D[bj], where κa (κb) control the photon loss rates of sublattice

A (B), and D[L]ρ = LρL† − {L†L, ρ}/2 is the Lindblad superoperator.

To find the solution to Eq. (3-1) in the single-excitation sector, we rewrite the Lindblad

master equation (3-1) as

ρ̇t = −i(Heffρt − ρtH
†
eff) + κa

N∑
j=1

ajρta
†
j + κb

N∑
j=1

bjρtb
†
j, (B-5)
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where aj and bj within the last two terms are the “jump” operators associated with the lattice

dissipation resulting from emission into free space, and Heff is the effective non-Hermitian

Hamiltonian for the dissipative system, i.e. Heff = Hsys + Heff
ssh + Hint with Heff

ssh = Hssh −

(i/2)
∑

j(κaa
†
jaj + κbb

†
jbj). In this form, the terms κa

∑
j ajρta

†
j and κb

∑
j bjρtb

†
j are often

called the recycling terms, as it recycles the population that is lost from certain states due to

the effective non-Hermitian Hamiltonian, placing it in other states. For the initial state |ψ(0)〉

in the single-excitation subspace, on the one hand, the time evolution under the effective non-

Hermitian Hamiltonian is given by |ψ(t)〉 = e−iHefft |ψ(0)〉, resulting in a non-normalized final

state with a norm squared that monotonically decreases over time, as shown by the blue line in

Fig. B.2(a). On the other hand, once the recycling terms work, i.e. when a jump process occurs,

the final state deterministically transitions to the zero-excitation state |g, g; vac〉. According

to the quantum trajectory method, whether a jump process occurs at time t is determined by

comparing a random number δt between zero and one with the norm squared 〈ψ(t) | ψ(t)〉 =∥∥e−iHefft |ψ(0)〉
∥∥2. Specifically, if δt > 〈ψ(t)|ψ(t)〉, the jump occurs; otherwise, it does not, as

illustrated by the red and yellow regions in Fig. B.2(a).

Then, we focus on the state at time t and generateN random numbers uniformly distributed

between zero and one. For the sake of simplicity, we defineN1 andN2 as the counts of no-jump

and jump occurrences, respectively, where N1 + N2 = N is satisfied. As a result, because of

the condition for the occurrence of jumps, the solution to Eq. (3-1) reads

ρt = lim
N→∞

|ψ̃(t)〉〈ψ̃(t)| ×N1 + |g, g; vac〉〈g, g; vac| ×N2

N
, (B-6)

where |ψ̃(t)〉 = |ψ(t)〉/
√
〈ψ(t) | ψ(t)〉 represents the normalized state. Provided our random

number generators are well-behaved, these two ratios should satisfy

lim
N→∞

N1

N
= 〈ψ(t)|ψ(t)〉 , lim

N→∞

N2

N
= 1− lim

N→∞

N1

N
= 1− 〈ψ(t)|ψ(t)〉 = pt. (B-7)

Finally, by plugging Eq. (B-7) into Eq. (B-6), we have

ρt = |ψ(t)〉〈ψ(t)|+ pt |g, g; vac〉〈g, g; vac| = e−iHefftρ0e
iH†

efft + pt |g, g; vac〉〈g, g; vac| . (B-8)

If the initial state is a mixed state ρ0, the norm squared 〈ψ(t)|ψ(t)〉 mentioned above should
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be rewritten as Tr[e−iHefftρ0e
iH†

efft]. Notice that Tr[e−iHefftρ0e
iH†

efft] = 〈ψ(t)|ψ(t)〉 when ρ0 =

|ψ(0)〉〈ψ(0)|. In fact, whenwe replace the total HamiltonianHtot in Eq. (1.10) with the effective

non-Hermitian Hamiltonian Heff, i.e. Hssh → Heff
ssh, the derivation procedures from Eq. (1.10)

to ρB (t) remain valid.

Therefore, we focus on studying the effective non-Hermitian Hamiltonian when we re-

strict ourselves to the single-excitation subspace. Following Eqs. (B-1)-(B-4), we express the

corresponding non-Hermitian Bloch Hamiltonian as

h̃k =

−iκa/2 fk

f ∗
k −iκb/2

 = Re[fk]σx − Im[fk]σy − iκ−σz − iκ+σ0, (B-9)

whose energy dispersion reads ϵ̃k,± = −iκ+±ω̃k, where ω̃k = ω2
k−κ2− and κ± = (κa ± κb)/4.

Remarkably, we find that the system exhibits a passive parity-time (PT ) symmetry in the

form of σx
(
h̃k + iκ+σ0

)∗
σx = h̃k + iκ+σ0 and has two exceptional points (EPs) at kEP =

± arccos[(κ2− − 2J2(1 + δ2))/(2J2(1 − δ2))] in the Brillouin zone for |δ| ≤ |κ−/(2J)| < 1.

Then, by diagonalizing h̃k, the effective non-Hermitian Hamiltonian Heff
ssh in Eq. (B-5) can be

further written as

Heff
ssh =

∑
k

[
u†k,L l†k,L

]ϵ̃k,+ 0

0 ϵ̃k,−

uk,R
lk,R

 =
∑
k

[ϵ̃k,+u
†
k,Luk,R + ϵ̃k,−l

†
k,Llk,R] (B-10)

with

u†k,L/l
†
k,L=

1√
2

[
±a†k +

ω̃k ± iκ−
ωkeiϕk

bk

]
, uk,R/lk,R=

1√
2

[
±ω̃k − iκ−

ω̃k

ak +
ωke

iϕk

ω̃k

bk

]
, (B-11)

which satisfy uk,R = uk,L = uk, lk,R = lk,L = lk, and ϵ̃k,± = ϵk,± when κa = κb = 0.

B.2 The calculation of self-energy in the dissipative topolog-

ical environment

To evaluate the integral (3-6), the quantity (1.16), referred to as the self-energies of two

quantum emitters, require further computation. By setting κa = κb = 0, the dissipative envi-
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ronment can be reduced to a non-dissipative environment. For the sake of generality, we com-

pute the self-energy directly within a dissipative topological environment. Firstly, we transform

Q in Eq. (1.11) into momentum space, i.e.

