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Abstract

In the present thesis, we study generation of Dirac-electron structures in the
energy spectrum of hexagonal lattice systems, particularly graphene, under
periodic and quasiperiodic superlattice potentials. Graphene is a hexagonal
lattice system with carbon atoms and is expected to play an important role
in the development of micro-devices in the next decades. Its spectrum in
the low-energy range has conical structures, namely the Dirac cones. Other
systems of similar energy spectra also attract much attention recently. The
Dirac-cone structure has both merits and demerits for applications. The
Dirac cones around the Fermi energy cause not only the high electron mobility
but also the difficulty of controlling the energy gap. An effort to overcome
the difficulty is being done by adding artificial structures to graphene and
other Dirac electron systems.

As a part of the effort, applying superlattice potentials to graphene has
received widespread attention from theoretical and experimental viewpoints.
Park et al. have reported for the Dirac Hamiltonian that new massless Dirac
cones periodically appear on the linear dispersion under a periodic super-
lattice potential, particularly depending on the period of the superlattice.
Although there are no rigorous proofs that the new spectral structures are
truly gapless for tight-binding models, their theories have successfully ex-
plained the experimental results.

In the present thesis, we first show that the new structure, which we refer
to as the Dirac-electron structure, may have an invisibly small energy for
small amplitude of superlattice potential but develops a visible energy gap
rapidly and ceases to be a Dirac-electron structure as the potential amplitude
increases. In other words, the number of the Dirac-electron structures in the
whole spectrum decreases as we apply a stronger potential. We define the
energy cutoff ∆E as the minimum energy of the disappeared Dirac-electron
structures. The cutoff will be a basic concept to understand double-periodic
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cases which we define later. The change of the potential amplitude also shifts
the positions of the Dirac-electron structures. This behavior has not been
reported for the real Dirac cones in previous works.

When we apply double-periodic potentials, although they are still peri-
odic, the appearance of the Dirac-electron structures strongly changes. Our
theoretical study shows that the generation in the double-periodic cases is
governed by the Diophantine equation. Assuming that the Dirac-electron
structures can appear only below each energy cutoff ∆E for the respective
component of the double-periodic potential, we predict that they can appear
sporadically, which our numerical analysis confirms. By increasing one of the
amplitudes of the components, we empirically find that the lower one of the
energy cutoffs controls the appearance of the Dirac-electron structures even
if the other one does not change.

We next extend the arguments to general Dirac-electron systems under
the superlattice potentials and classify them in terms of the energy cutoff
∆E. Our analytical study shows that the generation of the Dirac cones
has three different cases. In the first case ∆E ≥ π, the new cones appear
consecutively as in the case of the single-periodic potential. In the second
case π/2 ≤ ∆E < π, the generation occurs in two ways, namely sporadic and
consecutive, depending on the energy range. In the third case ∆E < π/2,
the generation of the new Dirac cones are all sporadic. Graphene under a
superlattice potential corresponds to the third case.

Finally we study the generation of the Dirac cones induced by a quasiperi-
odic potential. Quasiperiodic potentials are generally used to study the qua-
sicrystals. A quasiperiodic function is given by the summation of two sine
functions with an irrational number as the ratio of the periods. In other
words, it is not periodic. We can treat the quasiperiodic function as a limiting
case of the double-periodic functions with large periods through a continued-
fraction expansion. We thus understand the generation of the Dirac cones
in the quasiperiodic superlattice potential as the limiting case of that of the
double-periodic one.

The quasiperiodic superlattice case also exhibits three cases of the Dirac
cones characterized by the normalized density ρDirac. The normalized density
ρDirac is all unity in the first case ∆E ≥ π, unity or less than unity depend-
ing on the energy range in the second case π/2 ≤ ∆E < π, and all less than
unity in the third case ∆E < π/2. We study the multifractal spectra of the
intervals of the Dirac points. The quasiperiodic systems have been gener-
ally believed to have a fractal structure in the energy spectrum. However,
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our multifractal spectra show that the intervals are not fractal although the
system is quasiperiodic.
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Chapter 1

Introduction

1.1 Graphene and Dirac cones

We have used the pencil for a long period of time. One of the reasons why
we have used it is that black lead, or graphite, has a layered structure whose
binding force is weak enough to be peeled off by hands [1,2]. This fact clearly
shows that graphite is very close to our lives.

The common material, graphite, has gathered much attention from the
theoretical points of view. In 1947 the pioneering work by Wallace [3] re-
ported the electronic states and an unusual semimetallic behavior of graphite.
Other researchers also reported the band structure and the electronic prop-
erties in 1950s [4,5]. We now know that graphite consists of two-dimensional
layers of carbon atoms [1,2,6,7]. Each layer is a honeycomb lattice in which
each carbon atom has three bonds. In other words, carbon atoms share three
valence electrons on the honeycomb structure and the last electron can hop
on a layer of carbon atoms.

Researchers had believed that isolating a one-atom thick flake from graphite
was a very difficult challenge. Furthermore, producing a purely two-dimensional
material in a free-standing state had been thought as impossible [8]. Almost
60 years after the pioneering work on graphite [3], a paper in 2004 reported
surprising discoveries by using scotch tape [9]. Novoselov and coworkers
reported that they obtained just one layer of graphite, namely graphene,
and observed electronic properties which are essentially of a two-dimensional
semimetal [9]. In addition, two groups reported the measurement of the in-
teger quantum Hall effect in graphene in 2005 [10,11]. After the reports, the
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study of graphene gathered great interest from theoretical and experimental
points of view [12–14]. Today the studies of graphene grow day by day.

An interesting feature of graphene is its low-energy structure. The tight-
binding approximation of the Schrödinger equation tells us that the band
dispersion of graphene is linear around the Fermi energy [1,6]. Therefore the
low-energy dispersion has a form similar to the massless Dirac equation. This
mapping was discussed by Semenoff in 1984 [15]. The valence and conduction
bands touch at one point, namely the K and K′ points at the Fermi energy.
Therefore the energy spectrum of graphene is gapless. The linear dispersion
touching at one point is known as the Dirac cone [1, 2, 6].

Recent advances have shown the possibility of creating artificial hexagonal
or hexagonal-like systems, for example, nano-pattering of electron gas [16,
17], molecular graphene systems [18], hexagonal optical lattices [19–22], and
photonic honeycomb crystals [23, 24]. They are sometimes called artificial
graphene [17,22,25]. Studying the Dirac cones becomes much more important
today.

1.2 Graphene under superlattice potentials

1.2.1 Theories and experiments for superlattices

Graphene is not only studied from fundamental viewpoints, but also is ex-
pected to be a basic material for manufacturing micro-structures [26–37]; the
energy spectrum and the group velocity can be manipulated with an external
superlattice potential. Well known approaches to fabricate graphene super-
lattices include placing graphene on substrates [27–29, 38–40] and creating
graphene nanomesh [41–49].

Graphene nanomesh is recently gathering much attention because of pos-
sible applications to electronics [45–49]. It is a nano-structure created by pe-
riodically removing atoms from pristine graphene by block copolymer lithog-
raphy. Field-effect transistors based on graphene nanomesh showed currents
nearly 100 times larger than that of graphene nanoribbon of room tempera-
ture [45]. A group-theoretical analysis of graphene nanomesh [41] considered
superhoneycomb systems consisting of two types of superatoms on the hon-
eycomb lattice and found that the systems can be classified into four types:
A0, AC, B0, and BC. First, they defined the types B and A, according to
whether or not neighboring superatoms share atoms in between. Second,

10



they classified A (B) into AC (BC) with atoms at the corner of the superhon-
eycomb lattice and A0 (B0) without the atoms at the corner. They revealed
that materials in the three classes AC, B0, and BC should be semimetallic,
while the last one A0 should be a semiconductor. Recent studies indeed re-
ported that the band structure of graphene nanomesh can be controlled by
its geometry as well as the symmetry of the sublattices [42–44,47,48] .

It is widely believed that constructing a moiré pattern is a hopeful way
to achieve graphene superlattice. A moiré pattern is created by setting
graphene on a substrate. For example, one recently uses hexagonal boron-
nitride [26–31] and iridium surface [38,39] to create two-dimensional periodic
superlattices. The reason why the method is gathering much attention from
many theoretical and experimental studies is that one can easily control the
period of the superlattice by tuning the angle between graphene and the
substrate.

Furthermore, recent experimental studies reported the creation of one-
dimensional periodic superlattices by using a high-index surface of copper
oxide [40] and mosaic graphene [50, 51] as substrates. The high index sur-
face has terraces separated by monoatomic steps. Thus, graphene on the
high-index surface is subjected to a one-dimensional periodic superlattice
potential. The mosaic graphene, on the other hand, consists of graphene and
atom-doped graphene. In order to make it, one firstly grows discrete graphene
grains on a substrate and grafts the grains by nitrogen-doped graphene. Coa-
lescence of the graphene grains thus produces a continuous mosaic graphene
monolayer. Bai et al. [51] reported that nano-ripples close to the bound-
ary between intrinsic graphene and the nitrogen-doped graphene generates
one-dimensional periodic superlattices.

An efficient way to understand the graphene under periodic superlattices
was reported by Park et al. [52, 53]. Their theoretical studies for the Dirac
Hamiltonian showed that graphene under a periodic potential develops new
Dirac cones in the energy spectrum around the original Dirac cone (K and K ′

points) [52,53]. The new Dirac cones are predicted to appear in the dispersion
at a constant interval which is determined by the reciprocal vectors of the
superlattice. Recent experimental studies indeed reported that the new Dirac
cones appear at the predicted energies by using the hexagonal boron-nitride
and the copper oxide [26,27,31,40]. The generation of the new Dirac cones is
also expected to play a significant role in understanding the electric features
of graphene superlattices.
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1.2.2 Maintaining Dirac cones

The application of the superlattice potential has stimulated to consider main-
taining the Dirac cones against a perturbation in graphene and artificial
structures [25]. Neto et al. [1] reported that the gapless Dirac cones in
graphene under a small uniaxial strain are stable. However, when the defor-
mation exceeds a threshold, the Dirac cones turn into gapful structures [55].
Depending on the direction of an applied tension, the threshold deformation
is of the order of 20 %. For a uniaxial strain, the hopping elements of the
honeycomb lattice become anisotropic and the two Dirac points move toward
each other until they meet at the saddle point [55], where they merge into
a point contact and become gapful for larger deformation. Other theoretical
studies also reported similar behavior of the Dirac cones [56–58]. Hasegawa
et al. [56] studied honeycomb lattice systems with nonuniform hopping el-
ements but with keeping the chiral symmetry. They analytically found a
gapless condition and showed that the Dirac points again merge at a critical
value of the hopping elements. A symmetry argument [54] showed that the if
tight-binding Hamiltonian H conserves the chiral symmetry, the Dirac cones
remain gapless against a finite perturbation and that the number of the cones
is kept to be even under the perturbation.

Asano and Hotta [59] reported the stability of the Dirac cones from a
different point of view. They studied the stability of “essential” and “ac-
cidental” band contacts against parameter changes (e.g. transfer integrals,
on-site energies, and the spatial coordinates). When a band contact occurs

at a symmetric point in the k⃗ space, they called it an essential contact. We
can know where the essential contacts take place in advance of solving the
secular equation, while accidental contacts can sometimes happen at general
points in the k⃗ space. The studies [54–58] considered the essential contacts,
while Asano and Hotta [59] paid attention to the accidental contacts and
reported that the band contacts, including the Dirac cones at general points,
can merge and be annihilated by tuning the lattice parameters.

1.2.3 Remaining problems

The theoretical and experimental studies have reported that the superlattice
potential induce the Dirac cones [26,27,31,52,53]. However, it is not clearly
reported that whether the Dirac-electron structures in the honeycomb lattice
systems are truly gapless ones. Strictly speaking, the analytical results in
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the previous study [53] are only obtained for the pure Dirac Hamiltonian,
which is an effective Hamiltonian, under a superlattice potential. There is
a possibility that these Dirac electrons have a small energy gap outside the
Dirac Hamiltonian approximation. Indeed, Ponomarenko et al. [27] reported
that the Dirac electrons in graphene on the hexagonal boron-nitride possibly
have small energy gaps.

Previous studies [52,53] have not reported that the shapes and the ampli-
tudes of the superlattice potential affect the new Dirac-electron structures.
Lin et al. [40] recently pointed out that one needs to study effects of the shape
and amplitude of the periodic superlattice potentials in order to understand
much detail of the new Dirac cones.

The theoretical studies [52,53] based on the pure Dirac Hamiltonian under
periodic superlattice potentials did not set any restrictions to the maximum
energy of the new Dirac cones. There must be a limit to the theory, however,
because the energy spectrum of graphene under superlattice potential is not
well approximated linearly in a wider energy range. In other words, applying
the Dirac Hamiltonian to graphene under superlattice potentials may have
a limiting energy. Indeed, we later introduce an energy cutoff to take ac-
count of the maximum energy of the Dirac-electron structures caused by the
superlattice potentials. Although the above experimental studies reported
only the new cones very close to the Fermi energy, we expect that further
progress in experimental techniques enables us to detect new Dirac cones in
higher ranges of the energy spectrum and reveal the energy cutoff.

Previous studies [55, 56] for chiral symmetric systems reported the shift
and the annihilation of the Dirac points through merging of the two points.
Graphene under a superlattice potential in the form of the identity matrix
I in the space of the sublattices clearly breaks the chiral symmetry but it
conserves the equivalence of the sublattices. Watanabe et al. [60] analytically
reported that the honeycomb lattice system with the second-nearest-neighbor
hopping of the form of I has Dirac cones. For stronger hopping elements,
they revealed that the two gapless Dirac cones always appear at the K and K ′

points and never merge with each other. The nature of the Dirac electrons
with a broken chiral symmetry but with the sublattice symmetry has not
been fully understood so far.
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1.3 Quasiperiodic superlattice

The behavior of graphene under a non-periodic potential also gathers much
attention recently. Indeed, an experimental work reported quasiperiodic rip-
ples in graphene grown by chemical vapor deposition [61]. Theoretical studies
of monolayer and bilayer graphenes under a quasiperiodic superlattice sug-
gested that the energy band, the transmission coefficient, and the conduc-
tance had self-similar, or fractal structures [37,62,63]. The external potentials
were often arranged as the Fibonacci lattice which is a typical quasiperiodic
function [64–66]. The results coincided with previous studies for quantum
systems with quasiperiodic arrangements.

However, the previous studies of the quasiperiodic systems were based on
quantum systems with quadratic dispersions [64–69]. We here consider the
possibility that the linear dispersion of graphene makes essential differences
in the appearance of the quasiperiodicity and fractal structures in quantum
mechanics. In addition the Fibonacci arrangement is intrinsically fractal
because its recipe for growing lattice blocks is obviously a self-similar rule
[64–66]. In order to avoid any fractal elements, we here study graphene under
quasiperiodic superlattice potentials without fractal arrangements.

Before going to the details of our study, we briefly review studies of
quasiperiodic systems in quantum mechanics. The one which triggered much
attention to the quasiperiodicity is the discovery of a quasicrystal in 1984 [70].
Shechtman and his colleagues reported a non-periodic structure in a crystal
which researchers have not considered to exist as a stable state of matter.
After the discovery, the non-periodic crystalline structure is called quasicrys-
tal as a word for the quasiperiodic crystal [71]. At the same time theoretical
studies started to expose the nature of quasiperiodic structures in quantum
mechanics, many of which claimed that quasiperiodic systems had fractal
structures in both the energy spectrum and the eigenstates [65–69,72]. The
energy spectra of quasiperiodic systems were reported to have fractal struc-
tures similar to the Cantor set [67, 72]. Multifractal analyses reported that
the eigenstates possessed non-integer dimensions [65–67,69]. It is now widely
believed that quantum systems with quasiperiodic arrangements exhibit frac-
tal structures in the energy spectra. Some theoretical studies reinforced the
belief by considering the inverse problems [73–75].
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1.4 Purpose and organization of this thesis

In this thesis, we study the generation of the Dirac-electron structures in-
duced by superlattice potentials. We first summarize our results.

1. The Dirac-electron structures either are gapless or have very small gaps
for small amplitudes of superlattice potentials, but develop visible gaps
for amplitudes greater than critical or crossover values. We cannot
completely judge from our numerical results whether the energy gaps
of the Dirac-electron structures in the tight-binding model under a
superlattice potential are truly zero or not. According to the theoretical
study [56], it is quite likely that there are invisibly small gaps in the
structures.

2. The generation of the Dirac-electron structures is affected not only by
the period but also by the amplitude for the potential. As we increase
the amplitude, the maximum number of the Dirac-electron structures
decreases. We define the energy cutoff in order to characterize the de-
crease of the number of the Dirac-electron structures. The annihilation
of the structures without merging indicate a high likelihood that they
have small energy gaps.

3. The shape of the superlattice potential also affects the generation of
the Dirac-electron structures. When we add a double-periodic poten-
tial, which we will define in a later chapter, we find a different way
of generation of the Dirac-electron structures, namely sporadic. The
sporadic appearance is described by the Diophantine equation. In the
case of a greater amplitude, our numerical results show that the lower
energy cutoff controls the maximum energy of the sporadic generation.

4. When we regard the cutoff as a model parameter, we can classify the
generation of the Dirac-electron structures for the double-periodic po-
tentials into three cases. They can be sporadic, sporadic and consecu-
tive, or consecutive.

5. The three cases also appear in the generation induced by quasiperi-
odic potentials, which are limiting cases of the double-periodic poten-
tials. Our numerical analysis indicates that the generation of the Dirac-
electron structures is hardly fractal although the potential is quasiperi-
odic.
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We organize the thesis as follows. In Chapter 2, we review the theories of
graphene, quasiperiodic functions, and the tight-binding model of the hexag-
onal lattice with a periodic superlattice potential [1,6,53]. We briefly show
the generation of Dirac cones on the K and K ′ points at the Fermi energy as
the first step. We next show the definition of quasiperiodic functions which
we use in this study. A quasiperiodic function is characterized by an irra-
tional number. Therefore we can approximate a quasiperiodic function by a
double-periodic function with a rational number as the ratio of the periods.
The approximation is based on a relation between an irrational number and
a rational number which we explain in Appendix A. We also review the tight-
binding model of graphene under periodic superlattice potentials. We only
introduce the nearest-neighbor hopping in this thesis and set the on-site po-
tential of pristine graphene to zero. We apply a superlattice potential which
is periodic along the lattice vector a⃗1 in our study. The tight-binding Hamil-
tonian with the wave-number representation is the basis for the numerical
analysis.

In Chapter 3, we first review the generation of the new Dirac cones under
a single-periodic potential by using the Dirac Hamiltonian [52,53]. The Dirac
cones are indexed by a consecutive series of integers: n = 0,±1,±2, . . . .

We next confirm the generation of the new Dirac-electron structures by
numerical analyses of graphene under single-periodic potentials. Our numer-
ical analyses show that up to an energy cutoff, the Dirac-electron structures
are possibly gapless or have small energy gaps which are practically invisible
in our numerical environment. The index of the Dirac-electron structures
continues up to a number, beyond which there appear visible energy gaps.
As we increase the potential amplitude, the Dirac-electron structures disap-
pear one by one, developing visible energy gaps suddenly. In other words,
the maximum number decreases as the amplitude of the potential increases.
We here define the energy cutoff ∆E(v) as the minimum energy of the disap-
peared Dirac-electron structures. The new Dirac-electron structures are not
isotropic as the ones in graphene. The anisotropy becomes stronger as the
index becomes larger. The positions of the Dirac-electron structures move
perpendicularly to the reciprocal vector of the superlattice potential through
the K and K ′ points (see Appendix B). Therefore, the two Dirac-electron
structures cannot meet each other. According to the theoretical study [56],
this suggests that the Dirac-electron structures are not true Dirac cones. We
also show the numerical results for different periods in order to use as the
starting point for understanding double-periodic cases.
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In Chapter 4, we use the energy cutoff as a model parameter for the Dirac
Hamiltonian under a double-periodic superlattice potential. In our model,
only the new Dirac cones below the energy cutoff appear [76, 77]. We show
that the generation rule of the new Dirac cones for double-periodic potentials
turns out to be the Diophantine equation. When the generation of the new
cones is limited by the energy cutoff, the rule indicates that the new cones
appear sporadically, which differs from the prediction of the previous study
for periodic potentials [52,53].

