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Abstract

In this Thesis, we study problems in quantum thermalization and quantum metrology in inter-
acting spin systems, using the quantum Ising model as a prototypical spin model. Both the
research areas have been rapidly growing due to the experimental progress in observing and
engineering non-equilibrium dynamics in highly isolated quantum systems. The phenomenon
of thermalization has been ubiquitously demonstrated in unitary quantum dynamics, leading to
developments in the theoretical investigation of the underlying mechanism as well as non-trivial
exceptions. Quantum metrology offers ways to improve the sensitivity of measurements by ex-
ploiting many-body entanglement, which is generated but also disturbed by internal interactions
in the probe system. Exploring the systems that avoid thermalization will deepen our under-
standing of quantum thermalization as well as will give us hints to design new approaches for
realizing entanglement-enhanced sensing with interacting spin systems.

First, we show the emergence of non-ergodicity in Ising models in a weak transverse field.
While quantum thermalization of the transverse-field Ising models (TFIMs) is a fundamental
problem of statistical physics, it remains unsolved in higher than one dimension because of
the models’ non-integrability. Here, we adopt an effective model describing the dynamics and
rigorously demonstrate the emergence of a nontrivial fragmented structure of the Hilbert space
that prohibits thermalization. We show that this mechanism, which is called the Hilbert-space
fragmentation (HSF), is due to a kinetic constraint arising from the conservation of the domain
wall emerging in the TFIM in a prethermal regime.

Second, we propose a novel entanglement-enhanced sensing scheme for magnetic field sens-
ing in a strongly interacting inhomogeneous Ising model in two dimensions. Although interac-
tions between qubits are crucial for creating entanglement in quantum metrology, they can also
destroy relevant entanglement due to thermalization. Our strategy here is to tailor coherent dy-
namics employing the HSF by constructing a quantum state that is useful for sensing a weak
transverse magnetic field but is stable against strong Ising interactions. Our method is robust
against various perturbations, such as changes in the lattice structure and inhomogeneity of the
couplings, and realized without any active control. From analytical calculations, we show that
the Heisenberg-limited sensitivity can be achieved by using our state.

Third and finally, we propose another entanglement-enhanced sensing scheme for magne-
tometry. Existing sensing schemes so far have often required accurate control of the probe
system, which can be challenging in practical applications. We here utilize a propagation dy-
namics of spin flips in an Ising chain with homogeneous interactions for generation and readout
of the GHZ-type entangled states. Our scheme does not require long-range interactions, en-
tangling gate operations, or switching on/off the interactions among qubits. It only requires fast
thermalization of the probe, two projective measurements on a single qubit, and switching on/off
uniform magnetic fields. We also numerically show that the sensitivity of our scheme beats the
standard quantum limit even under the effect of realistic decoherence.
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Chapter 1

Introduction

1.1 Introduction

Last decades have witnessed remarkable progress in experimental techniques for observing and
controlling quantum many-body systems. Ultracold atoms and trapped ions provide good plat-
forms for simulating physics in a variety of models [1]. Thermalization is one of the commonly
observed phenomena even in isolated quantum systems. Advances in theoretical studies of quan-
tum thermalization have attracted attentions not only from condensed-matter physicists, but also
from high-energy physicists and researchers in other fields [2, 3]. There are also significant
progress in quantum-based technologies due to continuing efforts in controlling quantum sys-
tems including superconducting qubits, nitrogen-vacancy (NV) centers in diamonds, and pho-
tonic systems. Quantum metrology is one of the technologies, which were only theoretical
proposals a several decades ago but are now beginning to be used in real-world applications
[4]. Further developments in the technology to create and manipulate quantum entanglement in
many-body systems would provide, for example, quantum magnetic-field sensors with dramati-
cally high sensitivity [5]. These two areas of active studies, namely quantum thermalization and
quantum metrology, will be advanced by expanding our knowledge of non-equilibrium dynam-
ics of quantum many-body systems.

In this Thesis, we theoretically study quantum thermalization and quantum metrology us-
ing the quantum Ising model, which is one of the paradigmatic models of quantum many-body
systems. By focusing on dynamical features which arise specifically for strong Ising couplings
in the model, we give analytical results that offer some new insights into the two fields of re-
search. Specifically, we will reveal the emergence of novel physics in the quantum Ising model
called the Hilbert space fragmentation (HSF), which serves as a mechanism for the absence of
thermalization. The study of such non-equilibrium physics in quantum many-body systems is
also relevant for quantum technologies that make use of a large collection of interacting parti-
cles. In this regard, in the latter part of this Thesis, we focus on the application of knowledge
found in quantum Ising models to the area of quantum metrology. We will propose new schemes
for entanglement-enhanced sensing of weak magnetic fields by utilizing the HSF or so-called
quantum domino dynamics that emerges in Ising models in a weak transverse field.

In this Chapter, we provide an overview of the two areas of quantum thermalization and
quantum metrology to describe the motivation behind our research in each area, followed by a
brief introduction of the the quantum Ising model. We then present the organization of the The-
sis. In addition, using the remainder of this Chapter, we review important concepts underlying
our studies.
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1.1.1 Quantum Thermalization

Thermalization in isolated quantum systems has been studied for a century mainly in the con-
text of deriving statistical mechanics from quantum mechanics. It is widely observed that a
macroscopic system evolves towards an equilibrium if left alone, regardless of the details of its
initial state. In general, the final equilibrium state is described within the framework of statis-
tical mechanics using thermal equilibrium states. The goal of this field is to understand how
this final equilibrium states manifest themselves in non-equilibrium quantum many-body sys-
tems. Important questions include the followings: which systems do thermalize?; how do the
systems thermalize?; more specifically, in what way does thermalization take place under the
unitary evolution? One of the most important achievements on the last question is the eigenstate
thermalization hypothesis (ETH) [6, 7, 8]. This is a conjecture that all energy eigenstates are
locally “thermal” in generic many-body systems in the sense that each of them is locally indis-
tinguishable from the thermal state with the same energy. ETH provides a sufficient condition
for thermalization in isolated quantum systems and its validity has been examined and supported
numerically in a wide range of systems [8, 9, 10, 11, 12, 13, 14, 15]. While several analytical ar-
guments imply that thermal eigenstates are indeed ubiquitous [16, 17, 18, 19, 20, 21, 22], it is in
general not yet clear that for what systems the ETH is validated as there are obvious exceptions,
e.g., models with integrability and localization.

Recently, there has been increasing interest in models that fail to thermalize, which is a
promising direction in investigating conditions for quantum thermalization. Well-known classes
of such models include integrable systems [23, 24], which possess an extensive number of local
conserved quantities, and systems with many-body localization (MBL) [25, 26], which pos-
sesses localized eigenstates due typically to disorders in the system. Systems with so-called
quantum many-body scar (QMBS) states [27, 28] are another class of models. They are actively
studied after the recent discovery in the cold-atom experiment [29, 30]. In systems with QMBS
states, the ETH is violated despite being non-integrable and translationaly invariant, and certain
initial states fail to thermalize. The QMBS states appear as exceptional nonthermal eigenstates
in the high-energy spectrum of systems that typically thermalize and seemingly satisfy the ETH.
Numerous mechanisms have been proposed and advanced our understanding, including those
in which algebraic relationships play an important role [31, 32], but unified understanding of
QMBS states is rather missing.

The Hilbert space fragmentation (HSF) [33, 34, 35, 36] is another new type of mechanism
that prohibits thermalization even in non-integrable systems, without relying on the translation
invariance and fine-tuning of the Hamiltonian, in stark contrast to typical models hosting QMBS
states. In fractonic systems [37, 38], for example, kinetic constraints impose restrictions on
the dynamics, leading to a fragmented structure of the Hilbert space with exponentially many
invariant subspaces. Consequently, the equilibration dynamics strongly depends on the choice
of the initial state, even among the states having the same conserved quantities, which is an
indication that the ETH is violated. For many previous models showing the HSF, relevant kinetic
constraints were attributed to the presence of at least two conserved quantities and the locality
of the interaction [27, 28, 39]. To gain better understanding as to what mechanism suppresses
thermalization, it may be helpful to investigate other models that allow us to study the HSF
analytically. In the present Thesis, we will explore a novel example of quantum systems in
which the HSF emerges.
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1.1.2 Quantum Metrology

Improving the sensitivity of measuring observables in physical systems is of fundamental im-
portance in both science and engineering. Quantum metrology, which investigates the ulti-
mate precision for sensing that can be achieved given a finite resource, such as the number of
probe particles, has been shown to be beneficial in many areas including magnetometry [40, 41],
atomic spectroscopy [42, 43], and gravitational wave detection [44, 45]. One important goal in
this field is to materialize sensors that exploits quantum nature and achieve the sensitivity be-
yond classical limits. In this Thesis, we focus on quantum metrology in measuring strength of
magnetic fields using an ensemble of probe qubits.

A key observation in quantum metrology is that entangled states can give a better sensitivity.
Typically, quantum sensing schemes for external fields consist of preparing the probe spins in a
specific quantum state, exposing the state to the target field, and performing measurements on
the probe system [46]. It has been shown that the estimation error scales maximally in N�1/2

when we use separable states as the initial state, where N denotes the number of probe spins.
This type of scaling is called the standard quantum limit (SQL). On the other hand, the scaling
can be improved to N�1 when we use entangled states. This scaling is called the Heisenberg
limit (HL), which shows an N�1/2 enhancement over the SQL [47]. The Greenberger-Horne-
Zeilinger (GHZ) is known to be a promising probe state for acchieving the HL [48], and the
Heisenberg-limited sensitivity is demonstrated experimentally using such non-classical states
[42].

There are various obstacles in realizing highly sensitive quantum sensors on a large scale.
The major challenges include precise generation of useful entangled states, accurate measure-
ments and controls on the probe system, and the suppression of noises arising from interactions
between the probe and environments or interactions among probe spins. For example, the envi-
ronmental noise, or the decoherence effect, generally deteriorates the scaling of the sensitivity
from the HL to the SQL as N goes to infinity [49, 50], while some improved scalings survive
for certain types of the environmental noise [51, 52, 53, 54]. In practice, probe systems consists
of finite number of probe spins in experiments and the dominant noise depends on the settings.
If a quantum sensing is performed in a time that is much shorter than the timescale of decoher-
ence, the environmental noise can be made negligible. Therefore, the sensitivity in the quantum
strategies can beat that in classical strategies in some cases even when the probe system is not
isolated from the environments completely.

However, preparation and readout of entangled probe state and suppression of the noises
from internal interactions remain as challenges for interacting probe systems, especially when
the controllability of internal interactions is limited. Importantly, the probe states that achieve
the HL should possess appropriate entanglement [55, 56], which are usually generated employ-
ing internal interactions. However, these interactions, if exist during the interrogation step, can
cause unwanted dynamics, such as quantum thermalization, and would spoil the sensitivity [57].
In some experimental settings, such as when a dense ensemble of solid state qubits are used as
the probe system, dynamical control of interactions or precise tuning of the coupling strengths
should be difficult. In this case, one would have to suppress the interactions by, e.g., implement-
ing a large number of pulses [58]. In the latter part of this Thesis, we consider quantum sensing
schemes in the presence of always-on internal interactions among probe spins. In particular, we
discuss entanglement-enhanced sensing schemes using the probe system with Ising interactions.
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1.1.3 Quantum Ising model

In this Thesis, we consider systems of interacting qubits, i.e., interacting spin-1/2 particles,
arranged mainly on hyperqubic lattices with Ising-type couplings under a homogeneous trans-
verse field. Such systems are described by the quantum Ising model, or the transverse-field Ising
model (TFIM), whose Hamiltonian is given by

ĤTFIM = Ĥint + Ĥx, (1.1)

Ĥint = �
X

hi,ji

Jij�̂
z

i
�̂z

j
, (1.2)

Ĥx = hx

X

i

�̂x

j
, (1.3)

where �̂µ

i
(µ = x, y, z) denotes the Pauli spin operators at site i and hi, ji indicates that the sites

i and j are neighboring. In Eq. (1.2), Jij denotes the Ising coupling strength between spins and
in Eq. (1.3), hx denotes the strength of the transverse field. We will change the notation of the
transverse field strength in some chapters according to the physical meaning. Throughout the
Thesis, we set ~ = 1. In Chapters 2 and 3, we consider lattice systems in d � 2, while in
Chapter 4 we consider the case in d = 1, where d denotes the spatial dimension of the system.

Despite that solving it is challenging in general, the quantum Ising model allows for ana-
lytical treatment under certain conditions and is widely used as a textbook example of quantum
many-body systems in condensed-matter physics and statistical mechanics. For d = 1, the
model becomes exactly solvable [59, 60, 61] and serves as good a example of quantum phase
transition as it undergoes a phase transition at zero temperature at a certain value of hx [62].
However, it is highly non-trivial to solve the model in d � 2. If hx is set to zero, the model is
reduced to the Ising model, and all the energy eigenstates can be obtained as computational basis
states with macroscopic degeneracy. Statistical properties of the classical Ising model including
a finite-temperature phase transition are also well investigated [63]. On the other hand, quantum
tunneling takes place due to the transverse field for a finite hx, and analytically exact calcula-
tions on individual eigenstates or thermal equilibrium states become difficult. Since numerical
simulations are often limited to systems with a few dozen sites, it is generally challenging to
investigate the dynamics of the quantum Ising model in d � 2.

The study of the quantum Ising model is motivated not only by theoretical interests, but also
from its experimental relevance. To begin with, it is said that this model began to be widely
studied after the introduction by de Gennes to consider dynamics in chemical substances [64].
This model is also important for examining magnetism and ferroelectrics [65, 66]. Ising-type
interactions are realized for example in cold atoms [67], trapped ions [68] and super-conducting
qubits [69], and the quantum Ising model is also used as a fundamental model for experimental
devices in adiabatic quantum computations [70, 71, 72, 73]. Advancing our understanding of
this model has a potential to impact a wide range of research areas.

The present Thesis focuses on this model (1.1). In particular, we consider the parameter
regime of |hx| ⌧ |Jij| in studing quantum thermalization and quantum metrology. As will be
reviewed in Sec. 1.3 and illustrated through the Thesis, the model shows notable features in
this regime, although exactly solving its dynamics remains difficult for finite values of hx in
d � 2. For quantum thermalization, we reveal the emergence of non-thermalizing behavior in
this model. For quantum metrology, we consider using the Ising model as a probe system. In
the latter case, the transverse field serves as a target field to be estimated in Chap. 3 while it acts
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as an external control field in Chap.4.

1.2 Organization of the thesis

Motivated by the problems in quantum thermalization and quantum metrology, which we overviewed
in the previous sections, we investigate the following three issues in this Thesis: relaxation
dynamics in the quantum Ising model in higher than one dimension (Chapter 2), protecting
metrologically useful states for estimating magnetic fields in the presence of internal interac-
tions (Chapter 3), and preparing and reading-out entangled states for quantum sensing with low
controllability on the interacting probe spins (Chapter 4). Interactions among spins generally
cause chaotic dynamics that often leads the system to eventual thermalization. Nonetheless,
when certain types of interactions become dominant in the quantum system, new physics can
emerge. In this Thesis, we particularly focus on exploring and employing dynamical properties
of the quantum Ising models under weak transverse fields, where Ising interactions dominate
the system.

Chapter 2 is based on Ref. [74]. Here, we investigate equilibration properties of the d-
dimensional quantum Ising models (transverse-field Ising model, TFIM) with d � 2. Specifi-
cally, we study the effective model which describes dynamics of the TFIM in a weak transverse
field in an intermediate timescale. We demonstrate that the Hilbert-space fragmentation (HSF)
occurs in this effective non-integrable model due to a kinetic constraint arising from the domain-
wall conservation. The model serves as a novel analytical example of the appearance of the HSF
with only one conserved quantity. We will present results that imply the existence of nontrivial
initial-state dependence of non-equilibrium dynamics of the TFIM in a weak transverse field.

Chapters 3 and 4 are devoted to discussions on entanglement-enhanced sensing schemes us-
ing systems with always-on nearest-neighbor Ising interactions. Chapter 3 is based on Ref. [75].
In this Chapter, we construct a quantum state that is useful for sensing a weak transverse mag-
netic field but is stable against strong Ising interactions with a spatial inhomogeneity. Here,
we utilize our finding on the HSF in Chapter 2 and mainly consider the two-dimensional TFIM
that possesses modest non-uniformity in the Ising couplings. From analytical calculations, we
show that the Heisenberg-limited sensitivity can be achieved by using our state. The sensing
scheme that we illustrate here provides a new approach to entanglement-enhanced sensor with
interacting probe systems without requiring dynamical controls during the interrogation step.

Chapter 4 is based on Ref. [76]. Here, we propose another quantum sensing scheme which
uses a homogeneous Ising interaction for generation and readout of the GHZ-type entangled
states. Unlike in Chapter 3, we consider using a one-dimensional Ising model as the probe sys-
tem to estimate a weak longitudinal field. A propagation dynamics called “quantum domino”
dynamics, which occurs in the Ising chain under a weak transverse field, plays an important role
in our scheme. This enables us to design our sensing scheme, which only requires initialization
of the system, projective measurements on a single spin, and control of global magnetic fields.
We also consider the effect of an environmental noise in this Chapter and numerically demon-
strate that an improved sensitivity beyond the standard quantum limit can be achieved even in
the noisy case.

Finally, in Chapter 5, we give a conclusion of this Thesis and future perspectives of our stud-
ies. We also have Appendix A, which provides a full proof for the theorem about the timescale
on the effective description of the model in Chapter 3.
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1.3 Preliminaries

In the remainder of this Chapter, we review important concepts on underlying this Thesis.

1.3.1 Thermalization in isolated quantum systems

In the following two subsections, we briefly review basics of quantum thermalization in iso-
lated quantum systems and introduce the eigenstate thermalization hypothesis (ETH) [11, 77].
Throughout the Thesis, we consider finite-dimensional quantum systems on discrete lattices.
We use N to refer to the number of the sites in the system.

In isolated quantum systems, the time-evolving state of an initial pure state at time t is
described as

| (t)i =
X

n

cne
�iEnt |Eni , (1.4)

where |Eni denotes the eigenstate of the system Hamiltonian Ĥ with its eigenvalue En and
cn denotes the expansion coefficient of the initial state with respect to |Eni, i.e., | (0)i =P

n
cn |Eni with

P
n
|cn|2 = 1. Typically, we are interested in measuring local observables or

their spatial correlations in experiments. Below, we restrict obserbles of interest to a set of local
observables, which either have a strictly finite support on the lattice or are extensive summations
of them.

Intuitively, thermalization describes a process in which, after a certain relaxation time, the
expectation values of such observables attain those obtained by microcanonical ensemble aver-
age, i.e.,

O(t) := h (t)| Ô | (t)i ! Omc,E := Tr
h
⇢̂mc,EÔ

i
(1.5)

with

⇢̂mc,E :=
1

NE,�E

X

EEnE+�E

|Eni hEn| , (1.6)

where E = h (0)| Ĥ | (0)i denotes the energy which defines the microcanonical energy shell
Hmc,E , the state ⇢̂mc,E denotes the microcanonical ensemble in Hmc,E , and NE,�E denotes the
number of the energy eigenstates in Hmc,E . The width of the energy shell �E is taken appropri-
ately so that it may become subextensive, i.e., �E = o(N), while keeping the number of states
in Hmc,E large, i.e., NE,�E � 1. In fact, thermalization in isolated quantum systems have been
observed in various experiments [78].

1.3.2 Quantum thermalization and equilibration

Generally, quantum thermalization is formulated using combination of the following two condi-
tions.

(A) The temporal expectation value O(t) coincides with its long-time average for almost all
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the time t, i.e.,

O(t) ' O(t) := lim
T!1

1

T

Z
T

0

dtO(t). (1.7)

(B) The long-time average O(t) coincides with the microcanonical expectation value for the
same energy E when we igonore the subextensive deviations, i.e.,

O(t) ' Omc,E. (1.8)

If both conditions are satisfied for arbitrary local observables, a system is said to be quantum
thermalized.

The condition (A) of quantum thermalization, namely equilibration, can be assured to be
satisfied under some assumptions [79, 80, 81, 82, 83, 84]. For example, when the system Hamil-
tonian satisfies a non-resonant condition, that is, En � Em = Ek � El if and only if n = k and
m = l or n = m and k = l, one can show that the temporal fluctuation of O(t) is bounded as
[79]

�O(t) :=

"⇣
O(t)�O(t)

⌘2
#1/2

 kÔk2
De↵

, (1.9)

where k · k denotes the operator norm. Here, the effective dimension De↵ is defined as De↵ :=
1/
P

n
|cn|4, which evaluates the effective number of the energy eigenstates involved in the

initial state. Therefore, when De↵ is large, which is expected since the number of energy levels
grows exponentially in N [85], the temporal value O(t) becomes almost always close to O(t).

On the other hand, the condition (B), which is a crucial part of quantum thermalization, is
in fact not trivial compared to the condition (A). (When the second condition is satisfied for
any initial states, quantum systems are called ergodic or thermal.) One can easily see that the
long-time average O(t) described in Eq. (1.7) can be written as

O(t) =
X

n

|cn|2 hEn| Ô |Eni (1.10)

from Eq. (1.4), assuming no degeneracy in the Hamiltonian of the system. Equation (1.10) shows
that O(t) always keeps its initial state information through |cn|2, which seemingly contradicts
with the expectation that thermalization is not sensitive to the detail of the initial state.

Before introducing a possible explanation of this contradiction in the next section, we briefly
remark on prethermalization phenomena [77]. Even if the equilibration is guaranteed for a
system, the time scale that is required to reach the final equilibrium can become longer than
the experimentally reachable time in some cases [86, 87]. In such systems, we can observe
prethermalization, which indicates the appearance of a quasi-stationary non-equilibrium state
before reaching the final equilibrium. In Chapter 2, we will consider and discuss thermalizaion
properties of the effective model that describes dynamics of the quantum Ising systems in the
prethermal timescales .
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1.3.3 Eingenstate thermalization hypothesis

The idea of eigenstate thermalization is said to be initiated by von Neumann [88, 89], then es-
tablished by J. M. Deustch [6] and M. Srednicki [7] independently while there are other notable
studies [90, 91, 92], and started to gain significant attentions following studies by M. Rigol
[93, 8]. Roughly, it states that all the energy eigenstates are already thermal and locally indis-
tinguishable from the thermal ensemble in the corresponding energy expectation value. Here,
we introduce the eingenstate thermalization hypothesis (ETH) in the following form: for all the
energy eigenstates |Eni,

hEn| Ô |Eni ' Omc,E (1.11)

holds, when we ignore the subextensive deviations for any local observables Ô, where E ' En.
The ETH is believed to hold for generic non-integrable systems, especially if we focus on the
energy eigentstates away from the edge of the spectrum. Specifically, the above notion of the
ETH is called the strong ETH, while there are weaker version of the ETH, so called the weak
ETH. The weak ETH relaxes the condition of “all” to “almost all” and allows vanishingly small
fraction of the eigenstates to break Eq. (1.11) [19, 20, 21].

The strong ETH serves as a sufficient condition for thermalization, in particular the condition
(B). This can be seen from combining Eqs. (1.10) and (1.11) as follows. We consider initial
states that have subextensive energy fluctuations. This is a reasonable assumption since for most
of the states prepared in quench experiments have at most O(N1/2) energy fluctuations [11].
Then, the dominant contribution of the summation in Eq. (1.10) is given by eigenstates with
energies close to the energy expectation value E, and we have

X

n

|cn|2 hEn| Ô |Eni '
X

n

|cn|2Omc,En (1.12)

' Omc,E

X

n

|cn|2 (1.13)

= Omc,E, (1.14)

where we used
P

n
|cn|2 = 1. This shows that the long-time average O(t) is reduced to the

microcanonical average for any initial state with sufficiently small energy fluctuation. We note
here that the weak ETH does not guarantee thermalization since Eq. (1.14) is invalidated if we
choose an initial state that has a large overlap |cn|2 with exceptional non-thermal energy eigen-
states. This explains why, despite the weak ETH being demonstrated under general conditions
independent of the integrability, many integrable systems fail to thermalize [94, 93, 24].