Q = |g, g〉〈g, g| ⊗
∑
j

(a†j |vac〉〈vac| aj + b†j |vac〉〈vac| bj)

= |g, g〉〈g, g| ⊗
∑
k

(|uk,L〉〈uk,R|+ |lk,L〉〈lk,R|) , (B-12)

where |uk,L〉 = u†k,L |vac〉, |lk,L〉 = l†k,L |vac〉, 〈uk,R| = 〈vac| uk,R, and 〈lk,R| = 〈vac| lk,R,

which satisfy 〈uk,R|uk′,L〉 = 〈lk,R|lk′,L〉 = δk,k′ and 〈uk,R|lk′,L〉 = 〈lk,R|uk′,L〉 = 0. For the

sake of simplicity, we define Q̃ =
∑

k (|uk,L〉〈uk,R|+ |lk,L〉〈lk,R|). According to Eqs. (1.16),

(B-2), (B-10), and (B-12), we have

G(x1,α, x2,β; z) = 〈vac|ox1,α
(z −Heff

ssh)
−1o†x2,β

|vac〉 = 〈vac|ox1,α
Q̃(z −Heff

ssh)
−1Q̃o†x2,β

|vac〉

= 〈vac|ox1,α

∑
k

[
|uk,L〉〈uk,R|
z + iκ+ − ω̃k

+
|lk,L〉〈lk,R|

z + iκ+ + ω̃k

]
o†x2,β

|vac〉 . (B-13)

For α = β = A, according to Eq. (B-11), Eq. (B-13) can be further written as

G(x1,A, x2,A; z) =
1

N

∑
k,k′,k′′

eik
′x1−ik′′x2 〈vac|ak′

[
|uk,L〉〈uk,R|
z + iκ+ − ω̃k

+
|lk,L〉〈lk,R|

z + iκ+ + ω̃k

]
a†k′′ |vac〉

=
1

2N

∑
k,k′,k′′

eik
′x1−ik′′x2

[
ω̃k′′ − iκ−

z + iκ+ − ω̃k

+
ω̃k′′ + iκ−

z + iκ+ + ω̃k

]
δk,k′δk,k′′

ω̃k′′

=
1

N

∑
k

(z + iκb/2)e
ik(x1−x2)

z2nh − ω2
k

=

∫ π

−π

dk
2π

(z + iκb/2)e
ik(x1−x2)

z2nh − ω2
k

, (B-14)

where z2nh = (z + iκ+)
2 + κ2−. Similarly, for α = β = B, we have

G(x1,B, x2,B; z) =
1

N

∑
k

(z + iκa/2)e
ik(x1−x2)

z2nh − ω2
k

=

∫ π

−π

dk
2π

(z + iκa/2)e
ik(x1−x2)

z2nh − ω2
k

, (B-15)

whereas for other cases of α and β, we have

G(x1,A, x2,B; z) =

∫ π

−π

dk
2π

ωke
ik(x1−x2)+iϕk

z2nh − ω2
k

, (B-16)

G(x1,B, x2,A; z) =

∫ π

−π

dk
2π

ωke
ik(x1−x2)−iϕk

z2nh − ω2
k

. (B-17)
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By substituting the given dispersion relation, these two integrals in Eqs. (B-14)-(B-15) can be

evaluated as

G(x1,A, x2,A; z) =

∫ π

−π

dk
2π

(z + iκb/2)e
ik(x1−x2)

z2nh − J2[2(1 + δ2) + 2(1− δ2) cos(k)]

=

∮
|y|=1

dy
2πi

(z + iκb/2)y
x1−x2

J2(δ2 − 1)(y2 + 1) + [z2nh − 2J2(1 + δ2)]y

= −
(z + iκb/2)

∑
p=± pỹ

|x1−x2|
p Θ[p(1− |ỹ+|)]√

z4nh − 4J2z2nh(1 + δ2) + 16J4δ2
= G(x2,A, x1,A; z), (B-18)

G(x1,B, x2,B; z) =

∫ π

−π

dk
2π

(z + iκa/2)e
ik(x1−x2)

z2nh − J2[2(1 + δ2) + 2(1− δ2) cos(k)]

=

∮
|y|=1

dy
2πi

(z + iκa/2)y
x1−x2

J2(δ2 − 1)(y2 + 1) + [z2nh − 2J2(1 + δ2)]y

= −
(z + iκa/2)

∑
p=± pỹ

|x1−x2|
p Θ[p(1− |ỹ+|)]√

z4nh − 4J2z2nh(1 + δ2) + 16J4δ2
= G(x2,B, x1,B; z), (B-19)

where

ỹ± =
z2nh − 2J2(1 + δ2)±

√
z4nh − 4J2z2nh(1 + δ2) + 16J4δ2

2J2(1− δ2)
, Θ[x] =

 1 x ≥ 0

0 x < 0

. (B-20)

Given fk = ωke
iϕk and f ∗

k = ωke
−iϕk , the integrals in Eqs. (B-16)-(B-17) are evaluated as:

G(x1,A, x2,B; z) =

∫ π

−π

dk
2π

J [1 + δ + (1− δ)e−ik]eik(x1−x2)

z2nh − J2[2(1 + δ2) + 2(1− δ2) cos(k)]

=

∮
|y|=1

dy
2πi

J [(1 + δ)yx1−x2 + (1− δ)yx1−x2−1]

z2nh − J2[2(1 + δ2) + 2(1− δ2) cos(k)]

= −
J
∑

p=± pFx1−x2(ỹp, δ)Θ[p(1− |ỹ+|)]√
z4nh − 4J2z2nh(1 + δ2) + 16J4δ2

= G(x2,B, x1,A; z), (B-21)

G(x1,B, x2,A; z) =

∫ π

−π

dk
2π

J [1 + δ + (1− δ)eik]eik(x1−x2)

z2nh − J2[2(1 + δ2) + 2(1− δ2) cos(k)]

=

∮
|y|=1

dy
2πi

J [(1 + δ)yx1−x2 + (1− δ)yx1−x2+1]

z2nh − J2[2(1 + δ2) + 2(1− δ2) cos(k)]

= −
J
∑

p=± pFx1−x2+1(ỹp,−δ)Θ[p(1− |ỹ+|)]√
z4nh − 4J2z2nh(1 + δ2) + 16J4δ2

= G(x2,A, x1,B; z), (B-22)

where Fd(ỹp, δ) = (1 + δ)ỹ
|d|
p + (1− δ)ỹ

|d−1|
p .