The numerical results for double-periodic potentials with small ampli-
tudes show that the generation is indeed sporadic in good agreement with
the theoretical prediction from the generation rule. The new Dirac-electron
structures are also anisotropic but behave quite differently from those in
the single-periodic cases. For potentials of larger amplitudes, on the other
hand, the numerical analysis indicates that the lower one of the two en-
ergy cutoffs obtained in the corresponding two single-periodic cases, governs
the appearance in addition to the generation rule. Thus the number of the
Dirac-electron structures becomes less than that of the prediction from the
generation rule itself.

We next extend our arguments to general Dirac electron systems. We
analytically show that the generation of the Dirac cones has three cases
depending on the energy cutoff. In the first case, ∆E ≥ π, the new Dirac
cones appear consecutively while we consider the double-periodic cases. In
the second case, π/2 ≤ ∆E < π, the Dirac cones appear either sporadically
or consecutively, depending on the energy region. Finally, in the third case,
∆E < π/2, the generation is always sporadic.

In Chapter 5, we consider the generation of the new Dirac cones in general
Dirac electron systems under a quasiperiodic superlattice potential. Based on
the results for the double-periodic potentials, we predict that the new cones
appear densely in the energy spectrum under quasiperiodic potentials. The
density of the new cones depend on the energy, again because of the energy
cutoff of the linear dispersion. In addition, we show multifractal spectra
of the intervals of the new Dirac points in the Dirac Hamiltonian under
the quasiperiodic potential. Our study suggests a non-fractal appearance
of the new cones in the energy spectrum although the previous studies of
quasiperiodic systems have reported fractal spectrum [64–67]. We apply the
multifractal analysis whose formalism is introduced in Appendix D.
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Chapter 2

Backgrounds

2.1 Theory of graphene

We first review a theoretical representation of graphene in the tight-binding
approximation.

2.1.1 Tight-binding representation of graphene

Graphene is a monoatomic layer of carbon atoms on a hexagonal lattice (Fig.
2.1) [1,6]. The unit cells can be represented by the lattice vectors a⃗1 and a⃗2:

a⃗1 =
a

2

(
1√
3

)
(2.1)

and

a⃗2 =
a

2

(
−1√

3

)
, (2.2)

where a ≅ 0.246 [nm] is the lattice constant. The positions of the unit cells

can be represented by R⃗ = n1a⃗1 + n2a⃗2, where n1 and n2 are integers. A
unit cell of graphene includes two equivalent carbon atoms. We denote them
as A and B sublattices, which are represented by the filled and open circles,
respectively, in Fig. 2.1.

A useful way to represent the energy spectrum is using the wave vector
k⃗ because the lattice structure of graphene has periodicity. The reciprocal
vectors are written as

b⃗1 =
2π

a
√

3

(√
3

1

)
(2.3)
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a 2 a 1a 2R+ a 1R+

Figure 2.1: Honeycomb lattice of graphene. The filled and open circles rep-
resent the A and B sublattices, respectively. The red arrows represent the
unit vectors a⃗1 and a⃗2. Unit cells are emphasized by blue lines.

and

b⃗2 =
2π

a
√

3

(
−
√

3
1

)
. (2.4)

They observe the relation a⃗i · b⃗j = 2πδi,j (i, j = 1, 2). The first Brillouin zone

spanned by the vectors b⃗1 and b⃗2 is often chosen to be a hexagon (see Fig.
2.2).

We assume that electrons transfer only to the nearest-neighbor sites. We
thus use the tight-binding model to represent the electron states of graphene
with the periodic boundary conditions. The tight-binding Hamiltonian H1

can be represented by bra and ket vectors as

H1 = t1
∑

R⃗

(
|R⃗; B〉〈R⃗; A| + |R⃗ + a⃗1; B〉〈R⃗; A| + |R⃗ + a⃗2; B〉〈R⃗; A| + (h.c.)

)
,

(2.5)

where t1 is the hopping element, |R⃗; l〉 (l = A,B) represents the electron

wave function on a sublattice l of a unit cell R⃗, and (h.c.) represents the Her-
mitian conjugate. Let the whole system have N1 and N2 unit cells along the
directions a⃗1 and a⃗2, respectively. The wave vector k⃗ is therefore represented
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kx

ky

Figure 2.2: The first Brillouin zone in the momentum space. The green
hexagon indicates the first Brillouin zone. The yellow circles and the blue
circles represent the K and K′ points, respectively.

by

k⃗ =
m1

N1

b⃗1 +
m2

N2

b⃗2, (2.6)

where m1 = 0, 1, . . . , (N1 − 1) and m2 = 0, 1, . . . , (N2 − 1). The electron

states of the wave vector k⃗ can be represented by

|⃗k; l〉 =
1√

N1N2

∑
R⃗

eik⃗·R⃗|R⃗; l〉. (2.7)

We here denote the summation
∑N1

n1=1

∑N2

n2=N2
by

∑
R⃗. We rewrite the

tight-binding Hamiltonian in the wave-vector representation with the inverse
Fourier transformation:

|R⃗; l〉 =
1√

N1N2

∑
k⃗

e−ik⃗·R⃗ |⃗k; l〉,

〈R⃗; l|R⃗′; l′〉 = δR⃗,R⃗′δl,l′ .

(2.8)

We thereby obtain the Hamiltonian in the wave-vector representation

H1 = t1
∑

k⃗

[ (
1 + eik⃗·⃗a1 + eik⃗·⃗a2

)
|⃗k; A〉〈k⃗; B|

+
(
1 + e−ik⃗·⃗a1 + e−ik⃗·⃗a2

)
|⃗k; B〉〈k⃗; A|

]
.

(2.9)
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This is block diagonalized into k⃗ subspaces. The eigenvalue equation in each
subspace

H1|ψk⃗〉 = E(k⃗)|ψk⃗〉 (2.10)

is given by a 2× 2 matrix h1(k⃗) and the coefficients CA
k⃗

and CB
k⃗

in the form

h1(k⃗)

(
CA

k⃗

CB
k⃗

)
= E(k⃗)

(
CA

k⃗

CB
k⃗

)
, (2.11)

where

h1(k⃗) = t1

(
0 1 + eik⃗·⃗a1 + eik⃗·⃗a2

1 + e−ik⃗·⃗a1 + e−ik⃗·⃗a2 0

)
. (2.12)

We can solve Eq. (2.12) analytically and obtain the eigenvalues

E±(k⃗) = ±t1

√
3 + 2 cos(akx) + 4 cos(

1

2
akx) cos(

√
3

2
aky); (2.13)

see Fig. 2.3 (a). The eigenvalues greater than zero are in the conduction

E

ky

kx

point

point(a) (b)

E

ky

kx

K

K'

Figure 2.3: (a) The energy spectrum of graphene given by the tight-binding
model on a honeycomb lattice. The red arrows represent the K and K′ points.
(b) The linear dispersion close to the Fermi energy. The Dirac points exists
at the K and K′ points. In both figures we set the hopping element t1 and
the lattice constant a to unity.

band and the ones less than zero are in the valence band. The two bands
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touch each other at the Fermi energy 0 at the two points K and K′ given by

K⃗ =
2π

3a

(
1√
3

)
, K⃗ ′ =

2π

3a

(
−1√

3

)
; (2.14)

see Fig. 2.2. Because the matrix h1 in (2.12) should be zero at the K and K′

points, we have

1 + e±iK⃗ ·⃗a1 + e±iK⃗ ·⃗a2 = 0

1 + e±iK⃗′ ·⃗a1 + e±iK⃗′ ·⃗a2 = 0.
(2.15)

Around these two points the energy spectrum can be approximated linearly
as shown in Fig. 2.3 (b), which is known as the Dirac cone. We focus on it
in the next subsection.

2.1.2 Linear dispersion

In ordinary crystals, the energy spectrum close to the Fermi energy is rep-
resented by parabolic curves [78]. However, the spectrum of graphene close
to the Fermi energy is approximated well by a linear dispersion [1, 6]. We

represent a wave vector k⃗ close to the K point as k⃗ = K⃗ + κ⃗. The following
argument is almost the same for the K′ point.

The non-diagonal elements in Eq. (2.12) are approximated by the expan-
sions

1 + eik⃗·⃗a1 + eik⃗·⃗a2 = 1 + ei(K⃗+κ⃗)·⃗a1 + ei(K⃗+κ⃗)·⃗a2

= 1 + ei 4
3
πeiκ⃗·⃗a1 + ei 2

3 eiκ⃗·⃗a2

≅ 1 + ei 4
3
π(1 + iκ⃗ · a⃗1) + ei 2

3
π(1 + iκ⃗ · a⃗2)

= −i

√
3

2
aκy +

√
3

2
aκx =

√
3

2
a(κx − iκy)

(2.16)

and

1 + e−ik⃗·⃗a1 + e−ik⃗·⃗a2 ≅
√

3

2
a(κx + iκy). (2.17)

The matrix h1 is therefore represented by the Pauli matrices σx and σy:

h1(K⃗ + κ⃗) ≅
√

3

2
at1

(
0 κx − iκy

κx + iκy 0

)
= v0(κxσx + κyσy), (2.18)
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where v0 =
√

3
2

at1 is the group velocity. The matrix close to the K′ point is
also represented by the Pauli matrices as

h1(K⃗
′ + κ⃗) ≅

√
3

2
at1

(
0 −κx − iκy

−κx + iκy 0

)
= v0(−κxσx + κyσy). (2.19)

The effective Hamiltonian around the K point is given by replacing κx →
−i~ (∂/∂x) and κy → −i~ (∂/∂y):

h1 = ~v0

(
−iσx

∂

∂x
− iσy

∂

∂y

)
, (2.20)

which is known as the Dirac Hamiltonian [1, 6]. The eigenstate and the
eigenenergy are given by

Ψs,κ⃗(r⃗) =
1√
2

(
1

seiθκ⃗

)
eiκ⃗·r⃗ (2.21)

and
Es(κ⃗) = s~v0 |κ⃗| , (2.22)

respectively, where θκ⃗ is the polar angle of the wave vector κ⃗ and s = ±1 is
the pseudospin. Note that the vector κ⃗ is measured from the K point. The
pseudospin s = +1 corresponds to the excitation in the conduction band and
s = −1 corresponds to the excitation in the valence band. The eigenenergy
shows that the energy spectrum is linear with respect to the wave vector κ⃗
(see Fig. 2.3 (b)). The linear dispersion is a characteristic structure in the
low-energy region of graphene.
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2.2 Quasiperiodicity

In this thesis, we often use quasiperiodic and double-periodic functions for
the superlattice potential. We here introduce these concepts as a basis of our
study.

Quasiperiodic functions have been used to study quasiperiodic systems
which is a theoretical model of quasicrystals [64,65,67,68]. Researchers have
tried to apply the quasiperiodicity for wide variety of fields. For example,
recent studies reported photonic quasicrystals [79] and polymeric quasicrys-
tals [80]. Today the concept of quasiperiodicity appears in various areas of
physics.

2.2.1 Quasiperiodic functions

We first define the quasiperiodicity based on the definition given by Baake
[69] and Maciá [66].

Let a real function f(x) contain incommensurate waves:

f(x) =
∑

i

(ai cos(αix) + bi sin(αix)) , (2.23)

where ai and bi are the real constants and each frequency αi is an irrational
number. When the number of the summation is countably infinite, we refer
to f(x) as an almost periodic function. When the number of the summation
is finite, we refer to it as a quasiperiodic function. The simplest example is

f(x) = sin(2πx) + sin

(
2π

α
x

)
, (2.24)

where α is an irrational number. The Fourier transformation of a quasiperi-
odic function shows the incommensurate frequencies.

The most important feature of the quasiperiodic function is that it never
has the periodicity in spite of the summation of periodic functions. Let us
show the lack of the periodicity in the above example (2.24). First, the two
sine functions obviously have the periodicity. The periods are unity and α,
respectively. Since the sine function is periodic, it must satisfy

sin(2π(x + n)) = sin(2πx), (2.25)
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where n = ±1,±2,±3, . . . . The other sine function has the following form:

sin

(
2π

α
(x + n)

)
= sin

(
2π

α
x +

2π

α
n

)
. (2.26)

If the second sine function showed the same periodicity, the phase 2παn
would have to satisfy

2π

α
n = 2πm, (2.27)

where m = ±1,±2,±3, . . . . We could rewrite the above relation as

α =
n

m
. (2.28)

It clearly conflicts with the definition of the irrational number α. Thus the
quasiperiodic function f(x) never has the periodicity.

2.2.2 Approximation of a quasiperiodic function

Considering a function without periodicity can be difficult in theoretical and
numerical studies. We here show an efficient approximation of quasiperiodic
functions by periodic functions with long enough periods.

A quasiperiodic function can be characterized by an irrational number α.
Mathematical studies tell us that an irrational number α is approximated
well by a rational number αν = Aν/Bν , where the numerator Aν and the
denominator Bν are integers (see Appendix A) [81]. Any irrational number
can be represented by an infinite simple continued fraction [81]

α∞ = b0 +
1

b1 +
1

b2 + · · ·
1

bν−1 +
1

bν + · · ·
= [b0; b1, b2, . . . , bν , . . . ],

(2.29)

where {bν} are positive integers. A rational number αν = [b0, b1, . . . , bν ] =
Aν/Bν converges to the irrational number α = α∞ in the limit ν → ∞.

A function which is characterized by a rational number αν is a periodic
function with the ratio of period αν :

fν(x) = sin

(
2π

Aν

x

)
+ sin

(
2π

Bν

x

)
. (2.30)
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The periods Aν and Bν are coprime integers which approximate an irrational
number. The period of the summed function fν(x) is thereby given by Aν ×
Bν . We call the function fν(x) a double-periodic function. The double-
periodic function well approximates the quasiperiodic function as a rational
number does an irrational number.

For example, a quasiperiodic function with the golden ratio α =
(
1 +

√
5
)
/2

is approximated by double-periodic functions with the series of rational num-
bers,

A1

B1

=
2

1
,

A2

B2

=
3

2
,

A3

B3

=
5

3
,

A4

B4

=
8

5
,

A5

B5

=
13

8
, (2.31)

and so on.
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2.3 Tight-binding Hamiltonian with a super-

lattice potential

When graphene is put on a superlattice membrane, the on-site potential
changes because of the electrostatic potential. We here apply the tight-
binding approximation in order to represent graphene under superlattice po-
tentials.

For simplicity, we add an external potential along the a⃗1 direction to
construct a superlattice structure with period L. A unit cell of graphene
under a superlattice potential is defined as (La⃗1) × a⃗2 (see Fig. 2.4). There

R
A

B

Unit cell

a 2
a 2

η

a1L

a 1L

+R

+R

=0

η =1

η =L-1

Figure 2.4: A unit cell of graphene superlattice. The area encircled by a
blue line represents a unit cell. The red arrows represent the lattice vectors
La⃗1 and a⃗2. We distinguish the atoms in one unit cell by the symbols η =
0, 1, . . . , (L − 1) and l = A,B.

are 2 × L carbon atoms in a unit cell; the number of sublattices is also two
for graphene under the superlattice potential. The position of a unit cell is
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represented by

R⃗ = n1(La⃗1) + n2a⃗2, (2.32)

where n1 and n2 are integers. We set the periodic boundary conditions in
order to treat the system numerically; the integers n1 and n2 are thereby
restricted to n1 = 0, 1, . . . , (N1/L)−1 and n2 = 0, 1, . . . , N2−1, respectively.
In a unit cell, the wave functions for the tight-binding model is represented
as

|ψk⃗〉 =
∑

η

∑
l

Cη,l

k⃗
|⃗k; η, l〉, (2.33)

where Cη,l

k⃗
are coefficients and |⃗k; η, l〉 is the Fourier transform of |R⃗; η, l〉,

which is the electronic wave function on a carbon atom in a unit cell R⃗:

|⃗k; η, l〉 =
1√

(N1/L)N2

∑
R⃗

eik⃗·R⃗|R⃗; η, l〉 (2.34)

and

|R⃗; η, l〉 =
1√

(N1/L)N2

∑
k⃗

e−ik⃗·R⃗ |⃗k; η, l〉. (2.35)

We use the indices η = 0, 1, . . . , (L − 1) and l = A, B to denote a set of 2L
carbon atoms in one unit cell; see Fig. 2.4.

The wave vector k⃗ is given by

k⃗ =
m1

N1/L

(
b⃗1

L

)
+

m2

N2

b⃗2, (2.36)

where m1 = 0, 1, . . . , (N1/L) − 1 and m2 = 0, 1, . . . , N2 − 1. The supercell

Brillouin zone is therefore defined as
(⃗
b1/L

)
× b⃗2; see Fig. 2.5. Because of

the superlattice potential with the period L, there are 2×L states for a wave
vector k⃗. The Brillouin zone is narrowed in the direction of b⃗1 vector.

The Hamiltonian of the hopping term for graphene under a superlattice
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k
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y

b12b

b1/
0

L

KK´

SBZ

M

Figure 2.5: A schematic view of the supercell Brillouin zone (SBZ) (the dark
gray parallelogram). The light gray area is the first Brillouin zone (BZ) of
graphene without an external potential. The red broken lines represent the
hexagonal Brillouin zone. The broken arrows represent the reposition of the
K (the dark circle), K′ (the white circle), and M (the white square) points.
The band structure in the white area is illustrated in Fig. 3.1. The dark
broken lines represent (1/3) × (⃗b1/L) and (2/3) × (⃗b1/L). The relocation of
the K and K′ points depends on the period of the potential (see Appendix
B).

potential is represented as

H1 =
∑

R⃗

L−2∑
η=0

t1

(
|R⃗; η,B〉〈R⃗; η,A| + |R⃗; η + 1, B〉〈R⃗; η,A|

+ |R⃗ + a⃗2; η,B〉〈R⃗; η,A|
)

+ t1

(
|R⃗; L − 1, B〉〈R⃗; L − 1, A| + |R⃗ + La⃗1; 0, B〉〈R⃗; L − 1, A|

+ |R⃗ + a⃗2; L − 1, B〉〈R⃗; L − 1, A|
)

+ (h.c.).

(2.37)

We rewrite the hopping Hamiltonian by using the following relations:∑
R⃗

|R⃗; η,B〉〈R⃗; η′, A| =
∑

k⃗

|⃗k; η,B〉〈k⃗; η′, A|, (2.38)
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∑
R⃗

|R⃗ + a⃗2; η,B〉〈R⃗; η,A| =
∑

k⃗

e−ik⃗·⃗a2 |⃗k; η,B〉〈k⃗; η,A|, (2.39)

and∑
R⃗

|R⃗ + La⃗1; 0, B〉〈R⃗; L − 1, A| =
∑

k⃗

e−ik⃗·(La⃗1)|⃗k; 0, B〉〈k⃗; L − 1, A|. (2.40)

We thus obtain the hopping term in the wave-vector representation:

H1 = t1
∑

k⃗

L−2∑
η=0

(
1 + e−ik⃗·⃗a2

)
|⃗k; η,B〉〈k⃗; η,A| + |⃗k; η + 1, B〉〈k⃗; η,A|

+
[ (

1 + e−ik⃗·⃗a2

)
|⃗k; L − 1, B〉〈k⃗; L − 1, A|

+ e−ik⃗·(La⃗1)|⃗k; 0, B〉〈k⃗; L − 1, A|
]

+ (h.c.).