1.3.4 Integrable systems

We briefly explain the integrability of quantum systems at this point. For classical systems, the
integrability is defined by the existence of many integrals of motion whose number coincides
with the number of degrees of freedom. On the other hand, the definition of quantum integra-
bility is somewhat ambiguous. Generally, a quantum system is called integrable when there are
an extensive number of local conserved quantities and all energy eigenstates can be specified
using those conserved observables [95, 96, 97]. Systems that are solved using the Bethe ansatz
or that can be mapped to non-interacting systems are commonly seen as prototypical examples
of integrable systems, the latter of which includes the models that will appear in this Thesis.
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One important diagnostics of integrability or non-integrability that is widely used is the
statistics of the energy-level spacings [11]. For integrable systems, the statistics is expected
to be given by the Poisson distribution, while for non-integrable systems, the distribution is
expected to follow the results from random matrix theories [98]. In particular, when the system
does not have certain types of symmetries, the distribution is given by the so-called Gaussian
orthogonal ensemble (GOE) [99].

We note here that the GOE distribution is obtained typically only after resolving apparent
symmetries, whereas the Poisson-like distribution often appears when symmetries such as in-
version are unresolved [100, 101, 11, 102]. For example, when a model has the particle-number
conservation, the energy-level statistics is calculated after specifying the particle number and
then considered to be non-integrable if the GOE distribution is observed [103, 104]. This is also
the case when the ETH is numerically checked in non-integrable models, i.e., the validity of
Eq. (1.11) is usually examined for energy eigenstates after resolving symmetries [11, 105, 106].

1.3.5 Hilbert space fragmentation

The Hilbert space fragmentation (HSF), or Hilbert space shattering, refers to a phenomenon in
which the Hilbert space of a non-integrable system is divided into a large number of invariant
subspaces [27, 28, 39]. In general, this can be characterized as the appearance of exponentially
many Krylov subspaces. A Krylov subspace is defined by

H|�i := span{|�i , Ĥ |�i , Ĥ2 |�i , ...}, (1.15)

where Ĥ denotes the system Hamiltonian and |�i is called the root state of this subspace. Typi-
cally, the dimension of H|�i becomes comparable to that of the entire Hilbert space of Ĥ when
we take |�i as a product state. However, in some systems [34, 107, 35, 36, 108, 109, 110, 111,
112, 113, 114, 115, 116], the dimension of exponentially many Krylov subspaces can become
small, or even one, for simple root states. In other words, the Hamiltonian matrix of Ĥ is diag-
onalized into many blocks by taking appropriate product states as the basis states. Since each
block is disconnected, the initial state that is taken from one of the subspaces is confined into
each subspace and fails to thermalize.

We note here that a similar structure of the Hilbert space can be also found in integrable
systems with mutually commuting conserved quantities. In this case, each subspace, or energy
eigenstate, is characterized by the local conserved quantities. On the other hand, most of the
models showing the HSF exhibit many subspaces despite having only a few number of appar-
ent local conserved quantities and thus considered to be non-integrabile. In these models, each
sector that is characterized by the conventional symmetries further fractures into many nontriv-
ial subspaces, which is in stark contrast to generic non-integrable models that possess a few
conventional symmetries.

An important example of the HSF is found in the spin models with conservations of the
charge and associated dipole moment [35, 36, 113], which can be mapped from fermionic sys-
tems with conservations of the particle number and the center of mass [117, 34]. It has been
shown that the interplay between the two conservation laws and the locality of the interaction
leads to the HSF [36]. More concretely, there appear many configurations of spins which cannot
transition to each other via dynamics of the Hamiltonian due to constraints that are induced by
the conservations of the charge and the dipole moment. In many of the models showing the
HSF, the presence of dynamically frozen regions of spins leads to appearance of dynamically
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disconnected subspaces [34, 36, 35, 112, 113].
Another interesting characteristic that is often found in models of the HSF is the appearance

of subspaces with different equilibration properties. For example, models with conservations of
the charge and dipole moment [35, 36] exhibit subspaces that are non-integrable, integrable, and
those that can be mapped to the PXP model, the last of which is a prototypical non-integrable
model of the system with QMBS states [30]. Notably, it has been numerically observed that
some non-integrable subspaces obey the ETH, albeit that the thermal states here are defined
within the restricted Krylov subspaces [34]. Such appearance of non-integrable and integrable
subspaces in a single Hamiltonian is also found in some other models [33, 108], and can be
regarded as an important characteristic that often emerges in models with the HSF. This suggests
that, even if the model is non-integrable, dynamics specific to systems with integrability or
QMBS states can be observed, and thermalization does not always occur depending on the
initial states.

Although the HSF is a nontrivial phenomenon, it has actually been realized experimentally
and seems not limited to very specific settings [118, 119]. Therefore, it is important to explore
other examples that can be discussed analytically in order to build a unified understanding of
when and how the HSF occurs. In Chapter 2 of the present Thesis, we will identify the existence
of a previously unknown origin of this phenomenon, i.e., the emergence of the HSF in strong
relation to the conservation of the domain-wall number. Notably, we reveal that this novel
HSF emerges in one of the fundamental quantum models, namely the quantum Ising model, by
considering the first-order approximation in the weak-field limit of this model.

1.3.6 Ramsey measurement

In the following three sections, we introduce basic concepts on quantum metrology that we
use in this Thesis. Here, we review one of the standard sensing scheme, called the Ramsey
measurement (or the Ramsey interferometry), which we use in Chapters 3 and 4. Our goal is to
estimate the strength of an unknown static magnetic field !. We will consider using ensemble of
spins that are coupled with this target field as a probe system. The Hamiltonian of the coupling
to the target field is described by

Ĥ! =
!

2

NX

n=1

�̂z

n
. (1.16)

In this section and in Chapter 4, we consider the case in which the target is a longitudinal field,
while in Chapter 3 we will consider the case for a transverse field.

Typically, quantum sensing schemes consist of the following four steps: (i) arrange the initial
probe spins in a metrologically useful state; (ii) let them be exposed to the target field; (iii)
perform a projective measurement on the system and obtain an measurement outcome; and (iv)
estimate the value of ! from the outcomes after repeating these procedures. Figure 1.1 (a)
illustrates these steps for estimating an external field using one spin.

In the standard Ramsey measurement using a single spin, the procedures (i)–(iv) are sum-
marized as follows. In step (i), we initialize the probe spin 1 in the state | i = (|0i1+ |1i1)/

p
2,

where |0i1 (|1i1) denotes the eigenstate of �̂z

n=1 with the eigenvalue +1 (�1). In step (ii), let | i
evolve according to Ĥ! for an interrogation time Tint and obtain | (Tint)i = ei!Tint/2(|0i1 +
e�i!Tint |1i1)/

p
2. In step (iii), we perform a projective measurement P̂ = (1 + �̂y)/2 on
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Figure 1.1: (a) Basic steps in a quantum sensing scheme. Repeating the sensing steps (i)–
(iii) for M times, we obtain measurement outcomes, which is used to estimate the unknown
target field !. (b) Error propagation in the estimation of ! from outcomes of measurements
P̂ . Since the expectation value P of P̂ is determined by the target field !, we can estimate !
from P , as illustrated in the figure, when a one-to-one correspondence of ! and P is guaranteed.
However, due to the quantum fluctuation in the measurement results, the estimated value of P
has the uncertainty that decreases as �P/

p
M , where M denotes the number of outcomes and

the square root dependence comes from the central limit theorem. This uncertainty gives rise to
the uncertainty of the estimated value !est, which is obtained by dividing�P/

p
M by |@P/@!|.

| (Tint)i and obtain a binary outcome. In step (iv), after M times of the repetition of (i)–(iii),
we evaluate the expectation value of the measurements in the form

P = (1 + sin!Tint)/2, (1.17)

from which we estimate !. In particular, for small !, the presence of the target field leads to
a linear change in the average of outcomes as ! ' (2P � 1)/Tint, and thus we can obtain the
estimated value of ! from the average of the measurement outcomes.

We note here that the relative phase in Eq. (1.17) has an ambiguity, i.e., ! and !± 2⇡m/Tint

are indistinguishable in the above scheme with m being integers. When there is no information
on the range of the target field strength, another phase estimation algorithm is usually employed
to resolve this 2⇡-phase ambiguity in P [120, 121, 122, 123]. In contrast, when we a priori
have an approximate value of !, we can estimate ! using the Ramsey scheme. In this Thesis,
we consider the latter case. In this case, the relative phase is usually tuned to be close to zero
because the slope |@P/@!| is maximized at !Tint = 0 and hence the presence of a finite but
small value of ! with 0 < |!| ⌧ 1 can be efficiently detected from P [48, 46].

The uncertainty of the estimate of ! is evaluated by considering an error propagation as in
[124] as

�! =
�P��@P

@!

��pM
, (1.18)

where �P =
p

P (1� P ) denotes the standard deviation of P̂ ; see Fig. 1.1. The square-root
dependence on M can be regarded as a consequence of the central limit theorem. For a total
available time Tall, the number M is calculated as M = Tall/Tsensing, where Tsensing denotes a
combined time of the three procedures (i)–(iii), i.e., Tsensing := Tprep + Tint + Tread. Here, Tprep

denotes the duration time for initializing the probe system and Tread denotes the time to perform
the projection measurement. For simplicity, in this section, we take Tsensing = Tint by assuming
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that Tint is much longer than Tprep and Tread. We will use the expression Eq. (1.18) in Chapters
3 and 4.

If we perform the Ramsey measurement using N uncorrelated spins, the number of the
measurement outcomes is enhanced from M to NM . Then, the uncertainty is estimated as
�! = N�1/2(TallTint)�1/2, which shows the scaling N�1/2 in the number of probe spins. In fact,
it is known that this scaling is the optimal if we use separable states, which is called the standard
quantum limit (SQL).

1.3.7 The GHZ state in quantum metrology

Here we briefly review the use of the Greenberger-Horne-Zeilinger (GHZ) state [125] in quan-
tum metrology. The GHZ state is expressed as

|GHZxi :=
 

NO

n=1

|+i
n
+

NO

n=1

|�i
n

!
/
p
2, (1.19)

where |±i
n

denotes the eigenstate of �̂x

n
with the eigenvalue ±1, respectively, and the subscript

x in |GHZxi here indicates that the state is specifically designed as the superposition of the two
basis states of

P
n
�̂x

n
. This state is one of the prototypical states that have been used to realize

entanglement-enhanced sensing in quantum metorology [46]. In this Thesis, we consider using
the GHZ-type states in the Ramsey measurement.

The GHZ state can be employed to achieve a better scaling in N over the SQL for magne-
tometory without noise. Consider preparing the GHZ as our probe state in step (i) in the Ramsey
measurement that we introduced in the previous section. In this case, the state after step (ii) is
given by

| (Tint)i := ei!NTint/2

 
NO

n=1

|+i
n
+ e�i!NTint

NO

n=1

|�i
n

!
/
p
2. (1.20)

In contrast to the case in which we use separable states, this state (1.20) acquires the phase
difference that is enhanced with N . This phase can be read out by performing a projective
measurement P̂ 0 = |GHZ0

xihGHZ0
x| with

|GHZ0
xi :=

 
NO

n=1

|+in + i
NO

n=1

|�in

!
/
p
2 (1.21)

in step (iii), where the expectation value of the measurements is evaluated as

P 0 = h (Tint)|P̂ 0| (Tint)i = (1 + sinN!Tint)/2. (1.22)

Then, the slope |@P 0/@!| is enhanced with N in this case, leading to the improved uncertainty
of �! = N�1(TallTint), which is N�1/2 times better than the case of separable probe states. This
scaling N�1 of the sensitivity is called the Heisenberg limit, which is the optimal sensitivity in
the standard quantum metrology [48].

Here, we note that the projective measurement of P̂ 0 can be replaced with a parity measure-
ment. Specifically, the expression (1.22) can also be obtained by replacing P 0 with a parity mea-
surement (1+

Q
N

n=1 �̂
y

n
)/2 and applying a single-spin rotation exp [i(lN � 1)⇡�̂y

m
/4] on | (Tint)i
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before the measurement, where the integer ln denotes the remainder obtained by dividing N by
4.

The preparation of the GHZ states has been studied in numerous works. Experimentally, cre-
ation of the GHZ states using tens of spins have been demonstrated [126, 127]. The Heisenberg-
limited sensitivity using a GHZ state of a few spins is also demonstrated [42]. One simple
example of the state preparations is to perform a sequence of entangling gates to a product state
[128, 129]. This is usually feasible when the interactions among constituent spins are dynam-
ically controllable. For systems in which the interactions are always present, other techniques
can be employed, e.g., adiabatic transformations [130, 131, 132]. In Chapter 4 of the present
Thesis, we propose a new approach to create a GHZ-type state using dynamics in the quantum
Ising chain without dynamical control of the interactions between spins. We will also show that
by utilizing the same dynamics, we can perform the measurement in a simple manner, which
usually requires another gate operations or alternative methods.

1.3.8 Effect of decoherence

Entangled states including the GHZ state are generally vulnerable to various types of noises. So
far, we have assumed that the probe systems do not experience any decoherence due to the noise
from environments. In reality, any probe systems are affected by decoherence, although there
has been intensive studies attempting to delay the decoherence both theoretically and experi-
mentally. The GHZ state is fragile against noise such as dephasing, which is the most common
type of decoherence in solid-state devices. Unfortunately, it has been found that no improvement
of the scaling over the SQL is realized using the GHZ states in the presence of spatially uncor-
related Markovian noise [49, 50]. This suggests that infinitesimal noise is enough to degrade
the scaling of the uncertainty from O(N�1) to O(N�1/2) in the asymptotic limit of a large N .
(Note that the HL can still be observed for a finite N especially when the decoherence timescale
is sufficiently long compared to the time required for sensing procedures.)

However, the situation changes when specific types of noise models are assumed. For exam-
ple, if the probe spins are subjected to spatially correlated noise, the HL can be recovered in some
cases by utilizing the so-called decoherence-free subspaces [53, 133]. Furthermore, when the
noise is time-ihomogeneous, it has been found [51, 52, 134] and experimentally demonstrated
[135] that the scaling of the uncertainty can be improved up to the Zeno scaling, which gives
�! = O(N�3/4), even if the noise has no spatial correlation. These works suggest that we can
still experimentally achieve the sensitivity that is beyond the reach in any classical schemes. In
the Thesis, we will mainly focus on the unitary noise due to internal interactions, while Chapter
4 includes discussion of the effect of decoherence under time-inhomogeneous dephasing.

1.3.9 Dynamics in quantum Ising models

In this last section of the preliminaries, we review notable dynamical properties of the quantum
Ising models that have been revealed in previous studies.

Dynamics of the quantum Ising models have been investigated typically by resorting to
numerical calculations or effective descriptions, except for the case in which analytically ex-
act calculations are available. First, in the case of d = 1, the model becomes solvable by
mapping to a free fermionic system under the Jordan-Wigner transformation [136]. There
are also studies which focus on a weak transverse-field regime of the quantum Ising chain
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[137, 138, 139, 140, 141]. It has been found that so-called “quantum domino dynamics” oc-
cures in the strong homogeneous coupling limit [137], where the Hamiltonian at the leading
nontrivial contribution for small hx/Jij (see also Eqs. (1.1)–(1.3)) becomes solvable by using
the Kramers-Wannier transformation [142]. Quantum domino dynamics refers to a sequence of
spin flips which is induced by a spin flip in a chain of spins that is initially arranged in the same
z direction. We will consider utilizing this dynamics to quantum sensing in Chapter 4. Finally,
we note that adding a longitudinal field breaks the integrability of the quantum Ising chain. In-
terestingly, the appearance of the HSF has been found in this case when a large limit of the Ising
interaction and the additional longitudinal field are taken [108].

In the case of d � 2, the quantum Ising models become non-integrable in general and
numerical calculations are often used. For d = 2, in particular, the ETH is numerically checked
[143, 100] especially away from the integrable point, i.e., hx = 0, where finite-size effects
become significant. However, it is also reported that the model fails to thermalize for a certain
initial conditions from numerical calculations [144]. In addition, a recent study in Ref. [145]
pointed out that QMBS states perturbatively appears in the TFIM on a two-dimensional ladder
system in a weak field. In Chapter 2 of the present Thesis, we analytically show the absence of
thermalization for d � 2 dimensional quantum Ising model in the prethermal timescale due to
the emergent HSF in a weak transverse field.
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Chapter 2

Emergence of Hilbert space fragmentation
in Ising models with a weak transverse
field

In this Chapter, we investigate a novel dynamical feature of the quantum Ising model in d � 2
spatial dimensions. In particular, we demonstrate for the first time that novel Hilbert space
fragmentation (HSF) occurs in the effective non-integrable model for Ising models with a weak
transverse field as a consequence of approximate global conservation law of the domain-wall
number. Our results indicate the emergence of non-thermal behavior in Ising models with a
weak transverse field in a prethermal regime.

This Chapter is organized as follows. After the introduction, we introduce the model of our
interest in Sec. 2.2. We then show that our effective model exhibits the HSF in Sec. 2.3 due to
the appearance of frozen regions. We also provide some numerical evidence of non-ergodicity,
i.e., the breakdown of the strong ETH, in this model and present some remarks in Secs. 2.3.2
and 2.3.3. In Sec. 2.4, we investigate dynamical properties of some of the fragmented subspaces
of the model in two dimension, and summarize our findings and outlook in Sec. 2.5. We also
have appendices as Secs. 2.A–2.E to add details on our discussion in Secs. 2.2–2.4.

2.1 Introduction

The quantum Ising model, or the transverse-field Ising model (TFIM), serves as a minimal model
among quantum many-body systems as we have reviewed in the previous Chapter. Despite
its simplicity, the TFIM is quite difficult to investigate in higher-than-one dimensions because
of its non-integrable nature. It is particularly important for foundation of quantum statistical
mechanics to elucidate dynamical properties of the model, where little is understood due to
the rapid growth of their Hilbert-space dimension against the system size. Indeed, its quantum
thermalization has recently been investigated in relatively large systems [143, 100, 146, 147,
148]. It was found that the model does not always thermalize in some quenches with numerical
experiments [144] and that non-thermal eigenstates appear in a two-dimensional ladder system
for the first order perturbation in the weak transverse field[145].

The search for understanding quantum thermalization and the conditions behind it has been
expanded substantially with the progress in experimental techniques [94, 23, 86, 149, 78, 150,
151, 152]. One of the most important achievements is the eigenstate thermalization hypoth-
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esis (ETH) [6, 7, 8], which conjectures that all energy eigenstates are thermal and provides
a sufficient condition for thermalization in isolated quantum systems. While the ETH has
been confirmed numerically in various systems [8, 9, 10, 11, 12, 13, 14, 15], there is also
growing interest in models violating the ETH. The emergence of non-thermal eigenstates has
often been attributed to extensively many local conserved quantities due to, e.g., integrabil-
ity [93, 153, 96, 154, 24] and localization [155, 25, 156, 157, 26].

The Hilbert space fragmentation (HSF) has recently attracted much attention as yet another
mechanism of invalidating the ETH in non-integrable models [107, 34, 35, 36, 108, 109, 110, 27,
111, 112, 113, 114, 115, 116, 28]. In some models such as fractonic systems [37, 38], kinetic
constraints impose restrictions on the dynamics [34, 36, 35] and create frozen regions which
dynamically divide the systems. This generates a fragmented structure of the Hilbert space with
exponentially many nontrivial subspaces. In these cases, initial states cannot access the entire
Hilbert space and fail to thermalize. For many previous models showing the HSF, the presence
of at least two conserved quantities and the locality of the interaction were the origin of relevant
kinetic constraints.

In this Chapter, we show the emergence of non-ergodicity in a prethermal regime for Ising
models with a weak transverse field on a hypercubic lattice in dimensions higher than one. In
particular, by analytical calculations, we reveal for the first time that the effective model for the
TFIM in limit of a weak transverse field exhibits the HSF for d � 2. Notably, this effective
model has only one global conserved quantity namely, the domain-wall (DW) conservation.
The locality of the Hamiltonian and the DW conservation law leads to a kinetic constraint in
the model (Fig. 2.1 (a)), and to the appearance of frozen regions. Due to the frozen regions,
the Hilbert space is separated into exponentially many subspaces (Fig. 2.1 (b)). Consequently,
the ETH breaks down and the effective model shows non-thermalizing behavior depending on
the initial state. The emergence of frozen regions in our model is distinct from the ones in the
previously studied models which require several conserved charges for exhibiting such frozen
regions [34, 36, 35, 112]. For d = 2, we further demonstrate that rich dynamical properties are
found in subspaces inside the DW sectors, including those found in non-integrable, integrable,
and quantum many-body scarred systems [30, 27, 39].

2.2 Model

In this Chapter, we consider the TFIM on a d-dimensional hypercubic lattice. The Hamiltonian
is described as

ĤTFIM := ĤDW + hx

X

i

�̂x

i
, (2.1)

with

ĤDW := �
X

hi,ji

�̂z

i
�̂z

j
, (2.2)

where �̂µ

i
(µ = x, y, z) denotes the Pauli spin operators at site i, hi, ji indicates that the sites

i and j are neighboring, and hx denotes the strength of the transverse field. While the DW
number, i.e., the eigenvalues nDW of n̂DW :=

P
hi,ji

(1 � �̂z

i
�̂z

j
)/2, is not conserved under the

time evolution by ĤTFIM for finite hx, it is approximately conserved for exponentially long time
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Figure 2.1: (a) Schematic picture of the kinetic constraint arising from the projection operator
Q̂i in the Hamiltonian Eq. (2.4), where we take the dimension d as two. Each spin at site i on
a square lattice is flipped only when its two nearest neighbors are up and the other two spins
are down. (b) Fragmented structure of the effective Hamiltonian. In addition to the block struc-
ture due to the conservation of the domain-wall number nDW, the Hamiltonian matrix for an
appropriate basis is further block diagonalized, namely fragmented. (c) An example of frozen
regions (non-shaded) and melting regions (blue-shaded), where d = 2 and the periodic bound-
ary conditions are assumed. Red and blue arrows on each lattice site represent up and down
spins in �̂z

i
basis, respectively. The areas surrounded by dashed lines and labeled A and D ex-

emplify prototypical spin configurations in frozen regions and those labeled B and C indicate
one-dimensional melting regions which correspond to the PXP and XX models, respectively.
Frozen regions percolate the system, so that every spin in these regions is guaranteed to have at
least three nearest-neighboring spins with the same sign. [Reproduced and modified from Fig. 1
in Ref. [74].]

21



if hx is sufficiently small [158]. Indeed, from a first-order perturbation theory, we obtain the
following effective Hamiltonian [145, 159]:

Ĥe↵ := ĤDW + hxĤ1 (2.3)

with

Ĥ1 :=
X

i

�̂x

i
Q̂i, (2.4)

where the operator Q̂i projects all spin configurations onto the state space in which the sum of
the z components of the 2⇥d spins surrounding the site i is zero (see Fig. 2.1 (a)). For example,
the projector Q̂i for d = 2 is explicitly given by

Q̂i :=
5

8
� 1

16

 
X

j2ngbh(i)

�̂z

j

!2

+
3

8

Y

j2ngbh(i)

�̂z

j
, (2.5)

where ngbh(i) denotes the nearest-neighbor sites of the site i; see Appendix 2.A for the expres-
sion for other spatial dimensions.

The effective Hamiltonian Ĥe↵ approximates the dynamics of local observables governed by
the original Hamiltonian (2.1) for a certain time scale that goes to infinity as hx ! 0 [160, 161].
In Appendix 2.B, we provide numerical estimation of the timescale over which our effective
model works well.