72



B.3 The calculation of the probability amplitude for a quan-

tum battery
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Figure B.3: First row (a)-(c): topologically nontrivial phase (δ = −0.3). Second row (d)-(f):

topologically trivial phase (δ = 0.3). Panels (a) and (d) describe the bound-state energies zk

and its corresponding residue Res[C I(z), zk] as a function of the emitter detuning ∆. Panels

(b) and (e) describe the imaginary part of the unstable poles Im[zk] and the absolute value of

its corresponding residue
∣∣Res[C II(z), zk]

∣∣ as a function of the emitter detuning ∆. Panels

(c) and (f) describe the contributions at time t = 0 of the branch-cut detours CBC,k(0) as a

function of the emitter detuning ∆. The system parameters are g/J = 0.1, α = B, β = A,

and d = x1 − x2 = −1.
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To further obtain the dynamics of quantum battery, i.e. calculating the integral in Eq. (3-6),

we employ residue integration by closing the contour in the lower half of the complex plane,

as illustrated in Fig. B.1(b). Since the presence of sublattice dissipation makes the distribution

of band regions (namely branch cuts) in the complex plane exceedingly intricate in certain

cases, the following calculations will focus solely on the non-dissipative Su–Schrieffer–Heeger

environment (see subsection. B.1.1). Accordingly, Fig. B.1(b) should be slightly modified

for the non-dissipative environment as follows: (i) Dissipative bound-state energies should be

replaced by bound-state energies; (ii) The band regions should be shifted to the real axis, Re[z].

Now, let us focus on the integral in Eq. (3-6) and its integrand. Since the integrand has

branch cuts in the real axis along the regions (i.e. z ∈ [−2J,−2|δ|] ∪ [2|δ|, 2J ]), where bands

of the topological environment are defined (the continuous spectrum ofHtot), it is necessary to

detour at the band edges to other Riemann sheets of the integrand, as shown in Fig. B.1(b). For

convenience, we use the symbolC (z) to represent the integrand excluding the term exp(−izt).

The analytical expressions for the self-energies presented in Eqs.(B-18), (B-19), (B-21), and

(B-22) correspond to the integrand in the first Riemann sheet C I(z). We can analytically con-

tinue it to the second Riemann sheet C II(z) (brown areas) by simply replacing Θ[p(· · · )] with

Θ[−p(· · · )] in the expressions of the self-energies. As a result, the integrand in the first and

second Riemann sheets is given by

C I/II(z) =
g2GI/II(x1,α, x2,β; z) + Ωαβ

12

D I/II(z)
(B-23)

with

GI/II(x1,A, x2,A; z) = −
z
∑

p=± py
|x1−x2|
p Θ[±p(1− |y+|)]√

z4 − 4J2z2(1 + δ2) + 16J4δ2
= GI/II(x1,B, x2,B; z), (B-24)

GI/II(x1,A, x2,B; z) = −
J
∑

p=± pFx1−x2(yp, δ)Θ[±p(1− |y+|)]√
z4 − 4J2z2(1 + δ2) + 16J4δ2

, (B-25)

where y± = ỹ±|znh→z represents non-dissipative environment. Here, since Σαα
11 (z) = Σββ

11 (z)

and Σαβ
12 (z) = Σβα

21 (z), the denominator in Eq. (B-23) can be further simplified as

D I/II(z) = [z −∆− g2GI/II(x1,α, x1,α; z)]
2 − [Ωαβ

12 + g2GI/II(x1.α, x2,β; z)]
2, (B-26)

where ∆ = ωe − ωc is the emitter detuning.
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On one hand, since the imaginary part ofC I(z+i0+) andC II(z−i0+) is nonzero in the band

regions, we should only take into account the real poles (i.e. the roots of D I(z) = 0) of C I(z)

outside the band regions, corresponding to the bound-state energies (BSEs), and the complex

poles (i.e. the roots ofD II(z) = 0) ofC II(z)with real part inside band regions, corresponding to

the unstable poles (UPs). On the other hand, aside from the integral path C (which corresponds

to Eq. (3-6)) and the semicircular path CR (which vanished as the radius of the semicircle

approaches infinity, according to Jordan’s lemma), we need to add eight additional integral

paths again parallel to the imaginary axis, corresponding to the branch-cut detours (BCDs), so

that these paths form a closed loop on the complex plane, as shown in Fig. B.2(b). According

to the residue theorem, the sum of the contributions from these paths should equal the sum of

the residues at the aforementioned poles. Thus, we have

cB(t) =
∑

zk∈BSEs

Res
[
C I(z), zk

]
e−izkt +

∑
zk∈UPs

Res
[
C II(z), zk

]
e−izkt +

4∑
k=1

CBC,k(t). (B-27)

The last term in Eq. (B-27) represents the contributions of the branch-cut detours, which can

be computed as

CBC,k(t) = (−1)k−1

∫ ∞

0

dy
2π

[
D I(ck − iy)− D II(ck − iy)

]
e−ickt−yt, (B-28)

where c1 = 2J, c2 = 2 |δ| , c3 = −2 |δ|, and c4 = −2J . Based on the form of Eq. (B-

27), we find that the quantum bound dynamics are fully described by the contributions from

bound-state energies, unstable poles, and the branch-cut detours. Given that the integrand

in Eq. (B-28) contains exp(−yt) with y ≥ 0, the contribution from the branch-cut detours

diminishes as time passes. Furthermore, because the imaginary parts of the UPs are negative,

their contribution also decays over time. Therefore, only the bound-state contributions survive

in the long-time limit t� 1/g, i.e.

cB(∞) ≡ lim
t≫1/g

cB(t) =
∑

zk∈BSEs

Res
[
C I(z), zk

]
e−izkt. (B-29)

Next, we demonstrate how the residues of the bound-state energies, the absolute values of

the residues of the unstable poles, and the contributions of branch-cut detours vary with the

emitter detuning ∆ in both the topologically trivial and non-trivial phases. First, as shown in
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Figs. B.3(a) and B.3(d), for topologically trivial and non-trivial phases, the number of bound

states and the corresponding residues varies with detuning in the same way, except at zero

detuning. Particularly at zero detuning, in the topologically non-trivial phase, the two non-

zero bound-state energies (their residues are close to ±0.5, respectively), which are opposite

in sign, will merge into a degenerate zero-energy bound state, its residue approaching to zero.

Moreover, the contribution of bound-state energies becomes most significant only when the

detuning falls within the bandgap, and the number of bound states also increases by one com-

pared to those within the bands, except at ∆ = 0 in the topologically trivial phase. Second,

as shown in Figs. B.3(b) and B.3(e), unstable poles appear in pairs only when the detuning is

within the bands, and the effective dissipation (i.e. − Im[zk]) is significantly enhanced in the

topologically trivial phase compared to the topologically non-trivial phase. Finally, as shown

in Figs. B.3(c) and B.3(f), the contribution from branch-cut detours at time t = 0 is almost

identical in both topologically trivial and non-trivial phases and is most significant when the

detuning is near the band edges.