(2.41)

We write down the potential term in both cases of the single-periodic and
the double-periodic potentials. First we add a sine function with the period
L along the a⃗1 direction for the single-periodic potentials. The potential term
is given by

V = v
∑

R⃗

L−1∑
η=0

∑
l=A,B

sin
[
k⃗s ·

(
R⃗ + ηa⃗1

)]
|R⃗; η, l〉〈R⃗; η, l|

= v

L−1∑
η=0

sin
(
k⃗s · ηa⃗1

) ∑
k⃗

∑
l=A,B

|⃗k; η, l〉〈k⃗; η, l|,

(2.42)

where v is the strength of the function and k⃗s is the wave vector k⃗s = b⃗1/L.
Second we add two sine functions V1 and V2 along the a⃗1 direction with
the periods L1 and L2, respectively. We rewrite the potential term in the
double-periodic case V = V1 + V2:

V =
2∑

j=1

vj

∑
R⃗

L−1∑
η=0

∑
l=A,B

sin
[
k⃗j ·

(
R⃗ + ηa⃗1

)]
|R⃗; η, l〉〈R⃗; η, l|

=
2∑

j=1

vj

L−1∑
η=0

sin
(
k⃗j · ηa⃗1

) ∑
k⃗

∑
l=A,B

|⃗k; η, l〉〈k⃗; η, l|,

(2.43)
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where vj are the strengths of the sine functions and k⃗j = b⃗1/Lj for j = 1, 2.
We obtain the energy spectrum by solving the eigenvalue equation which
includes the hopping term (2.41) and the potential term (2.42) or (2.43).
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Chapter 3

Single-periodic potentials

We first review the generation of new Dirac cones, indexed by integers
n = ±1,±2, . . . , in the Dirac Hamiltonian under a single-periodic super-
lattice potential, which was reported by Park et al. [52, 53]. Our numerical
calculation of graphene under a periodic potential is consistent with the pre-
vious study to some extent. However, we here report two differences: first,
the appearance is discontinued around |E| ∼ t1; second, the amplitude and
the period of the superlattice potential affect the maximum possible value of
the index.

3.1 Generation of new Dirac cones under the

single-periodic potentials

We review the theory that shows the generation of new massless Dirac
electrons by analyzing the Dirac Hamiltonian under single-periodic poten-
tials [52, 53]. The Dirac Hamiltonian under a superlattice potential V (x, y)
is given by

h [V ] = ~v0

(
−iσx

∂

∂x
− iσy

∂

∂y

)
+ IV (x, y), (3.1)

where v0 is the group velocity, σx and σy are the Pauli matrices, and I is
the identity matrix. This Hamiltonian has been used to study the energy
spectrum near the Fermi energy of graphene under a periodic potential [52,
53,62].

Let us simplify the problem by assuming an external potential varying
along the x direction, which corresponds to the a⃗1 direction for the graphene
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on the hexagonal lattice:

V (x + L) = V (x), or V (r⃗ + La⃗1) = V (r⃗). (3.2)

We transform the Hamiltonian (3.1) using the integral of the superlattice
potential

α(x) =
2

~v0

∫ x

0

V (x′)dx′ (3.3)

and a unitary matrix

U1 =
1√
2

(
e−iα(x)/2 −e+iα(x)/2

e−iα(x)/2 e+iα(x)/2

)
. (3.4)

We thereby obtain the transformed Hamiltonian:

h′ = U †
1h[V ]U1 = ~v0

(
−i ∂

∂x
−e+iα(x) ∂

∂y

e−iα(x) ∂
∂y

i ∂
∂x

)
. (3.5)

The electronic states of a quantum system with translational symmetry
are given by the Bloch wave functions. A wave function ψk⃗(r⃗) is given by
the multiple of the plane wave and a periodic function:

ψk⃗(r⃗) = eik⃗·r⃗fk⃗(r⃗), (3.6)

where fk⃗(r⃗) = fk⃗(r⃗ + L⃗) is a periodic function with period L⃗. The periodic
function is represented by the Fourier expansion:

fk⃗(r⃗) =
+∞∑

j=−∞

Cj(k⃗)eiG⃗·r⃗, (3.7)

where G⃗ is a reciprocal vector of the system with an external potential and
Cj(k⃗) is a coefficient. In the particular case of Eq. (3.2), the reciprocal vector

is given by G⃗ = b⃗1/L.
We hence introduce a basis set of plane-wave spinors to obtain the eigen-

states and eigenenergies of the Hamiltonian h′ in (3.5). We here focus on the

generation of new Dirac cones close to the wave vector k⃗ =
(
G⃗n

)
/2 + κ⃗.

We therefore reduce the matrix h′ into a 2× 2 matrix by using the following
two electron states as bases:

u⃗1 =

(
1
0

)′

e
i
“

G⃗
2

n+κ⃗
”

·r⃗
(3.8)
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and

u⃗2 =

(
0
1

)′

e
−i

“

G⃗
2

n−κ⃗
”

·r⃗
, (3.9)

where n is an integer and κ⃗ = (κx, κy) is the wave vector which is defined as
|κ⃗| ≪ (2π) /L. We note that the spinors(

1
0

)′

,

(
0
1

)′

(3.10)

are defined for the matrix h′. We use the prime to distinguish the spinor
bases of the transformed matrix h′ in (3.5) from that of the matrix h in
(3.1).

Operating the transformed Hamiltonian h′ on the states u⃗1, we obtain
the following relation:

h′u⃗1 = ~v0

(
−i ∂

∂x

e−iα ∂
∂y

)′

e
i
“

G⃗
2

n+κ⃗
”

·r⃗
= ~v0

(
G
2
n + κx

iκy

∑
l fle

−ilGx

)′

e
i
“

G⃗
2

n+κ⃗
”

·r⃗
, (3.11)

where G = |G⃗| = 2π/L and we introduced the following expansion:

eiα(x) =
+∞∑

l=−∞

fl[V ]eilGx (3.12)

with real coefficients fl. We here focus on a matrix which is obtained by the
bases u⃗1 and u⃗2 in (3.8) and (3.9), respectively. In Eq. (3.11), we only consider

the term l = n to obtain the states with the wave vector k⃗ = −
(
G⃗n

)
/2+ κ⃗:

fne
−inGx (iκy) e

i
“

G⃗
2

n+κ⃗
”

·r⃗
= fn (iκy) e

−i
“

G⃗
2

n−κ⃗
”

·r⃗
. (3.13)

Thus we obtain an approximation of h′u⃗1 for the states around
(
G⃗n

)
/2:

~v0

(
G

2
n + κx

)(
1
0

)′

ei(G
2

n+κ⃗)·r⃗ + ~v0fn (iκy)

(
0
1

)′

e
−i

“

G⃗
2

n−κ
”

·r⃗

= ~v0

(
G

2
n + κx

)
u⃗1 + ~v0 (ifnκy) u⃗2.

(3.14)
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We can rewrite the relation h′u⃗2 around the wave vector
(
G⃗n

)
/2 simi-

larly. First we operate the matrix h′ on the basis u⃗2:

h′u⃗2 = ~v0

((∑
l fle

+ilGx
)
(−iκy)

G
2
n − κx

)′

e
−i

“

G⃗
2

n−κ⃗
”

·r⃗
. (3.15)

We obtain an approximation of h′u⃗2 by considering again the term with l = n:

~v0 (−ifnκy) u⃗1 + ~v0

(
G

2
n − κx

)
u⃗2. (3.16)

We thus obtain a 2 × 2 matrix M as an approximation of the Hamiltonian

h′ under the condition that the wave vector κ⃗ is very close to
(
G⃗n

)
/2:

M = ~v0

(
G
2
n + κx −iκyfn

iκyfn
G
2
n − κx

)
= ~v0 (κxσz + fnκyσy) + ~v0

(
G

2
n

)
I.

(3.17)

We further transform (3.17) by using the following unitary matrix U2 to

show that the approximated energy spectrum is linear around
(
G⃗n

)
/2:

U2 =
1√
2

(
1 1
−1 1

)
=

1√
2

(I + iσy) . (3.18)

The result is

M ′ = U †
2MU2 = ~v0 (κxσx + fnκyσy) + ~v0

G

2
nI, (3.19)

where we used the relations

(I − iσy) σz (I + iσy) = (σz + σx) (I + iσy) = σz+σx+σx−σz = 2σx, (3.20)

(I − iσy) σy (I + iσy) = (σy − iI) (I + iσy) = σy + iI− iI +σy = 2σy, (3.21)

and
(I − iσy) I (I + iσy) = I + iσy − iσy + I = 2I. (3.22)

The matrix (3.19) except for the constant term is similar to the Dirac Hamil-
tonian (2.20). In fact the matrix M ′ has the eigenenergy

Es (κ⃗) = s~v0

√
κ2

x + |fn|2 κ2
y +

hv0

2
Gn, (3.23)
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where s = ±1 represents the two bands. The second term represents the
center of the new Dirac cones, namely the new Dirac points. They appear at

G⃗0(n) ≡ n

L
b⃗1, n = 0,±1,±2, . . . . (3.24)

in the wave-number space at the energy levels ~v0Gn/2. The effect of the
potential fm gives the gradient of the energy spectrum in the κy direction.
This is because we added an external potential with the periodicity along
the x direction; the periodicity in the y direction would result in the gradient
change in the κx direction.

We will numerically confirm the appearance of the new Dirac-electron
structures on the basis of the tight-binding model with the single-periodic
potentials (3.2). In this particular case, G⃗ = |⃗b1|/L with |⃗b1| = 4π/(

√
3a) =

4π/
√

3, while group velocity v0 is (
√

3/2)at1 =
√

3/2, where we set the lattice
constant a, the hopping element t1 of the tight-binding model, and the Planck
constant ~ all to unity. The energy levels of the Dirac points therefore reduce
to

~v0

2

n

L

∣∣⃗b1

∣∣ =
π

L
n. (3.25)

Compared to the original Dirac cone (n = 0), the new Dirac cones (n ̸= 0) is

skewed as in Eq. (3.23), its gradient in the b⃗2 direction being modified by the
periodic potential [53]. We will see that the new Dirac-electron structures
are tilted far away from the original one at the Fermi energy.
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3.2 Numerical analysis

3.2.1 Generation of the Dirac-electron structures in
the tight-binding model

Let us numerically check the theoretical prediction (3.25) of the generation
of the new Dirac cones. We will reveal that the prediction is realized in the
tight-binding model only in a finite energy range around the Fermi energy
because the model has a finite band width.

We numerically diagonalized the tight-binding model on the hexagonal
lattice with periodic boundary conditions. We use the systems of size from
(r1, r2) = (102, 102) to (106, 106), where r1 and r2 denote the numbers of
the unit cells in the a⃗1 and a⃗2 directions, respectively. In this paper, we
numerically evaluate whether the band structures are gapless or not within
the accuracy of double precision. We applied to the systems the superlattice
potential of the form

V (r⃗) = v sin

(
1

L
b⃗1 · r⃗

)
, (3.26)

where v denotes the amplitude. We used L = 25 and v = 0.25 throughout
the present subsection. We show in Fig. 3.1 the energy spectrum for r1 =
r2 = 102 around the K point (see Fig. 2.5). The energy spectrum with the

superlattice potential lies in the range
∣∣∣E(k⃗)

∣∣∣ < 3t1+v = 3.25. We find many

energy bands which are in contact with each other at seeming points, which
is consistent with the prediction (3.25). As shown in Fig. 3.1, we label the
bands above the Fermi energy by positive integers; note that the spectrum
is symmetric with respect to the Fermi energy E = 0, which is labeled by
n = 0.

Let us check the consistency between the theoretical prediction (3.25)
and the numerical data in more details. We compare in Table 3.1 the energy
of the contact “points” as shown in Fig. 3.1 with the theoretical predictions
(π/L) × n = (0.1256 . . .) × n. The numerical data are mostly consistent
with the prediction up to E ≅ t1. Note that in pristine graphene the linear
dispersions around the K and K ′ points bend over away from the Fermi
energy and meet at M points of the energy ±t1 (cf. Fig. 2.5). It is therefore
reasonable that the theoretical prediction fails for E > t1, or n > 8 for
L = 25. We will indeed find below that the seeming contact “point” for
n = 9 is spurious and not a gapless Dirac electron.
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Figure 3.1: The energy spectrum around the K point of the tight-binding
model for L = 25, v = 0.25 and r1 = r2 = 102. Only the positive-energy side
is shown here: the spectrum is symmetric with respect to the Fermi energy
E = 0.

Table 3.1: The energy of the contact “points” for L = 25, v = 0.25, and
r1 = r2 = 102, compared with the energy of the theoretical prediction (3.25).
We listed only the data above the Fermi energy E = 0.

contact energy (π/L) × n
n = 0 0.00 0.00

n = +1 0.13 0.126
n = +2 0.25 0.251
n = +3 0.37 0.377
n = +4 0.49 0.503
n = +5 0.61 0.628
n = +6 0.72 0.754
n = +7 0.83 0.880
n = +8 0.93 1.01
n = +9 1.03 1.13
n = +10 1.13 1.26
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min(  )

Figure 3.2: A schematic illustration of a possible new Dirac cone and the
numerical data points. Solid circles, open circles and open squares indicate
the numerical data points for the systems of sizes r, 2r, and 4r, respectively.
Note that solid circles are on top of half of the open circles and the open
circles are on top of the half of the open squares.

In order to show it, we now describe how we evaluate whether the seeming
contact “points” correspond to the Dirac-electron structures or not within
the numerical accuracy of double precision. Suppose that in the energy range
with a Dirac-cone structure, we diagonalize the system of size r and obtain
the data points schematically indicated by the solid circle in Fig. 3.2, where
we show the spectrum only in one dimension for simplicity. The number of
data points in the wave-number space is proportional to the system size, and
hence the data points become denser as we increase the system size, as is
shown in Fig. 3.2 by the open circles for the system size 2r and the solid
circles for 4r.

Let us now focus on the data points indicated as min(•), min(◦), and
min(¤) in Fig. 3.2. They denote the wave numbers where the energy interval
between the neighboring eigenvalues for a fixed wave number is the small-
est for their respective system size. The minimum energy interval should
converge to zero as we increase the system size if the dispersion is indeed lin-
ear. As we increase the system size, the minimum energy intervals can show
stepwise decreases, as is indeed demonstrated in Fig. 3.3. We can explain it
as follows. The wave vector k⃗ in the first Brillouin zone for the system size
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(r1, r2) is given by

k⃗ =
l1
r1

(
b⃗1

L

)
+

l2
r2

b⃗2, (3.27)

where l1 = 0, 1, . . . , (r1 − 1) and l2 = 0, 1, . . . , (r2 − 1). For simplicity, let us

consider only in the b⃗1 direction and assume that a Dirac point in question
exists at the wave number κ1(⃗b1/L), where κ1 is a real constant. In the
numerical data for a large system of size r1, the minimum energy interval is
proportional to

κ1 −
l1,min

r1

, (3.28)

where l1,min denotes the wave number that gives the minimum energy interval.
The minimum energy interval for a larger system of size r′1 should be generally
less as in

κ1 −
l′1,min

r′1
≤ κ1 −

l1,min

r1

, (3.29)

where l′1,min here denotes the wave number that gives the minimum energy
interval for r′1. However, they can happen to be close to each other when
l1,min/r1 happens to be close to l′1,min/r

′
1.

We now show that according to the above judgment rule, the contact
“points” n ≤ 8 are Dirac-electron structures, which we define below in more
detail, but n ≥ 9 are not. Figure 3.4 shows the wave-number dependence of
the energy intervals between the neighboring energy eigenvalues around the
contact “points” for n = 8 and n = 9. As we make the data points denser
by increasing the system size and at the same time close up the spectrum
around the contact point n = 8, we still see the linear dispersion. It shows
that the energy gap of the contact “point” n = 8 is either zero or invisibly
small within the accuracy of the present numerical precision. We here refer
to the energy spectrum with an invisibly small energy gap a Dirac-electron
structure. In other words, when we increase the system size further, there
are two possibilities that the minimum energy interval of the Dirac-electron
structure still decreases or show a finite energy gap. We note that the Dirac-
electron structures are quite likely to possess very small energy gaps; we will
discuss this point in more detail later. In contrast, the contact “point” n = 9
exhibits visible energy gap as explicitly shown in Fig. 3.4 (d).

Figure 3.5 shows a relation between the cone index n and the minimum
energy intervals for L = 25 and v = 0.25. As we increase the system size r,
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Figure 3.3: A logarithmic plot of the system-size dependence of the minimum
energy interval at the contact “points” for L = 25 and v = 0.25.

the intervals for n = 9, 10, 11 converge to small finite values but for 0 ≤ n ≤ 8
we cannot completely know from the numerical results whether the contact
“points” are exactly gapless or have small finite energy gaps. We thereby
refer to the contact “points” 0 ≤ n ≤ 8, which are in the energy range
|E| < t1, as the Dirac-electron structures, while we refer to the structures
for n ≥ 9 as gapful structures, which are in the energy range |E| > t1.
The energy intervals of the Dirac-electron structures are of the order of 10−6

at maximum compared to the hopping element t1, which we put to unity.
We can therefore treat the energy structures close to the contact “points”
practically as the Dirac cones.

Previous studies by Park and the colleagues [52, 53] revealed the gener-
ation of the gapless Dirac electrons from the Dirac Hamiltonian, which is
an effective Hamiltonian for graphene, but they did not rigorously showed
that the Dirac cones induced by the superlattice potentials are truly gapless
in the tight-binding models. On the other hand, their prediction for the
generation of the new Dirac electrons is in good agreement with the experi-
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Figure 3.4: The energy intervals of neighboring energy eigenvalues around
the contact “points” n = 8 ((a) for r1 = r2 = 103 and (b) for 106) and n = 9
((c) for r1 = r2 = 103 and (d) for 106). Note that the ranges of the wave
numbers are all different.
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Figure 3.5: A relation between the cone index n and the minimum energy
intervals for r = 102 (blue diamonds), r = 103 (red squares), r = 104 (green
triangles), r = 105 (purple circles), and r = 106 (blue stars).

ential studies of graphene superlattices [26, 31, 38, 40]. From this viewpoint,
their effective theory works well in understanding the experimental results
although we cannot know whether the new Dirac cones are really gapless
or not. We thus expect that our theoretical and numerical results are also
effective in realizing behavior of the Dirac-electron structures induced by the
superlattice potentials.

3.2.2 Energy cutoff of graphene under the single-periodic
potentials

The previous work [52,53] used the Dirac Hamiltonian and showed the gen-
eration of the new Dirac cones independently of the band width and the
amplitude of the potential. In Subsection 3.2.1, however, we revealed that in
the tight-binding model with an external superlattice potential, the contact
“point” between neighboring bands can be Dirac-electron structures only up
to an energy cutoff ∆E which is characterized by the band width of the
graphene.