In general, the effective Hamiltonian Ĥe↵ can be obtained as the first-order contribution in
the degenerate perturbation theory based on the Schrieffer-Wolff transformation (SWT) [162,
163, 158, 164]. In this method, the first-order contribution is formally given by projecting the
perturbative term in the Hamiltonian onto the degenerate blocks of the unperturbed Hamiltonian
[164]. This is equivalent to taking the time-independent part of the perturbative term in the
rotating frame, i.e., the secular part of the perturbative term in the interaction picture; see e.g.,
Ref. [137] for the derivation of the effective Hamiltonian for the TFIM in d = 1. In this Thesis,
we only focus on the first-order contribution. The second-order contribution is estimated to be
O(h2

x
/J) in our case, where J denotes the strength of the Ising coupling, which is taken as J = 1

in this Chapter. (The error bound for the dynamics in the effective description up to the first order
is obtained in Refs. [161, 160], which showed that the deviation from the actual dynamics grows
in time at most ⇠ O(h2

x
/J)t.) We note that the explicit form of the second-order correction to

our effective Hamiltonian Ĥe↵ is obtained in Refs. [165, 166].
Since Ĥ1 commutes with ĤDW, Hamiltonians Ĥ1 and Ĥe↵ lead to the same dynamics when

we specify a DW sector. Thus, we focus on the Hamiltonian Ĥ1 in the following. The Hamil-
tonian Ĥ1 is non-integrable as we will discuss later; it conserves the DW number and is block
diagonalized accordingly. Apart from spatial symmetries, such as inversion, the Hamiltonian
also has global chiral symmetry, i.e., Ĥ1 anti-commutes with

Q
i
�̂⌫

i
(⌫ = y, z). This symme-

try produces non-zero energy eigenvalues in pairs with opposite signs. While the Hamiltonian
also has global Z2 symmetry (i.e., Ĥ1 commutes with

Q
i
�̂x

i
), we confirm that this symmetry is

irrelevant for the emergence of HSF.
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2.3 Hilbert space fragmentation

We now demonstrate the Hilbert-space fragmentation of the Hamiltonian Ĥ1 in Eq. (2.4). We
show that each sector characterized by the number of DWs is further divided into many sub-
spaces (see Fig. 2.1 (b)), leading to the absence of thermalization in this model.

2.3.1 HSF due to appearance of frozen regions

We first show that the kinetic constraint induced by Q̂i forms regions where the spin dynamics is
frozen. More specifically, let us consider a product state |F i =

Q
i2F

|sii forming a sub-region
F on the entire lattice ⇤, where |sii is one of the eigenstates of �̂z

i
. If |F i satisfies the following

condition, we call F a frozen region: Q̂i(|F i ⌦ |Mi) = 0 for 8i 2 F and any |Mi defined on
⇤/F . The frozen regions remain unchanged under the time evolution by Ĥ1 (as well as Ĥe↵).
Meanwhile, non-frozen regions, which we call melting regions, are isolated from one another
and separated by frozen regions. Nontrivial dynamics occurs only in the melting regions. Below
we will focus on the case with d = 2 although most observations here hold for d � 3 too.

Figure 2.1 (c) exemplifies a possible spin configuration and associated frozen and melting
regions. One simple example of the frozen region is a ladder-like region along the lattice with
all spins aligning up in the z direction, percolating the system from one end to the other (the
area A in Fig. 2.1 (c)). Another example is a wider region in which not all the spins are aligned
in the same direction (the region between the areas B and C in Fig. 2.1 (c)) and surrounds some
melting regions. A spin configuration in a frozen region can also exhibit a checker-board pattern
(the area D in Fig. 2.1 (c)). In all of the cases, every spin is arranged in such a way that at
least (d + 1) of its nearest-neighbor spins have the same direction, which set the value of Q̂i to
zero. Because this condition prohibits a frozen region from having corners under the periodic
boundary conditions, we conjecture that all frozen regions percolate the system from one side to
the other; see Appendix 2.C.

Because of the frozen regions, the Hilbert space has exponentially many subspaces. For
example, a spin configuration having a frozen region cannot change into another spin configura-
tion having a different frozen region by the Hamiltonian dynamics. This splits the Hilbert space
into subspaces. Moreover, even when the arrangement of frozen regions is the same, there are
many ways in which the DWs are spatially distributed over separated melting regions. Since the
density of DW within each melting region is conserved over time, the Hilbert space is broken
up into even smaller subspaces. Each subspace is therefore characterized by the configuration
of the frozen regions and the spatial distribution of the DW density for melting regions.

2.3.2 Numerical demonstration of the absence of thermalization

The emergence of the dynamically fragmented subspaces suggests that the relaxation dynamics
of the system strongly depends on the details of the initial state. When we take an initial state
from one of the subspaces in a given DW sector and let it evolve, the state remains in this sub-
space. Let us consider, for example, two initial product states | 1i and | 2i shown in Fig. 2.2 (a),
which are slightly different in their spin configurations but have the same energy in a DW sec-
tor. Figure 2.2 (b) shows the dynamics of the expectation value of the magnetization density
from these two initial product states according to the effective Hamiltonian Ĥe↵ . Throughout
this Chapter, we perform numerical calculations under the condition that the spins constituting
the system are surrounded by fixed frozen spins pointing down. Due to the frozen region in the
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middle of the lattice, which emerges only in the state | 2i, the magnetization relaxes to substan-
tially different values for the two initial conditions, which indicates ergodicity breaking. This
example highlights that a frozen region covering a large area of the system can be converted into
a melting region with a small change in the initial configuration in this model. Similar behavior
can be also observed under the time evolution by ĤTFIM with a weak transverse field hx; see
Appendix 2.B.

,
|�1� : |�2� :

(b)

(a)

(b)

,
|�1� : |�2� :(a)

| �̃2� :| �̃1� :

(b)
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,

Figure 2.2: (a) Spin configurations of the two initial states for a N = 3⇥ 6 lattice. We assume
that the system is surrounded by fixed spins pointing down. Regions with blue shades show
melting ones. (b) Magnetization dynamics starting from the two initial product states. Time
evolution of the expectation value hM̂z(t)i := h (t)| (1/N)

P
i
�̂z

i
| (t)i shows that a slightly

different initial condition results in substantially different stationary states. [Reproduced from
Fig. 2 in Ref. [74].]

The non-ergodicity due to the HSF in this model is deeply related to the violation of the
ETH. The fragmented structure yields exponentially many non-thermal energy eigenstates. A
simple example of such non-thermal states is a variety of product states with all spins being
frozen, which constitute fragmented subspaces with the dimension one. We hereafter refer to
the states with all frozen spins as frozen states. As detailed in Appendix 2.D, we show that the
number of frozen states increases exponentially in the system size, indicating the emergence of
the HSF. We note that Ref. [145] also finds a similar frozen state for an effective model of TFIM
on a pseudo-one-dimensional ladder, but no HSF was discussed there. As another example, we
find eigenstates which have spatially inhomogeneous DW density owing to frozen regions that
act as a wall to separate different melting regions.

Figure 2.3 (a) shows the entanglement entropy of all the energy eigenstates of Ĥ1 in a fixed
DW sector for a N = 3 ⇥ 6 lattice. (When numerically diagonalizing the Hamiltonian for
Figs. 2.3 (a) and (c), we added perturbative random longitudinal fields with average strength
10�5. This is due to avoid ambiguity caused by exact degeneracy originating from unwanted
symmetries such as inversion.) We evaluate it by computing the von-Neumann entropy of the
left half of the system. In generic systems obeying the ETH, eigenstate entanglement entropies
are close to one another for close eigenenergies. In Fig. 2.3 (a), we demonstrate the violation of
the ETH in this model, that is, a broad distribution of the entanglement entropy even for close
eigenenergies and the presence of eigenstates with low entanglement. Due to the existence of
frozen regions that divide the system into isolated parts, there are many eigenstates with zero
bipartite entanglement.
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Figure 2.3: (a) Entanglement entropy of all the energy eigenstates in a DW sector for a N = 3⇥6
lattice. At its boundaries, the system is surrounded by fixed frozen spins pointing down. In all
panels (a)–(c), we take nDW = 20 out of the possible range of 0  nDW  36. We find that
the entanglement entropy exhibits a broad distribution even for a fixed energy, indicating the
breakdown of the ETH in this DW sector. (b) Distribution of the consecutive energy-gap ratio
rn [99] for the subspace without frozen regions. The statistics is calculated after resolving the
two spatial inversion symmetries along the x and y directions; see Sec. 1.3.4. Dashed line shows
the Poisson prediction and the solid line shows the GOE prediction. (c) Entanglement entropy
of the energy eigenstates in the subspace without frozen regions (extracted from the panel (a)).
[Reproduced from Fig. 3 in Ref. [74].]
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2.3.3 Remarks

We comment here on some features and implications of the findings in this section. First, let us
emphasize again that the kinetic constraint in Ĥ1 is associated with the conservation of the DW
number n̂DW alone. We have shown that frozen regions appear due to this constraint, leading
to the appearance of exponentially many frozen states in our model. The appearance of many
frozen states is often found in the previously studied models [28] as a consequence of more than
one conserved quantities [34, 36, 35, 115, 109, 112]. Our finding here demonstrates that such
nontrivial physics can occur even when there is only one apparent conserved quantity.

Second, consequences of the percolation behavior of frozen regions depend on the dimen-
sionality d. For d = 2, the system is always divided into isolated parts by frozen regions that
percolate the system and act as walls. In contrast, for d > 2, frozen regions do not always
divide the system because their shape can be, e.g., a square prism which percolates only in one
direction along the lattice. It is also worth mentioning that the Hamiltonian (2.4) for d = 1 does
not yield many frozen regions and the resulting HSF, while we show that it does for d > 1.

Finally, let us comment on implications of the possible appearance of frozen regions in
our model Ĥ1 for the validity of the ETH in DW sectors. First, we emphasize here that the
eigenstates with frozen regions can be found in every DW sector of Ĥ1 as long as the system is
sufficiently large. This implies that the non-ergodic behavior due to frozen spins can be found
for specific initial states with any finite energy density with respect to the effective Hamiltonian
Ĥe↵ = ĤDW+hxĤ1 as well as to the original TFIM in a weak transverse field. Nevertheless, we
note as follows that the possible appearance of frozen regions, although it indeed results in the
breakdown of the strong-ETH, does not always imply the breakdown of the weak-ETH (see also
Sec. 1.3.3). In fact, most of the eigenstates do not possess frozen regions and may be thermal.

Importantly, states without frozen regions typically belong to a single connected subspace
that dominates the DW sector in the thermodynamic limit. In fact, we numerically observed
that there appears a single dominant subspace consisting of states without frozen regions among
the fragmented subspaces in a typical DW sector of Ĥ1. On the other hand, the other, still
exponentially many, subspaces occupy only a vanishingly small fraction of this sector. The latter
subspaces consist of states having frozen regions including frozen states. This has been pointed
out and examined in Ref. [165]. Specifically, it is numerically shown that every DW sector,
except for sectors with sufficiently low, or high, DW densities, possesses a single subspace that
dominates the sector in the thermodynamic limit. A sector with this property is also called
“weakly fragmented”, while a sector in which the size of the largest subspace in the sector is
vanishingly small is called “strongly fragmented” [35, 167, 36]. Reference [165] showed that
our model Ĥ1 is typically weakly fragmented except for a vanishingly small parameter range of
the DW density at which the system becomes strongly fragmented.

One can then question whether the dominant subspace is thermal or not. Notably, as we
will show in the next section, the most of the eigenstates in the dominant subspace in a typical
DW sector seems thermal. That is, the level statistics and the distribution of the eigenstate
entanglement entropy for the eigenstates are consistent with those found in thermal eigenstates
of ergodic systems. This implies the validity of the weak ETH in the dominant subspace as well
as in the sector to which it belongs. Nevertheless, we will also demonstrate in the following the
emergence of atypical eigenstates in a dominant subspace that are melting but non-thermal. This
suggests that the ergodicity breaking in the system Ĥ1 does not always rely on the appearance
of frozen spins.
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2.4 Subspace properties

Now we investigate properties of the fragmented subspaces of Ĥ1. The dynamics for each
subspace is observed only in the melting regions, being characterized by their shapes and their
boundary conditions. Here we specifically consider the case for d = 2 and show that there is a
rich variety of dynamics in melting regions, including those found in non-integrable, integrable,
and quantum many-body scarred systems.

2.4.1 Non-integrable subspace

The Hamiltonian Ĥ1 itself is presumably non-integrable. To demonstrate this, let us choose
a subspace without any frozen regions in a DW sector. (We numerically find that, such a
subspace, if exists, becomes the only subspace occupying the largest Hilbert-space dimen-
sion in the DW sector.) In Fig. 2.3 (b), we perform the analysis of energy-level statistics
for this subspace. Specifically, we calculate the distribution of the consecutive energy-gap
ratio rn = min (�n/�n�1, �n�1/�n) with �n := En+1 � En, where En denotes the nth en-
ergy eigenvalue in the subspace [99]. The statistics of this ratio in Fig. 2.3 (b) shows a good
agreement with the prediction based on the Gaussian Orthogonal Ensemble (GOE), PGOE(r) =

(27/4)(r + r2)/ (1 + r + r2)5/2⇥(1 � r) (solid line in Fig. 2.3 (b)), which is distinct from the
Poisson prediction, PPoisson(r) = 2/(1+r)2⇥(1�r) (dashed line in Fig. 2.3 (b)), where⇥ is the
Heaviside step function. This result indicate that this subspace as well as the entire Hamiltonian
Ĥ1 is non-integrable.

Additionally, in the subspace without frozen regions, we numerically find the eigenstates
with low entanglement in the bulk of the spectrum. The appearance of such states is a typi-
cal characteristics of systems with quantum many-body scar (QMBS) states [30, 27, 39]. In
Fig. 2.3 (c), most of the other eigenstates with similar energies have similar values of entan-
glement entropy, in accordance with the ETH. Meanwhile, a small number of low-entangled
eigenstates appear around specific values: E = 0,±1,±

p
2 and ±

p
6, which we thus regard

as QMBS states. The origin of these states cannot be attributed to frozen regions as they are
excluded in this subspace. We find that some of them originate from specific local structures of
the adjacency graph of the Hamiltonian [168, 169]; see Appendix 2.E for details.

2.4.2 Subspaces with Integrability and quantum many-body scar states

Interestingly, we find that the one-dimensional PXP model and the XX model can be embedded
as melting regions of the model Ĥ1. First, let us discuss the emergent PXP model (see the area B
in Fig. 2.1 (c)). In this one-dimensional region, all sites are adjacent to the frozen sites with up
spins. Therefore, in this region, every spin can be flipped only when its two nearest neighbors
are down due to the kinetic constraint. Hence, the system is effectively governed by

ĤB =
X

i2B

�̂x

i

1

4

�
1� �̂z

i+1

� �
1� �̂z

i�1

�
. (2.6)

This is the one-dimensional PXP model, a well-known non-integrable model for hosting quan-
tum many-body scars [29, 30, 170, 171, 172]. This implies that one observes a long-lived os-
cillation of an observable in this one-dimensional region if we prepare an appropriate initial
configuration.
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Second, let us briefly discuss the XX model (the area C in Fig. 2.1 (c)). In this region, the
direction of the spin neighboring on the right side is opposite to that neighboring on the left side.
We then find that the following Hamiltonian governs the dynamics in this region:

ĤC =
X

i2C

�̂x

i

1

2

�
1� �̂z

i+1�̂
z

i�1

�
. (2.7)

This is the same as the effective Hamiltonian of the Ising chain in a weak transverse field [173]
and is mappable to the XX chain [142], which is exactly solvable and thus ergodicity is broken
due to the integrability. This implies that some subspaces become integrable when they only
have a specific type of melting region.

2.5 Conclusion and outlook

In this Chapter, we have rigorously demonstrated that the effective model obtained from the d-
dimensional Ising model in a weak transverse field on a hypercubic lattice exhibits the HSF for
d � 2. In particular, the kinetic constraint, which is attributed to the emergent conservation of the
DW number in this model, forms frozen regions that percolate the system. Consequently, each
DW sector fractures into exponentially many isolated subspaces, leading to the violation of the
ETH. We furthermore showed that there appear subspaces with integrability or non-integrable
subspaces with the QMBS states.

Our results indicate that nontrivial initial-state dependence is observed for prethermal dy-
namics of the Ising models in a weak transverse field. Because the TFIM in two and three
dimensions are experimentally realizable [73, 68, 174, 146, 67, 175, 176, 177], we believe that
the model serves as a novel platform for observing the signatures of the HSF, which is distinct
from previous experiments that required, e.g., tilted potentials [118, 119]. It is also worth men-
tioning that dynamically frozen spins can survive even if we consider higher-order corrections
in our effective model as is discussed in Ref. [165], implying a long prethermal life-time of
the nonergodicity in the TFIM. We leave it for future work to investigate the robustness of the
transient non-ergodicity under long-range Ising interactions, which often arises in experiments.

There are other future directions. First, given that Ĥe↵ is obtained as the perturbation in
the weak-field limit of the TFIM, it will be interesting to see how properties of the Ising model
without the transverse field, such as (classical) integrability and finite-temperature phase tran-
sition, affect physics in our model. Second, it is important to explore more about dynamical
features of our effective model, for example, transport properties in the system. In fact, some
other models with the HSF are shown to exhibit non-standard hydrodynamics physics [178].
We note, however, that the domain wall density in our effective model is observed to typically
show the ordinary diffusion in Ref. [165], using a cellular automaton dynamics technique [179].
References [166, 180] considered the effective model in the presence of an additional weak
longitudinal field and analytically investigate dynamics of smooth interfaces between regions
with up spins and down spins, i.e., domain wall, by mapping the dynamics of the interfaces to
that in one-dimensional integrable models. In this case, it has been shown that isolated domain
walls show localization, oscillation and ballistic propagation depending on the initial configu-
ration and the strength of the additional longitudinal field. Third, our findings are also relevant
to quantum technologies. For example, absence of thermalization can be utilized for quantum
sensing [181]. Indeed, in the next Chapter, we show that the HSF we find here can be employed
to perform entanglement-enhanced sensing in an interacting system.
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2.A Appendix: Expression of the projector Q̂i

Here, we present formal expression of Q̂i in arbitrary dimensions. Let us consider the system
on a hypercubic lattice in d dimensions. The operator Q̂i projects all spin configurations onto
the state space in which the sum of the z components of the 2⇥ d spins surrounding the site i is
zero. Then Q̂i can be formally given by

Q̂i =
dY

n=1

0

@(2n)2 �
 

X

j2ngbh(i)

�̂z

j

!2
1

A
.
(2n)2 . (2.A.8)

For d = 2, for example, this expression is reduced to

Q̂i =
5

8
� 1

16

 
X

j2ngbh(i)

�̂z

j

!2

+
3

8

Y

j2ngbh(i)

�̂z

j
. (2.A.9)

and therefore the Hamiltonian Ĥ1 =
P

i
�̂x

i
Q̂i in Eq. (2.4) contains five-body interaction on the

square lattice.

2.B Appendix: Time evolution in the Ising model in a weak
transverse field

The effective Hamiltonian Ĥe↵ (as well as Ĥ1) describes the prethermal dynamics of the Ising
model in a weak transverse field. Here we show the time evolution of observables according to
the original Hamiltonian ĤTFIM (2.1) with a finite transverse field hx and compare it with the
time evolution for Ĥe↵ (2.4). Note that, in the other Appendices in this Chapter, we perform
numerical calculations on the system governed by Ĥe↵ , not ĤTFIM.

Let us consider two initial product states
��� ̃1

E
and

��� ̃2

E
in a system of size 3⇥4, as shown in

Fig. 2.B.4 (a). These states have the same energy expectation value of ĤTFIM. In Fig. 2.B.4 (b),
we show dynamics from these two initial product states according to the two Hamiltonians
ĤTFIM and Ĥe↵ , where we take hx = 0.3. Specifically, we calculate the time evolution of the
expectation value of the magnetization density. There is a good agreement between the dynamics
with the original Hamiltonian and that with the effective Hamiltonian for a time range that we
have adopted.

We also see from Fig. 2.B.4 (b) that the relaxation of the magnetization in the TFIM shows
a strong dependence on the initial states. In the dynamics governed by Ĥe↵ , there are only two
melting sites and the other sites are frozen in

��� ̃1

E
as shown in Fig. 2.B.4 (a). On the other

hand, the entire system is melting in
��� ̃2

E
. This indicates that the two initial states belong to

different subspaces in the fragmented Hilbert space of Ĥe↵ . We can observe the emergence of
the fragmented structure of the Hilbert space through the distinct behavior of the magnetization
dynamics in the TFIM by preparing two different initial states.

As we decrease hx to a smaller absolute value, the Hamiltonian Ĥe↵ can approximate the
dynamics of the TFIM for a longer time. To see this, we calculate the approximation error of
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Figure 2.B.4: (a) Spin configurations of the two initial product states for a N = 3 ⇥ 4 lat-
tice, where four spins are up and the others are down. Regions with orange shades show the
melting regions with respect to the effective Hamiltonian Ĥe↵ . Sites surrounded by broken lines
indicate the location of the spin which we consider in Fig. 2.B.5. We assume that the system
is surrounded by fixed spins pointing down. (b) Time evolution of the expectation value of the
magnetization M̂z := (1/N)

P
i
�̂z

i
starting from the two initial states. Solid thin lines describe

dynamics according to the TFIM’s Hamiltonian ĤTFIM with hx = 0.3 and solid thick lines show
those of the effective Hamiltonian Ĥe↵ . [Reproduced from Fig. S1 in Ref. [74].]

the time evolution of a spin �̂z

i
,

✏(�̂z

i
, t) := |h�̂z

i
(t)iTFIM � h�̂z

i
(t)i| , (2.B.10)

where h�̂z

i
(t)iTFIM and h�̂z

i
(t)i denote the expectation values which are evolved by the Hamil-

tonians ĤTFIM and Ĥe↵ , respectively. We observe that the error ✏(�̂z

5, t) grows more slowly as
we decrease the transverse field hx as shown in Fig. 2.B.5 (a). In Fig. 2.B.5 (b), we show the
time evolutions of the approximation errors that are rescaled by a power of the strength of the
transverse field, i.e., (hx)

�↵✏(�z

5, t). We find that the rescaled errors collapse clearly when we
take ↵ = 2, especially for a relatively small time range. The linear or slower rate at which the
errors grow in Fig. 2.B.5 (b) implies that the approximation works well within a timescale that
grows with ⇠ 1/hx

3 as we decrease hx. This is consistent with the fact that the generic upper
bound on the error in Refs. [160, 161] as well as the bound that we introduce in the next Chapter
increase as ⇠ t/hx

2 (< t/hx

3) for small |hx| ⌧ 1.

2.C Appendix: Frozen regions and percolation

We here discuss that the frozen regions should percolate the system by observing that they cannot
have corners. As we explain in Sec. 2.3.1, a frozen region F satisfies the following condition:
Q̂i(|F i⌦|Mi) = 0 for 8i 2 F and any |Mi defined on⇤/F , where |F i =

Q
i2F

|sii is a product
state forming a sub-region F on the entire lattice ⇤ and |sii denotes one of the eigenstates of �̂z

i
.