B.4 Quantum battery performance in different configura-

tions

Figure B.4: Configuration-I: The quantum charger and the quantum battery are located in dif-

ferent sublattices, i.e. x1,α = x1,B and x2,β = x2,A, which indicates that the quantum charger

and the quantum battery are not directly coupled, i.e., Ωαβ
12 = 0.

To support the phase boundaries outlined in Eq. (3-11) and the maximum stored energy

described in Eq. (3-12) of Chapter 3, we provide detailed derivations and discussions in the
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following subsections: Subsection B.4.1 covers the phase diagram of quantum battery, Sub-

section B.4.2 addresses the dissipation immunity of quantum battery, and Subsection B.4.3

demonstrates how environmental dissipation can be utilized to enhance quantum battery per-

formance over a short time.

B.4.1 Phase diagram of quantum battery

Here, the definition of the stored energy for the quantum battery is given by E(t) = Tr[ρB(t)HB],

where HB = ωeσ
B
+σ

B
− and ρB(t) are the free Hamiltonian and the reduced density matrix of

quantum battery, respectively. For a general system described in subsection 1, the reduced

density matrix of the quantum battery can be obtained from the steps of Eqs. (1.10)-(1.19).

Then, by substituting Eq. (1.19) into E (t), the stored energy of quantum battery is simplified

to E(t) = ωe |cB(t)|2. The calculation of the stored energy of the quantum battery is thus re-

duced to calculating the probability amplitude. According to Eq. (B-29), we know that in the

long-time limit, only the bound states contribute to the probability amplitude. Therefore, to

obtain the maximum stored energy max[E(∞)], we need to find the poles of the integrand in

Eq. (1.19) in the band-gap regime (i.e. the bound-state energies) by solving the pole equation

D(Ei):

[Ei −∆− Σαα
11 (Ei)][Ei −∆− Σββ

22 (Ei)]− [Ωαβ
12 + Σαβ

12 (Ei)][Ω
αβ
12 + Σβα

21 (Ei)] = 0. (B-30)

Subsequently, we focus solely on the system presented in Fig. 3.2(a)-(d) of Chapter 3. The

corresponding total Hamiltonian is denoted as

Htot =
ωe

2
σBz +

ωe

2
σCz +Hssh + g(σB+ox1,B

+ σC+ox2,A
+ H.c.), (B-31)

whereHssh is given by Eq. (B-1). For simplicity, we assume that the quantum charger is always

positioned on the left side of the quantum battery, which implies d = x1−x2 ∈ Z−. According

to these expressions of the self-energies in Eqs. (B-18), (B-19), (B-21), and (B-22) without

environmental dissipation (i.e. κa = κb = 0), the pole equation (B-30) can be further simplified
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as

D(Ei) = [Ei −∆− g2G(x1,B, x1,B;Ei)]
2 − [g2G(x1,B, x2,A;Ei)]

2

= g4
∏
p=±

[(Ei −∆)/g2 +Gp(Ei)] = 0, (B-32)

where

G±(Ei) = [G(x1,B, x1,B;Ei)±G(x1,B, x2,A;Ei)]

= −
∑

p=±[z±JFd+1(yp,−δ)]pΘ[p(1− |y+|)]√
z4 − 4J2z2(1 + δ2) + 16J4δ2

∣∣∣∣
z=Ei

, (B-33)

which satisfies G±(Ei) = −G∓(−Ei) since both y± are even functions with respect to z.

To solve this pole equation, we first need to analyze the characteristics of G±(Ei) within

the band-gap region and at the band edges. This analysis will help us determine the number

of intersection points between G±(Ei) and (Ei − ∆)/g2, i.e. the number of bound states.

For simplicity, we divide the bandgap into three intervals, i.e. Rl = (−∞,−2J), Rm =

(−2J |δ| , 2J |δ|), and Rr = (2J,+∞). It is not difficult to observe that when z ∈ Rm,

−1 < y+ < 0; while when z ∈ Rl ∪Rr, y+ > 1.

First, we will start our analysis with the middle region of the bandgapRm, and we have

G±(z) =
−[z ± JFd+1(y+,−δ)]√

z4 − 4J2z2(1 + δ2) + 16J4δ2
= −z ± J [(1− δ)y

|d+1|
+ + (1 + δ)y

|d|
+ ]√

z4 − 4J2z2(1 + δ2) + 16J4δ2

= −G∓(−z), z ∈ Rm. (B-34)

According to Eq. (B-34), we only need to analyze the behavior of G+(z) because G+ and

G− are mutually symmetric with respect to the ordinate origin, as shown in Figs. B.5(a) and

B.5(c). Additionally, we find that G+(z) is a monotonic function with respect to z in the

interval Rm, i.e. [dG+/dz]|z∈Rm < 0. Finally, determining whether the number of bound

states can be changed abruptly depends on the behavior (divergence or convergence) ofG±(z)

at the band edges. As z → ±2J |δ|, the denominator ofG±(z) evidently approaches zero with

a behavior proportional to
√

2J |δ| ± z. Thus, we only need to analyze the Taylor expansion
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of Fd+1(y+,−δ) at z = ±2J |δ|, i.e.,

Fd+1(y+,−δ)|z=±2J |δ| = 2(−1)d{δ −
√

|δ| /J
1− δ2

[δ(|d|+|d+ 1|)+|d|−|d+ 1|](2J |δ| ± z)
1
2}

+ o[(2J |δ| ± z)
1
2 ]. (B-35)

By plugging Eq. (B-35) into G+(z) in Eq. (B-34), we have

lim
z→±2J |δ|

G+(z) =
−1

2J
√
1− δ2

lim
z→±2J |δ|

z + 2J(−1)dδ√
4J2δ2 − z2

+ G1(d, δ), (B-36)

BandgapBand Band

(a) (b)

(c) (d)

Figure B.5: Panels (a) and (c) describe the difference G±(E) as a function of E in the Su-

Schrieffer-Heeger environment for d = −1 and d = −2 respectively. Roots of the poles equa-

tion (i.e. the BSEs) are obtained from the intersection points between (E −∆)/g2 (blue solid

line) and G±(E) (teal and orange solid lines). Panels (b) and (d) show the number of bound

statesM as a function of the dimerization parameter δ and the atom-bath coupling strength g

for d = −1 and d = −2 respectively. The blue and green dashed lines are given by Eqs. (B-

49)-(B-50). Here, we focus on a non-dissipative environment, i.e. κa = κb = 0.