When we change the amplitude of the superlattice potential, we can ob-
tain different generation of the Dirac-electron structures. Figures 3.6 shows
a relation between the amplitude and the minimum energy intervals of the
index n = 6 for different system sizes r. As we increase the system size,
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Figure 3.6: A relation between the amplitude and the minimum energy in-
tervals of the index n = 6 for r = 102 (blue diamonds), r = 103 (red squares),
r = 104 (green triangles), r = 105 (purple crosses), and r = 106 (blue stars).

the minimum energy intervals for larger amplitudes converge to finite energy
gaps. In a small amplitude region, on the other hand, the intervals continue
decreasing as the system size r increases, where we numerically judge that
the energy structures are the Dirac-electron structures. The numerical re-
sult indicates that the energy cutoff ∆E, which is a borderline between the
Dirac-electron structures and the gapful structures, should depend on the
amplitude v. In other words, the cone index is consecutive up to a maxi-
mum value: n = 0,±1, . . . ,±N(v). To be specific, we here define the energy
cutoff ∆E(v) as the minimum energy of the disappeared Dirac-electron struc-
tures, namely the lowest spurious contact “point” of the index N(v) + 1 in
our numerical environment;

∆E(v) = E(N(v) + 1) ≅ π

L
(N(v) + 1) , (3.30)

where the energy of the Dirac-electron structure E(N(v)+1) is ideally repre-
sented by the theoretical analysis (3.25). The maximum index of the Dirac-
electron structures is given by the cutoff as

N(v) ≅
⌊

L∆E(v)

π

⌋
, (3.31)
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Figure 3.7: A schematic illustration of the appearance of the new Dirac-
electron structures around the original Dirac point generated by a periodic
potential between the Fermi energy EF (the horizontal solid line) and the
hopping element t1 (the dotted line). The solid lines represent the dispersion
of graphene, which deviates from the linear dispersion (the broken diagonal
lines). The broken vertical lines indicate the first supercell Brillouin zone (1st
SBZ). The new Dirac-electron structures, for the amplitude v, are indexed
as n = 0,±1, . . . ,±N(v), where n = 0 corresponds to the original one. The
energy cutoff ∆E(v) is set as the minimum energy of the disappeared cones,
which are illustrated with the broken line. The external potential determines
the direction k⃗ of the generation.

where ⌊ ⌋ denotes the floor function. Note that for very weak potentials, we
set the energy cutoff to ∆E(v) = t1 because the Dirac-electron structures
never appeared beyond it. We schematically show in Fig. 3.7 the generation
of the Dirac-electron structures, illustrating how it is limited by the energy
cutoff ∆E(v) induced by a single-periodic potential. We expect that the
energy cutoff ∆E(v) decreases as the amplitude of the potential increases
because the spectrum diverts more from the linear dispersion.

In order to confirm it, we numerically calculate the energy spectra and
investigate the generation of the new Dirac-electron structures for the one-
dimensional potential of period L = 25, changing its amplitude. Figure 3.8
shows relations between the system size r and the minimum energy intervals
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(a) v =0.1 (b) v =0.5

(c) v =0.75 (d) v =1.0

Figure 3.8: Logarithmic plots of the system-size dependence of the minimum
energy intervals at the contact “points” for L = 25 and (a) v = 0.1, (b)
v = 0.5, (c) v = 0.75, and (d) v = 1.0. In all plots, we left out the points
n ≥ 9 because their energies are greater than 1.

for (a) v = 0.1, (b) v = 0.5, (c) v = 0.75 (c), and (d) v = 1.0; the last case
corresponds to v = t1. In all cases, each contact “point” in the range n ≥ 9
has the energy higher than t1 = 1 and have visibly large energy gaps; we
therefore left them out in Fig. 3.8. We notice that some series obviously do
not converge to zero as we increase the system size, which implies that the
energy cutoff is lowered.

We again judge their trends under the same rule as in Subsection 3.2.1.
Figure 3.9 (a) and (b) show the energy intervals around the contact n = 8
for v = 0.5 with the system sizes r = 103 and 106, respectively. It is clear
that the contact “point” n = 8 with the amplitude v = 0.5 becomes a visibly
gapful structure as the potential becomes stronger. We numerically observed
that the contact points n = 0, . . . , +7 can be gapless or have invisible small
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energy gaps; we thus claim that N(v = 0.5) = 7. The same analysis for
v = 0.75 shows that the point n = 5 is a Dirac-electron structure but the
one n = 6 is not (Fig. 3.9 (c) and (d)). We thus claim that N(v = 0.75) = 5.
We can similarly have N(v = 1.0) = 3. As expected, the maximum index
N(v) of the new Dirac-electron structures decreases as the amplitude v of
the single-periodic potential gets larger.
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Figure 3.9: The energy intervals of neighboring energy eigenvalues around
the contact “point” n = 8 ((a) for r1 = r2 = 103 and (b) for 106 with v = 0.5),
n = 5 ((c) for r1 = r2 = 106 with v = 0.75), and n = 6 ((d) for r1 = r2 = 106

with v = 0.75). All the numerical results are obtained for the period L = 25.
Note that the ranges of the wave numbers are all different.
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3.2.3 Single-periodic potentials with different periods

We here show the generation of the Dirac-electron structures induced by
single-periodic potentials of different periods. First we study the cases of
short periods, namely L = 2, 3, and 4. When we add a potential of L < 4,
Eq. (3.25) indicates that the energy of the first new Dirac-electron structure
π/L is greater than the hopping element t1 = 1. In these cases, the first
Dirac-electron structures should have visibly large energy intervals. We next
show other periods L = 9, 13, and 8. They have mostly similar properties
to what we have discussed in the former subsections, but we still show them
because the analysis here will be extended to the double-periodic cases in
Chap. 4.

We use the same judgment rule as in Subsection 3.2.1. Figures 3.10, 3.11,
and 3.12 represent the energy intervals of neighboring energy eigenvalues for
L = 2, L = 3, and L = 4, respectively. For L = 2, we used the potential of
a cosine function v cos((⃗b1/2) · ηa⃗1) because Eq. (2.42) gives always zero for
L = 2. In Figs. 3.10 and 3.11, the energy intervals for n = 1 show visibly large
energy gaps, but the intervals for n = 0 indicate a Dirac-electron structure.
On the other hand, for L = 4, the energy intervals for n = 0 and n = 1 have
the Dirac-electron structures but the interval for n = 2 show a visibly large
gap. We thus find the new Dirac-electron structures only for L ≥ 4. They
also indicate that the energy gaps rapidly grow beyond the hopping element
t1 = 1.

Figures 3.13, 3.14, and 3.15 show the minimum energy intervals for L = 9,
L = 13, and L = 8, respectively. In the figures, the data show the stepwise
decrease similar to the one in Fig. 3.8. The energies of the Dirac electrons
listed in Table 3.2 give the energy cutoffs. We will refer to the energies again
in Chap. 4.
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(a) n=0 (r=10 )
4

(b) n=0 (r=10 )
6

(c) n=1 (r=10 )
3

(d) n=1 (r=10 )
4

Figure 3.10: The energy intervals of neighboring energy eigenvalues around
the contact “point” n = 0 ((a) for r1 = r2 = 104 and (b) for 106) and n = 1
((c) for r1 = r2 = 103 and (d) for 104 with L = 2 and v = 0.01. Note that
the ranges of the wave numbers are all different.
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Figure 3.11: The energy intervals of neighboring energy eigenvalues around
the contact “point” n = 0 ((a) for r1 = r2 = 104 and (b) for 106) and n = 1
((c) for r1 = r2 = 104 and (d) for 106) with L = 3 and v = 0.01. Note that
the ranges of the wave numbers are all different.
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Figure 3.12: The energy intervals of neighboring energy eigenvalues around
the contact “points” (a) n = 0, (b) n = 1, and (c) n = 2 for r1 = r2 = 106

with L = 4 and v = 0.01. Note that the ranges of the wave numbers are all
different.
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(a)  v=0.1 (b)  v=0.25

(c)  v=0.44 (d)  v=1.0

Figure 3.13: Logarithmic plots of the system-size dependence of the minimum
energy intervals at the contact “points” for L = 9 with (a) v = 0.1, (b)
v = 0.25, (c) v = 0.44, and (d) v = 1.0.

Table 3.2: The energies of the Dirac-electron structures for the superlattice
potential L = 8, L = 9, and L = 13, compared with the theoretical prediction
(3.25). We listed only the data above the Fermi energy E = 0.

indices L = 8 L = 9 L = 13
energy (π/L) × n energy (π/L) × n energy (π/L) × n

n = 0 0.00 0.00 0.00 0.00 0.00 0.00
n = +1 0.38 0.393 0.34 0.349 0.24 0.242
n = +2 0.72 0.785 0.65 0.698 0.47 0.483
n = +3 1.00 1.18 0.68 0.725
n = +4 0.88 0.967
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(a)  v=0.1 (b)  v=0.25

(c)  v=0.41 (d)  v=0.48

(e)  v=1.0

Figure 3.14: Logarithmic plots of the system-size dependence of the minimum
energy intervals at the contact “points” for L = 13 with (a) v = 0.1, (b)
v = 0.25, (c) v = 0.41, (d) v = 0.48, and (e) v = 1.0.
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(b)  v=0.25(a)  v=0.1

(c)  v=0.6 (d)  v=1.0

Figure 3.15: Logarithmic plots of the system-size dependence of the minimum
energy intervals at the contact “points” for L = 8 with (a) v = 0.1, (b)
v = 0.25, (c) v = 0.6, and (d) v = 1.0.
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Figure 3.16: A relation between the direction of the one-dimensional su-
perlattice potential and its effect in the reciprocal space. (a) We add the
superlattice potential along the a⃗1 direction of the hexagonal lattice. (b)

The effect appears in the direction (1/2)⃗b1 + b⃗2, which is perpendicular to

the reciprocal vector b⃗1 corresponding to the lattice vector a⃗1.

3.2.4 Anisotropy of the Dirac-electron structures

Equation (3.23) predicts that the one-dimensional superlattice potential
changes the slope of the new Dirac cones in the direction perpendicular to the
reciprocal vector of the external potential. Since we add the one-dimensional
superlattice potential along the a⃗1 direction on the hexagonal lattice system,
the corresponding reciprocal vector is b⃗1. The perpendicular direction in this
case is given by (1/2)⃗b1 + b⃗2 (see Fig. 3.16). The effect of the one-dimensional
potential |fm|2 in Eq. (3.23) therefore appears as the ratio of the slopes in

the two directions b⃗1 and (1/2)⃗b1 + b⃗2.

Figure 3.17 shows the ratios of the slopes for the Dirac-electro structures
n = 0, 1, . . . , 8 with L = 25 and v = 0.25, which we estimated by using
two data points giving the minimum energy interval and its nearest neighbor
for r = 106. As the index n becomes larger, the ratio of the slopes nearly
exponentially decay. In other words, the new Dirac-electron structures far
from the Fermi energy are strongly anisotropic. The anisotropy of the new
Dirac cones widely changes depending on the amplitudes of the potentials;
see Fig. 3.18. We find that the ratio generally approaches t1 = 1 and the new
Dirac-electron structures become isotropic as the potential gets stronger.
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Figure 3.17: A semi-logarithmic plot of the ratio of the slopes in the directions
(1/2)⃗b1+b⃗2 and b⃗1 against the cone index n for L = 25, r = 106, and v = 0.25.

Figure 3.18: A semi-logarithmic plot of the relation between the cone indices
n and the ratios of the slopes in the directions (1/2)⃗b1 + b⃗2 and b⃗1 for L = 25
with v = 0.1, 0.25, 0.5, 0.75, and 1.0. The data series for v = 0.25 is the same
as in Fig. 3.17. We omitted the data points whose energy intervals show a
visibly large energy gap (e.g., n = 8 for v = 0.5; see Fig. 3.8).
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We also investigate the anisotropy for L = 9, 13, 8; see Fig. 3.19 (a),
(b), (c), respectively. All relations again show that the anisotropy of the
Dirac-electron structure becomes weaker as the potential becomes larger.
We, however, have not found a simple relation among the potential period
and the anisotropy.
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(a)  L=9

(b)  L=13

(c)  L=8

Figure 3.19: Semilogarithmic plots of the relation between the cone indices n
and the ratio of the slopes in the directions (1/2)⃗b1 + b⃗2 and b⃗1 for (a) L = 9,
(b) L = 13, and (c) L = 8.

60



3.2.5 Positions of the Dirac-electron structures

The previous studies [55–58] have reported shifts and annihilation of the
Dirac cones induced by external fields but a unified picture has not been
clearly given. They reported that tuning the hopping elements can annihilate
the two massless Dirac cones through shift and merging but preserve both the
chiral symmetry and the equivalence of the sublattices. If we add an external
potential through the Pauli matrix σz, the equivalence of the sublattices and
the chiral symmetry of graphene immediately break. As a result, band gaps
open at the K and K ′ points.

Applying a superlattice potential by using the identity matrix I, on the
other hand, breaks the chiral symmetry but preserves the equivalence of the
sublattices. In this case, Watanabe et al. [60] reported that the two Dirac
cones stay gapless at the K and K ′ points but one of the energies increases
and the other decreases as the amplitude increases. Their theoretical analysis
showed that the Dirac cones at the K and K ′ points remain gapless against
strong perturbations.

The previous studies [52, 53] predicted that the new Dirac cones appear

at (1/2)G⃗ × n, where G⃗ is the reciprocal vector of the superlattice and n is
an integer. However, when we apply the one-dimensional periodic superlat-
tice potential to the hexagonal lattice system through the identity matrix
I, the Dirac-electron structures do not always appear just at the predicted
positions (1/2)G⃗ × n . Theoretical [52, 53] and experimental studies [26–31]
indeed have not reported in detail the positions for the hexagonal lattice
systems. Furthermore an experimental study for one-dimensional superlat-
tice potential [40] indicated that the electronic structure may depend on the
shapes and amplitudes of the potentials. We here report that the positions
of the Dirac-electron structures for the hexagonal lattice system under the
superlattice potentials move on a line in the k space. Our numerical results
indicate a high likelihood that the Dirac-electron structures have invisibly
small energy gaps by adding an infinitesimal superlattice potential.

In our thesis, we apply the one-dimensional potentials along the a⃗1 direc-
tion. Therefore, the original Dirac points K and K ′ in the supercell Brillouin
zone appear at

K⃗ = K1

(
b⃗1

L

)
+ K2⃗b2, K⃗ ′ = K ′

1

(
b⃗1

L

)
+ K ′

2b⃗2, (3.32)

where the coefficients K1, K2, K ′
1, and K ′

2 are all real numbers and their
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absolute values are less than unity. In our setting, the coefficients can have
the following three cases depending on the period L:

{(K1, K2), (K
′
1, K

′
2)} =

{(
0,

1

3

)
,

(
0,

2

3

)}
for L = 3 × m,{(

1

3
,
1

3

)
,

(
2

3
,
2

3

)}
for L = 3 × m + 2,{(

2

3
,
1

3

)
,

(
1

3
,
2

3

)}
for L = 3 × m + 1,

(3.33)

where m is a positive integer (see Appendix B). Let us remember that two

points k⃗ and k⃗ + G⃗ represent the same position in the reciprocal space, and
thus the Dirac points ideally appear only at (K⃗, K⃗ ′) and (K⃗ + (1/2)G⃗, K⃗ ′ +

(1/2)G⃗) for even and odd indices, respectively.

We numerically found that the minimum energy intervals move linearly
in the direction perpendicular to b⃗1 (see Figs. 3.20, 3.21, and 3.22). It is
clear that the data points for even indices pass through the K and K ′ points
while the ones for odd indices pass through the points K⃗ + (1/2)G⃗ and

K⃗ ′ + (1/2)G⃗. As we change the amplitude of the potential, the data points
centered around the K and K ′ points move in the directions opposite to each
other (see Figs. 3.20 and 3.21). Figure 3.23 shows the distances between the

positions of the Dirac-electron structures and the K point or K⃗ + (1/2)G⃗.
For n = 0, as we decrease the amplitude, the position of the Dirac-electron
structure converges to the K point (see Fig. 3.23 (a)). For n ≥ 1, however,

the distances between the positions and the K point or K⃗ + (1/2)G⃗ do
not converge to zero (see Fig. 3.23 (b), (c), and (d)). In the tight-binding
model with a weak amplitude, the positions of the Dirac-electron structures
for n ̸= 0 appear away from the predicted positions. We can understand
why the deviation of the positions have not been reported in the previous
studies [52,53] as follows. Figure 3.24 shows a relation between the energies of
the Dirac-electron structures and the absolute values of the distances. The
distances lineally grow as the energies draw away from the Fermi energy.
When we apply a long potential, the first Dirac-electron structure appear
very close to the Fermi energy. Thus the distance for the first structure may
be invisibly small. In the previous studies [52, 53], they actually applied a
weak potential (0.1t1) with a long period (40 times larger than the lattice
constant), and focused only on the first new Dirac cone. This may be the
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reason why the previous studies have not numerically found the deviation of
the positions.

Previous studies [55–58] reported that the two Dirac cones merge at a
point before becoming a gapful structure. Our numerical results indicate a
high likelihood that the Dirac-electron structures without merging are in fact
not gapless cones.

In our setting, the data points on the lines (1/2)⃗b1 + b⃗2 passing through
the K and K ′ points, in general, do not meet in the supercell Brillouin zone.
We here study the case L = 3 × m + 1 with even indices as an example. In
order for the two series of the data points to meet, they should satisfy the
following relation:

K⃗ + α

(
1

2
b⃗1 + b⃗2

)
= K⃗ ′ + β

(
1

2
b⃗1 + b⃗2

)
, (3.34)

where α and β are real numbers. The coefficient β is thus represented by α:

β = α − 1

3

2

L
for

b⃗1

L
direction

β = α − 1

3
for b⃗2 direction.

(3.35)

The two relations only hold for L = 2. In the case of the period L ̸= 2, the
two Dirac-electron structures cannot meet in the supercell Brillouin zone.
In this thesis, our numerical results have shown that, as we increase the
amplitude, the energy intervals of the two structures grow to visible values
without merging. However, the results for L = 2 shows a completely different
trend.

For L = 2, the two gapless Dirac cones indeed meet at the midpoint of the
K and K ′ points (see Appendix C). Figures 3.25 and 3.26 show the merging
of the two Dirac cones for L = 2. In both figures, we focus on the area
around the origin of the k space. As the amplitude increases to the threshold
v =

√
3, the two Dirac cones approach each other (see Fig. 3.25). In these

cases, all the energy intervals are zero. We can find the two Dirac cones for
v = 1.73 (see Fig. 3.26 (a)) but we cannot find them for v = 1.74, which is
greater then the threshold (see Fig. 3.26 (b)).

The previous works and our results indicate that, when the two Dirac-
electron structures merge each other, they have a strong possibility of the
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Figure 3.20: Positions of the minimum energy intervals n = 0 for L = 25.
The numerical data around (a) the K and (b) K ′ points are plotted. The

broken line is parallel to the vector (1/2)⃗b1 + b⃗2.
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Figure 3.21: Positions of the minimum energy intervals n = 1 for L = 25.
The numerical data around (a) K⃗ + (1/2)G⃗ and (b) K⃗ ′ + (1/2)G⃗ points are

plotted. The broken line is parallel to the vector (1/2)⃗b1 + b⃗2.
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Figure 3.22: Positions of the minimum energy intervals (a) n = 2 and (b)
n = 3 for L = 25 around the K point. The broken line is parallel to the
vector (1/2)⃗b1 + b⃗2.
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(a) (b)

(c) (d)

Figure 3.23: Distances between the positions of the Dirac-electron structures
and ((a) and (c)) the K point or ((b) and (d)) K⃗ + (1/2)G⃗. We set the

positive values along the vector (1/2)⃗b1 + b⃗2 in Fig. 3.20, 3.21, and 3.22.
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Figure 3.24: A relation between the energies of the Dirac-electron structures
and the absolute values of the distances.

existence of zero gaps before the merge. In contrast, the structures without
merging are more likely to have invisibly small energy gaps when the potential
is very weak.
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Figure 3.25: The positions of the Dirac points n = 0 for L = 2. The broken
line is parallel to the vector (1/2)⃗b1 + b⃗2.
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Figure 3.26: The energy spectrum for L = 2 with (a) v = 1.73 and (b)
v = 1.74. The arrows indicate the Dirac cones n = 0 around the K and K ′

points.
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Chapter 4

Double-periodic potentials

We show a generation rule of the Dirac-electron structures under the double-
periodic potentials by analyzing the Dirac Hamiltonian with the energy cutoff
∆E as a model parameter. We first consider that in our model gapless Dirac
cones induced by the single-periodic potential consecutively appear only be-
low the energy cutoff. Our theoretical analysis shows that the double-periodic
potential generates Dirac cones sporadically. We next study the appearance
of the Dirac-electron structures in the tight-binding model under the double-
periodic potential. As is the case with the single-periodic potentials, our
numerical results cannot tell whether the Dirac-electron structures are truly
gapless or not. In spite of it, the appearance of the Dirac-electron structures
with invisibly small gaps is consistent with the sporadic generation of the
Dirac cones derived from our model. It indicates that our model works well
for realizing the generation of the Dirac-electron structures in the double-
periodic cases.