We argue that a region with corners cannot be a frozen region.
Let us focus on a corner spin at site i belonging to a region with corners G as exemplified in

Figs. 2.C.6 (a) and (b) and consider its 2d adjacent sites. Among the adjacent sites, we assume
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Figure 2.B.5: Time evolution of the approximation error ✏(�̂z

i
, t) starting from the two initial

states
��� ̃1

E
(three solid lines) and

��� ̃2

E
(three broken lines) given in Fig. 2.B.4 (a) with different

values of the transverse field, hx = 0.1, 0.2 and 0.3. We calculate the errors for a spin (at the site
i = 5) in the middle of the system which is indicated by the dashed squares in Fig. 2.B.4 (a).
The lower panel (b) shows the same data in the panel (a) but are rescaled by the square of the
strength of the transverse field, i.e., (hx)

�2✏(�z

5, t). [Reproduced from Fig. S2 in Ref. [74].]
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that jd+1, . . . , j2d belong to G while j1, . . . , jd do not belong to G (see Figs. 2.C.6 (a) and (b)).
If G were a frozen region, the spins on i, jd+1, . . . , j2d would point fixed directions (up or down
in the z direction), whereas j1, . . . , jd would belong to a melting region. Since the melting
region is described by a superposition of various different spin configurations under the time
evolution by Ĥe↵ , the spin directions at every site jk (1  k  d) can be opposite to those at
the corresponding sites jk+d in one of the spin configurations, and the sum of the z components
of all adjacent spins can be zero in this particular case. This means that the spin at site i can
flip with a finite probability. This contradicts our assumption that G is frozen. In conclusion,
the above discussion indicates that if a region has corners surrounded by melting regions, the
region generally cannot be frozen. Figure. 2.C.6 (c) illustrates an example of melting of spins
on a region with corners. Even if all spins are aligned down in a region with corners (see gray-
shadowed region in Fig. 2.C.6 (c)), given that the region is surrounded by up spins, the spin flip
will occur from the corners of the region, and the spin-flip region gradually spreads. Due to
the condition on frozen spins, any frozen region should percolate the system. For a system with
d = 2 under the periodic boundary conditions, they wrap around the torus in the x or y direction.
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Figure 2.C.6: Spins around a corner of a region G (gray shaded) (a) for d = 2 and (b) for d = 3
(panel (b)). (c) Example of melting of an aligned region with corners. [Reproduced from Fig. S3
in Ref. [74].]

2.D Appendix: Exponentially many frozen states

In this section, we demonstrate that the number of fragmented subspaces increases exponentially
in the system size. In Sec. 2.3.1, we show that this system has not only frozen states but also
subspaces with both frozen and melting regions, and that it leads to the fragmented Hilbert
space. Here, we show that the number of frozen states as well as the subspaces with both
frozen and melting regions increases exponentially. First, we illustrate one way of constructing
many frozen states for a given DW number nDW = ↵totN , where ↵tot denotes DW density
with 0 < ↵tot < 2, and N denotes the system size with N � 1. For brevity we consider a two-
dimensional system with its total sites N = L2 and assume L/l 2 N for an odd integer l = O(1)
in the following. First, we divide the system into N/l2 subregions as we show in the rightmost
figure in Fig. 2.D.7. Second, we consider embedding either spin configuration (p1) or (p2) into
each divided subregion, where (p1) denotes an example of an almost staggered configuration
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and (p2) denotes an example of an all-up configuration as shown in Fig. 2.D.7. The DW density
for each configuration (p1) and (p2) is given by ↵p1 = 2 � (8l � 10)/l2 and ↵p2 = 0. In this
case, the total number of all possible combinations of the embedding is estimated as

(N/l2)!/(k!(N/l2 � k)!) = exp[O(N)], (2.D.11)

where k = O(N) satisfies ↵totN = ↵p1kl2 + ↵p2(N � kl2). This indicates that the number of
frozen states constructed in the above procedure increases exponentially in the system size N in
any DW sectors with finite DW densities.

We extend the above discussion to the case of the subspace with both frozen and melting
regions. The configurations (p1) and (p2) should be replaced following the discussion below.
As in (p1) and (p2), we consider the configurations that consist of the inner part where each spin
can point up or down and the outer frozen part surrounding it where the spins always point up.
Here, it is guaranteed that the outer spins are freezing because the spins always point up on the
edges of the adjacent subsystems in our configuration. Then, if we want to create subspaces that
are partially frozen and partially melting, we can replace (p1) or (p2) with another configuration
in which the inner parts are melting.

In addition, we can easily extend the above construction to the three-dimensional case. In-
stead of a square, we can consider a cube whose surface consists of frozen up spins. For the inner
parts, the same discussion as the two-dimensional case can be done for the three-dimensional
case.

Finally, it should be noted that the configurations illustrated here are just possible examples,
and that there are indeed far more diverse and numerous possible subspaces associated with
configurations of frozen or melting regions. We also note that Ref. [165] gives a similar analyt-
ical discussion on the number of disconnected subspaces in the entire Hilbert space, while our
discussion above focuses on the number of subspaces in each DW sector.

Figure 2.D.7: Construction of frozen states. (p1) and (p2) describe possible spin configurations
for subsystems with l⇥ l sites. We can construct frozen states by embedding either spin config-
urations (p1) [almost staggered configuration] or (p2) [all-up configuration] as the subregions of
the total system in the rightmost figure, which is divided into separated subregions. [Reproduced
from Fig. S4 in Ref. [74].]
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Figure 2.E.8: (a) Schematic picture of a zero-entanglement eigenstate |�i with the energy 1
in Fig. 2.3 (c). Red and blue arrows on each lattice site represent up and down spins in �̂z

i

basis, respectively. The green arrow represents the spin pointing to the x direction, i.e., the
eigenstate of �̂x

i
with the eigenvalue +1, and the spins surrounded by the yellow broken line

form a spin-singlet state. (b) Schematic picture of local structure of the adjacency graph that
generates the localized eigenstate |�i. Black arrows indicate that the two spin configurations are
connected by the off-diagonal elements of the Hamiltonian matrix. The states |⌧ci and |⌧fi are
connected with other states in the bulk of the graph which are not shown here. (c, d) Examples
of local graph structures that give rise to localized energy eigenstates. The graph in (c) describes
the same graph structure as in (b). Red nodes represent the basis with non-zero amplitudes in a
localized energy eigenstate with the eigenenergy E = 1 [E =

p
6] for (c) [(d)], and the numbers

associated with the red nodes represent the actual values of the amplitude (before normalization).
[Reproduced and modified from Fig. S5 in Ref. [74].]

34



2.E Appendix: Atypical states in the subspace without frozen
regions

In Fig. 2.3 (c), we find that some eigenstates show zero bipartite entanglement even in the
subspace without frozen regions. They have specific energies E = 0,±1,±

p
2, and ±

p
6 in our

calculation in Fig. 2.3 (c). Here we discuss the origin of these states. We specifically focus on the
eigenstates with non-zero energies. For the energy eigenstates with zero energy, the analysis is
difficult due to the large degeneracy. In fact, it is known that the presence of the chiral symmetry
and spatial inversion symmetry together induces exponentially many zero-energy eigenstates
[182]. However, we numerically observe that the degeneracy is not always lifted by the addition
of longitudinal random fields, which breaks the symmetries. We leave investigation of these
zero-energy states for future work.

We find that the origin of some atypical states in Fig. 2.3 (c) is well captured by an adjacency
graph of the Hamiltonian Ĥ1, where the nodes represent the computational-basis states and the
edges between the nodes describe the connections by the off-diagonal elements of the Hamilto-
nian (see Fig. 2.E.8). The atypical eigenstates correspond to wave functions that are localized
on a part of the adjacency graph, which we call localized energy eigenstates. We use the word
of “localized energy eigenstate” in order to refer to an eigenstate composed of superpositions of
a small number of computational basis states. Similar states with low entanglement which are
associated with the structure of the adjacency graph have been discussed recently [168, 169].
Localized eigenstates in a similar setting are also studied for example in Refs. [183, 184, 185],
where the graph in these context is defined on the real space.

Figure 2.E.8 (a) describes one of the localized eigenstates with E = 1. In this case, the
state |�i in Fig. 2.E.8 (a) is identified as a superposition of four computational basis states.
These basis states are connected to other basis states in the subspace on the adjacency graph
as we illustrate in the diagram in Fig. 2.E.8 (b). The part of the adjacency graph is described
in Fig. 2.E.8 (c), where red nodes represent the basis states with non-zero amplitudes in the
localized energy eigenstate |�i. (Note that the diagram in Fig. 2.E.8 (b) represents the same
state described by the graph in Fig. 2.E.8 (c).)

In general, when Ĥ1 acts on one of the basis states, it becomes a superposition of several
basis states. However, the state |�i is still localized on the graph due to a destructive interfer-
ence on the other nodes, which allows |�i to be an eigenstate of Ĥ1. Such eigenstates that are
expanded by only a few number of basis states have only limited amount of entanglement and
even show zero entanglement entropy when the bipartite cut is set suitably.

There are various types of local structures of the adjacency graph which allow for localized
eigenstates. Figure 2.E.8 (c) and (d) show two examples of such structures. As is exemplified by
the state |�i, localized eigenstates appear when a part of the adjacency graph of the Hamiltonian
has a structure that induces the destructive interference. Indeed, low-entangled eigenstates with
E = ±1, ±

p
2, and ±

p
6 (and a part of the eigenstates for E = 0) in Fig. 2.3 (c) are identified as

localized eigenstates on the adjacency graph with local structures described either in Fig. 2.E.8
(c) or (d).

Finally, from numerical simulations, we observe oscillatory behavior associated with the
localized eigenstates, which is a typical signature of quantum many-body scarred systems [29,
30, 170, 186, 187]. In Fig. 2.E.9 (b), we show dynamics of the magnetization starting from two
initial states in Fig. 2.E.9 (a). Specifically, we calculate the time evolution of the expectation
value of the magnetization density for a system surrounded by fixed down spins. For typical
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initial states such as the state
�� 1

↵
in Fig. 2.E.9 (a), the system rapidly relaxes to a steady state.

However, for the initial state
�� 2

↵
in Fig. 2.E.9 (a), namely the state |⌧ai in Fig. 2.E.8 (b), which

has a large overlap with the localized eigenstate |�i, we observe a long-time oscillation; see
Fig. 2.E.9 (b). This result, combined with the other results in this Chapter, suggests that our
model possesses various types of quantum many-body scar states in some subspaces such as
localized eigenstates and those mappable to the PXP model [30, 170, 171, 172].

,
|�1� : |�2� :

(b)

(a)

(b)

,
|�1� : |�2� :(a)

| �̃2� :| �̃1� :

(b)

(a)

,

Figure 2.E.9: (a) Spin configurations of the two initial states. We take the fixed boundary
condition surrounded by down spins. Note that the state

�� 2

↵
corresponds to the state |⌧ai

in Fig. 2.E.8 (b). (b) Magnetization dynamics for two initial product states according to Ĥ1.
We numerically calculate the evolution of the expectation value of the magnetization M̂z :=
(1/N)

P
i
�̂z

i
for a N = 3⇥ 6 lattice. [Reproduced from Fig. S6 in Ref. [74].]
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Chapter 3

Quantum Metrology Protected by Hilbert
Space Fragmentation

In this Chapter, we consider a new approach to perform quantum sensing using a probe systems
with always-on interaction. Specifically, we propose an entanglement-enhanced sensing scheme
that is robust against spatially inhomogeneous always-on Ising interactions. Our strategy is to
tailor quantum coherent dynamics by employing the Hilbert-space fragmentation (HSF) in the
quantum Ising models, which we have studied in the previous Chapter. We analytically show that
the emergent HSF enables us to design a stable state in which a part of the spins is effectively
decoupled from the rest of the system. Using the decoupled spins as a probe to measure a
transverse field, we demonstrate that the Heisenberg limit is achieved without being obstructed
by thermalization.

This Chapter is organized as follows. First, we give the introduction of this Chapter in
Sec. 3.1. Then in Sec. 3.2, after introducing the model and notations in this Chapter, we discuss
how the presence of interactions affect sensitivities of conventional sensing schemes. We intro-
duce our quantum sensing scheme in Sec. 3.3, which uses the HSF that approximately appears
in a weak transverse field to protect desired coherence in the probe state. Section. 3.3.2 briefly
discusses the sensitivity of our scheme for a finite target transverse field in an analytical way. We
then mention applicability of our scheme and propose an approach for the state preparation in
Sec. 3.4, before concluding this Chapter in Sec. 3.5. We also have appendices as Secs. 3.A–3.C
to give analytical derivations on our evaluations in Secs.3.2.2 and 3.3.2

3.1 Introduction

Taming entanglement and coherence of a multiple qubit system is a crucial task in today’s
quantum technology. One of the most notable applications featuring quantum advantage is
quantum metrology, in which entanglement enables enhanced sensitivity in evaluating exter-
nal fields [188, 189, 46]. For a given number N of probe spins to measure the fields, the un-
certainty in the estimation can be reduced in proportion to N�1 for entangled states, which
is called the Heisenberg limit (HL). In contrast, the corresponding scaling for separable states
becomes only N�1/2, which is known as the standard quantum limit (SQL). Due to the funda-
mental and practical interests, quantum metrology has extensively been studied both theoreti-
cally [190, 191, 192, 49, 193, 194] and experimentally [195, 196, 197, 198, 199].

One major challenge for quantum metrology is to precisely control the dynamics of many-
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body interacting systems. On the one hand, interactions among qubits are necessary for prepar-
ing entangled states. On the other hand, complicated interactions, which are in general spatially
inhomogeneous in actual experiments, make the many-body system thermalize. In fact, recent
studies on quantum dynamics elucidate that even isolated system can thermalize due to the
eigenstate thermalization hypothesis (ETH) [6, 7, 92, 8], which states that every energy eigen-
state becomes locally thermal. This effect of thermalization [57] would spoil the sensitivity
more severely when target magnetic fields become weaker than the interactions.

To overcome this unwanted effect of interactions, several approaches have been proposed.
One possible approach is the dynamical decoupling, in which we actively perform a sequence
of pulses to eliminate unwanted terms in Hamiltonians [200, 201, 202, 203, 58]. In general,
this method demands a large number of precise pulses applied to the probe system. Another
recent approach [181] that does not involve active operations is to utilize quantum many-body
scars [29, 30, 204, 39, 205], which are non-thermalizing eigenstates in certain interacting Hamil-
tonians. However, the approach is based on Hamiltonians with fine-tuned interactions and hence
susceptible to, e.g., spatially inhomogeneous perturbations.

Hilbert space fragmentation (HSF) is another novel mechanism that prohibits thermalization
in interacting non-integrable systems and has gathered recent attention [34, 35, 36, 27, 28, 116,
39]. In some models with kinetic constraints, the Hilbert space is fractured into exponentially
many invariant subspaces, which leads to non-ergodicity (see also Sec. 1.3.5). This phenomenon
also appears in an effective model that describes the transverse-field Ising model (TFIM) in
the limit of a weak field [74, 165, 166], as we have shown in the previous Chapter. In this
model, eigenstates can involve “frozen regions,” in which spins in the z direction cannot be
dynamically flipped. The eigenstates with frozen regions appear due to a constraint arising from
the emergent conservation of the interaction energy in the weak-field limit and break the ETH
and thermalization. Notably, the structure of the HSF does not rely on the translation invariance
and fine-tuning of the Hamiltonian.

In the present Chapter, we propose a novel entanglement-enhanced sensing scheme in a
strongly interacting inhomogeneous Ising model, in which the emergent HSF protects the rele-
vant quantum coherence against interactions. Our strategy is to design a metrologically useful
state arranged as in Fig. 3.1 (a,b), in which the probe spins are embedded in the ancillary spins.
This state belongs to one of the fragmented subspaces in the TFIM in the weak-field limit, where
the HSF emerges as shown in Fig. 3.1 (c) for the leading order approximation, and thus evades
fast thermalization. More concretely, the probe spins undergo tailored coherent dynamics just
with additional bias fields, being decoupled from the ancillary spins that are dynamically frozen.
We rigorously show that our scheme reaches the Heisenberg-limited sensitivity in estimating the
target transverse field for sufficiently strong interactions. Our method is robust under various
perturbations, such as inhomogeneity, additional longitudinal fields, and certain changes in the
lattice structure and spatial dimensions.

3.2 Quantum sensing in an interacting system

3.2.1 Model and the Ramsey sensing scheme

We consider a system of spin-1/2 particles (qubits) with always-on Ising interactions between
them. We here assume that the spins are arranged on a square lattice, although generalization
to higher dimensions and other types of lattices are straightforward. The system is exposed to
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Figure 3.1: (a) Schematic of how we split the system into probe spins and ancillary spins for
our quantum sensing scheme. The blue sites surrounded by the dotted lines represent the probe
spins, and the other gray sites correspond to the ancillary spins. (b) Spin configuration around
a probe spin in (a), which induces dynamical freezing of the ancillary ones. Each ancillary spin
is an eigenstate of �̂z

i
, which corresponds to either spin-up or down state. (c) Schematic picture

of the emergent Hilbert space fragmentation (HSF) in our transverse-field Ising model in the
weak-field limit. Emergent conservation law of the number of domain walls block-diagonalizes
the Hamiltonian, which is further block-diagonalized due to the HSF. (d) Illustration of the
GHZ state on a square lattice, which is used as a probe state in the conventional approach.
[Reproduced and modified from Fig. 1 in Ref. [75].]
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a weak target magnetic field with magnitude !x, which we try to estimate by quantum sensing.
The Hamiltonian is then given by

ĤTFIM = Ĥ!x + Ĥint, (3.1)

Ĥ!x =
!x

2

X

i

�̂x

j
, (3.2)

Ĥint = �
X

hi,ji

Jij�̂
z

i
�̂z

j
. (3.3)

where hi, ji indicates that the sites i and j are nearest neighbors and we set ~ = 1. Here,
Jij = J̄ + �Jij denotes the Ising coupling constant, where J̄ does not depend on hi, ji. We
assume that |�Jij| does not exceed |J̄ |/2, i.e., maxi,j 2|�Jij|/|J̄ | =: k < 1. Without loss of
generality, we consider the ferromagnetic case hereafter, namely J̄ > 0.

Throughout this Chapter, we adopt the Ramsey scheme [46] summarized as follows: (i) we
prepare initial probe spins in a metrologically useful state; (ii) we let them exposed to the static
target field, whose Hamiltonian is given by Ĥ!x , for an interaction time Tint; (iii) we perform a
projective measurement described by an operator P̂s and obtain an outcome; and (iv) we estimate
the value of !x from the outcome obtained by the repetition of (i)-(iii). The uncertainty in the
estimation of !x under this scheme is calculated as

�!x =
�Ps��� @Ps

@!x

���
p
M

, (3.4)

where Ps = hP̂si denotes the expectation value of P̂ , which corresponds to the probability for
the projection onto the desired basis to successfully occur. Here, �Ps =

p
Ps(1� Ps) denotes

the standard deviation of P̂s and M denotes the number of repetitions of the measurements [5].
For a total available time Tall, the number M is calculated as M = Tall/Tsensing, where Tsensing

denotes a combined time of the three procedures (i)-(iii) of the sensing scheme. For simplicity,
below we take Tsensing = Tint by assuming that Tint for (ii) is much longer than the duration for
(i) and (iii).

To begin with, let us consider quantum sensing in the absence of the interaction Ĥint. In this
case, we can estimate !x with the HL by preparing the Greenberger-Horne-Zeilinger (GHZ) state
|GHZxi :=

�N
N

j=1 |+ij +
N

N

j=1 |�ij
�
/
p
2 as a probe state [125, 206] in (i), where |±ij denote

the eigenstates of �̂x

j
with eigenvalues ±1 and N denotes the number of spins. After this initial

state acquires the relative phase !xNTint through (ii), we perform a projective measurement
P̂ 0

s
= |GHZ0

xihGHZ0
x| with |GHZ0

xi :=
�N

N

j=1 |+ij + i
N

N

j=1 |�ij
�
/
p
2 in (iii), and finally

we estimate !x from the relation hP̂ 0

s
i = (1/2)(1 + sin (!xNTint)). Throughout this Chapter,

we assume that the target field !x is weak and satisfies !xNTint = O(N0) ⌧ 1. We also
assume Tint = O(N0) unless otherwise mentioned. The uncertainty �!x of the estimation is
then calculated from [Eq. (3.4)] as �!x = N�1(TintTall)�1/2. This demonstrates that the HL is
achieved by using the GHZ state in the absence of the internal interaction Ĥint.
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3.2.2 Sensitivity in a conventional sensing scheme in the presence of the
interaction

However, the sensitivity decreases when Ĥint is taken into consideration. Due to the flipping of
spin states from |±ii|±ij to |⌥ii|⌥ij caused by Ising-type interactions of Ĥint, the probe state
after (ii) no longer remains in a simple superposition of

N
N

j=1 |+ij and
N

N

j=1 |�ij . To show the
destructive effect of the interaction, we show in Fig. 3.2 (a) the time evolution of the dynamical

fidelity Fd(t) :=
���hGHZx|eiĤ!x te�iĤTFIMt|GHZxi

���
2

, which quantifies the difference between the

ideal state evolved by Ĥ!x and the actual state evolved by ĤTFIM with nonzero interaction Ĥint.
The rapid decay of Fd(t) in Fig. 3.2 (a) implies that the probe state is unstable under the effect of
the interaction. The decay rate increases as the interaction becomes stronger. This implies that
naive sensing with the GHZ states, as illustrated in Fig. 3.1 (d), will be challenging, especially
under the strong always-on Ising interactions.

= 0

� 0

|GHZx�

|��
|GHZx�

N�1

(�N )�1
J̄1/2N�3/4

��Scaling of State�Hint

(a) (b) (a) (b)
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� 0

|GHZx�

|��
|GHZx�

N�1

(�N )�1
J̄1/2N�3/4

��Scaling of State�Hint Name

HL

HL

Zeno

Figure 3.2: (a) Decay of the dynamical fidelity Fd(t), which compares the time evolutions
from the GHZ state |GHZxi with respect to Ĥ!x and ĤTFIM for three values of J̄ . We use
an N = 3 ⇥ 4 square-lattice system surround by fixed down spins. Spatial fluctuations of the
interaction �Jij are generated from Gaussian random variables by setting the mean and the
variance as zero and 0.3J̄ , respectively. We fix the transverse field !x = 0.4 in all of the cases.
(b) The asymptotic dependence of �!x on N and the interaction strength J̄ for three Ramsey
schemes. We compare the sensing schemes using initial states that are explained in the caption
of Fig. 3.1, where we take | P

probei = |GHZP

x
i for the state | i here. [Reproduced and modified

from Fig. 2 in Ref. [75].]

We note that it is possible to achieve a sensitivity beyond the SQL but below the HL with
our model using the GHZ state. The idea is to appropriately tune the interaction time Tint in
the step (ii) so that the effects from the interaction are minimized. Specifically, if we decrease
Tint as Tint = O(J̄�1N�1/2) for increasing N , the uncertainty in the estimation scales as �!x =
O(J̄1/2N�3/4); see Appendix 3.A for more detail. This scaling is called the Zeno scaling [207,
208, 198]. While the scaling exceeds the SQL, it is still unsatisfactory since the sensitivity
becomes severely worse as the interaction strength increases.
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3.3 HSF-protected quantum metrology

3.3.1 Description of our sensing scheme

We now illustrate our entanglement-enhanced sensing scheme that is robust against strong always-
on-Ising coupling with spatial inhomogeneity. Instead of using all spins as a probe (see also
Fig. 3.1 (d)), we design a state such that a fraction of probe spins are embedded in the ancillary
spins as shown in Fig. 3.1 (a). Specifically, we take the following initial state in step (i):

| i := | P

probei ⌦ |FAi (3.5)

Here, | P

probei denotes a state of ↵N probe spins, and |FAi denotes that of (1 � ↵)N ancillary
spins, where we take a constant ↵ as ↵ = 1/11. The superscript P (A) indicates that the state
is defined on probe (ancillary) spins. Figure 3.1 (a) illustrates how we divide the system into
these two groups of spins. Each probe spin is interspersed among the ancillary spins that are
in the eigenstates of �̂z

j
. Figure 3.1 (b) illustrates the spin configuration of the ancillary spins

around each probe spin in Fig. 3.1 (a). Each probe spin is surrounded by ancillary spins with
two up spins (see the sites j1 and j3 in Fig. 3.1 (b)) and two down spins (see the sites j2 and j4
in Fig. 3.1 (b)).