79



where, for later convenience, we define

G1(d, δ) =
(−1)d+Θ[d]

2J(1− δ2)
[1− (2d+ 1)δ]. (B-37)

For the first term on the right-hand side of Eq. (B-36), it is evident that different values of d

and δ yield distinctly different results, i.e.

lim
z→−2J |δ|

z + 2J(−1)dδ√
4J2δ2 − z2

=

−∞ if Θ[(−1)dδ] = 0,

0 if Θ[(−1)dδ] = 1,

(B-38)

lim
z→2J |δ|

z + 2J(−1)dδ√
4J2δ2 − z2

=

 0 if Θ[(−1)dδ] = 0,

+∞ if Θ[(−1)dδ] = 1,

(B-40)

which result in

lim
z→−2J |δ|

G+(z) =

 +∞ if Θ[(−1)dδ] = 0,

G1(d, δ) if Θ[(−1)dδ] = 1,

(B-41)

lim
z→2J |δ|

G+(z) =

G1(d, δ) if Θ[(−1)dδ] = 0,

−∞ if Θ[(−1)dδ] = 1.

(B-42)

In addition, the differenceG+(z)−G−(z) also plays an important role in the analysis of the

aforementioned intersection points. According to max(y+) = y+|z=0 = [(δ− 1)/(δ+1)]sign(δ)

and Eq. (B-34), the difference is computed as

G+(z)−G−(z) = G+(z) +G+(−z) =
−2J [(1− δ)y

|d+1|
+ + (1 + δ)y

|d|
+ ]√

z4 − 4J2z2(1 + δ2) + 16J4δ2

=

 2J(1 + δ)y
|d+1|
+ [max (y+)sign(δ) − y+] for d ≤ −1,

2J(1− δ)y
|d|
+ [max (y+)sign(−δ) − y+] for d ≥ 0.

(B-43)

For given parameters δ and d, within the band-gap region Rm, G+(z) is consistently posi-

tioned either entirely above or entirely below G−(z), and these two functions have a unique

intersection point [i,e., G+(0) = G−(0) = 0] only when d ≤ −1 ∧ δ > 0 or d ≥ 0 ∧ δ < 0.
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Second, for the other two band-gap regionsRl andRr, we also have

G±(z) =
z ± JFd+1(y−,−δ)√

z4 − 4J2z2(1 + δ2) + 16J4δ2
=
z ± J [(1− δ)y

|d+1|
− + (1 + δ)y

|d|
− ]√

z4 − 4J2z2(1 + δ2) + 16J4δ2
, (B-44)

where z ∈ Rl ∪Rr. Similarly, we only need to analyze the behavior of G±(z) in one of these

regions due to G±(z) = −G∓(−z). As a consequence, we focus on the case of z ∈ Rr. We

find that G±(z) both are a monotonic function in the intervalRl, i.e. [dG±/dz]|z∈Rr < 0, and

the difference G+(z) − G−(z) is always more than zero, i.e. G+(z) > G−(z) for z ∈ Rr. It

is evident that when z → +∞, G±(z) both approach zero. As z → 2J , the denominator of

G±(z) evidently approaches zero with a behavior proportional to
√
z − 2J . Thus, the Taylor

expansion of Fd+1(y−,−δ) at z = 2J is given by

Fd+1(y−,−δ)|z=2J = 2− 2[δ(|d| − |d+ 1|) + |d|+ |d+ 1|]√
J(1− δ2)

(z − 2J)
1
2

+ o[(z − 2J)
1
2 ]. (B-45)

By plugging Eq. (B-45) into G±(z) of Eq. (B-44), we have

lim
z→2J

G+(z) = +∞, lim
z→2J

G−(z) = G2(d, δ) ≡
(−1)Θ[d][δ − (2d+ 1)]

2J(1− δ2)
> 0. (B-46)

As shown in Figs. B.5(a) and B.5(c), for ∆ = 0, we find that the critical point, where the

number of intersection points (bound state energies) between (E−∆)/g2 andG±(E) undergoes

an abrupt change, occurs when the slope of the blue solid line equals the slopes of the pink or

green dashed lines. For the pink dashed line within the bandgapRm, according to Eqs. (B-41)-

(B-42), its slope is given by

k1 = (−1)Θ[(−1)dδ]G1(d, δ)− [−G1(d, δ)]

2J |δ| − [−2J |δ|]
=

(−1)Θ[d][(2d+ 1)δ − 1]

4J2δ(1− δ2)
. (B-47)

Similarly, for the green dashed line, according to Eq. (B-46), its slope is given by

k2 =
G2(d, δ)− [−G2(d, δ)]

2J − [−2J ]
=

(−1)Θ[d][δ − (2d+ 1)]

4J2(1− δ2)
. (B-48)
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Thus, the two-phase boundaries are given by

ℓ1 : k1 =
1

g2
=⇒ |g| = 2J

√
(−1)Θ[d]δ(1− δ2)

(2d+ 1)δ − 1
, (B-49)

ℓ2 : k2 =
1

g2
=⇒ |g| = 2J

√
(−1)Θ[d](1− δ2)

δ − (2d+ 1)
, (B-50)

which recover Eq. (3-11) in Chapter 3. The number of bound states changes in pairs on either

side of these two phase boundaries. Additionally, when d ≤ −1 ∧ δ > 0 or d ≥ 0 ∧ δ < 0

are satisfied, the number of bound states also changes on either side of the topological phase

boundary (δ = 0) due to G±(E)|E=0 = 0, but these changes do not occur in pairs, as shown in

Figs. B.5(b) and B.5(d).

Finally, let us return to the long-time behavior of the maximum stored energy, i.e. E(∞) =

ωe |cB(∞)|2. After analyzing the situation of changes in the number of bound states, according

to Eq. (B-29), we also need to calculate the residues corresponding to these bound states, i.e.