4.1 Generation of the new Dirac cones under

the double-periodic potentials

We consider the double-periodic potentials in order to study the quasiperiodic
cases as an ultimate goal. A double-periodic function is defined as follows.
For simplicity again, let us consider the functions V1 and V2 which are periodic
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along the x axis, namely the a⃗1 direction:

V1(x + L1) = V1(x),

V2(x + L2) = V2(x),
(4.1)

where the integers L1 and L2 are the periods of the two functions and coprime
integers. We now apply the sum V = V1 + V2 as a double-periodic potential.

The potential is obviously a periodic function with the period L = L1×L2.
One would therefore expect to understand the generation of new cones in
terms of the single-periodic superlattice potential [53] (Chap. 3) and would
predict that the Dirac cones appear in the energy spectrum at

~v0
π

L
nd, nd = 0,±1,±2, . . . ,±Nd (4.2)

consecutively up to the limit Nd ≅ ⌊L∆E/π⌋.
We will show, however, that the appearance of the new Dirac cones is

sporadic in some cases of ∆E. The argument is based on the Dirac Hamil-
tonian in the single-periodic case in Section 3.1. We define α1 and α2 as the
integral of the superlattice potentials:

αi(x) =
2

~v0

∫ x

0

Vi(x
′)dx′, (4.3)

where i = 1, 2. The integral of the whole potential is given by

α(x) =
2

~v0

∫ x

0

V (x′)dx′

=
2

~v0

∫ x

0

(V1(x
′) + V2(x

′)) dx′

= α1(x) + α2(x).

(4.4)

We rewrite the Dirac Hamiltonian with the double-periodic potential (3.1)
by using a unitary matrix U1

U1 =
1√
2

(
e−iα/2 −e+iα/2

e−iα/2 e+iα/2

)
, (4.5)

which is similar to Eq. (3.8) but we note that α is the sum of the integrals
of the two external potentials. We obtain the Hamiltonian h′ with a similar
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transformation using the unitary matrix U1:

h′ = U †
1h[V1 + V2]U1 = ~v0

(
−i ∂

∂x
−e+iα(x) ∂

∂y

e−iα(x) ∂
∂y

i ∂
∂x

)

= ~v0

(
−i ∂

∂x
−e+iα1(x)e+iα2(x) ∂

∂y

e−iα1(x)e−iα2(x) ∂
∂y

i ∂
∂x

)
.

(4.6)

We again introduce the basis set of plane-wave spinors in order to cal-
culate the eigenstates and the eigenenergies. The different point from the
single-periodic case is to use two reciprocal vectors to represent the wave
vectors in the double-periodic case. We can rewrite the reciprocal vector

G⃗ =
(
2πk⃗x

)
/L in the double-periodic case as the summation of the recipro-

cal vectors

G⃗1 =
2π

L1

k⃗x, G⃗2 =
2π

L2

k⃗x (4.7)

of the external potentials because the period is L = L1 × L2:

nG⃗ = n1G⃗1 + n2G⃗2, (4.8)

where n, n1, and n2 are integers. We here are interested in the generation of

the new Dirac cones close to the wave vector k⃗ =
(
G⃗1n1

)
/2+

(
G⃗2n2

)
/2+ κ⃗.

We use the following two states as bases to reduce the matrix h′ into a matrix:

u⃗1 =

(
1
0

)′

e
i

„

G⃗1
2

n1+
G⃗2
2

n2+κ⃗

«

·r⃗
(4.9)

and

u⃗2 =

(
0
1

)′

e
−i

„

G⃗1
2

n1+
G⃗2
2

n2−κ⃗

«

·r⃗
, (4.10)

where κ⃗ = (κx, κy) is the wave vector which is defined as |κ⃗| ≪ (2π) /L. We
also use the prime to indicate that the spinor bases are defined for the matrix
h′.

By operating the Hamiltonian h′ on the states u⃗1, we obtain the following
relation:

h′B⃗1 = ~v0

(
−i ∂

∂x

e−iα1e−α2 ∂
∂y

)′

e
i

„

G⃗1
2

n1+
G⃗2
2

n2+κ⃗

«

·r⃗

= ~v0

(
(−i)i

(
G1

2
n1 + G2

2
n2 + κx

)(∑
l1

f1,l1e
−il1G1x

) (∑
l2

f2,l2e
−il2G2x

)
(iκy)

)′

e
i

„

G⃗1
2

n1+
G⃗2
2

n2+κ⃗

«

·r⃗
,

(4.11)
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where we introduced the following expansion:

eiα1(x) =
+∞∑

l1=−∞

f1,l1 [V1]e
il1G1x (4.12)

and

eiα2(x) =
+∞∑

l2=−∞

f2,l2 [V2]e
il2G2x (4.13)

with |G⃗i| = 2π/Li and real coefficients fi,li for i = 1, 2. We only consider the
term with l1 = n1 and l2 = n2 in the sums to obtain the states with the wave

vector k⃗ = −
(
G⃗1n1 + G⃗2n2

)
/2 + κ⃗ because we are interested in a matrix

constructed on the bases b⃗1 and b⃗2:

f1,n1e
−in1G1xf2,n2e

−in2G2x (iκy) e
i

„

G⃗1
2

n1+
G⃗2
2

n2+κ⃗

«

·r⃗

= f1,n1f2,n2 (iκy) e
−i

„

G⃗1
2

n1+
G⃗2
2

n2−κ⃗

«

·r⃗
.

(4.14)

Therefore we approximate h′u⃗1 on the bases u⃗1 and u⃗2 for the states around
(G⃗1n1)/2 + (G⃗2n2)/2:

~v0

(
G1

2
n1 +

G2

2
n2 + κx

)(
1
0

)′

ei(G1
2

n1+
G2
2

n2+κ⃗)·r⃗

+ ~v0f1,n1f2,n2 (iκy)

(
0
1

)′

e
−i

„

G⃗1
2

n1+
G⃗2
2

n2−κ

«

·r⃗

= ~v0

(
G1

2
n1 +

G2

2
n2 + κx

)
u⃗1 + ~v0 (if1,n1f2,n2κy) u⃗2.

(4.15)

We similarly rewrite h′u⃗2 around the wave vector (G⃗1n1)/2 + (G⃗2n2)/2.
We operate the matrix h′ on the basis u⃗2:

h′u⃗2 = ~v0

((∑
l1

f1,l1e
−il1G1x

) (∑
l2

f2,l2e
−il2G2x

)
(−iκy)

G1

2
n1 + G2

2
n2 − κx

)′

e
−i

„

G⃗1
2

n1+
G⃗2
2

n2−κ⃗

«

·r⃗
.

(4.16)
We also obtain an approximation of h′u⃗2 with the conditions l1 = n1 and
l2 = n2:

~v0 (−if1,n1f2,n2κy) u⃗1 + ~v0

(
G1

2
n1 +

G2

2
n2 − κx

)
u⃗2. (4.17)
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We thus obtain a matrix M as an approximation of the Hamiltonian h′ under
the condition that the wave vector k⃗ is very close to (G1n1)/2 + (G2n2)/2:

M = ~v0

(
G1

2
n1 + G2

2
n2 + κx −iκyf1,n1f2,n2

iκyf1,n1f2,n2

G1

2
n1 + G2

2
n2 − κx

)
= ~v0 (κxσz + f1,n1f2,n2κyσy) + ~v0

(
G1

2
n1 +

G2

2
n2

)
I.

(4.18)

We transform (4.18) by using the following unitary matrix U2 in order to

show that the approximated energy spectrum is linear around
(
G⃗1n1

)
/2 +(

G⃗2n2

)
/2:

U2 =
1√
2

(
1 1
−1 1

)
=

1√
2

(I + iσy) . (4.19)

We obtain the matrix M ′ by the unitary transformation:

M ′ = U †
2MU2

= ~v0 (κxσx + f1,n1f2,n2κyσy) + ~v0

(
G1

2
n1 +

G2

2
n2

)
I,

(4.20)

where we used the relations Eqs. (3.20), (3.21), and (3.22). The matrix M
is also similar to the Dirac Hamiltonian (2.20). The eigenenergy is

Es (κ⃗) = s~v0

√
κ2

x + |f1,n1f2,n2 |
2 κ2

y +
hv0

2
(G1n1 + G2n2) , (4.21)

where s = ±1 represents the two bands. The effect of the potentials f1,m1

and f2,m2 yields the gradient of the energy spectrum in the κy direction. This
is again because we add the external potential with the periodicity in the x
direction.

The second term in (4.21) must be consistent with Eq. (4.2) when we
study the same double-periodic system:

~v0
π

L
nd = ~v0

(
π

L1

n1 +
π

L2

n2

)
. (4.22)

Let us remember that the period of the double-periodic function is given by
L = L1 × L2. We thus obtain the Diophantine equation:

nd = L2n1 + L1n2. (4.23)
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The point is the following. If the indices n1 and n2 took all integer
values as is for the Dirac Hamiltonian (3.1), the Diophantine equation (4.23)
could produce any integers for nd. In our model, however, the generation
of the new Dirac cones is restricted by the energy cutoffs ∆Ei as in ni =
±1,±2, . . . ,±Ni, where Ni ≅ ⌊Li∆Ei/π⌋. Though each of the indices n1

and n2 is consecutive up to its respective limit N1 and N2, the index of
the new Dirac cones nd in the Diophantine equation (4.23) is not always
consecutive because of the finite energy cutoffs ∆Ei.
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n
1=0~±4

n
2=0~±2

L2=9

L1=13

Figure 4.1: The table of the combination of the indices n1 = 0,±1,±2,±3,±4
and n2 = 0,±1,±2 obtained by the generation rule nd = L2n1+L1n2 in (4.23)
with L1 = 13 and L2 = 9. The green and yellow areas represent positive and
negative integers.

4.2 Numerical analyses for double-periodic cases

4.2.1 Sporadic generation of the Dirac-electron struc-
tures

Our theoretical analysis in the previous subsection showed that the gener-
ation of the Dirac-electron structures induced by a double-periodic poten-
tial is understood by the combination of the indices obtained for the pair
of single-periodic cases. For the double-periodic potentials, we again will
not completely judge whether the contact “points” are truly gapless or not.
However, our theoretical study from the Dirac Hamiltonian can satisfactory
explain the different generation of the Dirac-electron structures. We here
confirm our prediction of the generation rule (4.23) numerically for L1 = 13,
L2 = 9, v1 = 0.1, and v2 = 0.1.

The single-periodic cases (L1, v1) = (13, 0.1) and (L2, v1) = (8, 0.1) nu-
merically exhibit the consecutive indices n1 = 0,±1,±2,±3,±4 and n2 =
0,±1,±2, respectively (see Sec. 3.2.3). Figure 4.1 is the table of the combi-
nation of the indices n1 and n2. For example, the index nd = +5 is made from
the set (n1, n2) = (+2,−1). Note that the series of the new Dirac-electron
structures do not consecutively continue up to a maximum number. We call
this type of sequence of indices sporadic. We here show that the generation
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Figure 4.2: The energy spectrum around the K point of the tight-binding
model for L1 = 13, L2 = 9, v1 = 0.1, and v2 = 0.1 and the system size
(r1, r2) = (102, 102). Only the positive-energy side is shown here. The arrows
indicate the contact “points” of the upper and lower bands.

rule (4.23) can explain the sporadic appearance of the new Dirac-electron
structures induced by the double-periodic potential.

Let us demonstrate the generation rule (4.23) by numerically diagonaliz-
ing the tight-binding model (2.41) under a double-periodic potential (2.43)
as the sum of two sine functions V1 and V2 with the periods (L1, L2) = (13, 9),
where the unity means the lattice constant. Therefore, the total period of
the double-periodic potential is given by L = L1 × L2 = 117. We set the
amplitudes of the potentials as v1 = 0.1 and v2 = 0.1. A tight-binding energy
spectrum for the system of size (r1, r2) = (102, 102) is illustrated in Fig. 4.2.
We here plot the positive energy ranges because the spectrum is symmetric
with respect to the Fermi energy EF = 0 as in the single-periodic cases. The
spectrum over the energy range in Fig. 4.2 also has the band structures and
the contact “points”. Compared to the single-periodic case in Fig. 3.1, it is
hard to find the contact “points” just by watching the spectrum itself. We
next study the neighboring energy intervals around the contact “points” in
order to realize it.

Figure 4.3 shows the relations between the system size r and the min-
imum intervals of all contact “points” whose energies are located between
the Fermi energy EF = 0 and the hopping parameter t1 = 1.0. In the case
of the double-periodic potential L = 117, we study the system size from
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(r1, r2) = (102, 102) to (105, 105). As the system size r increases, the data
series also exhibit the two patterns, the stepwise one and the converging one,
which we discussed in Chap. 3. For example, the contact “points” nd = +1
and nd = +2 in Fig. 4.3 (a) clearly show different patterns.

Figure 4.4 (a), (b), (c), and (d) are the energy intervals around the contact
“points” nd = +1 and nd = +2. The interval around the contact “point”
nd = +1 keeps showing the linearity even for r = 105 as illustrated in Fig. 4.4
(b), but the one nd = +2 exhibits an energy gap for r = 105 as in Fig. 4.4
(d). By using the same analysis as in Subsection 3.2.1, the contact “point”
nd = +1 can be the Dirac-electron structure with an invisible small mass.
We thus conclude that the sporadic series of contacts nd = {0, 1, 4, 5, 8, 9},
{10, 13, 14, 17, 18}, {22, 23, 26, 27}, {31, 35, 36}, and {40, 44} can have gapless
structures, where curly brackets indicate that each set is plotted in Fig. 4.4
(a), (b), (c), and (d), respectively.

Let us compare our numerical results with the predicted numbers as
shown in the table of the combination in Fig. 4.1. All the indices of the
new Dirac-electron structures which we obtained by the numerical analyses
appear on the table, as we emphasized with the red boxes. This consis-
tency clearly shows that the generation rule (4.23) can explain the sporadic
appearance of the new Dirac-electron structures.
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(a) (b)

(c) (d)

(e)

Figure 4.3: Logarithmic plots of the system-size dependence of the minimum
energy interval as the contact “points” for (L1, L2, v1, v2) = (13, 9, 0.1, 0.1).
The data series of 0 ≤ nd ≤ 9, 10 ≤ nd ≤ 19, 20 ≤ nd ≤ 29, 30 ≤ nd ≤ 39,
and 40 ≤ nd ≤ 44 are plotted in (a) to (e), respectively.
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(b) n  =1 (10  )
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(d) n  =2 (10  )5
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Figure 4.4: The energy intervals of neighboring energy eigenvalues around
the contact “points” n = 1 ((a) for r1 = r2 = 103 and (b) for 105) and
n = 2 ((a) for r1 = r2 = 103 and (b) for 105) for the case of (L1, L2, v1, v2) =
(13, 9, 0.1, 0.1).
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Finally, we give a word of caution in the numerical confirmation of the
Dirac-electron structures. When the energy interval is a very small finite
value, we are not able to find out the gapful structure numerically because we
cannot increase the system size forever. In this case, changing the amplitude
of the double-periodic potential can resolve the problem as we demonstrate
hereafter.

We here show an example from double-periodic systems L1 = 13 and
L2 = 8. Figure 4.5 is the combination table for a double-periodic potential
(L1, L2, v1, v2) = (13, 8, 0.1, 0.1) and (13, 8, 0.1, 0.6). The two systems have
the same table because the indices n1 for L = 13 and n2 for L = 8 have the
same ranges although the potential for L = 8 is different. Almost all indices
of these cases numerically show the same results; we especially emphasize
the possible gapless structures in the red boxes in Fig. 4.5.

We, however, find an exceptional case nd = 20 which yields different
results for v2 = 0.1 and v2 = 0.6. The generation rule (4.23) would predict
that it would not be a new Dirac-electron structures; for the double-periodic
potential (L1, L2) = (13, 8), the appearance of the cone nd = +20 needs
n1 = −4 and n2 = +4, which is larger than the maximum index for the
single-periodic potential (L, v) = (8, 0.1) (see Figs, 3.15 (a) and 3.19 (c)).

The numerical result for nd = 20 does not show a gapful structure for
v2 = 0.1 (see Fig. 4.6 (a) and Fig. 4.7 (a)), similarly to the predicted Dirac-
electron structure nd = 21 for v2 = 0.1 (Fig. 4.6 (a) and Fig. 4.7 (c)). On the
other hand, the numerical results for v2 = 0.6 have different trends between
the indices nd = 20 and 21. The result for nd = 21 with v2 = 0.6 indicates a
possible gapless structure, (see Fig. 4.6 (b) and Fig. 4.7 (d)), but the result
for nd = 20 with v2 = 0.6 shows a gapful structure (see Fig. 4.6 (b) and
Fig. 4.7 (b)). We found that all other points show the same results while we
change the amplitude v2 = 0.1 to 0.6. We therefore conclude that the band
contact nd = +20 for v2 = 0.1 has a too small energy gap to detect within
the current system size.

4.2.2 Anisotropy of the Dirac-electron structures in
the double-periodic systems

The difference between the double-periodic and the single-periodic cases also
appears in the anisotropy of the new Dirac-electron structures. All the ratios
of the slopes in the directions b⃗1/2+b⃗2 and b⃗1 in the cases of the single-periodic
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n
1=0~±4

n
2=0~±3

L2=8

L1=13

Figure 4.5: The table of the combination of the indices n1 = 0,±1,±2,±3,±4
and n2 = 0,±1,±2,±3 with L1 = 13 and L2 = 8 obtained by the generation
rule nd = L2n1 + L1n2 in (4.23). The green and yellow areas represent
positive and negative integers. The numbers in the red boxes correspond
to the contact points at which we numerically confirmed the possible Dirac-
electron structures.
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(a)

(b)

Figure 4.6: Logarithmic plots of the system-size dependence of the minimum
energy interval at the contact “point” for (a) (L1, L2, v1, v2) = (13, 8, 0.1, 0.1)
and (b) (L1, L2, v1, v2) = (13, 8, 0.1, 0.6).
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Figure 4.7: The energy intervals of neighboring energy eigenvalues around
the contact “point” nd = 20 ((a) for r1 = r2 = 105 and v2 = 0.1 and (b) for
105 and v2 = 0.6) and nd = 21 ((c) for r1 = r2 = 105 and v2 = 0.1 and (d)
for 105 and v2 = 0.6) .
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potentials have shown nearly exponential decays as the cone indices increase
(see Figs, 3.18 and 3.19). We predict that the ratio obtained in the cases of
the double-periodic potential, however, shows a completely different trend.
The different trend is explained by studying the Dirac Hamiltonian under
the double-periodic potential. Equation (4.21) indicates that the ratio of the
slopes |fnd

|2 for the cone index nd is given by the product |f1,n1 |
2 × |f2,n2 |

2,
where the terms |f1,n1 |

2 and |f2,n2 |
2 are the ratios in the single-periodic cases

for the indices n1 and n2, respectively. Since n1 and n2 do not change mono-
tonically as we increase nd, the ratios in the double-periodic cases should
fluctuate widely as the the indices increase.