Notably, our model exhibits the HSF in the weak-transverse-field limit, which makes | i
a non-ergodic state with |FAi being a frozen region and leads to the coherent time-evolution
of | P

probei in step (ii). Here, “frozen” means that the spins cannot be flipped under the time
evolution. In particular, we show that the following approximation holds for any observable P̂s

with large J̄/!x:

h |eiĤtotaltP̂se
�iĤtotalt| i ' h |eiĤP

!x tP̂se
�iĤ

P
!x t| i, (3.6)

where Ĥtotal = ĤTFIM + ĤP

shift and

ĤP

!x
:=

!x

2

X

i2probe

�̂x

i
, (3.7)

ĤP

shift := �
X

i2probe

hz

i
�̂z

i
. (3.8)

Here, “i 2 probe” indicates that the sum is taken over all probe spin sites. As detailed below, we
tune hz

i
in ĤP

shift so that we can cancel out effective longitudinal fields on probes that arise due to
Ĥint. Equation (3.6) suggests that the probe spins are decoupled from the rest of the interacting
but dynamically frozen spins and exposed only to the target field ĤP

!x
.

To understand Eq. (3.6), we first note that a spin flip by Ĥ!x with small !x is suppressed
when the flip causes a large change in the energy due to Ĥint + ĤP

shift. For simplicity, let us
start from the case with �Jij = hz

i
= 0 and !x/J̄ ! 0. In this case, the large interaction

Ĥint leads to a constraint that a spin can flip only when two surrounding spins are up and the
other two surrounding spins are down. This constraint results in the occurrence of the HSF
as studied in Refs. [74, 165]; the effective Hamiltonian has a block-diagonal structure by the
emergent conservation law of the domain-wall (DW) number n̂DW :=

P
hi,ji

(1 � �̂z

i
�̂z

j
)/2,

which is further fragmented nontrivially as shown in Fig. 3.1 (c). This suggests non-ergodicity
even within each sectors.
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We next argue that a similar HSF emerges for �Jij 6= 0 and that | i corresponds to a state
in one of the fragmented subspaces. More concretely, |FAi constitutes a frozen region; from
the construction given in Fig. 3.1 (b), every ancillary spin is always surrounded by at least three
down spins. Then, the action of Ĥ!x is energetically suppressed on this region even for nonzero
�Jij , since the magnitude of the fluctuation �Jij is assumed not to exceed J̄/2. Thus, |FAi
becomes dynamically stable in the limit of !x/J̄ ! 0, independent of the state of the probe
spins | P

probei. Due to the constraint, such a frozen region appears in other configurations as
well, leading to exponentially many invariant subspaces, which means the occurrence of the
HSF. Our designed initial state | i then belongs to one of such subspaces and time-evolves
only within it; see Figs. 3.1 (a) and (c). Note that this is in contrast to the GHZ state of all
spins, i.e., |GHZxi :=

�N
N

j=1 |+ij +
N

N

j=1 |�ij
�
/
p
2, which contains a superposition of many

computational basis states that spread across the fragmented subspaces; see Figs. 3.1 (c) and (d).
We now discuss the origin of ĤP

!x
in Eq. (3.6), focusing on probe spins. Since each probe

spin is surrounded by two up and two down frozen spins, the probe spin is effectively exposed to
an effective longitudinal magnetic field h̃z

i
= ��Jij1 +�Jij2 ��Jij3 +�Jij4; see Fig. 3.1 (b).

Assuming that h̃z

i
is known from calibration, we can cancel the effective field by choosing hz

i
=

�h̃z

i
in Eq. (3.8). Therefore, Ĥtotal acting on our state | i is reduced to ĤP

!x
for |!x/J̄ | ⌧ 1

(specifically under the first-order approximation in the degenerate perturbation theory based on
the Schrieffer-Wolff transformation (SWT) [162, 163, 158, 164]; see Sec. 2.2 in the previous
Chapter).

In our scheme, we perform the Ramsey sensing (i)–(iv) with the following two modifica-
tions. First, we only use the probe spins as a resource of metrology and make the other spins
ancillary. In other words, we prepare | i with | P

probei = |GHZP

x
i in (i) and readout outcomes

by using a projective operator P̂s = |GHZ0P

x
ihGHZ0P

x
| ⌦ ÎA in (iii). Second, we additionally

apply the shift field ĤP

shift to the probe spins during the exposure (ii). This shift field is used
to cancel out the effective fields on probe spins originating from interactions with the ancillary
spins, which are dynamically frozen for !x/J̄ ! 0. In this limit, Eq. (3.6) is exact, and the
uncertainty is calculated as �!x = (↵N)�1(TintTall)�1/2, which demonstrates the Heisenberg-
limited sensitivity. Our scheme does not require turning off the interactions or controlling Tint

during the interrogation process.
The table in Fig. 3.2 (b) summarizes three schemes that we introduced in this Chapter. The

sensing scheme that uses the state |GHZxi of all spins would not achieve the HL in the presence
of the Ising interactions although it can show an entanglement-enhanced sensitivity. In contrast,
our scheme that uses | i (the state |GHZP

x
i only for probe spins) can indeed achieve the HL

under large enough couplings J̄/!x. (Note that the Zeno scaling for the case with Ĥint 6= 0
and the state |GHZxi is achieved by shortening the duration of time Tint as N or J̄ increases, in
contrast to the other two cases, where Tint is assumed to be a constant.)

3.3.2 Stability for finite !x/J̄

While the freezing of the ancillary spins discussed above is exact only for !x/J̄ ! 0, we here
analytically show that the HL is still achieved in our scheme even for sufficiently small but finite
!x/J̄ . To see this, we first evaluate the uncertainty of !x by taking account of the deviation ✏(t)
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from the appoximation in Eq. (3.6) (see Appendix 3.B for the derivation):

�!x =
1

aNTint

 
hP̂siactual(1� hP̂siactual)

M
+ |✏(Tint)|2

!1/2

, (3.9)

where ✏(t) := hP̂siactual�hP̂sie↵ denotes the difference between hP̂siactual := h |eiĤtotaltP̂se�iĤtotalt| i
and hP̂sie↵ := h |eiĤP

!x tP̂se�iĤ
P
!x t| i. When ✏(Tint) = O(N0), the uncertainty �!x scales as

O(N�1) and the HL remains to be achieved.
Now, we can analytically show that ✏(Tint) = O(N0) from the following inequality (see

Appendix 3.C for the derivation):

|✏(Tint)| 
2N!x

Jg
+ 2

�
eN!x/Jg � 1

�
N!xTint, (3.10)

where Jg = mini

h
4J̄ �

P
j2hi,ji

|2�Jij|
i

� 4(1 � k)J̄ > 0 is evaluated from the min-
imum energy change associated with flipping of ancillary spins (remember the assumption
maxi,j 2|�Jij|/J̄ = k < 1). Since N!xTint = O(N0) ⌧ 1 and Tint = O(N0) are assumed here
as a typical setting in Ramsey-type sensing with GHZ states, we have ✏(t) = O(N0). Further-
more, the deviation becomes |✏(Tint)| ⌧ 1 for N!x ⌧ Jg, which shows that strong interaction
is beneficial. We note that the bound in Eq. (3.10) is derived by generalizing the error bound
discussed in Refs. [161, 160, 209]. Equation (3.10) also shows that the effective description of
the dynamics in the subspace becomes valid for the intermediate timescale for a weak target
transverse field. That is, our sensing scheme exploits the HSF that emerges in a prethermal
regime [158, 77] before evolving into the final equilibrium.

3.4 Discussion

Our scheme leads to better sensitivity for stronger interactions, in stark contrast to conventional
methods as summarized in Fig. 3.2 (b). Importantly, our scheme is robust against the inhomo-
geneity of the interaction. The mechanism of the approximate freezing is also applicable for
finite-range farther-neighbor interactions, cubic or triangular lattices, as well as the additional
presence of weak longitudinal fields. This is due to the broad applicability of the mechanism of
the suppression of spin flips under a weak transverse field and strong Ising interactions. There-
fore, our HSF-protected sensing scheme can be generalized for these situations.

Finally, we describe a possible procedure for creating the entangled state |GHZP

x
i ⌦ |FAi

as follows. We first prepare the GHZ state |GHZxi using the entire spins. by, e.g., adiabatically
transforming a trivial state into the state |GHZzi as suggested in Refs. [130, 132, 210] and then
rotating every spin by the angle ⇡/2. Note that the state |GHZzi corresponds to a superposition
of the two ground states of the system Hamiltonian Ĥint in the ferromagnetic case. Then we
obtain our desired state after performing the projection P̂ = IP ⌦ |FAihFA| to |GHZxi, which
is equivalent to measurement feedback control on the ancillary spins; we measure the ancillary
spins in the z basis and then apply single-spin rotations in the direction that depends on the
measurement results.
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3.5 Conclusion

In this Chapter, we have proposed a quantum sensing scheme for a system with spatially non-
uniform always-on Ising interactions. Specifically, we show that we can robustly perform
entanglement-enhanced sensing by designing a tailored state that evades thermalization due to
the emergent Hilbert-space fragmentation (HSF). In this state, the entangled probe spins are de-
coupled from the rest of the system. This decoupling is due to a kinetic constraint that approxi-
mately emerges in the prethermal regime for strong Ising couplings and allows us to measure a
transverse field stably. Our scheme establishes a novel approach to realize quantum sensing in
a quantum many-body system with spatial inhomogeneity by using no dynamical controls. It is
rigidly applicable even when the lattice shape and spatial dimensions are altered as long as the
HSF structure offers us a way to control coherent dynamics without thermalization.

Here, we have introduced a concept of designing quantum states that avoid many-body ther-
malization by the HSF. Beyond quantum metrology, this HSF-protected manipulation of quan-
tum dynamics would be advantageous for other quantum technologies as well, for which re-
taining entanglement in the presence of interactions is crucial. Finally, it is worth mentioning
that although we assumed perfect state preparation in this chapter, preparation of the macro-
scopically entangled state is still another challenge in quantum metrology, especially under the
presence of always-on interactions. In the next chapter, we will discuss an approach that ad-
dresses this problem in a slightly simpler setting, assuming again that the Ising interactions are
always present among the probe qubits.

3.A Appendix: Derivation of the Zeno scaling

We discuss a way to obtain the sensitivity better than the standard quantum limit (SQL) in our
system just by controlling the interaction time Tint, which turns out to be below the Heisenberg
limit (HL). Specifically, we show that by sufficiently shortening Tint, we can suppress the effect
of the residual interaction Ĥint and obtain the Zeno scaling �!x / N�3/4 [207, 208, 198].
Although this scaling of N�3/4 is worse than the HL, it is better than the SQL. We consider
preparing a state |GHZxi and let it evolve for time Tint according to Ĥ in [Eq. (3.1)]. Assuming
that Tint is sufficiently small and that the perturbation series converge, the expectation value of
the projective measurement P̂s in this case is evaluated up to the second order in the form

Ps =
1

2
+

1

2
!xNTint �

1

2
T 2
int

X

hi,ji

J2
ij
+O(T 3

int). (3.A.11)

Note that we can make the approximation 1
2

P
hi,ji

J2
ij

⇠ J̄2N for simplicity. The expression
(3.A.11) shows that the expectation value of the measurement outcomes is affected by the pres-
ence of the interaction term Ĥint. On the one hand, as this additional term due to the interaction
increases quadratically in time Tint, the standard deviation

p
Ps(1� Ps) increases for large Tint,

which contributes to the deterioration of the sensitivity. On the other hand, as we increase the
interaction time, |@Ps/@!x| becomes large, which contributes to the enhancement of the sensi-
tivity. These suggest that there is an optimal interaction time Tint for the sensitivity �!x.

Now we evaluate the optimal sensitivity by shortening the interaction time Tint. Let us take
Tint = ⌧N�1/2��J̄�1�� , where ⌧ , � and � are constants with ⌧ ⌧ 1. First, we can see that
if either � or � were negative, the second-order term in Eq. (3.A.11) would diverge as we take
either N ! 1 or J̄ ! 1. Therefore, we take �, � � 0 below. To make the situation similar to
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the main text, we again assume that !x = O(N�1) and set !x = !0N�1, where !0 is a constant.
Then we can evaluate the uncertainty using Eq. (3.4) and Eq. (3.A.11) as follows:

�!x =
2

T 1/2
all

 
1

4
⌧�1J̄1��N�3/2�� � 1

4
!2
0⌧ J̄

�1+�N�5/2+�

+ !0⌧
2J̄2�N�2+2� � J̄1+3�⌧ 3N�3/2+3�

!1/2

. (3.A.12)

For large N , this is minimized when we take � = 0. In this case, � = 0 gives the optimal sen-
sitivity. Noting that the first term in the parenthesis dominates in Eq. (3.A.12), we can estimate
the optimal scaling of the uncertainty as

�!x ' (J̄/⌧Tall)
1/2N�3/4 = O(N�3/4), (3.A.13)

which demonstrates the Zeno scaling. Note that the uncertainty increases as J̄ becomes larger
in this case. This is consistent with our observation in Sec. 3.2.2, which shows a faster decay of
the dynamical fidelity for a larger J̄ in case of using the state |GHZxi as the initial state.

3.B Appendix: Derivation of the uncertainty Eq. (3.9)

We evaluate the uncertainty �!x by taking into account the deviation in the approximation
Eq. (3.6) with finite !x/J̄ . For this purpose, let us remind that !x in our scheme is estimated from
a sequence of measurement outcomes. Suppose that we obtain M outcomes by repeating the step
(i)–(iii) using our scheme. Let us define {m1,m2, · · · ,mM} with mj 2 {0, 1} as the sequence
of the measurement outcomes and SM = (1/M)

P
M

j=1 mj as the average of mj . We estimate the
unknown parameter !x from SM as follows. When M goes to infinity, the average SM is given by
the quantum expectation value of the measurement hP̂siactual := h |eiĤtotalTintP̂se�iĤtotalTint | i.
Although calculating the !x-dependence of hP̂siactual analytically is difficult in general, we made
the approximation Eq. (3.6) in the main text, which can be recast to the following:

hP̂siactual = (1/2) (1 + sin (↵N!xTint)) + ✏(Tint), (3.B.14)

where ✏(Tint) := hP̂siactual � hP̂sie↵ is the deviation in the approximation due to finite !x/J̄
and we substitute Tint for t in Eq. (3.6). As discussed in the main text, when N!x ⌧ J̄ ,
✏(Tint) becomes small. Assuming N!x ⌧ T�1

int as well, we can approximate Eq. (3.B.14) as
hP̂siactual ' (1/2) (1 + ↵N!xTint). Let us introduce !x

est

M
:= (1/↵NTint)(2SM � 1), where

!x
est

M
denotes the estimated value of !x in our scheme. Importantly, in the limit of large M and

J̄ , we obtain !x = !x
est

M
. On the other hand, !x

est

M
does not necessarily coincide with the actual

!x when ✏(t) or M is finite. Below we consider this case and evaluate the uncertainty. Assuming
N!xTint ⌧ 1, we obtain !x '

⇣
2hP̂siactual � 1� 2✏(Tint)

⌘
/(↵NTint) from Eq. (3.B.14), and
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then the uncertainty is calculated as [211, 212]

�!2
x
:= h(!x

est

M
� !x)

2istat (3.B.15)

=

* 
2SM � 1

↵NTint
� 2hP̂siactual � 1� 2✏(Tint)

↵NTint

!2+

stat

(3.B.16)

=
4

↵2N2T 2
int

⌧⇣
SM � hP̂siactual

⌘2
+ ✏(Tint)

2

�

stat

(3.B.17)

=
4

↵2N2T 2
int

 
hP̂siactual(1� hP̂siactual)

M
+ ✏(Tint)

2

!
, (3.B.18)

where h·istat is the statistical average of the outcomes mj . In the last line, we used hmjistat =
hP̂siactual and hmimjistat = 0 for i 6= j to derive

⌧⇣
SM � hP̂siactual

⌘2�

stat

=

*
X

i

X

j

⇣
mi � hP̂siactual

⌘⇣
mj � hP̂siactual

⌘+

stat

/M2

(3.B.19)

=

*
(1/M)

X

i

⇣
mi � hP̂siactual

⌘2
+

stat

/M (3.B.20)

= hP̂siactual(1� hP̂siactual)/M. (3.B.21)

This evaluation means that �!x consists of the statistical error coming from finite M and the
systematic error coming from finite ✏(Tint).

3.C Appendix: Derivation of the error bound Eq. (3.10)

[Note: The key idea of the proof in this section is obtained by Dr. Ryusuke Hamazaki.]

Here we show how one can derive the upper bound given in Eq. (3.10). We introduce the
following theorem, which is a generalized version of the bound in Ref. [160].

Theorem 3.C.1 (Universal error bound) Consider a Hamiltonian Ĥ = Ĥ0 + V̂ of a quantum
system, where Ĥ0 is regarded as a non-perturbed part and V̂ is a small perturbation. Let HP be
a certain energy eigenspace of Ĥ0 and write P̂ as the projection operator on HP. Suppose that
another energy eigenspace HR (HP \ HR = �) of the Hamiltonian Ĥ0 satisfies the following
[see Fig. 3.C.3]; (I) P̂V̂(1 � P̂) + (1 � P̂)V̂P̂ = P̂V̂R̂ + R̂V̂P̂, where R̂ is the projection onto
the energy eigenspace HR; (II) Energy spectra of HP and HR are separated by a finite energy
gap �PR > 0, where �PR := min|Ei2HP,|E

0i2HR
|E � E 0|. Then, starting from an initial state

belonging to HP, we have the following error bound between the original dynamics described
by Ĥ and effective dynamics by ĤP = P̂ĤP̂ :

✏(t) :=
���P̂
⇣
eiĤtÔe�iĤt � eiĤPtÔe�iĤPt

⌘
P̂
��� (3.C.22)

4kV̂k
�PR

+ 2
⇣
e2kV̂k/�PR � 1

⌘
kV̂kt (3.C.23)
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for any Ô with kÔk = 1, where k · k denotes the operator norm.

In contrast to the bounds in Refs. [161, 160], which rely on the energy gap between HP and
the rest of the spectrum, our theorem does not require that the eigenspace HP is isolated in the
energy spectrum of Ĥ0; see Fig. 3.C.3. This means that when V̂ and P̂ satisfy the conditions (I)
and (II), ✏(t) is still bounded by using the energy gap between HP and a part of the spectrum
HR, which is connected from HP via V̂. In fact, the upper bound in Ref. [160] corresponds
to the special case in which R̂ = 1 � P̂. In this section, we only give the outline of the proof
while emphasizing the difference from Ref. [160] for brevity and we leave the full proof of the
theorem to Appendix A.

Figure 3.C.3: Energy spectrum of Ĥ0. The energy eigenspace HP does not need to be isolated
from the rest of the spectrum with an energy gap. Another eigenspace HR ✓ H0 \ HP is
connected via V̂ from HP, where H0 denotes the total Hilbert space of Ĥ0. We assume that HP

and HR are separated by a finite energy gap�PR ⌘ min{�(u)
PR

,�(d)
PR
}. [Reproduced from Fig. S1

in Ref. [75].]

Our theorem can be derived just by following the proof in Ref. [160] with a slight modifica-
tion. The proof is divided into two parts. In the first step, we derive

✏(t)  4kT̂k+ 2(e2kT̂k � 1)kV̂kt. (3.C.24)

Here, T̂ is an anti-Hermitian operator T̂ (i.e., T̂† = �T̂) that satisfies

[T̂, Ĥ0] = �V̂o↵ (3.C.25)

with V̂o↵ := P̂V̂(1� P̂) + (1� P̂)V̂P̂. The derivation is obtained and explained in Section II-B
in Ref. [160] (see especially Eqs. (23) and (30)). In the second step, which is different from
Ref. [160], we derive an upper bound on kT̂k as follows:

kT̂k = kT̄PRk  kV̄PRk
�PR

 kV̂k
�PR

. (3.C.26)

Here, the matrix T̄PR is the solution for the Sylvester equation

H̄0PT̄PR � T̄PRH̄0R = V̄PR, (3.C.27)
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where V̄PR ⌘ P̂V̂R̂, T̄PR ⌘ P̂T̂R̂, H̄0P ⌘ P̂Ĥ0P̂, and H̄0R ⌘ R̂Ĥ0R̂. Our observation here is
that we can take a solution T̂ of Eq. (3.C.25) as T̂ = P̂T̂R̂ + R̂T̂P̂ under the condition (I). In
this case, Eq. (3.C.25) is reduced to Eq. (3.C.27), which is different from the one in Ref. [160].
Using the condition (II) on the spectra of H̄0P and H̄0R, we can adopt known relations for the
Sylvester equation [160, 213] to obtain kT̄PRk  kV̄PRk/�PR. [See also Eq. (29) in Ref. [160]].
In addition, using a similar argument given in Eq. (25) in Ref. [160], we arrive at Eq. (3.C.26).

Now, we explain how we adopt the theorem to our system. By taking Ĥ0 = Ĥtotal � Ĥ!x ,
V̂ = Ĥ!x , and P̂ = P̂ = | i h | (see Eqs. (3.7) and (3.8)) we have kV̂k = N!x/2, �PR �
mini

h
4J̄ �

P
j
|2�Jij|

i
, and

ĤP = P̂ ĤtotalP̂ = (ÎP ⌦ |FAihFA|)Ĥtotal(ÎP ⌦ |FAihFA|) (3.C.28)

= ĤP

!x
⌦ |FAihFA|, (3.C.29)

where ÎP denotes the identity operator on the probe spins. Below we explain how we evaluate
�PR. The eigenspace HR in this case, which is connected to P̂ via the action of Ĥ!x , is
formally expressed as HR := span{|�(k)i ⌦

�
�̂x

i
|FAi

�
: |�(k)i (k = 1, 2, ...2↵N) are eigenstates

of probe spins; i is any site on ancillary spins}. In other words, HR is spanned by computational
basis states whose configuration includes the same configuration as |FAi except for any but
one ancillary spin whose state is flipped from |FAi. Then the energy gap between HP and
HR is obtained by finding the minimum energy difference in Ĥtotal � Ĥ!x caused by flipping
one ancillary spin in |FAi. Using the condition that every ancillary spin in |FAi is surrounded
by at least three neighboring spins in the down states, we can evaluate �PR as �PR � Jg :=

mini

h
4J̄ �

P
j2hi,ji

|2�Jij|
i
. Note that Jg is always positive since we assume that the spatial

fluctuations of the interaction are relatively weak such that |�Jij| < J̄/2.
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Chapter 4

Entanglement-enhanced sensing with the
one-dimensional Ising model using
quantum domino dynamics

In this Chapter, we propose another entanglement-enhanced sensing scheme using a dynamical
property of the quantum Ising model. We again consider using the Ising model as the probe
system. In contrast to the scheme in the previous Chapter, in which we focused on the interro-
gation step in the Ramsey sensing scheme and assumed the target field to be a weak transverse
field, in this Chapter we mainly focus on the other steps in the sensing scheme, namely the state
preparation and readout, and assume the target field to be a weak longitudinal field. In particular,
we consider making use of the so-called quantum domino dynamics for quantum sensing that
arises in the Ising chain with a weak transverse field. In addition, here we perform a numerical
calculation taking into account the effect of environmental noise.