Res[C (z), Ei]. When d ≤ −1 ∧ δ > 0 or d ≥ 0 ∧ δ < 0, based on the above discussion, we

know that the number of bound states is odd. Among these, there must be a zero-energy bound

state (corresponding to a second-order pole), and the remaining BSEs are non-zero and occur

in pairs with opposite signs (corresponding to a first-order pole). Meanwhile, the residue of the

zero-energy bound state equals zero due to G(x1,B, x2,A;Ei = 0) = 0, whereas the residues of

the other bound states are non-zero due to G(x1,B, x2,A;Ei 6= 0) 6= 0; specifically,

Res[C (z), Ei = 0] = 0, Res[C (z), Ei 6= 0] = −Res[C (z),−Ei 6= 0] 6= 0. (B-51)

The last term in Eq. (B-51) also holds when the above condition (d ≤ −1 ∧ δ > 0 or d ≥

0 ∧ δ < 0) is not satisfied. As a consequence, the maximum stored energy in the long-time

limit is computed as

maxt[E(∞)]

ωe

= maxt

∣∣∣∣∣ ∑
Ek∈BSEs

Res[C (z), Ek]e
−iEkt

∣∣∣∣∣
2

= maxt

∣∣∣∣∣∑
Ei>0

2Res[C (z), Ei] sin(Eit)

∣∣∣∣∣
2

, (B-52)

which can reach values arbitrarily close to 4{
∑

i |Res[C (z), Ei]|}2, where Ei > 0. Because
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these self-energies and their derivatives are continuous across different bandgaps (i.e. Rl,Rm,

and Rr), the residues corresponding to the bound-state energies distributed in these bandgaps

should also be continuous.

Furthermore, since dG±/dz diverges at the band-gap edges, Res[C (z), Ei] approaches zero

when the bound-state energy Ei is close to the band-gap edges. Therefore, integrating the

above discussions and Eq. (B-51), we conclude that the derivative of the maximum stored

energy (itself is always continuous), max[E(∞)], remains continuous across the topological

phase boundary, while it becomes discontinuous across the phase boundaries ℓ1 and ℓ2. This

corresponds to the results shown in the inset of Fig. 3.2(c) in Chapter 3.

B.4.2 Dissipation immunity of quantum battery

Figure B.6: Configuration-II: The quantum charger and the quantum battery are located in the

same sublattices at the same positions, i.e.α = β = A and x1 = x2, which means that the direct

coupling interaction appears (i.e. Ωαβ
12 = Ω 6= 0). Here, κa and κb are the decay rate of the

sublatticeA andB, respectively, and we assume that there is only single-sublattice dissipation,

i.e. κa = κ 6= 0 and κb = 0.

For the configuration considered in Sec. B.4.1, as shown in Fig. B.4, regardless of the

distance between the quantum charger and quantum battery, at the appropriate parameters, the

quantum charger can always transfer almost all of its energy to the quantum battery through

the topological environment, i.e. maxt[E(∞)]/ωe ≈ 1. However, once there is photon loss

in the Su-Schrieffer-Heeger photonic lattice, all the coherent bound states (i.e. Im[Ei] = 0)

will transform into dissipative bound states (i.e. Im[Ei] < 0), and consequently, all the energy
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in the quantum charger and the quantum battery will be lost in the long-time limit, which

implies maxt[E(∞)]/ωe = 0. In fact, there exists another configuration with a dark state,

different from configuration-I, whose energy transfer from the quantum charger to the quantum

battery remains unaffected by the environmental dissipation, as shown in Fig. B.6. For the

configuration II, the corresponding pole equation is given by

D(Ei) = [Ei −∆− ΣAA
11 (Ei)]

2 − [Ω + ΣAA
11 (Ei)]

2

= [Ei −∆− Ω− 2× ΣAA
11 (Ei)][Ei −∆+Ω] = 0 (B-53)

with the single-emitter self-energy

ΣAA
11 (z) = g2G(x1,A, x1,A; z) = −

zg2
∑

p=± pΘ[p(1− |ỹ+|)√
z4nh − 4J2z2nh(1 + δ2) + 16J4δ2

, (B-54)

where znh =
√
z(z + iκ/2). According to the pole equation, it is evident that this dissipative

system can have at most two coherent bound states. One is an environment-independent bound

state, also known as the dark state, with energy Edark = ∆ − Ω. The other, known as the

vacancy-like dressed bound state, appears only when∆+Ω = 0, and has the energy Evbs = 0.

Subsequently, when ∆ = −Ω 6= 0, the residues of these bound states are computed as

Res[C (z), Edark] =
Ω + ΣAA

11 (z)

dD(z)/dz

∣∣∣∣
z=Edark

= −1

2
, (B-55)

Res[C (z), Evbs] =
Ω + ΣAA

11 (z)

dD(z)/dz

∣∣∣∣
z=Evbs

=
J2 |δ|

g2 + 2J2 |δ|
. (B-56)

Besides, the dark state |ψdark〉 and the vacancy-like dressed bound state |ψvbs〉 can be obtained

by solving the secular equationHeff |ψ〉 = E |ψ〉. Consequently, these bound states are derived

as

|ψdark〉 =
1√
2
(σC+ − σB+) |g, g; vac〉 , (B-57)

|ψvbs〉 =

√
2J2 |δ|

g2 + 2J2 |δ|

[
1√
2
(σC+ + σB+) +

∑
j

(cj,aa
†
j + cj,bb

†
j)

]
|g, g; vac〉 , (B-58)
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where

cj,a = 0, cj,b = −
√
2g

J(1 + δ)

(
δ − 1

δ + 1

)xj−x1

sign(δ)×Θ[δ(xj − x1 + 0+)]. (B-59)

Finally, combining Eqs. (B-29), (B-55), and (B-56), the probability amplitude for the quan-

tum battery to be in the excited state in the long-time limit is given by

cB(∞) =
J2 |δ|

g2 + 2J2 |δ|
− 1

2
e2iGt. (B-60)

This formula shows beyond doubt that even in the dissipative environment, the energy in the

quantum charger can always be transferred to the quantum battery, particularly in the case of

weak coupling, i.e. g � J , and nearly all the energy can be transferred to the quantum battery.

The two bound states play a crucial role in the energy transfer process. Additionally, according

to Eq. (3-10) in Chapter 3, the maximum ergotropy is computed as

maxt[W(∞)]/ωe = maxt[2 |cB(∞)|2 − 1]Θ[|cB(∞)|2 − 1/2]

=
8J4δ2 − g4

2(2J2 |δ|+ g2)2
Θ
(
2

3
4J

√
|δ| − |g|

)
. (B-61)

We note that both of these bound states are essential; without either one, the maximum of the

extractable energy would be zero in the long-time limit, i.e. maxt[W(∞)] = 0.

B.4.3 Effects of Disorder

In practical physical systems, disorder is inevitable and has profound effects on the per-

formance of quantum batteries. In this section, we will discuss in detail the manifestation of

disorder in the one-dimensional Su-Schrieffer-Heeger model and its impact on vacancy-like

dressed bound state and the performance of quantum batteries, particularly focusing on er-

gotropy.