In the double-periodic cases, we can see a behavior different from the
single-periodic cases by studying the anisotropy of the new Dirac-electron
structures. Figure 4.8 (a) shows the ratio of the slopes in the two direc-
tions from the numerical results in the double-periodic case (L1, L2, v1, v2) =
(13, 9, 0.1, 0.1) . It fluctuates much more widely than the one illustrated in
Fig. 3.18. Figure 4.8 (b) shows comparison between the numerical results in
the double-periodic case (the blue diamonds) and the ratios calculated from
the numerical results in the single-periodic cases (L, v) = (13, 0.1) and (9, 0.1)
(the red triangles). The two data set relatively have a good agreement in most
points except for the data points for the indices nd = +1, +10, +23, which
have stronger anisotropies than expected from the single-periodic cases. In
these exceptional cases, the index consists of larger numbers of the indices n1

and n2, and thus they are near the end of the table in Fig. 4.1. We plot the
ratio of the numerical results in the double-periodic case and the calculated
values in the single-periodic cases on the combination table (see Fig. 4.9).
The ratios for the index −nd are the same as that for +nd. It is clear that
the indices near the edge of the table have great mismatches between the two
ratios. The larger indices n1 and n2 correspond to the new Dirac-electron
structures whose energies are far away from the Fermi energy, and therefore
we presume that the difference between the actual energy spectrum and the
linear dispersion causes the mismatches.
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(a)

(b)

Figure 4.8: The ratio of the slopes in the two directions (1/2)⃗b1 + b⃗2

and b⃗1. The blue diamonds potted in (a) and (b) indicate the numeri-
cal results directly obtained from the double-periodic case (L1, L2, v1, v2) =
(13, 9, 0.1, 0.1). The red triangles plotted in (b) indicate that calculated val-
ues by using Eq. (4.21) and the numerical data from the single-periodic cases
(L, v) = (13, 0.1) and (L, v) = (9, 0.1).
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Figure 4.9: The ratio of the slopes’ ratios in the double-periodic case to the
ratio of slopes in the single-periodic cases. We illustrate the ratios on the
combination table in Fig. 4.1.

4.3 Energy cutoff in the double-periodic cases

In the previous subsection, we revealed that the new Dirac-electron structures
appear sporadically in the double-periodic cases because each single-periodic
potential has an energy cutoff determined by the band width and the poten-
tial amplitude. In the present section, we show how the energy cutoffs for the
two single-periodic potentials determine the energy cutoff for the resulting
double-periodic potential. After examining a few examples, we will conclude
that the lower energy cutoff between those for the two single-periodic poten-
tials determines the maximum indices of both components n1 and n2 in the
generation rule (4.23).

When we increase the amplitude v of the single-periodic potential, the
maximum index N(v) of the Dirac-electron structures, in general, becomes
smaller. In other words, the Dirac-electron structures appear in the energy
range n ≤ N(v) ≅ ⌊L∆E(v)/π⌋. We here consider a double-periodic system
V = V1+V2, where V1 and V2 have the periods L1 and L2, respectively. As we
only increase the amplitude v2, the corresponding cutoff ∆E2(v2) decreases
but ∆E1(v1) does not change. We will, however, reveal that both indices n1

88



Table 4.1: The list of the indices n1 and n2 whose energies are below the
lower cutoff ∆E2(v2). When we set the amplitudes v1 = v2 = 0.1, the energy
cutoffs are equal to the hopping parameter t1 = 1.0.

L1 = 13, L2 = 9 n1 n2

v1 = 0.1, v2 = 0.1 0, . . . ,±4 0, . . . ,±2
v1 = 0.1, v2 = 0.25 0, . . . ,±2 0,±1
v1 = 0.1, v2 = 0.44 0,±1 0

and n2 are restricted by the lower one of ∆E1(v1) and ∆E2(v2):

ni ≤
⌊

Li

π
min (∆E1(v1), ∆E2(v2))

⌋
(4.24)

for i = 1 and 2.
First, let us focus on a double-periodic case with L1 = 13 and L2 = 9.

For small amplitudes v1 = v2 = 0.1, the energy cutoffs ∆E1(v1 = 0.1) and
∆E2(v2 = 0.1), which yield n1 = 0, . . . ,±4 and n2 = 0, . . . ,±2, respectively,
are approximately equal to the hopping parameter t1 = 1.0, as is indicated
by the dotted line in the right half of Fig. 4.10 (the first row of Table 4.1).
Our numerical analyses have shown that the table of the combination based
on these values indeed explains the sporadic generation of the new Dirac-
electron structures (see Section 4.2).

Let us next increase the amplitude v2 to 0.25 for the single-periodic po-
tential L2 = 9 (the second row of Table 4.1; see Subsection 3.2.3). This
decreases the energy cutoff for L2 = 9 to ∆E2(v2 = 0.25) and hence extin-
guishes the Dirac-electron structure n2 = 2. We would then expect that the
generation of the new Dirac-electron structures might be ruled by the indices
n1 = 0, . . . ,±4 and n2 = 0,±1. The table of the combination in Fig. 4.11
(a) would then predict a sporadic series of indices up to nd = 40. Our nu-
merical calculation, however, shows that the new Dirac-electron structure
sporadically appears only put to nd = 31.

We thereby claim that the relevant range of the index n1 is also restricted
by the energy cutoff ∆E2, not only by ∆E1, as shown in Eq. (4.24). According
to this empirical rule, the five indices crossed out in Fig. 4.11 (a) are not
eligible for the new Dirac-electron structures anymore, which explains the
numerical results.
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Figure 4.10: The energies of the new Dirac-electron structures of the single-
periodic potentials. The blue diamonds, the red square, and the green trian-
gles represent the energies for L = 9, L = 8, and L = 13, respectively. The
dotted line, the solid line, and the dashed line represent the hopping element
t1 = 1, the energy cutoff for L = 9, and the one for L = 13, respectively.

Let us confirm the rule further by increasing the amplitude v2 more to
0.44. The rule (4.24) dictates that as we increase the amplitude v2 to 0.44, the
cone indices n1 = 0,±1 and n2 = 0 below the lower cutoff ∆E2(v2 = 0.44) are
only relevant (see the right half of Fig. 4.10 and Table 4.1). The combination
table in Fig. 4.11 (b) now predicts only the Dirac-electron structures nd = 0
and 9, which is indeed consistent with our numerical result.

We similarly confirm the rule (4.24) in the case L1 = 13 and L2 = 8.
When we increase the amplitude v1 as 0.25, 0.41, and 0.48, the relevant cone
indices below the cutoff ∆E1(v1) decreases as is shown in the left half of
Fig. 4.10 and Table 4.2. The point here is again that the index n2 is also
restricted accordingly. The combination table in Figure 4.12 then perfectly
predicts the numerical results. The indices crossed out in Fig. 4.12 are indeed
not Dirac-electron structures. We thereby conclude that in the combination
table for the possible Dirac-electron structures in the double-periodic case,
we must use the cone indices n1 and n2 both lower than the minimum of
∆E1 and ∆E2.
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(a)

(b)

n1=0~±4

n2=0~±1

L2=9

L1=13

L2=9

L1=13

n1=0~±4

n2=0

Figure 4.11: Tables of the combinations of the indices (a) n1 = 0, . . . ,±4
and n2 = 0,±1 and (b) n1 = 0, . . . ,±4 and n2 = 0. They corre-
spond to the double-periodic cases (L1, L2, v1, v2) = (13, 9, 0.1, 0.25) and
(L1, L2, v1, v2) = (13, 9, 0.1, 0.44), respectively. The green and the yellow
areas represent positive and negative integers. The numbers in the red boxes
not crossed out are the possible Dirac-electron structures which we numer-
ically found while the ones crossed out are not Dirac-electron structures.

Table 4.2: The list of the indices n1 and n2 whose energies are below the
lower cutoff ∆E1(v1). When we set the amplitudes v1 = v2 = 0.1, the energy
cutoffs are equal to the hopping parameter t1 = 1.0.

L1 = 13, L2 = 8 n1 n2

v1 = 0.1, v2 = 0.1 0, . . . ,±4 0, . . . ,±3
v1 = 0.25, v2 = 0.1 0, . . . ,±3 0, . . . ,±2
v1 = 0.41, v2 = 0.1 0, . . . ,±2 0,±1
v1 = 0.48, v2 = 0.1 0,±1 0,±1
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n1=0~±3
L2=8

n2=0~±3

n2=0~±3 n2=0~±3

L1=13

L1=13 L1=13

n1=0~±2
L2=8

n1=0~±1
L2=8

(a)

(b) (c)

Figure 4.12: Tables of the combinations of the indices in the double-periodic
case (L1, L2, v2) = (13, 8, 0.1); (a) n1 = 0, . . . ,±3 and n2 = 0, . . . ,±3, (b)
n1 = 0, . . . ,±2 and n2 = 0, . . . ,±3, and (c) n1 = 0,±1 and n2 = 0, . . . ,±3
for the amplitudes v1 = 0.25, 0.41, and 0.48, respectively. The green and the
yellow areas represent positive and negative integers. The numbers in the red
boxes not crossed out are the possible Dirac-electron structures which we nu-
merically found while the ones crossed out are not Dirac-electron structures.
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4.4 Dirac electron systems under the double-

periodic potentials

In this section we set the energy cutoff as a free parameter in order to gen-
eralize the argument to various Dirac electron systems under superlattice
potentials [82, 83]. For the shape of the argument, we assume from now on
that Eq. (4.23) can represent the generation of the Dirac cones for the various
Dirac electron systems.

Our studies show that there are three cases of the energy cutoff ∆E
regarding the appearance of the new Dirac cones in the double-periodic cases
(Fig. 4.13). The three cases are mainly divided by the two values ∆E = π

π / 2

π 

0

Graphene under SL

consecutive

sporadic

n d 

∆E
Nd 

sporadic

= (              )/π L L E1 2 

n d = 

consecutive

t =1

N ≈  L L ΔE/π 1 2d ⌐ ⌐

1

Figure 4.13: A schematic of the appearance of the new Dirac cones. The
dark red area is filled up by the new points. In the light blue area the
points appear sporadically. The range of the energy cutoff of graphene under
the superlattice potential (SL) is represented by the double-headed arrow
(EF(= 0) ≤ ∆E ≤ t1(= 1)).

and π/2. In the first case ∆E ≥ π, all new cones appear consecutively up to
Nd ≅ ⌊L1L2∆E/π⌋, which coincides with the case of a single sine function
(cf. Eq. (3.30)). In the second case π/2 ≤ ∆E < π, the new cones fill up the
energy range |E| < 2∆E−π, or |nd| < ((2∆E/π)−1)L. In the energy range
2∆E − π < |E| < ∆E, the new cones appear sporadically. In the third case
∆E < π/2, the new cones appear sporadically in all energy range |E| < ∆E.

Graphene under the superlattice potential corresponds to the third case;
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the cutoff varies in the range 0.0 < ∆E < 1.0. In the following paragraphs
we explain the appearance of the three cases by considering the finite simple
continued-fraction expansion [81] of the rational number r = L1/L2 (see
Appendix A).

4.4.1 General solution of the generation rule

We derive the general solution of the generation rule (4.23) as the first step
of our effort. We rewrite the generation rule (4.23) by using the notation in
the finite simple continued fraction expansion:

nd = Bνn1 + Aνn2, (4.25)

where Aν = L1 is the numerator and Bν = L2 is the denominator that
are coprime integers (see Appendix A). The general solutions of the above
equation is given by

n1 = (−1)νndAν−1 + Aνm (4.26)

and

n2 = (−1)ν−1ndBν−1 − Bνm, (4.27)

where m is an arbitrary integer. These solutions can be derived as follows.
First, we consider the case in which the index nd is unity. The equation

is known as a linear Diophantine equation or Bézout’s identity [86]:

Bνn1 + Aνn2 = 1. (4.28)

We can see that

n∗
1 = (−1)νAν−1, n∗

2 = (−1)ν−1Bν−1 (4.29)

are special solutions by substituting them into Eq. (4.28) and applying the
recurrence formulas (A.11) and (A.12):

Bνn
∗
1 + Aνn

∗
2 = (−1)νAν−1Bν + (−1)ν−1AνBν−1

= (−1)νAν−1(bνBν−1 + Bν−2) + (−1)ν−1(bνAν−1 + Aν−2)Bν−1

= (−1)νAν−1Bν−2 + (−1)ν−1Aν−2Bν−1

= (−1)νAν−3Bν−2 + (−1)ν−1Aν−2Bν−3

= . . . .

(4.30)
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By continuing the above transformation we finally obtain

Bνn
∗
1 + Aνn

∗
2 = (−1)0A−1B0 + (−1)−1A0B−1 = 1 (4.31)

for even ν and

Bνn
∗
1 + Aνn

∗
2 = (−1)1A0B−1 + (−1)0A−1B0 = 1 (4.32)

for odd ν, because A−1 = B0 = 1 and B−1 = 0. We thus see that the numbers
n∗

1 and n∗
2 in Eq. (4.29) are special solutions of Eq. (4.28).

Second, we set nd to an integer greater than unity. The derivation of
special solutions are almost the same as in the case of nd = 1. The numbers

ndn
∗
1 = (−1)νndAν−1, ndn

∗
2 = (−1)ν−1ndBν−1 (4.33)

are obviously special solutions of Eq. (4.25) because

Bν(ndn
∗
1) + Aν(ndn

∗
2) = nd(Bνn

∗
1 + Aνn

∗
2) = nd. (4.34)

The general solutions of Eq. (4.25) are given by the special solutions
(4.33). We have

Bν(n1 − ndn
∗
1) + Aν(n2 − ndn

∗
2) = 0 (4.35)

by subtracting Eq. (4.34) from Eq. (4.25). Substituting the special solutions
(4.33) into Eq. (4.35), we have

Bν(n1 − (−1)νndAν−1) = Aν((−1)ν−1ndBν−1 − n2). (4.36)

Since Aν and Bν are coprime, the number in the parentheses on the left-
hand side must be a multiple of Aν and that on the right-hand side must be
a multiple of Bν : Thus it yields

n1 − (−1)νndAν−1 = mAν (4.37)

(−1)ν−1ndBν−1 − n2 = mBν , (4.38)

where m is an arbitrary integer. We thereby have the general solutions of
Eq.(4.25) in the forms of

n1 = (−1)νndAν−1 + Aνm, (4.39)

n2 = (−1)ν−1ndBν−1 − Bνm, (4.40)

which are Eqs. (4.26) and (4.27).
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4.4.2 Proof of the appearance of the three cases

In this section, we show the appearance of the three cases of the generation
of the new Dirac cones in terms of the energy cutoff ∆E.

We apply the restrictions of the indices

|ni| ≤ Ni ≅
⌊

Li

π
∆E

⌋
for i = 1, 2 (4.41)

to the general solutions (4.39) and (4.40), where ∆E is in practice given by
min(∆E1(v1), ∆E2(v2)) as in (4.24). We thereby have

|(−1)νndAν−1 + Aνm| ≤ N1 (4.42)

and ∣∣(−1)ν−1ndBν−1 − Bνm
∣∣ ≤ N2. (4.43)

We can also cast them into the forms∣∣∣∣Aν−1

Aν

nd − m

∣∣∣∣ ≤ N1

Aν

(4.44)

and ∣∣∣∣Bν−1

Bν

nd − m

∣∣∣∣ ≤ N2

Bν

, (4.45)

where we replaced (−1)νm with m. A rational number has two kinds of the
expansion {Aν , Bν} and {A′

ν , B
′
ν} (see Appendix A), which result in different

forms of the inequalities. We can show, however, that they are equivalent to
each other (see Appendix A.5).

We rewrite the inequalities (4.44) and (4.45) in terms of the energy cutoff
∆E to show the appearance of the three cases (see Fig. 4.13). We use
Eq. (4.41) to rewrite the right-hand side of Eq. (4.44) with the use of Aν = L1,
while we use the expression of the energy of the new Dirac point is

E(nd) =
π

L1L2

nd =
π

AνBν

nd (4.46)

for the double-periodic potential in order to rewrite the left-hand side. We
thereby have

|Aν−1BνE(nd) − mπ| < ∆E. (4.47)
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Figure 4.14: The inequalities (4.44) represented on a line. The intervals
whose center is mπ are represented as the hatched areas. (a) The case
in which the two points Aν−1BνE(nd) and AνBν−1E(nd) are in the same
interval. (b) The case in which the two points are in different intervals. (c)
The case in which the overlap of the intervals is 2∆E − π in the second case
π/2 ≤ ∆E < π.

The inequality (4.45) is also cast into the form

|AνBν−1E(nd) − mπ| < ∆E. (4.48)

When both inequalities (4.47) and (4.48) hold for the same integer m, the
new Dirac cones which is indexed as nd appear in the energy spectrum.

In order to show the three cases of the appearance of the new Dirac points
in Fig. 4.13, we interpret the inequalities (4.47) and (4.48) as the following
problem. Let us consider a line on which there are discrete values {mπ},
where {m} are integers (Fig. 4.14). When the two points Aν−1BνE(nd) and
AνBν−1E(nd) are located in an interval (m − ∆E,m + ∆E), the new Dirac
cone E(nd) appears in the energy spectrum (see Fig. 4.14 (a)). On the other
hand, the new Dirac cones do not appear when the two points are not in a
common interval (see Fig. 4.14 (b)).

The distance between the two points is given by

AνBν−1E(nd) − Aν−1BνE(nd) = (−1)ν+1E(nd), (4.49)

where we use Eq. (A.13). For simplicity, we assume the case AνBν−1 >
Aν−1Bν and E(nd) > 0 in this paragraph. The following arguments can be
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applied to the case AνBν−1 < Aν−1Bν by replacing the symbols. In this
paragraph, we thus rewrite the distance (4.49) as

AνBν−1E(nd) − Aν−1BνE(nd) = E(nd), (4.50)

which is greater than zero.
First we show that all new cones are consecutive in the first case ∆E ≥ π

even for the double-periodic potentials. When the energy cutoff ∆E is greater
than π, we can represent the value AνBν−1E(nd) as

AνBν−1E(nd) = mπ + δ, (4.51)

where
0 < δ < ∆E. (4.52)

Note that we can do so only in the case ∆E ≥ π. Equation (4.51) leads to
the inequality (4.48).

We next prove the other inequality (4.47) by contradiction. Let us assume

|Aν−1BνE(nd) − mπ| ≥ ∆E. (4.53)

The value in the signs of the absolute value in Eq. (4.53) can be positive
or negative. We consider the positive case as the first step. We rewrite the
inequality (4.53) by using the relation (4.50) as

Aν−1BνE(nd) − mπ = [AνBν−1E(nd) − E(nd)] − mπ ≥ ∆E. (4.54)

Equation (4.51) then gives

δ ≥ ∆E + E(nd). (4.55)

Let us remember that the energy of the new Dirac point is positive E(nd) > 0
(see Eq. (4.50)). Hence we obtain δ > ∆E. This inequality contradicts the
condition (4.52).

As the second step, we assume that the value Aν−1BνE(nd) − mπ is
negative. We obtain the following relation in the same way as in the positive
case:

[E(nd) − AνBν−1E(nd)] + mπ ≥ ∆E, (4.56)

which eventually leads to

E(nd) − ∆E ≥ δ. (4.57)
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The energy of the new Dirac cone must be less than the energy cutoff ∆E:
E(nd) < ∆E. This leads to the relation 0 > δ. It also contradicts the
condition 0 < δ (< ∆E) in Eq. (4.51). Therefore the inequalities (4.47)
and (4.48) must hold for any index nd in the first case ∆E ≥ π. In other
words, the generation of the new Dirac cones are consecutive in the first case
∆E ≥ π.