This Chapter is organized as follows. First, we give introduction for this Chapter, starting
again from a broad perspective. In Sec. 4.2, we review the Ramsey sensing scheme while in-
troducing the notation that we specifically use in this Chapter, with particular attention to the
use of entangling gates for state preparation and readout. We also review the quantum domino
dynamics, which plays a key role in our scheme. In Sec. 4.3, we illustrate our scheme in an
analytical way and compare it with the conventional scheme, and then numerically calculate
the uncertainty of the estimation of the target field in the absence of environmental noise. In
Sec. 4.4, we take into account the effect of dephasing as a realistic environmental noise and nu-
merically investigate the performance of our scheme in the presence of noise. After discussing
a possible approach to applying our scheme for a large system in Sec. 4.5, we summarize this
Chapter in Sec. 4.6.

4.1 Introduction

The improvement of the sensitivity is a key objective for sensing technologies. Recent devel-
opments have enabled us to perform high precision sensing in a variety of areas, such as in life
science [214, 4], investigation of semiconductor devices [215], and study of the condensed mat-
ter physics [216]. In particular, the detection of a weak magnetic field with the use of quantum
technologies has been attracting great attentions.

Quantum metrology using spins (qubits) [217, 188, 194, 46] is an essential technique to
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improve the estimation precision. Typical sensing scheme consists of the three procedures:
preparing the probe spins in a specific quantum state, exposing the state to the target magnetic
field, and performing a measurement for the readout. It is well known that the standard quantum
limit (SQL) bounds the sensitivities when we prepare separable states for the probe spins [188].
On the other hand, by exploiting quantum properties of entanglement among the probe spins,
the bound can be upgraded to the Heisenberg limit (HL) [218, 42, 194].

The challenge of the entanglement-enhanced sensing is to develop a practical method of
preparing useful entangled states between the probe spins. For the entanglement-enhanced sens-
ing of a magnetic field, we need both a strong coupling with the target magnetic field and con-
trollability of the spins. The former is essential to achieve a better sensitivity, while the latter is
crucial for the creation of the entangled states. However, as the coupling with the target mag-
netic field is increased, decoherence rate of the spin due to the unavoidable coupling with the
environment typically increases, resulting in poor controllability of the spin. This means that
it is difficult to accurately control the spins for the magnetic field sensing. Because of this dif-
ficulty, although a great number of methods requiring high controllability have been proposed,
practical entanglement-enhanced sensing is still challenging in this area.

One of the typical entangled states for quantum metrology is the Greenberger-Horne-Zeilinger
(GHZ) state [125, 206]. The GHZ state can be created by using a sequence of gate operations
[219, 195, 220, 221, 128, 222, 129]. However, entangling gate operations including controlled-
NOT (CNOT) gates require an accurate control of the interaction between spins. Such a require-
ment of the high controllability could be a bottleneck for the practical entanglement enhanced
sensing.

In this Chapter, we propose an entanglement-enhanced sensing scheme to measure a mag-
netic field with an always-on nearest-neighbor interaction. Our scheme does not require either
entangling gate operations or switching on/off the interaction among spins. More specifically,
we consider a one-dimensional spin chain with a nearest-neighbor ferromagnetic Ising interac-
tion accompanied by the homogeneous transverse magnetic field for control. In our scheme,
performing a single-spin measurement on one of the edges of the chain at equilibrium induces
unitary dynamics due to the intrinsic Hamiltonian of the system, which generates an entangled
state suitable for quantum metrology. When we expose our probe spins to the target magnetic
field, the interaction is still on; we just need to turn on/off global magnetic fields. Furthermore,
the readout for the estimation of the target magnetic field can be implemented with a single spin
measurement on the edge of the chain. Complicated operations, such as turning on/off the in-
teractions are not required in our scheme, which is in stark contrast to the conventional scheme
with GHZ states that requires precise control of the interaction.

4.2 Setting

In this section, we review ideas of quantum sensing and quantum domino dynamics, which we
use in our sensing scheme.

4.2.1 Ramsey measurement scheme with separable states

For completeness, we start by briefly reviewing the Ramsey measurement scheme using L sep-
arable spins [46]. Our target magnetic field in this Chapter is a longitudinal field, whose Hamil-
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tonian is described by

Ĥ!z =
!z

2

LX

n=1

�̂z

n
, (4.1)

where !z denotes the strength of the static and homogeneous target magnetic field and n denotes
the sites of the probe spins. The sensing scheme is summarized as follows. First, we prepare a
separable probe state

N
L

n=1 |+i
n
, where |+i

n
denotes the eigenstate of �̂x

n
with the eigenvalue

+1. Here, �̂⌫

n
, ⌫ 2 {x, y, z} denotes the Pauli spin operators on site n. Second, we let the

state interact with the target field for time Tint. Third, we perform a projective measurement
P̂+
n,y

= (�̂y

n
+ 1)/2 on each spin. After repeating these three steps, we estimate !z from the

distribution of the outcomes.
The uncertainty of the estimated value of !z for each spin is commonly obtained as

�!z =

p
P (1� P )��� @P
@!z

���
p
M

, (4.2)

where P = (1 + sin!zTint)/2 denotes the expectation value of P̂+
n,y

and M denotes the number
of experimental repetition [46, 212]. For a total available time Tall, the number M is calculated
as M = Tall/Tsensing, where Tsensing denotes a combined time of the three procedures of a sensing
scheme, i.e., Tsensing := Treset + Tprep + Tint + Tread. Here, Treset denotes the time it takes to
initialize the probe system, Tprep denotes the time it takes to generate a metrologically useful
state from this initial state, and Tread denotes the time to readout the phase information acquired
in the quantum state during the exposure to the magnetic field. In this section, we assume
that the interaction time Tint accounts for a large fraction of the sensing time, i.e., Tsensing '
Tint. Then, the uncertainty of the estimation of !z using L separable spins is calculated as
�!z = (LTallTint)

�1/2, which shows the SQL. The scaling of �!z can be improved to L�1 if we
appropriately exploit an entanglement among the spins as we describe below.

4.2.2 Quantum sensing with the GHZ state

Next, we illustrate a quantum sensing scheme with the GHZ state using entangling gates. For
the sake of the notation, we define a CNOT gate between spins on site n and site n+ 1 as

CNOTn,n+1 :=
⇥
1� �̂z

n
+ (1 + �̂z

n
)�̂x

n+1

⇤
/2. (4.3)

In Fig. 4.1, we show a schematic picture of the conventional scheme which we describe below.
A typical scheme to generate the GHZ state by gate operations is summarized as follows [46].
(i) We prepare an L-spin state

N
L

n=1 |0in, where |0i
n

and |1i
n

denote the eigenstate of �̂z

n
with

the eigenvalue �1 and +1, respectively. (ii) We implement a Hadamard gate on the first spin
and perform a sequence of CNOT gates between adjacent spins in order to create the GHZ state
| i, i.e.,

| i = 1p
2

 
LO

n=1

|0i
n
+

LO

n=1

|1i
n

!
. (4.4)
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Figure 4.1: Schematic picture of required operations in the conventional scheme (i)–(v). The
initial state |�0i in the picture is |�0i := ⌦L

n=1 |0in. We assume that the system has nearest-
neighbor Ising interactions and gate operations consist of a sequence of CNOT gates, which can
be expressed as in Eq. (4.11). [Reproduced and modified from Fig. 1 in Ref. [76].]

Here, the gates of CNOT1,2, CNOT2,3, · · · , and CNOTL�1,L are performed in sequence. (iii)
We expose the state to the target magnetic field (4.1) for time Tint and obtain the state with a
phase shift, i.e.,

| (Tint)i =
ei!zLTint/2

p
2

 
LO

n=1

|0i
n
+ e�i!zLTint

LO

n=1

|1i
n

!
. (4.5)

(iv) implement a sequence of CNOT gates again on the spins and obtain a disentangled state

| 0(Tint)i =
eiL!zTint/2

p
2

�
|0i1 + e�iL!zTint |1i1

�
⌦

LO

n=2

|0i
n
. (4.6)

Here, the CNOT gates are performed in the reverse order compared with the case in the step (ii).
More specifically, the gates of CNOTL�1,L, CNOTL�2,L�1, · · · , and CNOT1,2 are performed
in sequence. (v) We measure the first spin in the �̂y

1 basis and obtain an outcome of either +1 or
�1. The combination of the steps (iv) and (v) effectively measures the probability of projecting
| (Tint)i in Eq. (4.5) to

⇣N
L

n=1 |0in + i
N

L

n=1 |1in
⌘
/
p
2.

By repeating these steps, we generate a histogram of the outcomes, which let us estimate the
value of !z. The probability of obtaining the outcome of +1 in the �̂y

1 basis is then calculated as

P = h 0(Tint)| P̂+
1,y | 0(Tint)i (4.7)

=
1

2
+

1

2
sinL!zTint. (4.8)

Using Eq. (4.2), the uncertainty of the estimated value of !z is now obtained as �!z = L�1 (TintTall)
�1/2.

This is the HL, which is L�1/2 times smaller than the SQL.

Evaluation of the time for state preparation using the entangling gates

Let us estimate here the required time for the GHZ state generation when we use gate operations.
To implement a gate of CNOTn,n+1 to spins in a system with nearest-neighbor Ising interactions
and magnetic fields, we can use Hadamard gates and a CZ (CPHASE) gate. These correspond
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to the unitary dynamics induced by Hamiltonians of

Ĥ(n)
H := hH(�̂

x

n
+ �̂z

n
)/
p
2 (4.9)

and

Ĥ(n,n+1)
CZ :=

JCZ

4

⇥
1� �̂z

n
+ (1 + �̂z

n
)�̂z

n+1

⇤
, (4.10)

where hH denotes the strength of the magnetic field and JCZ denotes the interaction strength.
More specifically, the CNOT gate can be described as

CNOTn,n+1 =exp

✓
i
⇡

2hH
Ĥ(n+1)

H

◆
exp

✓
i
⇡

JCZ
Ĥ(n,n+1)

CZ

◆
exp

✓
i
⇡

2hH
Ĥ(n+1)

H

◆
. (4.11)

Hence, the necessary time is evaluated as ⇡/hH + ⇡/JCZ.

4.2.3 Transverse-field Ising chain

Next, we introduce the transverse-field Ising chain [223, 224]. The Hamiltonian is described as
follows:

ĤTFIM = ĤIsing + Ĥx, (4.12)

ĤIsing = �J

4

L�1X

n=1

�̂z

n
�̂z

n+1, (4.13)

Ĥx =
hx

2

LX

n=1

�̂x

n
, (4.14)

where J > 0 denotes the strength of the ferromagnetic interaction and hx denotes the magnitude
of the transverse magnetic field. Without loss of generality, we assume hx > 0. The model ex-
hibits a quantum phase transition at hx/J = 1/2 at the zero temperature in the thermodynamic
limit and shows a ferromagnetic order in the z direction for hx/J < 1/2. For a finite L and
hx/J < 1/2, the system has two almost degenerate ground states with an exponentially small
energy difference. More specifically, the ground state and the first excited state can be approx-
imated as

⇣N
L

n=1 |0in ±
N

L

n=1 |1in
⌘
/
p
2. with the energy difference which is exponentially

small in L [225]. The excited states are separated from them by a finite energy gap ⇠ J/2� hx.
Throughout this Chapter, we assume that we use thermal equilibrium states as the initial

states unless specifically mentioned. For a finite system at equilibrium with an inverse temper-
ature �, the thermal equilibrium state ⇢̂� := e��ĤTFIM/Tr[e��ĤTFIM ] can be well approximated
by the mixed state

⇢̂� ' ⇢̂mix :=
1

2

 
LO

n=1

|0i
n

! 
LO

n=1

h0|
n

!
+

1

2

 
LO

n=1

|1i
n

! 
LO

n=1

h1|
n

!
(4.15)

for hx/J ⌧ 1/2 and 1/� ⌧ J/2�hx. More specifically, we should decrease 1/� as we increase
L because the probability of having the ground states in ⇢̂� becomes extremely small for a large
L. In Sec. 4.3, we will assume that the temperature is sufficiently low in our scheme so that the
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Figure 4.2: Quantum domino dynamics induced by the Hamiltonian (4.20) with the initial
state |1i1 ⌦

N
L

n=2 |0in. Black bars show the magnetization at each site n at time steps of
t = 0, t⇤ideal/2, t

⇤

ideal, 3t
⇤

ideal/2, and 2t⇤ideal. We choose L = 20 and hxt⇤ideal = 1.05L here. [Repro-
duced and modified from Fig. 2 in Ref. [76].]

condition of ⇢̂� ⇠ ⇢̂mix should be approximately valid. To illustrate how low the temperature
should be for satisfying the condition ⇢̂� ⇠ ⇢̂mix, we calculate the fidelity F = F (⇢̂�, ⇢̂mix) =

Tr

⇣
⇢̂1/2
�
⇢̂mix⇢̂

1/2
�

⌘1/2�
and obtain F = 87% for � = 10, J = 1, hx = 0.1 and L = 12. We

can prepare the thermal equilibrium state just by using the energy relaxation process from the
environment, so that precise control is not required.

4.2.4 Quantum domino dynamics

Here, we review the concept of “quantum domino” dynamics in the transverse-field Ising chain,
which was theoretically discussed in Refs. [137, 138, 139, 140] and demonstrated in Ref. [141].
It is observed when we prepare a state |1i1⌦

N
L

n=2 |0in as the initial state and let the state evolve
according to the Hamiltonian (4.12) with a weak transverse magnetic field; the spin-flip on the
first site propagates, which induces a sequence of flipping across the system up to the (L� 1) th
spin.

In short, quantum domino dynamics can approximately realize the following transformation
when we appropriately tune the evolution time:

Û

 
|1i1 ⌦

LO

n=2

|0i
n

!
'
 

L�1O

n=1

|1i
n

!
⌦ |0i

L
, (4.16)

Û

 
|0i1 ⌦

LO

n=2

|1i
n

!
'
 

L�1O

n=1

|0i
n

!
⌦ |1i

L
, (4.17)

where Û denotes the unitary dynamics due to the Hamiltonian (4.12). On the other hand, if all
spins are initialized in the same direction, for instance

N
L

n=1 |0in , the system stays almost in
the same state i.e., Û

N
L

n=1 |0in '
N

L

n=1 |0in Therefore, we can approximately generate the
GHZ state of (L � 1) spins if we induce the quantum domino dynamics with an initial state of
|+i1 ⌦

N
L

n=2 |0in [139].
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Importantly, the quantum domino dynamics can also occur in the opposite direction, i.e.,

Û

" 
L�1O

n=1

|1i
n

!
⌦ |0i

L

#
' |1i1 ⌦

LO

n=2

|0i
n
, (4.18)

Û

" 
L�1O

n=1

|0i
n

!
⌦ |1i

L

#
' |0i1 ⌦

LO

n=2

|1i
n
. (4.19)

These equations now imply that the entangled state Û
⇣
|+i1 ⌦

N
L

n=2 |0in
⌘

can go back to the

initial state approximately by applying Û again. We will refer to the dynamics (4.18) and (4.19)
as well as (4.16) and (4.17) as ideal domino dynamics.

The emergence of the quantum domino dynamics in the transverse-field Ising chain can be
explained as follows. Regarding Ĥx as a perturbative term, the Hamiltonian in the interaction
picture is described as eiĤIsingtĤxe�iĤIsingt. By using a secular approximation to ignore oscillat-
ing terms with high frequencies of J [137], we obtain the following Hamiltonian

Ĥsecular =
hx

4

L�1X

n=2

�̂x

n

�
1� �̂z

n�1�̂
z

n+1

�
(4.20)

as the effective Hamiltonian in the interaction picture. (Note that this Hamiltonian is basically
the same as the Hamiltonian Eq. (2.7) in Chapter 2 and allows for analytical calculations [137].)
The Hamiltonian (4.20) shows that the spin flip on the site n by the operator �̂x

n
occurs only

when its two adjacent spins are in the opposite direction. Suppose that the spins at the sites
n = 1, 2, · · · , k are aligned up while the other spins are aligned down. In this case, only the k
th and (k + 1) th spins could flip while the other spins remain in the original state. Therefore, a
system which is initialized in the state |1i1 ⌦

N
L

n=2 |0in exhibits a sequence of spin flips from
the second to the (L� 1) th spins.

We show in Fig. 4.2 quantum domino dynamics induced by the Hamiltonian (4.20). Starting
from the state |1i1⌦

N
L

n=2 |0in, the spin flip propagates forwardly until a time t = t⇤ideal, and then
this propagates back for t⇤ideal < t < 2t⇤ideal , where t⇤ideal denotes the optimal time to maximize
the total magnetization density of the time-evolved state due to the Hamiltonian (4.20).

Strictly speaking, there is still a small difference between the unitary dynamics induced by
the Hamiltonian (4.20) and the ideal quantum domino dynamics (4.16)–(4.19). As the flipping
propagates further, the difference between the ideal domino dynamics and the dynamics by the
Hamiltonian (4.20) becomes larger as shown in Fig. 4.2. In the ideal domino dynamics, the
total magnetization density, i.e., Mz/L := (1/2L)

P
L

n=1h�̂z

n
i, would be Mz/L = 1/2 � 1/L

for the right-hand side of Eq. (4.16). On the other hand, for the actual dynamics, it is not trivial
whether the maximum total magnetization density converges to a finite value as we increase
the system size L. Fortunately, it has been found that, when we prepare an initial state |1i1 ⌦N

L

n=2 |0in and let this state evolve by the Hamiltonian (4.20) for a certain time, we can obtain
a finite magnetization density Mz/L ⇠ 0.37 for a large L [137]. The optimal time t⇤ideal is also
numerically estimated as t⇤ideal ⇠ 1.06L/hx in Ref. [137]. We will estimate the appropriate time
of the duration for the original Hamiltonian (4.12) with a finite L and hx in Sec. 4.3.4.
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Figure 4.3: Schematic picture of our sensing scheme. The upper panel represents the prescrip-
tion of our scheme. The middle panel shows how we apply global magnetic fields. The lower
panel shows the procedure (i’)–(v’) and the time it takes for each step. During the interrogation
step (iii’), we turn off the transverse magnetic field and expose the probe to the target magnetic
field. We assume that the interaction time Tint is much longer than the other times involved.
[Reproduced and modified from Fig. 3 in Ref. [76].]

4.3 Our quantum sensing scheme with always-on interaction

In this section, we present our sensing scheme with an always-on interaction between the nearest-
neighbor spins in the probe chain. In the following scheme, the only necessary operations are
to initialize the system, to perform projective measurements on the first spin, and to turn on/off
global magnetic fields.

4.3.1 Description of our sensing scheme

Our scheme can be summarized as follows (see also Fig. 4.3): (i’) we prepare a thermal equilib-
rium state of the Hamiltonian (4.12) with hx/J < 1/2; (ii’) we perform a projective measure-
ment on the first spin along the x direction at t = 0 and then let the system evolve according
to the same Hamiltonian (4.12) until t = t⇤; (iii’) we turn off the transverse magnetic field in
Eq. (4.12) and instead let the system interact with the target magnetic field (4.1) for a time Tint;
(iv’) we let the system evolve according to (4.12) again for the time t⇤; (v’) we perform a pro-
jective measurement on the first spin in the �̂y

1 basis. By repeating these steps, we generate the
histogram of the outcomes.

The key idea of our scheme is the use of the quantum domino dynamics. Although the state
is mainly described by the Schrödinger picture in this Chapter, we use the interaction picture
⇢̂I(t) = eitHIsing ⇢̂S(t)e�itHIsing in this paragraph to avoid cumbersome expressions, i.e., the state
⇢̂S in the Schrödinger picture is obtained after considering the time evolution according to the
Hamiltonian ĤIsing (see also Sec. 4.2.4). The state after the measurement in the step (ii’) is
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approximated as

⇢̂I(0) = |+i1 1h+|⌦
 

LO

n=2

|0i
n n

h0|+
LO

n=2

|1i
n n

h1|
!
/2 (4.21)

because of Eq. (4.15) for the case in which the measurement outcome is +1. This state evolves
into

⇢̂I(t
⇤) =

1

2

 
L�1O

n=1

|0i
n
+

L�1O

n=1

|1i
n

! 
L�1O

n=1
n
h0|+

L�1O

n=1
n
h1|
!

⌦ 1

2
(|0i

L L
h0|+ |1i

L L
h1|) (4.22)

under the ideal domino dynamics (4.16) and (4.17), which is approximately induced by the
Hamiltonian (4.12) in the step (ii’). After obtaining a phase shift at the third step (iii’), i.e.,

⇢̂I(t
⇤ + Tint) =

1

2

 
L�1O

n=1

|0i
n
+ e�i!z(L�1)Tint

L�1O

n=1

|1i
n

! 
L�1O

n=1
n
h0|+ ei!z(L�1)Tint

L�1O

n=1
n
h1|
!

⌦ 1

2
(|0i

L L
h0|+ |1i

L L
h1|) , (4.23)

the state evolves into

⇢̂I(2t
⇤ + Tint) =

1

2

�
|0i1 + e�i!z(L�1)Tint |1i1

� �
1h0|+ ei!z(L�1)Tint

1h1|
�

⌦ 1
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LO

n=2

|0i
n n

h0|+
LO

n=2

|1i1 1h1|
!
, (4.24)

in the step (iv’), which replaces the disentangling procedure (iv) in the conventional scheme in
Sec. 4.2.2 by the time evolution with the Hamiltonian (4.12). In this case, the Hamiltonian (4.12)
approximately induces the ideal domino dynamics (4.18) and (4.19). Here, the combination of
the steps (iv’) and (v’) effectively measures the probability of projecting (L � 1)-spin state of
⇢̂I(t⇤ + Tint) in Eq. (4.23) to

⇣N
L�1
n=1 |0in + i

N
L�1
n=1 |1in

⌘
/
p
2.

For our scheme, Treset, Tprep, and Tread are expressed as Treset = T1,init, Tprep = t⇤ + tmeasure,
and Tread = t⇤ + tmeasure, where tmeasure denotes the time required for the projective measure-
ments and T1,init denotes the relaxation time of the system to thermalize, i.e., the time for the
step (i’). In this Chapter, we assume that T1,init and tmeasure are much shorter than t⇤ and Tint. In
addition, for simplicity, we ignore the effect of dephsing in the sensing steps except for the step
(iii’) in this Chapter. In the noiseless case, we can in principle set Tint to be much longer than
the other times that are rquired in the sensing steps. In general, the sensitivity increases as the
interaction time Tint becomes comparable with the total time Tall in the noiseless case whereas
in the presence of the environmental noise, making Tint close to the dephasing time T2 results in
better sensitivity.

We note that we need more careful consideration on the assumption Tint � Treset when
we consider the experimental implementation in the presence of dephasing. Nevertheless, we
assume that the time Treset can be made much shorter than the dephasing time T2 in experiments
because of the following reason. For a long-lived spin, T2 can be much longer than t⇤ and
treadout. However, in most of the solid-state systems, the energy relaxation time, which we
denote T1,relax, is even longer than the dephasing time T2 [226, 227, 228, 229, 230, 231, 232],
which may imply Treset > T2 ⇠ Tint. For example, nitrogen vacancies in diamond have an
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energy relaxation time of T1 ' 45 seconds [226], while the dephasing time is around T2 ' 2
ms [233]. Fortunately, there are experimental techniques that temporarily decrease the energy
relaxation time [234, 235, 236, 237]. We refer to such an artificial and short energy relaxation
time as T1,init. Here, we assume that such resetting techniques are available when our sensing
scheme is implemented in experiments and thus take Tint � Treset = T1,init.