Here, we primarily investigate the impact of two types of disorder: one that affects the free

frequencies of cavities (diagonal), and the other that affects the tunneling amplitudes between

them (off-diagonal). The former corresponds to adding random diagonal terms to the Hamilto-

nian of the bath, modifying it asHbath → Hbath+
∑

j(ϵa,ja
†
jaj + ϵb,jb

†
jbj), thereby breaking the

85



No disorder Off-diagonal Diagonal

(a) (b) (c)

(d)

Symmetry-preserving

Symmetry-breaking

Figure B.7: Panels (a-c) describe the properties of the vacancy-like dressed bound state with

and without disorder. The absolute value of probability amplitudes |cj,a| are shown in blue,

while the |cj,b| are shown in orange. Panel (a) corresponds to the model without disorder, panel

(b) corresponds to the model with disorder in the couplings between cavities, and panel (c)

corresponds to the model with disorder in the resonant frequencies of cavities. The disorder

strength is set to W = 0.5 in both cases with the disorder. For each case, the value of the

energy of the vacancy-like dressed bound state is shown at the inside of the plots, e.g.,Evbs = 0.

Panel (d) shows the maximum ergotropy maxt[W(∞)] of quantum battery for the two different

models of disorder as a function of the disorder strength W . The red (blue) dots correspond

to the average value computed with a total of 103 instances of disorder for the symmetry-

preserving (symmetry-breaking) case, and the shadow areas span their corresponding standard

deviation. The pink line represents a fit. In all plots, the system parameters are chosen to be

δ = 0.3, g = 0.1J , ∆ = −Ω = 0.2J , κa = 10J , κb = 0, and x1 = x2 = 0.
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chiral symmetry of the original model. The latter corresponds to the addition of off-diagonal

random terms, modifying the Hamiltonian asHbath → Hbath+
∑

j(ϵ1,ja
†
jbj+ϵ2,jb

†
jaj+1+H.c.),

which preserves the chiral symmetry. We take the disorder parameters ϵν,j/J (ν = a, b, 1, 2)

from a uniform distribution within the range [−W,W ] for each jth unit cell, whereW repre-

sents the disorder strength. Additionally, we only focus on the configuration-II (see Fig. B.6)

and the maximum ergotropy. Therefore, as concluded in B.4.2, we know that even in the pres-

ence of sublattice dissipation, the energy in the quantum charger can be almost completely

transferred to quantum battery through the dissipative topological environment, primarily due

to the contributions from the dark state and vacancy-like dressed bound state, i.e., Eqs. (B-57)-

(B-58). We can be confident that the dark state is unaffected by any disorder due to the unique

properties of the dark state, which decouple from the environment. Therefore, in the presence

of disorder, the changes in the vacancy-like dressed bound state are the only factor influencing

the performance of the quantum battery.

In the first row of Fig. B.7, we plot the shape of the three vacancy-like dressed bound states

for a situation without disorder and with off-diagonal (diagonal) disorder. Note that for the

situation with a diagonal disorder, although there is no vacancy-like dressed bound state, we

still refer to it as such for convenience. For the symmetry-preserving case (i.e., no disorder or

off-diagonal disorder), as shown in Figs. B.7(a) and B.7(b), we observe that the dressed bound

state exhibits a unidirectional spatial profile and has components only on sublattice B. Ad-

ditionally, compared to the clean system, in the case with off-diagonal disorder, the dressed

bound state energy remains zero, indicating that chiral symmetry ensures the presence of the

dressed bound state, with slight changes in the absolute magnitude of the component of the

bound state on sublattice B. In contrast, for the symmetry-breaking case (i.e., diagonal dis-

order), as shown in Fig. B.7(c), we find that the state loses its unidirectional property and has

a non-zero component on each sublattice. Furthermore, its energy also becomes a complex

number with a non-zero imaginary part, i.e., Evbs = −0.0016− 0.0015i, indicating that break-

ing chiral symmetry disrupts the presence of the dressed bound state. Consequently, for our

system, we can conclude that as long as chiral symmetry is preserved, even in the presence of

disorder, the maximum ergotropy can remain high due to the contributions of the dark state and

the vacancy-like dressed bound state. Conversely, when chiral symmetry is broken, resulting

in the disappearance of the vacancy-like dressed bound state, the maximum ergotropy drops
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to zero. In fact, the data of these orange and blue dots in Fig. B.7(c) corroborates this conclu-

sion. More importantly, as shown by the orange dots in Fig. B.7(c), we find that the maximum

ergotropy is strongly robust to off-diagonal disorder. As disorder strength W increases, its

average value obeys a power-law distribution, i.e., f(W ) = maxt[W(∞)]W=0/ωe −W 3/10,

where maxt[W(∞)]W=0/ωe is given by Eq. (B-61), as indicated by the pink line in Fig. B.7(c).

Even under strong off-diagonal disorder, such as W = 1, the average value of maximum er-

gotropy can still exceed 4/5. However, as shown by the blue dots in Fig. B.7(c), the maximum

ergotropy is always zero for the symmetry-breaking case.

B.4.4 The impact of environmental dissipation on quantum battery per-

formance: Quantum Zeno effect

Before proceeding, we turn to the pole equation (B-53) and take ∆ = −Ω. The pole

equation can be further simplified as

D(Ei) = Ei(Ei + 2Ω)

[
1 +

g2
∑

p=± pΘ[p(1− |ỹ+|)]√
z4nh + 4J2z2nh(1 + δ2) + 16J4δ2

]
z=Ei

= 0. (B-62)

Apart from the two coherent bound states mentioned in Sec. B.4.2, according to the pole equa-

tion, we can also find two dissipative bound states and the corresponding energies can be ob-

tained by solving

znh|z=Ei
= ±

√
2J2(1 + δ2) + 2

√
g4 + J4(1− δ)2 ≡ E0,±, (B-63)

where E0,± are the bound-state energies in the non-dissipative environment, which satisfy

D(E0,±)|κ=0 = 0. The solution in Eq. (B-63) is given by

Eκ,± = − i

4
κ±

√
E2

0,± − (κ/4)2, (B-64)

which represent the dissipative bound-state energies in the dissipative environment. Subse-

quently, let us analyze the dissipative bound-state contributions in a short time when κ/J � 1.
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First, following Eqs. (B-55) and (B-56), the corresponding residues are computed as

Res[D(z), Eκ,±] =
Ω + ΣAA

11 (z)

dD(z)/dz

∣∣∣∣
z=Eκ,±

=
g4

Eκ,±(Eκ,± + iκ/4)[E2
0,± − 2J2(1 + δ2)]