Second we show that all new Dirac cones must be consecutive for E(nd) <
2∆E − π in the second case π/2 ≤ ∆E < π. The overlap of the intervals
whose centers are (m − 1)π and mπ is given by 2∆E − π (see Fig 4.14 (c)).
When the energy of the new Dirac cones E(nd) is less than the overlap, all
sets of the two points Aν−1BνE(nd) and AνBν−1E(nd) must be located in a
common interval (mπ − ∆E,mπ + ∆E):

AνBν−1E(nd) − Aν−1BνE(nd) = E(nd) < 2∆E − π. (4.58)

However, there are sets of the two points which do not enter in a common
interval when the energy satisfies the condition E(nd) > 2∆E − π. This fact
indicates that a line E = 2∆E−π separates the appearance of the new Dirac
cones into the consecutive and sporadic cases.

Finally we show that the new Dirac points are not consecutive in the
third case ∆E < π/2 in Fig. 4.13. For the double-periodic potentials,
the maximum values of the indices are approximated as Ni ≈ (Li∆E)/π
(i = 1, 2). According to the generation rule (4.23), the maximum possible
number of solutions is given by the total number of the combination of the
indices n1 and n2,

2N1 × 2N2 ≈ 4L1L2

(
∆E

π

)2

= 4L

(
∆E

π

)2

, (4.59)

where the coefficients 2 reflect the fact that the new Dirac points appear
in both the conduction and valence bands. We also used L = L1 × L2.
When the total number is less than the number of the new Dirac points in
the single-periodic case 2N ≈ (2L∆E)/π, the appearance of the new Dirac
points cannot be consecutive. The ratio between the two bands

2N1 × 2N2

2N
≈ 2

∆E

π
(4.60)

is less than one, when the energy cutoff ∆E is less than π/2 in the third case.
Therefore the appearance of the new Dirac point must not be consecutive
but sporadic in the third case.
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Chapter 5

Quasi-periodic potentials

5.1 Dense appearance of the new Dirac cones

under the quasiperiodic potentials

We are now in a position to study the generation of the new Dirac cones
under a quasiperiodic potential. We here study the quasiperiodic case by
considering the limiting case of the double-periodic potential. As in Section
4.4, we assume for the sake of the argument that Eq. (4.23) can show the
generation of the Dirac cones in quasiperiodic cases.

We have obtained a finite number of the new Dirac-electron structures
for the double-periodic potentials. For quasiperiodic potentials, however,
the appearance of the new cones is completely different. According to the
generation rule (4.23), the index nd of the new Dirac-electron structures
in the double-periodic case is represented by the indices n1 and n2 for the
single-periodic potentials. The number of the combination of the indices n1

and n2 is about [(2∆EAν)/π]× [(2∆EBν)/π]. Thus the total number of the
new Dirac cones tends to infinity in the quasiperiodic limit ν → ∞ with
Aν , Bν → ∞.

However, the appearance of the new cones is basically the same as shown
in Fig. 4.13, except that the new cones appear densely in the energy range
|E| < ∆E. The three cases in Fig. 4.13 are now distinguished in terms of
the density ρDirac of the Dirac cones. Let us normalize the density of the new
cones by the density in the case of a single sine function, namely L/π. We
show in Fig. 5.1 the normalized density of the new cones for quasiperiodic
potentials, with an example of L1 = 233 and L2 = 144, which emulate the
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Figure 5.1: The normalized density ρDirac for quasiperiodic potentials, with
an example of L1/L2 = 233/144 as an approximation of the golden ratio(
1 +

√
5
)
/2. The two-dimensional plane represents the energy E and the

energy cutoff ∆E. The dotted lines represent the general results derived
from Eqs. (4.44) and (4.45). The broken lines represent the special cases
∆E = π/2 and π.

golden ratio.
In the first case ∆E ≥ π, the normalized density is unity ρDirac = 1 in the

whole range |E| < ∆E. In the second case π/2 ≤ ∆E < π, the normalized
density ρDirac is also unity for the energy which satisfies the condition |E| <
2∆E−π. These two cases correspond to the area which has the consecutive
Dirac cones in Fig. 4.13. In the remaining cases, namely the energy range
2∆E − π < |E| < ∆E in the second case and the whole energy range in the
third case ∆E < π/2, the normalized density is less than unity.

5.2 Density of the new Dirac cones

We again consider the distance between the two points Aν−1BνE(nd) and
AνBν−1E(nd) on a line and assume AνBν−1 > Aν−1Bν :

AνBν−1E(nd) − Aν−1BνE(nd) = E(nd). (5.1)

In the quasiperiodic limit, the infinite number of points are distributed ho-
mogeneously in the range π. We note that the following arguments can be

102



( )
mπ(    -1)

2∆

π

E

E 2∆E E-

m π (    +1)m π

Figure 5.2: The condition of generating the new Dirac cones in the third
case. When the energy E is available in the hatched area, the new Dirac
cones never appear.

applied to the case AνBν−1 < Aν−1Bν by replacing the symbols.
We first consider the third case ∆E < π/2. The equations (4.47) and

(4.48) tells us that both two points Aν−1BνE(nd) and AνBν−1E(nd) must be
located in a range (mπ −∆E,mπ + ∆E) in order to generate the new Dirac
cone indexed as nd. When the point AνBν−1E(nd) is set in the hatched area
in Fig. 5.2, the other point Aν−1BνE(nd) = AνBν−1E(nd)−E(nd) cannot be
located in the hatched area, and hence we do not have the new Dirac cone
indexed as nd.

We can employ this argument to compute the density of the new Dirac
cones. In the quasiperiodic limit, the infinite number of points AνBν−1E(nd)
are located on a line. Let us fold the points on to the corresponding locations
in an interval with the range π (see Fig. 5.3 (a)). According to the above
argument, the points {AνBν−1E(nd)} located in the hatched area do not
generate the new Dirac cones (see Fig. 5.3 (b)). The probability that the
homogeneously distributed points are not located in the hatched area is given
by

2∆E − (the hatched area)

π
, (5.2)

which gives the normalized density ρDirac. Therefore the normalized density
in the third case is represented by

ρDirac =
2∆E − E

π
= − 1

π
E + 2

∆E

π
. (5.3)
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Figure 5.3: (a) Folding the points {AνBν−1E(nd)} in different intervals to
the same interval with the range π. (b) The condition of generating the new
Dirac cones in the third case.
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Table 5.1: The series of the approximated values Aν/Bν of the golden ratio
(1 +

√
5)/2.

ν 4 5 6 7 8 9 10 11 12 13
Aν 8 13 21 34 55 89 144 233 377 610
Bν 5 8 13 21 34 55 89 144 233 377

5.3 Fractal analysis of the new Dirac cones

Generally speaking, quasiperiodic quantum systems are believed to have frac-
tal structures in the energy spectrum [64–66]. Previous works have confirmed
it for the systems governed by the Schrödinger equation. In this section, we
claim that we do not see any fractal features in the appearance of the Dirac
cones under quasiperiodic potentials. The difference may be due to the
difference in the dispersion relation. The Schrödinger equation usually has a
quadratic dispersion in the energy spectrum, whereas the dispersion of the
Dirac Hamiltonian is linear.

We carry out a multifractal analysis of the intervals between the indices
nd of the new Dirac cones in the numerical calculations (see Appendix D)
[84, 85]. We used the generation rule (4.23) in order to obtain the series
of the indices of the new Dirac cones. The indices n1 and n2 are given
by ni = 0,±1,±2, . . . ,±Ni, where Ni ≅ ⌊Li∆E/π⌋ (i = 1, 2). We thus
obtain the series of the indices nd for the double-periodic potentials as the
combination of the indices n1 and n2 through Eq. (4.23).

We here regard the series of the new Dirac points as a point sequence
and carried out the multifractal analysis for the intervals of the sporadic new
Dirac cones in the second case π/2 ≤ ∆E < π and the third case ∆E < π/2.
The first case ∆E ≥ π cannot show a fractal structure because the Dirac
cones appear consecutively.

Figures 5.4 and 5.5 show the multifractal spectra of the intervals of the
new Dirac points in the second case ∆E = 2.2 and the third case ∆E = 1.0,
respectively. We used the series of the rational numbers Aν/Bν which con-
verges to the golden ratio (1 +

√
5)/2 (see Table 5.1). We skip the sets

A1/B1 = 2/1, A2/B2 = 3/2, and A3/B3 = 5/3 because the numerical di-
agonalization showed that graphene under a double-periodic potential with
these periods never generate the new Dirac cones because of short periods.
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Figure 5.4: A multifractal analysis of the intervals of the new Dirac cones
for the energy cutoff ∆E = 2.2, which corresponds to the second case π/2 ≤
∆E < π. The spectra show the results for the rational numbers ν = 4, . . . , 13
which approximate the golden ratio. The broken line represents f(αq) = αq =
1.

The multifractal spectrum in the second case ∆E = 2.2 show a smooth
curve (see Fig. 5.4). The tops of the spectra are close to the dimension
f(αq) = αq = 1. Analyses for other values of the cutoff in the second case
show similar spectra. The multifractal spectrum in the third case ∆E = 1.0
also shows a smooth curve (see Fig. 5.5).

The curves in Figs. 5.4 and 5.5 seem to converge asymptotically. Thus
we focus on the minimum and maximum values of the singularity index αq.
The minimum and maximum values α∞ and α−∞ are obtained in the limits
q → ∞ and q → −∞, respectively. The difference of the values α∞ and α−∞
represents the range of the singular indices αq of the multifractal spectrum.
In order to study the multifractal spectrum in the quasiperiodic limit, we
study the series of the minimum and maximum values α∞(ν) and α−∞(ν)
as the order of the expansion ν increases. In our numerical calculation, we
estimate the minimum and maximum values α∞ and α−∞ by using large
positive and negative values q.
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Figure 5.5: A multifractal analysis of the intervals of the new Dirac cones for
the energy cutoff ∆E = 1.0, which corresponds to the third case ∆E < π/2.
The spectra show the results for the rational numbers ν = 4, . . . , 13 which
approximate the golden ratio. The broken line represents f(αq) = αq = 1.
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Figure 5.6: Changes of the minimum and maximum values of the singular
index α∞ and α−∞ as the increase of the order of the expansion ν for the
energy cutoff ∆E = 2.2. The blue diamonds and red squares represent
the numerical results for the minimum and maximum values α∞ and α−∞,
respectively. The broken line represents α(ν) = 1.

We first show the numerical results for the second case ∆E = 2.2 in
Fig. 5.6. Figure 5.6 shows that the minimum and maximum values of the
singular index seem to converge to unity as the order of the expansion ν
increases. We estimate the limiting values by fitting the data to the function
ν−x, where x is a positive integer. For the energy cutoff ∆E = 2.2, the
estimation shows that α∞(ν) → 1.005 (Fig. 5.7 (a)) and α−∞(ν) → 1.042
(Fig. 5.7 (b)) by using ν−1 and ν−2, respectively. The both estimates con-
verge to unity, which is the dimension of a line. Hence we can conclude that
the generation of the new Dirac cones is not multifractal in the second case
π/2 ≤ ∆E < π.

Figure 5.8 is a numerical result for the energy cutoff ∆E = 1.0. The
estimation shows that α∞(ν) → 0.9256 (Fig. 5.9 (a)) and α−∞(ν) → 1.007
(Fig. 5.9 (b)) by using ν−3 and ν−2, respectively. Both estimates for the
energy cutoff ∆E = 1.0 show that the singularity indices α∞ and α−∞ are in
the range (0.9, 1.0). Thus the singularity indices tend to converge to values
close to unity.

We finally conclude that the the intervals of the new Dirac cones are not
fractal in the quasiperiodic limit, because the estimated values are very close
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Figure 5.7: Estimation of the limiting values by fitting the data to the func-
tion ν−x for the energy cutoff ∆E = 2.2. (a) The minimum value α∞ by
fitting the data to the function ν−1. (b) The maximum value α−∞ by fitting
the data to the function ν−2. In both figures, the solid lines represent the
fitting lines
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Figure 5.8: Changes of the minimum and maximum values of the singular
index α∞ and α−∞ as the increase of the order of the expansion ν for the
energy cutoff ∆E = 1.0. The blue diamonds and red squares represent
the numerical results for the minimum and maximum values α∞ and α−∞,
respectively. The broken line represents α(ν) = 1.
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Figure 5.9: Estimation of the limiting values by fitting the data to the func-
tion ν−x for the energy cutoff ∆E = 1.0. (a) The minimum value α∞ by
fitting the data to the function ν−3. (b) The maximum value α−∞ by fitting
the data to the function ν−2. In both figures, the solid lines represent the
fitting lines

to unity.
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Chapter 6

Summary and discussion

In this thesis we have investigated the generation of the new Dirac-electron
structures induced by single-periodic, double-periodic, and quasiperiodic po-
tentials. We confirmed our prediction by numerical results of the tight-
binding model under the superlattice potentials.

In Chapter 2, we first reviewed the theoretical treatments of graphene by
using the tight-binding model on the honeycomb lattice. We reviewed that
the conical dispersions, namely the Dirac cones, appear at the boundaries
of the hexagonal Brillouin zone, the K and K ′ points. We next defined
a quasiperiodic function as the summation of two sine functions with an
irrational number as the ratio of the periods. If the ratio of the periods of
two sine functions is a rational number, we call the sum of them double-
periodic. We can regard the double-periodic function as an approximation
of the quasiperiodic function because an irrational number is approximated
by a rational number. We used the relation to treat the generation of the
new Dirac cones under quasiperiodic superlattice potentials. At the end of
this chapter, we studied the tight-binding model on the honeycomb lattice
under periodic superlattice potentials. The wave-vector representation of
the Hamiltonian in the deformed Brillouin zone is the basis of the numerical
analyses.

In Chapter 3, we first reviewed the generation of the new Dirac cones
in the Dirac Hamiltonian under the single-periodic superlattice potential.
The energies of the new Dirac cones are inversely proportional to the period
of the superlattice. The cones appear at one half of the reciprocal lattice
vector of the superlattice. The generation is indexed by consecutive integers,
n = 0,±1,±2, . . . . Note that there is no maximum value for the integers in
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the previous studies [52,53].
We then numerically confirmed the generation of the new Dirac-electron

structures under the one-dimensional single-periodic superlattice potential
by using the tight-binding approximation. As we increase the system size
we found two different trends of the energy intervals. The first one is that
the energy intervals show visibly large gaps as the system size increase. The
second one is that the energy intervals continue decreasing as we increase
the size. In the second case, we cannot tell whether the energy gaps of the
band contacts are truly zero or not by our numerical results of the tight
bonding model of finite sizes. Strictly speaking, superlattice potentials may
not produce the truly gapless Dirac cones in contradiction to the reports of
the previous theoretical and experimental studies [26, 27, 31, 52, 53]. From
our numerical results, we nonetheless practically regard the structure as a
Dirac cone because the energy gaps, if any, are invisibly small. We call them
Dirac-electron structures in this thesis. As we increase the amplitudes of
the potentials, the energy gaps remain very small below critical or crossover
values, beyond which visible gaps develop. Graphene on superlattice sub-
strates with enough weak interlayer couplings may create the Dirac-electron
structures. The present numerical results showed that the energy gaps are at
least 10−6 times smaller than the hopping element. Therefore, experimental
dI/dV curves obtained by scanning tunneling microscope may show sharp
dips for the new Dirac-electron structures. If we increase the interlayer cou-
plings, the curve may show plateaus as the reflection of the Dirac-electron
structures with visibly large energy gaps.

We numerically found the maximum value of the index of the new Dirac-
electron structures. As we increase the amplitude, the maximum value de-
creases although we fixed the period. We defined the energy cutoff ∆E(v) for
a large amplitude v as the minimum energy of the disappeared structures.

We found that the new Dirac-electron structures become anisotropic with
increasing distance from the Fermi energy. In addition, the change of the
amplitude also affected the positions of the Dirac-electron structures. They
moved linearly passing though the positions which are predicted by the Dirac
Hamiltonian. As a result, two Dirac-electron structures, excepting the case
L = 2, disappear without merging with each other. We thus concluded that
the Dirac-electron structures without merging may not be the gapless Dirac
cones, because all the Dirac cones exhibited merging before the annihilation
in the previous studies [55–58]. We showed the numerical results for different
periods, which are the basis in the double-periodic cases.
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In Chapter 4, we first investigated the generation of the new Dirac-
electron structures in the double-periodic case in terms of the Dirac Hamil-
tonian with a superlattice potential. The most different point is that the
generation of the new Dirac-electron structures is not consecutive although
the double-periodic potential is a periodic function. We found that the gen-
eration is described by the the Diophantine equation. It showed that the
index of the new structures for the double-periodic potentials is represented
by the combination of the indices for the single-periodic potentials. We then
studied the generation in the double-periodic case by the numerical diago-
nalization of the tight-binding model. Note that we confirmed the generation
by the same judgment rule which we used for the single-periodic potentials.

The appearance was indeed different from the single-periodic cases, which
we call sporadic. The difference also appears in the anisotropy of the new
cones. As the index becomes larger, the anisotropy changed seemingly ran-
domly while the one for single-periodic potential monotonically decreases.
The generation rule well explained the difference. This is also a piece of evi-
dence that the Dirac-electron structures have at most invisibly small energy
gaps for small amplitudes of the potentials. As we increase the amplitude, we
empirically found that the lower one of the energy cutoffs controls the gen-
eration. Though we increased just an amplitude, the ranges of both indices
which affect the generation decreased.

We next extended our argument to general Dirac electron systems, as-
suming that the generation rule governs the appearance of the Dirac cones.
We here distinguish the Dirac electron systems in terms of the value of the
energy cutoff ∆E. We have found that the generation is classified into three
cases according to the energy cutoff. In the first case ∆E ≥ π, all new Dirac
cones are consecutive though we add a double-periodic potential. In the sec-
ond case π/2 ≤ ∆E < π, we found two regions of consecutive and sporadic
generations. In the third case ∆E < π/2, the generation is always sporadic;
graphene under superlattice potentials belong to this case. We analytically
proved the existence of the three cases.

In Chapter 5, we studied the generation of the new Dirac cones induced
by the quasiperiodic potentials. We first revealed that the new Dirac cones
appear densely in the quasiperiodic limit. We introduced the density of the
Dirac cones in order to understand the difference. We found that the genera-
tion is also classified into the three cases for the quasiperiodic potentials. The
most significant difference between the periodic systems (including double-
periodic systems) and the quasiperiodic systems is the interval of the Dirac
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cones. The original Dirac cone [6] and the new cones generated by periodic
potentials have zero measure because they have finite intervals. However,
the new Dirac cones generated by quasiperiodic potentials have a finite mea-
sure because they appear densely without intervals. It may make the nature
of the Dirac cones robust against a thermal excitation and an infinitesimal
doping. This essential difference can affect the dc conductivity [32] and
transmission [62].

We next showed the multifractal analyses of the intervals of the new
Dirac points under the quasiperiodic potentials. The previous works [64–
66] reported that the energy spectra are fractal for quantum systems with
quasiperiodic arrangements. In order to analyze the fractality of the spec-
trum of Dirac electron systems under the quasiperiodic potentials, we stud-
ied the multifractal spectra of the intervals of the new Dirac cones. In the
quasiperiodic limit the results showed that the dimension of the interval tends
to converge to unity. This is clearly different from the well-known example,
namely the Cantor set whose dimension is log 2/ log 3 = 0.63 . . . . We there-
fore conclude that the intervals of the new Dirac cones are not fractal. On
the other hand, previous studies reported the self-similarity in graphene with
Fibonacci arrangement [37, 62, 63]. Our result suggests that the self-similar
growth of the Fibonacci superlattice causes the difference. We may distin-
guish the difference between the quasiperiodicity and the fractality in the
studies of graphene and general Dirac electron systems under the superlat-
tice potentials.