4.3.2 Analytical evaluation of the senstivity

The probability P of obtaining +1 as the measurement outcome in the step (v’) is written as

P = Tr[Ûscheme⇢̂0Û
†

schemeP̂
+
1,y], (4.25)

where

⇢̂0 :=
P̂+
1,x⇢̂�P̂

+
1,x

Tr[P̂+
1,x⇢̂�]

, (4.26)

Ûscheme :=e�iĤTFIMt
⇤
e�i(ĤIsing+Ĥ!z )Tinte�iĤTFIMt

⇤
. (4.27)

Hereafter, we assume that the measurement outcome in the step (i’) is +1 without loss of gener-
ality. The projection P̂+

1,x to the state in which we get the measurement outcome +1 at the step
(i’) denotes P̂+

1,x := (�̂x

1 + 1)/2. For the case in which the outcome in the step (i’) is �1, we
exchange the measurement basis in the step (v’) from �̂y

1 to ��̂y

1 .
Let us derive the sensitivity of our scheme by using some approximations. In Sec. 4.3.4,

we will numerically calculate the sensitivity without approximations by directly calculating
Eq. (4.25). Assuming the validity of the approximation (4.15) and the ideal domino dynam-
ics (4.16)–(4.19), we can estimate the probability (4.25) as

P ' 1

2
+

1

2
cos


J

✓
t⇤ +

Tint

2

◆�
sin [(L� 1)!zTint]. (4.28)

The oscillating part cos [J (t⇤ + Tint/2)] in Eq. (4.28), which did not appear in Eq. (4.8), repre-
sents the effect of the presence of the Ising interaction. By tuning t⇤ , the probability becomes
the same as that with the GHZ state composed of (L � 1) spins; see Eq. (4.8). Therefore, we
can achieve the HL in this case similarly to the case in Sec.4.2.2.

Equation (4.28) also shows that the probability approaches to 1/2 as !z goes to 0. Although
we derived Eq. (4.28) with several approximations, we can derive this from a more general
setup as follows. The Hamiltonian ĤTFIM and the measurement P̂+

1,x as well as the initial state
⇢̂� commutes with the parity symmetry Ûx := ⇧L

n=1�̂
x

n
, while �̂y

1 in P̂+
1,y anti-commutes with

Ûx. From these relations and Eqs. (4.25)–(4.27), we find that the expectation value of �̂y

1 =
2P̂+

1,y � 1 always vanishes for !zTint = 0. This shows that the deviation of the probability of the
measurement outcomes from 1/2 always signals the presence of non-vanishing !z.

We emphasize here that even though Eq. (4.28) is the result of an approximation, the effect of
the presence of the Ising interaction at the interrogation step (iii’) can always be canceled out by
setting Tint = m4⇡/J , where m denotes a natural number. When the probe spins interact with
the target field, they can be affected by an additional Hamiltonian, such as residual interactions
between spins, as we have shown in the previous Chapter. The effect of such an additional
Hamiltonian has been discussed in some studies. It was shown in Ref. [238] that when one
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prepares an optimal state for sensing the target field in the presence of additional Hamiltonian,
this term cannot enhance the sensitivity anymore compared to the case in which there is no
such terms. Reference [239] considered estimation of the target longitudinal magnetic field in
the transverse Ising chain, whose interaction is of XX type. By utilizing the integrability of
the model in one dimension, it was shown that the sensitivity can still achieve the Heisenberg-
limited scaling if an appropriate GHZ-type state is used. In contrast, the sensitivities with and
without residual interactions are the same in our case in the present Chapter. Here, we take an
advantage of the fact that the Ising interaction commutes with the target magnetic field and we
can cancel out the additional phase shift by tuning the interaction time. We hence can obtain the
HL if we could prepare and disentangle the GHZ state perfectly.

4.3.3 Comparison with the conventional scheme using entangling gates

Here, we summarize the difference between our scheme in Sec.4.3.1 and the conventional one
introduced in Sec. 4.2.2.

First, there is a difference in state preparation. We use the time evolution according to the
time-independent Hamiltonian (4.12) in preparing a metrologically useful state. Importantly,
since we straightforwardly use the dynamics induced by the Hamiltonian for these processes,
our scheme does not require any temporal control over the individual Ising interactions between
spins. This is in stark contrast to the conventional scheme that uses gate operations for the
entanglement generation, which typically requires turning on/off the interaction.

Second, the way to readout the state is different. We use the Hamiltonian dynamics to
transform the entangled probe state into an almost separable state so that we can extract the
information of the target magnetic field from the single spin measurement. On the other hand,
in the conventional approach, a combination of gate operations and projective measurements is
required.

Finally, we compare the time required for our scheme which uses the quantum domino dy-
namics and that for the conventional scheme which uses the gate operations. When a system
has Ising interactions with strength of JCZ, the operation time for implementing one CNOT gate
is (⇡/JCZ + 2⌧H) from our estimation in Sec. 4.2.2, where ⌧H denotes a necessary gate time to
implement the Hadamard gate. On the other hand, it takes about 1.06/hx for flipping single spin
on average in the domino dynamics. In Sec. 4.3.4 and 4.4 we demonstrate that our scheme beats
the SQL by a constant factor, where we set J = 1 and hx = 0.1. This shows that even if we
ignore the operation time for the Hadamard gates, the preparation time for the case of using the
quantum domino dynamics is only around three times longer than that for the case of using a
sequence of CNOT gates, under the assumption that the Ising interaction strength is the same,
i.e., JCZ = J . As long as the coherence time is long, it is more advantageous to use quantum
domino dynamics than gate type operations. Therefore, our scheme can be a practical way to
realize entanglement-enhanced sensing in a spin system with fixed Ising interaction.

4.3.4 Numerical results for the case without environmental noise

We now present numerical results to show the performance of our scheme without noise. We
calculate the uncertainty of the estimated value of !z using Eqs. (4.25)–(4.27). We here take the
interaction strength and the transverse magnetic field to be J = 1 and hx = 0.1.

For each size L, we numerically find the optimal preparation time t⇤opt in order to obtain the
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Figure 4.4: The optimal preparation time t⇤opt which we use in the step (ii’) and the step (iv’)
when we numerically simulate our scheme. The blue points show t⇤ at which �!z can be mini-
mized for hx = 0.1 and � = 10. The broken line shows the scaling function t⇤opt = 1.06L/hx.
All parameters are normalized by J = 1. [Reproduced from Fig. 4 in Ref. [76].]

smallest uncertainty �!z. In Fig. 4.4, we show the size dependence of t⇤opt, which takes the value
around t⇤opt ⇠ 1.06L/hx ' t⇤ideal as we mentioned in Sec. 4.2.4. Throughout the Chapter, we use
these values of t⇤opt as t⇤ when we plot �!z and Tint for each L. We have numerically checked
that t⇤opt does not depend on � in the parameter sets which we use in this Chapter. In order to take
into account the effect of the preparation time on the uncertainty, we take Tsensing = Tint+2t⇤opt,
although Tint is much longer than t⇤opt in the following calculations. We ignore the other times
involved for simplicity.

In Fig. 4.5 (a), we observe an oscillation in the preparation time t⇤ with the probability (4.25)
as we have discussed in Eq. (4.28). The oscillation frequency is almost the same as J = 1,
which is consistent with our approximate analytical expression (4.28). The optimal time t⇤opt
which provides the smallest uncertainty �!z corresponds to the minimal point of the oscillation.

Figure 4.5 (b) shows the uncertainty against the number of the spins with different initial
states. These results demonstrate that our scheme achieves the high precision sensing beyond
the SQL by a constant factor. However, when we increase L with a fixed �, the uncertainty starts
to saturate, as a tendency of which can be observed in the plot for � = 5 in Fig. 4.5 (b). This is
due mainly to the breakdown of the approximation (4.15), which requires � to be large. We will
discuss this point again in Sec. 4.5.

In the conventional quantum domino dynamics the initial state is assumed to be pure, namelyN
L

n=1 |0in. For comparison, we calculate the uncertainty when the initial state is the same stateN
L

n=1 |0in. Interestingly, the uncertainty with this pure initial state is almost the same as that
with the thermal equilibrium states ⇢̂� with � = 10 and 20, as shown in Fig. 4.5 (b). Therefore,
the use of the thermal states does not necessarily degrade the sensitivity compared with the case
of using a pure state.

4.4 Quantum Sensing under time-inhomogeneous dephasing

In this section, we consider the effect of dephasing during the interrogation step (iii’) and show
that our scheme beats the SQL by a constant factor even in the presence of the dephasing noise.
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Figure 4.5: (a) The oscillation of �!z in the preparation time t⇤. Three blue points show the
minimum of T 1/2

all �!z at t⇤opt for each size L with L = 4, 7, and 10. The dotted line and the broken
line show the uncertainty of the SQL for L spins and the HL for (L� 1) spins, respectively. (b)
Size dependence of the uncertainty �!z in our scheme. The dotted line and the broken line
show the SQL for L-spins and the HL for (L � 1) spins, respectively. The other symbols in
the figure show �!z for the cases in which the initial states are ⇢̂� with � = 5, 10, and 20, andN

L

n=1 |0in, respectively. In both (a) and (b), we take the parameters as hx = 0.1, !z = 10�6,
and Tint = 500⇡. All parameters are normalized by J = 1. [Reproduced from Figs. 5 and 6 in
Ref. [76].]

To this end, we consider shortening the interaction time Tint so that the detrimental effect of the
environmental noise may become small, which is a similar method to the case in Sec. 3.A of
Chapter 3 where we considered the noise arising from internal interactions.

4.4.1 Description of the noise model

For the Ramsey measurement scheme which uses the GHZ state as the probe state, it has
been found that improved sensitivity with the scaling �!z = O(L�3/4) can be achieved with
the interaction time of Tint = O(L�1/2) when the noise is time-inhomogeneous dephasing
[51, 52, 52, 134, 198, 240, 241, 242], which is also referred to as Non-Markovian dephasing
[51, 52, 52, 240, 56]. This scaling is called the Zeno limit. On the other hand, no improve-
ment of scaling over the SQL is realized in the presence of Markovian noise [49, 50]. Time-
inhomogeneous dephasing can be observed when the correlation time ⌧c of the environment is
longer than the coherence time of the spins. It is known that solid-state systems that have a
strong coupling with magnetic fields, such as a superconducting flux qubit [243, 227, 244], a
spin spin in a quantum dot [245, 246], and an NV center in diamond [219, 222, 247, 248], are
typically subject to such time-inhomogeneous dephasing and the correlation time of these sys-
tems is much longer than the coherence time in these systems. In this section, we consider the
effect of time-inhomogeneous dephasing acting on each spin independently.

We assume that the dephasing time T2 and the relaxation time T1,relax of the spins satisfy

T1,init, tmeasure, t
⇤ ⌧ T2 ⌧ T1,relax ⌧ ⌧c. (4.29)

This implies the following three: first, the necessary condition of our noise model T2 ⌧ ⌧c is
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satisfied; second, the relaxation time of the probe spins T1,relax is much longer than T2 during
the exposure; third, the total sensing time Tsensing is well approximated by Tint. For most of the
solid-state systems, T1,relax is much longer than T2 especially at a low temperature [226, 227,
228, 229, 230, 231, 232] as we have mentioned in Sec. 4.3.1. Therefore we assume that the effect
of the energy relaxation is negligible compared to that of the dephasing during the exposure of
the probe spins to the target magnetic field.

We specifically consider the following master equation of the system during the step (iii’);

d

dt
⇢̂(t) = �i[ĤIsing + Ĥ!z , ⇢̂(t)]�

t

2T2
2

LX

n=1

[�̂z

n
, [�̂z

n
, ⇢̂(t)]]. (4.30)

This kind of model has been used to describe noise in various solid-state systems [249, 243, 244,
247, 250, 248, 251, 227, 252, 240]. We then obtain the solution for Eq. (4.30) as follows:

⇢̂(Tint) = "1("2(· · · "L(⇢̂I(0)) · · · )), (4.31)

"n(⇢̂) :=
1 + e�(Tint/T2)2

2
⇢̂+

1� e�(Tint/T2)2

2
�̂z

n
⇢̂�̂z

n
, (4.32)

⇢̂I(0) := e�i(ĤIsing+Ĥ!z )Tint ⇢̂(0)ei(ĤIsing+Ĥ!z )Tint . (4.33)

4.4.2 Numerical results for the case with environmental noise

Now, we numerically calculate �!z using Eqs. (4.31)–(4.33). As in the noiseless case we take
Tsensing = Tint + 2t⇤opt in the calculation. In contrast to the case in Sec. 4.3.4, where the prob-
ability (4.25) is the function of !zTint, the slope |dP/d!z| depends nontrivially on Tint in the
presence of noise [51, 52, 56]. We thereby numerically tune the interaction time Tint so that
the uncertainty may take a minimum value. The size dependence of the interaction time Tint

is shown in Fig. 4.6 (a). This size dependence is consistent with the previous results using the
GHZ state for sensing under the effect of time-inhomogeneous dephasing [49, 51, 52, 56]. We
stress here that the interaction time Tint is much longer than the optimized preparation time t⇤opt
with the parameter sets we choose in Figs. 4.6 (a) and 4.6 (b).

Figure 4.6 (b) shows the uncertainty �!z in the presence of the time-inhomogeneous dephas-
ing at the step (iii’) in our scheme with three values of �. They demonstrate that our scheme
beats the SQL by a constant factor except when the inverse temperature of the initial state is
� = 5. However, we find that the improvement of �!z in our scheme over the SQL of the con-
ventional scheme becomes smaller compared with the case without dephasing (see Fig. 4.5 (b)).

4.5 Discussion: Application to a large system

In this section, we discuss the metrological advantage of our scheme in a large system. As we
have seen in Fig. 4.5 (b), the uncertainty begins to saturate as we increase L with a fixed �, and
eventually our scheme may give no advantage over the conventional scheme with separable L-
spin states. However, as long as there is at least one length L⇤ at which our scheme with the ini-
tial state ⇢̂� beats the SQL, one can make use of our scheme to obtain an improved sensitivity by
taking the length of the chain as L⇤. For an N -spin probe, using N/L⇤ copies of the transverse-
field Ising chain of length L⇤ allows us to obtain the sensitivity which is �!SQL

z
(L⇤)/�!z(L⇤, �)

times better than the SQL (see Fig. 4.7), where �!SQL
z

(L) denotes the SQL with L spins and
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(a)

(b)

Figure 4.6: (a) The optimal interaction time Tint in the presence of noise. We numerically
obtained Tint at which the minimum uncertainty is achieved in our scheme under the time-
inhomogeneous dephasing. The broken line shows the function Tint = (1/2)T2(L � 1)�1/2 at
which the minimum uncertainty is achieved when the probe is in the GHZ state of (L � 1)
spins [51, 52, 56]. (b) Size dependence of the uncertainty �!z in our scheme under the
time-inhomogeneous dephasing. The dotted line shows the SQL for L-spins, i.e., T 1/2

all �!z =p
2 exp(1/4)(LT2)�1/2, and the broken line shows the Zeno limit for (L � 1) spins, i.e.,

T 1/2
all �!z =

p
2 exp(1/4)(L � 1)�3/4T�1/2

2 [49, 51, 52, 56]. The other symbols in the figure
show �!z for the cases in which the initial states are ⇢̂� with � = 5, 10, and 20, and

N
L

n=1 |0in,
respectively. Both in (a) and (b), the parameters are taken as hx = 0.1, � = 10, !z = 10�6,
and T2 = 104. All parameters are normalized by J = 1. [Reproduced from Fig. 7 and 8 in
Ref. [76].]

64



�!z(L, �) denotes the uncertainty in our scheme with L spin equilibrium state ⇢̂� . This constant-
factor improvement can be maximized by tuning the length of each chain under the restriction
that �!z(L, �) < �!SQL

z
(L). A similar technique was discussed in Ref. [253].

L*

N
L*

Figure 4.7: For a large number N (� L⇤) of spins, improved sensitivity by a constant factor can
be maintained by separating the spins into the chains of length L⇤. In this case, the probe consists
of N/L⇤ copies of the transverse-field Ising chain. [Reproduced from Fig. 9 in Ref. [76].]

Summarizing the above, the uncertainty in our scheme can beat the SQL as we show in
Figs. 4.5 (b) and 4.6 (b) as long as the the following assumptions (a) and (b) in addition to the
validity of the secular approximation (4.20) are valid: (a) the temperature of the initial state
1/� is small enough for a fixed chain length L, so that the approximation Eq. (11) becomes
good; (b) the decoherence times T1 and T2 are long enough compared to T1,init, tmeasure, and t⇤opt
for a fixed chain length L, so that Tint dominates the sensing time Tsensing. (When the noise is
present, Tint ' (1/2)T2(L � 1)�1/2 is needed for achieving the minimum uncertainty [49, 50],
see Fig. 4.6 (a), and hence T2 should be also much longer than 2(L� 1)1/2.) We note that if we
keep increasing the length of the chain of spins while keeping �, T1 and T2 fixed, the sensitivity
in our scheme will be eventually degraded with the increase of L. However, if we increase the
number of chains as the number of available spins grows, while keeping the length of the chains
fixed but large enough, we can achieve scaling of the SQL with an improved constant.

4.6 Conclusion and outlook

In this Chapter, we have proposed a novel scheme for quantum sensing using an Ising chain
with homogeneous nearest-neighbor couplings. Our scheme consists of three operations: ini-
tialization of the system in a thermal equilibrium state, switching on/off global magnetic fields,
and projective measurements on a single spin at the start and the end of the scheme. Specif-
ically, we approximately create a GHZ state from the equilibrium of the transverse-field Ising
chain by inducing the quantum domino dynamics. We have numerically shown that our scheme
beats the SQL by a constant factor even in the presence of time-inhomogeneous dephasing.
Since neither an accurate control of the spins, such as the entangling gate operations, nor long-
range interaction between spins is required in the whole process, our scheme may provide an
experimentally feasible way to realize entanglement enhanced sensors. Finally, we note that the
quantum domino dynamics can be largely enhanced, i.e., nearly perfect creation of a GHZ state
can be achieved, by employing a method using a moving control field in Ref. [139], which is
shown to be even robust against the presence of disorders in Ising couplings. We expect that

65



our scheme in this Chapter can be improved and made more robust by combining with other
techniques in the future [254].
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Chapter 5

Conclusion

In this Thesis, we have studied quantum thermalization and quantum metrology using quantum
Ising models. In Chapter 2, we revealed that a novel form of the Hilbert space fragmentation
(HSF) emerges in this model, exhibiting a rich variety of non-equilibrium phenomena in isolated
quantum systems. We then demonstrated in Chapter 3 that our findings above can be employed
to design a new scheme of robust quantum sensor for measuring a weak magnetic field. We
also showed in Chapter 4 that another phenomenon which has been found in the quantum Ising
model can be utilized to propose a new entanglement-enhanced sensing scheme that requires
few controls on the probe system. The present Thesis can be seen as yet another example of
how fundamental understanding of a simple quantum model may aid increase our knowledge
of the ubiquitous but challenging problems of quantum thermalization and furthermore result in
applications in quantum technologies, such as quantum metrology.

In Chapter 2, we showed the breakdown of ergodicity in d-dimensional Ising models with
a weak transverse field in a prethermal regime. The quantum Ising model is one of the funda-
mental models in quantum many-body systems, yet a full understanding of its dynamics remains
elusive in higher than one dimension. We investigated the effective model that is obtained as
the first-order approximation of the weak transverse field and demonstrated that the novel HSF
occurs in this non-integrable model with d � 2 as a consequence of the emergent conservation
law of the domain wall (DW) number. Our results indicate nontrivial initial-state dependence
for non-equilibrium prethermal dynamics of the original Ising models in a weak transverse field.
From the broader perspective of understanding quantum thermalization, our results suggest that
the seemingly ubiquitous phenomenon of thermalization can be hindered for a certain timescale
owing to a microscopic detail of the model, namely the DW conserving constraint on the spin-
flip process.

Here, we describe future perspective. First, a question as to the final equilibrium of the orig-
inal quantum Ising model remains open. In other words, it is not completely clear whether the
Ising model under a weak magnetic field always eventually thermalize, as we have reviewed
in Chapter 1. As a next step in understanding dynamics of this model, it would be interest-
ing to investigate an effective model that describes a longer timescale than the model studied
here, as has been partly studied in Ref. [165, 166, 180]. Second, it is worth mentioning that
the HSF is deeply related to the question of which conserved quantity should be considered in
confirming the ETH. In general, global conserved quantities can be always constructed for any
model by adopting projection operators onto the energy eingenstates, which generally have no
locality. Therefore, completely ignoring the locality in considering conserved quantities in the
model should be too naive to be useful. Typically, the ETH in non-integrable models has been
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numerically examined after resolving conventional symmetries, such as lattice symmetries in-
cluding inversion symmetry, and local conservation laws including particle number conservation
[11, 105, 106]. Importantly, the HSF suggests that the appearance of non-trivial and non-local
conserved quantities [109, 116] can shatter conventional symmetry sectors into disconnected
subspaces, while some of which can obey the ETH restricted to the fractured Krylov subspaces
[34]. The quest of constructing a unified way for characterizing physically relevant conserved
quantities remains an important direction to be explored.

In Chapter 3, we proposed an entanglement-enhanced sensing scheme that is robust against
spatially non-uniform always-on Ising interactions. In particular, the use of the HSF constitutes
a new approach in our quantum sensing scheme. Using the non-thermalizing behavior due to the
emergent HSF in the quantum Ising model which we discovered in Chapter 2, we showed that
a particular probe state can be used to statically decouple a fraction of spins from interacting
with the rest of the system. We have also analytically evaluated the sensitivity in our scheme
and demonstrated the Heisenberg limit can be achieved. We expect that methods like ours, that
is to employ nontrivial mechanisms known in the field of quantum thermalization for preventing
desired probe states of interacting probe systems from thermalization, would be beneficial in
other areas where maintaining entanglement plays a crucial role.

We note here that the sensitivity in Chapter 3 was evaluated analytically by assuming that
environmental noises are negligible. However, it is unclear how robust our quantum scheme is
to realistic environmental noises such as the dephasing. Examining robustness of the freezing
of spins as well as the sensitivity against noises and perturbations are other future directions of
extending our results. Additionally, it will be important to make sure that the preparation of our
entangled probe state is feasible in order to demonstrate the usefulness of our strategy. Future
works will need to address issues such as the relevant timescale for projecting the ancillary spins
onto the frozen configuration and estimating maximal errors that are allowed to be accumulated
during the preparation and readout steps.

In Chapter 4, we proposed another quantum sensing scheme. This time, we adopted the
quantum Ising chain as the probe system, making use of the quantum domino dynamics for
the generation and readout of the entangled states. Our scheme can be implemented without
dynamically controlling the interactions and requires few individual controls on the system,
specifically, cooling down the system, two projective measurements on a single qubit, and turn-
ing on/off the uniform magnetic fields. Unlike in Chapter 3, we included the effect of environ-
mental noise in our evaluation of the sensitivity and numerically demonstrated that our scheme
achieves an improved sensitivity beyond the standard quantum limit even under the effect of
time-inhomogeneous dephasing.

Quantum domino dynamics has been experimentally demonstrated [141], and we thereby
expect that our sensing scheme will be useful in physical systems where individual control of
interactions and pulse controls of each qubit are difficult. Nevertheless, we note that more
work will be needed to show the improved sensitivity in realistic settings, since the present
calculations do not account for the effect of environmental noise on the Domino dynamics,
which would make the sensitivity worse compared to our results in which we take into account
environmental noise only in the interrogation step. It will be interesting to investigate if we can
design more realistic sensing schemes while retaining the advantages of our approach.