. (B-65)

Second, when κ/J � 1, we have

Eκ,± = − iκ
4

[
1±

√
1− (4E0,±/κ)2

]
= − iκ

4

{
1±

[
1− 8(E0,±/κ)

2 + o(κ−2)
]}

≈ −(1± 1)
iκ

4
±

2iE2
0,±

κ
, (B-66)

and the corresponding residues are given by

Res[D(z), Eκ,+] ≈
g4

[E2
0,+ − 2J2(1 + δ2)](−iκ/2)(−iκ/2 + iκ/4)

=
−8g4

[E2
0,+ − 2J2(1 + δ2)]κ2

, (B-67)

Res[D(z), Eκ,−] ≈
g4

[E2
0,+ − 2J2(1 + δ2)](−2iE2

0,−/κ)(−2iE2
0,−/κ+ iκ/4)

≈ 2g4

[E2
0,− − 2J2(1 + δ2)]E2

0,−
. (B-68)

Consequently, the contribution of the dissipative bound states can be written as

cDBSB (t) =
∑
p=±

Res[D(z), Eκ,p]e
−iEκ,pt

≈ −8g4 exp[−κt/2]
[E2

0,+ − 2J2(1 + δ2)]κ2
+

2g4 exp
[
−2E2

0,−t/κ
]

[E2
0,+ − 2J2(1 + δ2)]E2

0,−
. (B-69)

Finally, when t � κ, the first term on the right-hand side of Eq. (B-69) can be ignored, and

exp
[
−2E2

0,−t/κ
]
≈ 1 within the last term. Thus, according to Eq. (B-65), we have

cDBSB (t) ≈ 2g4

[E2
0,+ − 2J2(1 + δ2)]E2

0,−
= cCBSB (tn), (B-70)

where tn = 2nπ/E0,+ while cBSB (t) represents the contribution of the coherent bound states

with energies E0,± in the non-dissipative environment.
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In conclusion, as the dissipation κ increases, we find that the stroboscopic dynamics of the

dissipative system revert to those of the non-dissipative system, thereby achieving immunity

to the effects of dissipation in a short time. Note that the contributions from the branch cuts

are generally small and, therefore, have not been discussed here.
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Chapter 4

Summary and outlook

In this thesis, I studied suppressing decoherence in open quantum systems. I focused on

utilizing resonance and topological effects to counteract dissipation and quantum noise. My

major contributions included preserving optomechanical entanglement through non-resonance

filtering and improving quantum battery performance via topological waveguides. Let us start

with a summary.

In Chapter 2, we have demonstrated that resonance effects between a mechanical mode

and its thermal environment can protect optomechanical entanglement. Specifically, these res-

onance effects have nearly doubled the robustness of optomechanical entanglement against me-

chanical dissipation and environmental temperature. This protection mechanism has involved

eliminating degrees of freedom associated with significant detuning between the mechanical

mode and its thermal reservoirs, effectively countering decoherence. Our approach has proven

particularly effective under conditions of both near-resonance and weak coupling between the

mechanical mode and its environment. We have also proposed a feasible experimental imple-

mentation of the filtering model to observe these phenomena. Furthermore, we have extended

this theory to an optical cavity array with one oscillating end mirror and investigated optimal

optomechanical entanglement transfer. Our study has presented a significant advancement in

applying resonance effects to protect quantum systems against decoherence, opening up new

possibilities for large-scale quantum information processing and the construction of quantum

networks.
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In Chapter 3, we have developed a general framework for analyzing the atomic dynamics

of a battery-charger system composed of two atoms coupled to a general bath. Specifically, in

the single-excitation sector, we considered a typical one-dimensional lattice with topological

properties as an environment, known as the Su-Schrieffer-Heeger model. In the long-time

limit, we demonstrated that only the contributions from coherent bound state excitations are

retained. We pointed out that in a topologically trivial phase, the zero-energy bound states

exhibit twofold degeneracy at resonance, resulting in the maximum stored energy approaching

zero. In contrast, in a topologically nontrivial phase, the maximum stored energy approaches

one, indicating that the quantum charger almost completely transfers energy to the quantum

battery. Moreover, we discovered that the maximum stored energy exhibits singular behavior

at the phase boundary. We also observed significant differences in phase diagrams for different

unit cell distances between the quantum charger and the quantum battery. Additionally, we

discussed the performance of quantum batteries under different configurations. We found that

when two directly coupled atoms are placed within the same cavity, the ergotropy is protected

from the direct impact of sublattice dissipation due to the presence of a dark state and a vacancy-

like dressed bound state. This configuration overcomes the environment-induced decoherence

that causes energy loss and aging in quantum batteries. Intriguingly, we demonstrated that with

the increase in dissipation, the emergence of the quantum Zeno effect significantly enhances

the short-time performance of the quantum battery.

In short, I outlook for the work in Chapters 2 and Chapter 3 is as follows.

In fact, the theory of resonance-dominated entanglement, discussed in Chapter 2, applies

to all interactions between light and matter [234, 235]. For instance, in the Quantum Rabi

Model [236–240], which describes the interaction between the two-level atoms (qubit) and

an electromagnetic field, I can similarly use non-resonant filtering to improve the robustness

of concurrence [31, 38, 241, 242] (an entanglement measure for two qubits) against quantum

noise and dissipation. Measuring and protecting the entanglement between qubits is crucial

in quantum information and quantum computing. Observing the robustness of concurrence in

the quantum Rabi model after non-resonant filtering against quantum noise and dissipation is

also highly significant. The experimental setup for measuring concurrence can be found in

Refs [243–245].
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To extend the results in Chapter 3, I will consider the coherence charging of atomic en-

sembles to develop topological quantum batteries for practical applications effectively. First,

we extend the conclusions from the single-excitation case to the double-excitation case, where

the battery performance metric can also be elegantly solved analytically using the resolvent

method [246]. Second, we can perform numerical simulations using the matrix product states

[232] or hierarchical equations of motion analog [233] for the multi-excitation case.

Overall, controlling and suppressing decoherence in open quantum systems is fundamental

to unlocking the potential of quantum technologies. While exploring the theoretical mecha-

nisms of decoherence suppression may have a limited immediate impact on society and in-

dustry, the long-term implications are significant. Continued research and development in this

area will pave the way for more reliable and efficient quantum devices, bringing us closer to re-

alizing the transformative benefits of quantum computing, communication, sensing, etc [247].
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