In the present thesis, we investigated two fundamental questions. The first question addresses
what mechanisms can suppress thermalization in isolated quantum systems, the answer of which
will lead to a better understanding of the conditions that allow for quantum thermalization. The
second question explores how entanglement-enhanced magnetic-field sensors can be realized
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when the probe qubits have always-on internal interactions, which will help realizing highly
sensitive quantum sensors for practical use. To address the first question, this thesis analytically
presented that the kinetic constraint due to the conservation of the domain-wall number hinders
quantum thermalization through the emergence of HSF. Our discovery that the HSF appears even
in well-known models including the TFIMs when considering a prethermal regime suggests the
subtlety of discussing the ETH and highlights the need for further research in this area. In
addressing the second question, we proposed two novel approaches that utilize knowledge of
non-equilibrium phenomena in systems with Ising-type interactions to prepare, protect, and read
out quantum states that are useful for sensing. Our results demonstrate a potential for realizing
entanglement-enhanced sensors in realistic scenarios in which many-body interactions become
non-negligible. Overall, this thesis contributes to the advancement of our understanding of non-
equilibrium physics in isolated quantum systems and its applications to quantum metrology.
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Appendix A

Proof of the theorem in Appendix 3.C

In this Appendix, to make this thesis self-contained, we provide a proof of our theorem which
we introduced in Appendix 3.C. As we have clarified in Chapter 3, this is a generalized version
of the bound in Ref. [160] and one can prove it by following the description Ref. [160] with
a slight modification. The difference between the proof in Ref. [160] and the proof below is
described in Appendix 3.C.

– Universal error bound

Consider a Hamiltonian Ĥ = Ĥ0 + V̂ of a quantum system, where Ĥ0 is regarded as a non-
perturbed part and V̂ is a small perturbation. Let HP be a certain energy eigenspace of Ĥ0

and write P̂ as the projection operator on HP. Suppose that another energy eigenspace HR

(HP \HR = �) of the Hamiltonian Ĥ0 satisfies the following two conditions:

(I) P̂V̂(1 � P̂) + (1 � P̂)V̂P̂ = P̂V̂R̂ + R̂V̂P̂, where R̂ is the projection onto the energy
eigenspace HR;

(II) Energy spectra of HP and HR are separated by a finite energy gap �PR > 0, where
�PR := min|Ei2HP,|E

0i2HR
|E � E 0|.

Then, starting from an initial state belonging to HP, we have the following error bound between
the original dynamics described by Ĥ and effective dynamics by ĤP = P̂ĤP̂ :

✏(t) :=
���P̂
⇣
eiĤtÔe�iĤt � eiĤPtÔe�iĤPt

⌘
P̂
��� (A.1)

4kV̂k
�PR

+ 2
⇣
e2kV̂k/�PR � 1

⌘
kV̂kt (A.2)

for any Ô with kÔk = 1, where k · k denotes the operator norm.

– proof

We divide the proof into the following five steps (i)–(v). In step (ii), we assume that there is an
anti-Hermitian operator T̂ (T̂† = �T̂) that satisfies

[T̂, Ĥ0] = �V̂o↵ . (A.3)
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In fact, the existence of the solution T̂ for Eq. (A.3) is proved in step (iii) by using the condition
(II).

Step (i)

We show

✏(t)  4kT̂k+ 2kV̂0kt, (A.4)

where V̂0 := ŜĤŜ† � Ĥ1 with Ĥ1 := Ĥ0 + V̂diag and Ŝ := eT̂.

Step (ii)

We show

kV̂0k  (e2kT̂k � 1)kV̂k. (A.5)

Step (iii)

We show that there always exists the solution T̂ for Eq. (A.3) when the condition (II) is satisfied,
which has the form of T̂ = (P̂T̂R̂ + R̂T̂P̂). In particular, we derive the matrix T̄PR ⌘ P̂T̂R̂
from the Sylvester equation H̄0PT̄PR � T̄PRH̄0R = V̄PR, where H̄0P ⌘ P̂Ĥ0P̂, H̄0R ⌘ R̂Ĥ0R̂, and
V̄PR ⌘ P̂V̂R̂.

Step (iv)

We show

kT̄PRk  kV̄PRk
�PR

. (A.6)

Step (v)

We show

kT̂k = kT̄PRk (A.7)

and

kV̄PRk  kV̂k. (A.8)

Combining Eqs. (A.4)–(A.8), we arrive at the universal bound Eq. (A.2). Below, we show
the derivations Eqs. (A.4)–(A.7) in each proof step.
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Step (i): derivation of Eq. (A.4)

First, we rewrite ✏(t) as follows:

✏(t) =
���P̂
⇣
eiĤtÔe�iĤt � eiĤPtÔe�iĤPt

⌘
P̂
��� (A.9)

=
���P̂
⇣
e�iĤPteiĤtÔe�iĤteiĤPt � Ô

⌘
P̂
��� (A.10)

=
���P̂
⇣
e�iĤ1teiĤtÔe�iĤte�iĤ1t � Ô

⌘
P̂
��� (A.11)

=
���P̂
⇣
e�iĤ1te�T̂eiĤ1te�iĤ1teT̂eiĤte�T̂eT̂Ôe�T̂eT̂e�iĤte�T̂eiĤ1te�iĤ1teT̂eiĤ1t � Ô

⌘
P̂
���

(A.12)

=
���P̂
⇣
S†(t)L̂(t)SÔS†L̂(t)†Ŝ(t)� Ô

⌘
P̂
��� , (A.13)

where operators Ĥ1, Ŝ(t), and L̂(t) are defined as

Ĥ1 := Ĥ0 + V̂diag, (A.14)

Ŝ(t) := e�iĤ1tŜeiĤ1t = e�iĤ1teT̂eiĤ1t, (A.15)

L̂(t) := e�iĤ1teT̂eiĤte�T̂, (A.16)

with

V̂diag := P̂V̂P̂+ (1� P̂)V̂(1� P̂) (A.17)

and we used P̂Ĥ1 = Ĥ1P̂ = ĤP. Then, using the following inequalities
���ÛÔÛ † � Ô

��� =
���[Û , Ô]Û †

��� 
���[Û , Ô]

��� , (A.18)
���[ÛaÛb, Ô]

��� =
���Ûa[Ûb, Ô] + [Ûa, Ô]Ûb

��� 
���[Ûb, Ô]

���+
���[Ûa, Ô]

��� , (A.19)

we obtain a bound on ✏(t) as follows:

✏(t) 
���
⇣
S†(t)L̂(t)SÔS†L̂(t)†Ŝ(t)� Ô

⌘��� (A.20)


���[Ŝ, Ô]

���+
���[Ŝ(t), Ô]

���+
���[L̂(t), Ô]

��� . (A.21)

Second, we use another inequality

���[eT̂, Ô]
��� =

����
Z 1

0

d�e�T̂[eT̂, Ô]e��T̂

���� 
Z 1

0

d�
���e�T [eT̂, Ô]e��T

���  2
���T̂
��� (A.22)

to arrive at

✏(t)  4
���T̂
���+

���[L̂(t), Ô]
��� (A.23)
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from Eq. (A.21). Finally, we see that the second term of the left-hand side of Eq. (A.23) can be
upper bounded as

���[L̂(t), Ô]
��� =

���L̂†(t)ÔL̂(t)� Ô
��� (A.24)

=

����i
Z

t

0

d⌧
d

d⌧

⇣
e�iŜĤŜ

†
⌧eiĤ1⌧ Ôe�iĤ1⌧eiŜĤŜ

†
⌧

⌘���� (A.25)

=

����
Z

t

0

d⌧e�iŜĤŜ
†
⌧eiĤ1⌧ [Ĥ1 � e�iĤ1⌧ ŜĤŜ†eiĤ1⌧ , Ô]e�iĤ1⌧eiŜĤŜ

†
⌧

���� (A.26)

=

����
Z

t

0

d⌧e�iŜĤŜ
†
⌧eiĤ1⌧ [�e�iĤ1⌧ V̂0eiĤ1⌧ , Ô]e�iĤ1⌧eiŜĤŜ

†
⌧

���� (A.27)

=

����
Z

t

0

d⌧L†(⌧)[e�iĤ1⌧ V̂0eiĤ1⌧ , Ô]L(⌧)

���� (A.28)


Z

t

0

d⌧
���[e�iĤ0⌧ V̂0eiĤ0⌧ , Ô]

��� (A.29)

 2
���V̂0

��� t, (A.30)

and thus we obtain the following:

✏(t)  4kT̂k+ 2kV̂0kt. (A.31)

Step (ii): derivation of Eq. (A.5)

First we rewrite V̂0 as

V̂0 =
1X

n=0

1

n!
adn

T̂
(Ĥ0 + V̂)�ˆ̂H1 (A.32)

=
1X

n=0

1

n!
adn

T̂
(Ĥ0) +

1X

n=0

1

n!
adn

T̂
(V̂)� (Ĥ0 + V̂diag) (A.33)

=
1X

n=0

1

n!
adn

T̂
(V̂o↵ + V̂diag)�

1X

n=1

1

(n+ 1)!
adn

T̂
(V̂o↵)� (V̂o↵ + V̂diag) (A.34)

=
1X

n=1

1

n!
adn

T̂
(V̂o↵ + V̂diag)�

1X

n=1

1

(n+ 1)!
adn

T̂
(V̂o↵) (A.35)

by using the expansion

1X

n=0

1

n!
adn

T̂
(Ĥ0) = Ĥ0 + [T̂, Ĥ0] +

1

2
[T̂, [T̂, Ĥ0]] + ... (A.36)

= Ĥ0 � V̂o↵ �
1

2
[T̂, V̂o↵ ]�

1

6
[T̂, [T̂, V̂o↵ ]]� ... (A.37)

= Ĥ0 � V̂o↵ �
1X

n=1

1

(n+ 1)!
adn

T̂
(V̂o↵), (A.38)
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where ad
T̂
(̂·) indicates taking a commutation [T̂, ·̂]. Using Eq. (A.35), we can evaluate kV̂0k as

follows:

kV̂0k 
1X

n=1

1

n!
kadn

T̂
(V̂)k+

1X

n=1

1

(n+ 1)!
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(V̂o↵)k (A.39)
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 2
⇣
ek2T̂k � 1

⌘
kV̂k. (A.44)

Step (iii): derivation of the solution for Eq. (A.3)

We assume that the anti-Hermitian operator T̂ has the form of T̂ = P̂T̂R̂+R̂T̂P̂. Then, Eq. (A.3),
which is [T̂, Ĥ0] = �V̂o↵ , is reduced to the following equation of matrices which represent
diagonal or off-diagonal blocks of V̂, T̂, and Ĥ0,

T̄PRH̄0R � H̄0PT̄PR = �V̄PR, (A.45)

where T̄PR ⌘ P̂T̂R̂, H̄0R ⌘ R̂Ĥ0R̂, H̄0P ⌘ P̂Ĥ0P̂, and V̄PR ⌘ P̂V̂R̂. This is a Sylvester equation.
From the assumption (II), we see that H̄0P and H̄0R have no common eigenvalues. In this case,
for any matrix �V̄PR, it is known that there always exists a unique solution that satisfies the
Sylvester equation.

Formally, we can write the solution as follows. Since we are assuming that the subspaces
HP and HR are separated by a finite energy gap �PR, one can find Ep 2 [min⇤P,max⇤P] and
rp such that the subspace HP is covered by [Ep � rp, Ep + rp] and HR is covered by (�1, Ep �
rp ��PR] [ [Ep + rp +�PR,1). Then, we can obtain

T̄PR =[(H0P � Ep)T̄PR � V̄PR]/(H̄0R � Ep) (A.46)

=
1X

n=0

(H0P � Ep)
nV̄PR(H̄0R � Ep)

�(n+1). (A.47)
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Step (iv): derivation of Eq. (A.6)

Evaluating T̄PR can be done straightforwardly by using Eq. (A.47) as follows:

kT̄PRk 
1X

n=0

k(H0P � Ep)
nV̄PR(H̄R � Ep)

�(n+1)k (A.48)


1X

n=0

kH̄0P � EpknkH̄0R � Epk�(n+1)kV̄PRk (A.49)


1X

n=0

rn
p

(rp +�PR)n+1
kV̄PRk (A.50)

=
kV̄PRk
�PR

. (A.51)

Step (v): derivation of Eqs. (A.7) and (A.8)

We derive Eq. (A.8) first. For the solution derived in Step (iii), we have

T̂†T̂ = (P̂T̂R̂+ R̂T̂P̂)(�P̂T̂R̂� R̂T̂P̂) (A.52)

= �(P̂T̂R̂)(R̂T̂P̂)� (R̂T̂P̂)(P̂T̂R̂). (A.53)

The last line (A.53) shows that T̂†T̂ is block diagonalized in HP and HR, and hence we obtain
���T̂
���
2

= max{
���(P̂T̂R̂)(R̂T̂P̂)

��� ,
���(P̂T̂R̂)(R̂T̂P̂)

���} (A.54)

= max{
���(P̂T̂R̂)(P̂T̂R̂)†

��� ,
���(R̂T̂P̂)(R̂T̂P̂)†

���} (A.55)

=
���P̂T̂R̂

���
2

(A.56)

=
��T̄PR

��2 , (A.57)

where we used the relation kÔk2 = kÔÔ†k for the operator norm, and we have
���T̂
��� =

��T̄PR

��.

Finally, Eq. (A.7) follows from below:

��V̄PR

��2 =
���P̂V̂R̂

���
2

=
���P̂V̂R̂RV̂P̂

��� 
���V̂R̂R̂V̂

��� =
���V̂R̂

���
2

=
���R̂V̂V̂R̂

��� 
���V̂
���
2

. (A.58)
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and endurable, and Özlem for all. Finally, I deeply thank my family and friends for their warm
and continuous support.

I would also like to acknowledge financial supports on my works [74, 75, 76] by JST
PRESTO (Grant No. JPMJPR1919, PI: Yuichiro Matsuzaki) Japan.

76



Bibliography

[1] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys.,
86:153–185, Mar 2014.

[2] Mari Carmen Banuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Mar-
cello Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero,
et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D,
74(8):1–42, 2020.

[3] Christian W Bauer Zohreh Davoudi, A Baha Balantekin, Tanmoy Bhattacharya, Marcela
Carena, Wibe A de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori
Hanada, Dmitri Kharzeev, et al. Quantum simulation for high energy physics. arXiv
e-prints, pages arXiv–2204, 2022.

[4] Michael A Taylor and Warwick P Bowen. Quantum metrology and its application in
biology. Phys. Rep., 615:1–59, 2016.
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thermalization of isolated quantum systems. Phys. Rev. Lett., 105:250401, Dec 2010.

[20] Takashi Mori. Weak eigenstate thermalization with large deviation bound. arXiv preprint
arXiv:1609.09776, 2016.

[21] Eiki Iyoda, Kazuya Kaneko, and Takahiro Sagawa. Fluctuation theorem for many-body
pure quantum states. Phys. Rev. Lett., 119:100601, Sep 2017.

[22] Tomotaka Kuwahara and Keiji Saito. Eigenstate thermalization from the clustering prop-
erty of correlation. Phys. Rev. Lett., 124:200604, May 2020.

[23] Anatoli Polkovnikov, Krishnendu Sengupta, Alessandro Silva, and Mukund Vengalattore.
Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod.
Phys., 83(3):863, 2011.

[24] Fabian HL Essler and Maurizio Fagotti. Quench dynamics and relaxation in isolated
integrable quantum spin chains. J. Stat. Mech., 2016(6):064002, 2016.

[25] Rahul Nandkishore and David A Huse. Many-body localization and thermalization in
quantum statistical mechanics. Annu. Rev. Condens. Matter Phys., 6(1):15–38, 2015.

[26] Dmitry A Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. Collo-
quium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys.,
91(2):021001, 2019.

[27] Maksym Serbyn, Dmitry A Abanin, and Zlatko Papić. Quantum many-body scars and
weak breaking of ergodicity. Nat. Phys., 17(6):675–685, 2021.

[28] Sanjay Moudgalya, B Andrei Bernevig, and Nicolas Regnault. Quantum many-body
scars and hilbert space fragmentation: a review of exact results. Rep. Prog. Phys.,
85(8):086501, jul 2022.

[29] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran,
Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner,
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[145] Bart van Voorden, Jiřı́ Minář, and Kareljan Schoutens. Quantum many-body scars in
transverse field ising ladders and beyond. Phys. Rev. B, 101(22):220305, 2020.

[146] Elmer Guardado-Sanchez, Peter T Brown, Debayan Mitra, Trithep Devakul, David A
Huse, Peter Schauß, and Waseem S Bakr. Probing the quench dynamics of antiferromag-
netic correlations in a 2d quantum ising spin system. Phys. Rev. X, 8(2):021069, 2018.

[147] Markus Schmitt and Markus Heyl. Quantum many-body dynamics in two dimensions
with artificial neural networks. Phys. Rev. Lett., 125(10):100503, 2020.

[148] Jonas Richter, Tjark Heitmann, and Robin Steinigeweg. Quantum quench dynamics in
the transverse-field ising model: A numerical expansion in linked rectangular clusters.
SciPost Phys., 9(3):031, 2020.

[149] Michael Schreiber, Sean S Hodgman, Pranjal Bordia, Henrik P Lüschen, Mark H Fis-
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eigenstates in a rydberg atom chain: Entanglement, breakdown of thermalization, and
stability to perturbations. Phys. Rev. B, 98(15):155134, 2018.

[171] Cheng-Ju Lin and Olexei I Motrunich. Exact quantum many-body scar states in the
rydberg-blockaded atom chain. Phys. Rev. Lett., 122(17):173401, 2019.

[172] Thomas Iadecola, Michael Schecter, and Shenglong Xu. Quantum many-body scars from

86



magnon condensation. Phys. Rev. B, 100(18):184312, 2019.
[173] Jae-Seung Lee and A. K. Khitrin. Stimulated wave of polarization in a one-dimensional

ising chain. Phys. Rev. A, 71(6):062338, 2005.
[174] Aishwarya Kumar, Tsung-Yao Wu, Felipe Giraldo, and David S Weiss. Sorting ultracold

atoms in a three-dimensional optical lattice in a realization of maxwell’s demon. Nature,
561(7721):83–87, 2018.

[175] Yunheung Song, Minhyuk Kim, Hansub Hwang, Woojun Lee, and Jaewook Ahn. Quan-
tum simulation of cayley-tree ising hamiltonians with three-dimensional rydberg atoms.
Phys. Rev. Research, 3(1):013286, 2021.

[176] Sepehr Ebadi, Tout T. Wang, Harry Levine, Alexander Keesling, Giulia Semeghini,
Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, Soon-
won Choi, Subir Sachdev, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin.
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[241] Agnieszka Górecka, Felix A Pollock, Pietro Liuzzo-Scorpo, Rosanna Nichols, Gerardo
Adesso, and Kavan Modi. Noisy frequency estimation with noisy probes. New J. Phys.,
20(8):083008, aug 2018.

[242] Le Bin Ho, Hideaki Hakoshima, Yuichiro Matsuzaki, Masayuki Matsuzaki, and Ya-
sushi Kondo. Multiparameter quantum estimation under dephasing noise. Phys. Rev.
A, 102:022602, Aug 2020.

[243] F. Yoshihara, K. Harrabi, A. O. Niskanen, Y. Nakamura, and J. S. Tsai. Decoherence of
flux qubits due to 1/f flux noise. Phys. Rev. Lett., 97:167001, Oct 2006.

[244] K. Kakuyanagi, T. Meno, S. Saito, H. Nakano, K. Semba, H. Takayanagi, F. Deppe, and
A. Shnirman. Dephasing of a superconducting flux qubit. Phys. Rev. Lett., 98:047004,
Jan 2007.

[245] Erika Kawakami, Pasquale Scarlino, Daniel R Ward, FR Braakman, DE Savage, MG La-
gally, Mark Friesen, Susan N Coppersmith, Mark A Eriksson, and LMK Vandersypen.
Electrical control of a long-lived spin qubit in a si/sige quantum dot. Nature nanotech-
nology, 9(9):666–670, 2014.

[246] Erika Kawakami, Thibaut Jullien, Pasquale Scarlino, Daniel R Ward, Donald E Savage,
Max G Lagally, Viatcheslav V Dobrovitski, Mark Friesen, Susan N Coppersmith, Mark A
Eriksson, et al. Gate fidelity and coherence of an electron spin in an si/sige quantum dot
with micromagnet. Proceedings of the National Academy of Sciences, 113(42):11738–
11743, 2016.

[247] J. R. Maze, J. M. Taylor, and M. D. Lukin. Electron spin decoherence of single nitrogen-
vacancy defects in diamond. Phys. Rev. B, 78:094303, Sep 2008.

[248] P. L. Stanwix, L. M. Pham, J. R. Maze, D. Le Sage, T. K. Yeung, P. Cappellaro, P. R.
Hemmer, A. Yacoby, M. D. Lukin, and R. L. Walsworth. Coherence of nitrogen-vacancy
electronic spin ensembles in diamond. Phys. Rev. B, 82:201201, Nov 2010.

[249] E. Paladino, L. Faoro, G. Falci, and Rosario Fazio. Decoherence and 1/f noise in joseph-
son qubits. Phys. Rev. Lett., 88:228304, May 2002.

[250] G De Lange, ZH Wang, D Riste, VV Dobrovitski, and R Hanson. Universal dynamical
decoupling of a single solid-state spin from a spin bath. Science, 330(6000):60–63, 2010.

[251] Y. Matsuzaki, S. Saito, K. Kakuyanagi, and K. Semba. Quantum zeno effect with a
superconducting qubit. Phys. Rev. B, 82:180518, Nov 2010.

[252] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler. 1/f noise: Implications for
solid-state quantum information. Rev. Mod. Phys., 86:361–418, Apr 2014.

[253] Shane Dooley, William J. Munro, and Kae Nemoto. Quantum metrology including state
preparation and readout times. Phys. Rev. A, 94:052320, Nov 2016.

[254] Junghyun Lee, Mamiko Tatsuta, Andrew Xu, Erik Bauch, Mark JH Ku, Ronald
Walsworth, et al. Dressed-state control of effective dipolar interaction between strongly-
coupled solid-state spins. arXiv preprint arXiv:2203.07610, 2022.

91


	Introduction
	Introduction
	Quantum Thermalization
	Quantum Metrology
	Quantum Ising model

	Organization of the thesis
	Preliminaries
	Thermalization in isolated quantum systems
	Quantum thermalization and equilibration
	Eingenstate thermalization hypothesis
	Integrable systems
	Hilbert space fragmentation
	Ramsey measurement
	The GHZ state in quantum metrology
	Effect of decoherence
	Dynamics in quantum Ising models


	Emergence of Hilbert space fragmentation in Ising models with a weak transverse field
	Introduction
	Model
	Hilbert space fragmentation
	HSF due to appearance of frozen regions
	Numerical demonstration of the absence of thermalization
	Remarks

	Subspace properties
	Non-integrable subspace
	Subspaces with Integrability and quantum many-body scar states

	Conclusion and outlook
	Appendix: Expression of the projector ₂
	Appendix: Time evolution in the Ising model in a weak transverse field
	Appendix: Frozen regions and percolation
	Appendix: Exponentially many frozen states
	Appendix: Atypical states in the subspace without frozen regions

	Quantum Metrology Protected by Hilbert Space Fragmentation
	Introduction
	Quantum sensing in an interacting system
	Model and the Ramsey sensing scheme
	Sensitivity in a conventional sensing scheme in the presence of the interaction

	HSF-protected quantum metrology
	Description of our sensing scheme
	Stability for finite ₂

	Discussion
	Conclusion
	Appendix: Derivation of the Zeno scaling
	Appendix: Derivation of the uncertainty Eq. (3.9)
	Appendix: Derivation of the error bound Eq. (3.10)

	Entanglement-enhanced sensing with the one-dimensional Ising model using quantum domino dynamics
	Introduction
	Setting
	Ramsey measurement scheme with separable states
	Quantum sensing with the GHZ state
	Transverse-field Ising chain
	Quantum domino dynamics 

	Our quantum sensing scheme with always-on interaction 
	Description of our sensing scheme
	Analytical evaluation of the senstivity
	Comparison with the conventional scheme using entangling gates
	Numerical results for the case without environmental noise

	Quantum Sensing under time-inhomogeneous dephasing
	Description of the noise model
	Numerical results for the case with environmental noise

	Discussion: Application to a large system
	Conclusion and outlook

	Conclusion
	Proof of the theorem in Appendix 3.C