The non-fractal generation of the new Dirac cones may make us reconsider
the concepts of the quasiperiodic system. Our results of the energy cutoff
∆E ≥ π show that the quasiperiodic potentials never generate the new Dirac
cones with fractal arrangements. It indicates that the well-known relation
between the quasiperiodic systems and the fractal spectra only hold in the
case of the quadratic dispersion. It is important from the viewpoint of
understanding the fractal nature of the quantum mechanics.

It is also important to note that the fractal aspects in quantum mechanics
mostly appear in the one-electron problem. The studies of fractals in physics
have mainly targeted classical systems; fractals have been found mostly in
stochastic phenomena, for example the growth of DLA (diffusion limited
aggregation) clusters, the shape of coasts, viscous fingering, and so on [84,85].
Fractals in quantum systems, on the other hands, do not need a particle-
particle interactions but spatial arrangements i.e. quasiperiodicity. The
difference in the condition of the appearance may be intrinsic in the fractality
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of quantum systems. We need to investigate the point as a future work.
In this study, we have mainly focused on the conditions of that the en-

ergy gaps stay invisibly small. From the point of view of the application
of graphene, however, producing large energy gaps gathers more attention.
Controlling the coupling or the amplitudes of the substrate can be a way to
make the graphene-based semi conductor. In the low-energy ranges, making
large energy gaps is helped by the double-periodic potentials. If we set appro-
priate periods, we can produce the lowest gapful structure n = 1. The shape
of the superlattice is important not only to realize the fundamental nature
of graphene superlattice but also to promote the graphene-based technology.
Graphene on two hexagonal boron-nitride monolayers with different rotation
angles can generate double-periodic moiré patterns and may show dips at
the points given by Eq. (4.23).
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Appendix A

Continued fraction expansion

All real numbers are classified into two types, the rational number and the
irrational number. We here review the formalism of the continued fraction
expansions of the rational and irrational numbers and show the relations
between the expansions.

A.1 Rational number

Any rational number rn can be expressed by two types of the finite simple
continued fraction expansion [81,86]:

rn = b0 +
1

b1 +
1

b2 + · · ·
1

bn−1 +
1

bn

(A.1)

and

rn = b0 +
1

b1 +
1

b2 + · · ·
1

bn−1 +
1

(bn − 1) +
1

1

, (A.2)
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where b0 is an integer and bn (n ≥ 1) are positive integers. They are some-
times represented in the following forms for brevity:

rn =
An

Bn

= [b0; b1, b2, · · · , bn−1, bn] (A.3)

and

rn = r′n+1 =
A′

n+1

B′
n+1

= [b′0; b
′
1, b

′
2, · · · , b′n−1, b

′
n, b′n+1]

= [b0; b1, b2, · · · , bn−1, (bn − 1), 1],

(A.4)

where An and Bn are integers coprime to each other, A′
n+1 and B′

n+1 are too,
and we used the prime to distinguish the two expansions.

A.2 Irrational number

Any irrational number r∞ can be expressed by only one type of the infinite
simple continued fraction expansion:

r∞ = b0 +
1

b1 +
1

b2 + · · ·
1

bn−1 +
1

bn + · · ·

, (A.5)

or by the corresponding compact form:

r∞ = [b0; b1, b2, · · · , bn−1, bn, · · · ]. (A.6)

An irrational number r∞ can be approximated by a series of rational
numbers {rn} = {r0, r1, r2, . . . , rn, . . . } given in the compact forms

r0 =
A0

B0

= [b0], (A.7)

r1 =
A1

B1

= [b0; b1], (A.8)

r2 =
A2

B2

= [b0; b1, b2], (A.9)
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rn =
An

Bn

= [b0; b1, b2, · · · , bn], (A.10)

where An and Bn are both integers coprime to each other.
The numerators {An} and denominators {Bn} given by the infinite simple

continued expansion (A.10) satisfy the following recurrence formulas [81]

An = bnAn−1 + An−2 (A.11)

and
Bn = bnBn−1 + Bn−2 (A.12)

for n ≥ 1, where A−1 = 1, A0 = b0, B−1 = 0, and B0 = 1.
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A.3 A relation between numerators and de-

nominators

The numerators {An} and denominators {Bn} satify a simple relation

AnBn−1 − An−1Bn = (−1)n−1. (A.13)

We show the above relation by using the recurrence formulas (A.11) and
(A.12).

We rewrite the left-hand side of Eq. (A.13) by using the recurrence for-
mulas (A.11) and (A.12) as follows:

AnBn−1 − An−1Bn

= (bnAn−1 + An−2)Bn−1 − An−1(bnBn−1 + Bn−2)

= An−2Bn−1 − An−1Bn−2.

(A.14)

The relation An−2Bn−1 − An−1Bn−2 is of the same form as in the left-hand
side of Eq. (A.13) after replacing An → An−2 and Bn → Bn−2. We repeat
rewriting the relation and obtain

AnBn−1 − An−1Bn

= An−2Bn−1 − An−1Bn−2

= An−2(bn−1Bn−2 + Bn−3) − (bn−1An−2 + An−3)Bn−2

= An−2Bn−3 − An−3Bn−2

= An−4Bn−3 − An−3Bn−4

= An−4Bn−5 − An−5Bn−4 = · · · .

(A.15)

When the degree of the expansion n is an even number, the rewriting stops
as

AnBn−1 − An−1Bn = · · · = A0B−1 − A−1B0 = −1 = (−1)n−1, (A.16)

while for odd n, it stops as

AnBn−1 − An−1Bn = · · · = A−1B0 − A0B−1 = +1 = (−1)n−1. (A.17)

We thereby obtain the relation (A.13).
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A.4 A relation between different expansions

of a rational number

A rational number rn has the two types of the expansion (A.3) and (A.4).
We here show that the numerators and denominators in the two types of the
expansion satisy a relation.

We first show a relation among the numerators and the denominators
before going to the final relation. Let us consider the two expansions of a
rational number rn = r′n+1 in Eqs. (A.3) and (A.4) Since the two expressions
reduce to the some rational number, the numerators and the denominators
must be the same:

An = A′
n+1, Bn = B′

n+1. (A.18)

On the other hand, the above relation never holds for m < n. Let us
consider the case m = n − 1 for example. The two expansions

rm = rn−1 =
An−1

Bn−1

= [b0; b1, b2, · · · , bn−1] (A.19)

and

r′m+1 = r′n =
A′

n

B′
n

= [b′0; b
′
1, b

′
2, · · · , b′n−1, b

′
n]

= [b0; b1, b2, · · · , bn−1, (bn − 1)].

(A.20)

produce different rational numbrs, rm ̸= r′m+1, and hence Am ̸= A′
m+1 and

Bm ̸= B′
m+1.

In order to find out relations between the numerators and denominators
in the case m < n, we use the following expansion another rational number:

r′n−1 =
A′

n−1

B′
n−1

= [b′0; b
′
1, b

′
2, · · · , b′n−1]

= [b0; b1, b2, · · · , bn−1] =
An−1

Bn−1

.

(A.21)

These expansions yield the following relations for m < n:

Am = A′
m, Bm = B′

m. (A.22)
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Now we can show a relation between the two types of the expansion. The
numerators An−1 and A′

n have the following relation:

An−1 + A′
n = An−1 +

[
(bn − 1)A′

n−1 + A′
n−2

]
= An−1 + [(bn − 1)An−1 + An−2]

= bnAn−1 + An−2 = An,

(A.23)

where we used the recurrence relation (A.11) and the relation (A.22). The
denominators Bn−1 and B′

n also have a similar relation. We finally obtain
the following relations between the two types of the expansion:

An−1 + A′
n = An, Bn−1 + B′

n = Bn. (A.24)
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A.5 Proof of the equivalence of inequalities

for two kinds of expansions

The Euclidean algorithm [86] casts any rational number into two types of
the expansion (A.3) and (A.4). We here show that the two forms of the
expansion lead to the same set of inequalities. The second of the expansion
yield the following inequalities:∣∣∣∣ A′

ν

A′
ν+1

nd − m′
∣∣∣∣ ≤ N1

A′
ν+1

(A.25)

and ∣∣∣∣ B′
ν

B′
ν+1

nd − m′
∣∣∣∣ ≤ N2

B′
ν+1

(A.26)

instead of Eqs. (4.44) and (4.45). In order to show that the inequalities
(A.25) and (4.44) are equivalent to each other, we rewrite Eq. (A.25) by
using the replacement (A.18) and (A.24):∣∣∣∣ A′

ν

A′
ν+1

nd − m′
∣∣∣∣ =

∣∣∣∣(Aν − Aν−1)

Aν

nd − m′
∣∣∣∣

=

∣∣∣∣Aν−1

Aν

nd − (nd − m′)

∣∣∣∣ .

(A.27)

Replacing the integer nd − m′ with m, We obtain∣∣∣∣ A′
ν

A′
ν+1

nd − m′
∣∣∣∣ =

∣∣∣∣Aν−1

Aν

nd − m

∣∣∣∣ . (A.28)

The right-hand sides of the inequalities (A.25) and (4.44) are also equal to
each other:

N1

A′
ν+1

=
N1

Aν

. (A.29)

Therefore the two inequalities (A.25) and (4.44) are equivalent. The same
argument shows that the relation also holds for (A.26) and (4.45).
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Appendix B

The K and K′ points in the
first supercell Brillouin zone

The positions of the K and K ′ points in the first Brillouin zone of the hexag-
onal lattice system are represented by the reciprocal vectors b⃗1 and b⃗2:

K⃗ =
2

3
b⃗1 +

1

3
b⃗2 (B.1)

and

K⃗ ′ =
1

3
b⃗1 +

2

3
b⃗2. (B.2)

When we apply a one-dimensional periodic superlattice potential with the
period L along the a⃗1 direction, the first supercell Brillouin zone is reduced to
(1/L)⃗b1× b⃗2. The positions of K and K ′ points in the first supercell Brillouin
zone is represented as

K⃗ = K1

(
b⃗1

L

)
+ K2⃗b2 (B.3)

and

K⃗ ′ = K ′
1

(
b⃗1

L

)
+ K ′

2b⃗2, (B.4)

where the coefficients are real number whose absolute values are less than
one. If we consider the band folding, the coefficients K2 and K ′

2 do not
change: K2 = 1/3 and K ′

2 = 2/3, while the other coefficients must satisfy
the following relations:

0 ≤ K1 =
2

3
L − l1 < 1 (B.5)
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and

0 ≤ K ′
1 =

1

3
L − l′1 < 1, (B.6)

where l1 and l′1 are integers.
We next show that the coefficients K1 and K ′

1 only have three cases
depending on the period L. We firstly study the case L = 3 × m, where m
is an integer. In this case, we can rewrite the relations (B.5) and (B.6) to

0 ≤ 2m − l1 < 1 (B.7)

and
0 ≤ m − l′1 < 1. (B.8)

We thus obtain the coefficients K1 = 0 and K ′
1 = 0 for l1 = 2m and l′1 = m,

respectively, as the only possibility. We next study the case L = 3 × m + 2.
This time we obtain the following relations:

0 ≤ 2m +
4

3
− l1 < 1 (B.9)

and

0 ≤ m +
2

3
− l′1 < 1. (B.10)

The coefficients are K1 = 1/3 and K ′
1 = 2/3 for l1 = 2m + 1 and l′1 = m,

respectively. Using the same arguments, we obtain the last relations for
L = 3m + 1:

0 ≤ 2m +
2

3
− l1 < 1 (B.11)

and

0 ≤ m +
1

3
− l′1 < 1. (B.12)

The coefficients are K1 = 2/3 and K ′
1 = 1/3 for l1 = 2m and l′1 = m,

respectively.
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Appendix C

The two Dirac points for the
single-periodic case L = 2

We here consider the case of the single-periodic potential with L = 2. The
matrix elements are given by Eqs. (2.41) and (2.42). We here use the cosine
potential because the sine function is not appropriate to study the effect of
the amplitude in the case of L = 2.

For L = 2, a reciorocal vector k⃗ is represented by

k⃗ = k1⃗b1 + k2⃗b2, (C.1)

where k1 and k2 are real, while b⃗1 and b⃗2 are given by Eqs. (2.3) and (2.4).
We analytically obtain the eigenenergy in the forms

E1,± = ±
(
3 + v2 + 2 cos (2k2π) −

√
2
{

cos (4k1π) + cos [4(k1 − k2)π]

+ (4 + 8v2) cos2 (k2π) + 2 cos [(4k1 − 2k2)π]
}1/2

)1/2 (C.2)

and

E2,± = ±
(
3 + v2 + 2 cos (2k2π) +

√
2
{

cos (4k1π) + cos [4(k1 − k2)π]

+ (4 + 8v2) cos2 (k2π) + 2 cos [(4k1 − 2k2)π]
}1/2

)1/2

.
(C.3)

The energy bands E1,± may touch each other at the Fermi energy. Let us
find where they do so. We assume that the locations of the touching points
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are perpendicular to the reciprocal lattice vector of the external potential.
We therefore represent the touching point around the K point as

K⃗ + α

(
1

2
b⃗1 + b⃗2

)
=

(
1

6
+

α

2

)
b⃗1 +

(
1

3
+ α

)
b⃗2, (C.4)

where a real number α denotes the distance from the K point solving the
equation E1,± = 0 for k1 = (1/6 + α/2) and k2 = (1/3 + α), we obtain the
relation between the distance α and the amplitude of the potential v in the
form

α =
1

2π
arccos

(
v2 − 1

2

)
− 1

3
. (C.5)

When the amplitude v is zero, the energy spectrum is gapless just at K point
(α = 0). The relation holds until the amplitude v is equal to or less than√

3. When v =
√

3, the gapless point is located at the origin (α = −1/3).
We can obtain the touching point around the K ′ point by the same ar-

gument. The K ′ point in Fig. 3.25 is represented as follows:

K⃗ ′ =

(
2

3
− 1

)
1

2
b⃗1 +

(
2

3
− 1

)
b⃗2 = −1

6
b⃗1 −

1

3
b⃗2. (C.6)

Thus the touching point should appear at

K⃗ ′ + β

(
1

2
b⃗1 + b⃗2

)
=

(
−1

6
+

β

2

)
b⃗1 +

(
−1

3
+ β

)
b⃗2, (C.7)

where β is a real number. We again solve the equation E1 = 0 and obtain
the relation:

β = − 1

2π
arccos

(
v2 − 1

2

)
+

1

3
. (C.8)

For v = 0, the spectrum is gapless at the K ′ point. The relation also holds
until the amplitude is equal to or less than

√
3, in which case the gapless

point around the K ′ point also comes to the origin.
To summarize, when the period of the external potential L is two, there

are two Dirac points at the Fermi energy. For v = 0, the two points ap-
pear at the K and K ′ points. When we increase the amplitude, the gapless
points approach each other and merge at the origin for v =

√
3. Beyond the

threshold, the energy spectrum becomes gapful.
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Appendix D

Multifractal analysis

D.1 Formalism of the multifractal analysis

The multifractal analysis of a continuous system is defined as follows [84,85].
We consider a function µ(r⃗) in the space V and try to regard it as a

possibility distribution. If the value µ(r⃗) can be negative, we use the absolute
value or the square modulus of µ(r⃗); let us use the latter here.

We divide the space V into N(ϵ)pieces of small cells Vi of width ϵ. The
probability pi(ϵ) of the ith cell may be given by

pi (ϵ) =

∫
Vi
|µ(r⃗)|2dr⃗∫

V
|µ(r⃗′)|2dr⃗′

, (D.1)

which satisfies the normalized condition

N(ϵ)∑
i=1

pi (ϵ) = 1. (D.2)

Let us assume that the probability pi(ϵ) around the center of the ith cell
depends on the cell size ϵ as

pi(ϵ) ∼ ϵαi , (D.3)

where the index αi represents the local singularity, or the local fractal dimen-
sion and is referred to as the singularity index or the Lipschitz-Hölder index.
The singularity index αi can take various values in different cells. We expect
that the values of αi are equal to each other in some cells when the space
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is divided into a large enough number of cells. We thereby assume that the
probability that we find the singularity index αi in a small range (α, α + dα)
is given by

ρ(α)ϵ−f(α)dα, (D.4)

where ρ(α) is the distribution function of the singularity index α and the
function f(α) represents the fractal dimension of the support of the cell set
which has the singular index α. The function f(α) is called the multifractal
spectrum.

In order to obtain the multifractal spectrum, we consider the generalized
dimension as follows. We first prepare the partition function

Zq (ϵ) =

N(ϵ)∑
i=1

[pi (ϵ)]
q , (D.5)

where the parameter q emphasizes different parts of the distribution proba-
bility pi(ϵ). When q has a large positive value, the partition function Zq(ϵ) is
governed by cells with large values of pi(ϵ). On the other hand, when q has
a large negative value, the partition function Zq(ϵ) is governed by cells with
small values of pi(ϵ).

The generalized dimension is given by the partition function in the form

Dq =
1

q − 1
lim
ϵ→0

ln Zq(ϵ)

ln ϵ
. (D.6)

The generalized dimension is a type of the fractal dimension. For instance,
the generalized dimension coincides with the information dimension D1 for
q = 1 and the correlation dimension dimension D2 for q = 2, where

D1 = lim
ϵ→0

∑N(ϵ)
i=1 pi (ϵ) ln pi (ϵ)

ln ϵ
(D.7)

and

D2 = lim
ϵ→0

ln
∑N(ϵ)

i=1 [pi (ϵ)]
2

ln ϵ
. (D.8)

This indicates that the generalized dimension (D.6) is an extension of the
fractal dimensions.

In order to obtain a relation between the generalized dimension Dq and
the multifractal spectrum f(α), we rewrite Eq. (D.5) using Eq. (D.4):

Zq (ϵ) =

∫ ∞

0

ρ(α)ϵ−f(α)+qαdα. (D.9)
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In the limit ϵ → 0, the integrand has a sharp peak at the value where
−f(α) + qα becomes minimum, namely at α = αq defined by

q =

(
df(α)

dα

)
α=αq

. (D.10)

Inserting the expansion

−f(α) + qα = −
(

f(αq) + (α − αq)

(
df(α)

dα

)
α=αq

+
(α − αq)

2

2!

(
d2f(α)

dα2

)
α=αq

+ · · ·
)

+ qα

= −f(αq) + qαq −
1

2
(α − αq)

2

(
d2f(α)

dα2

)
α=αq

+ · · ·

(D.11)

in Eq. (D.9) we have

Zq (ϵ) ≅ ρ(αq)ϵ
−f(αq)+qαq

∫ ∞

0

ϵ
− 1

2
(α−αq)2

„

d2f(α)

d2α

«

α=αq dα. (D.12)

In order to obtain a finite value from the integral the following condition
should be satisfied: (

d2f(α)

dα2

)
α=αq

< 0. (D.13)

Equation (D.13) shows that the multifractal spectrum must be a concave
function.

Substituting the expression (D.12) in Eq. (D.6) we have the relation:

Dq ≅
1

q − 1
lim
ϵ→0

(
ln ρ(αq) + (−f(αq) + qαq) ln ϵ

+ ln

(∫ ∞

0

ϵ
− 1

2
(α−αq)2

„

d2f(α)

d2α

«

α=αq dα

))
/ ln ϵ

≅ 1

q − 1
(−f(αq) + qαq) .

(D.14)

By introducing the quantity τq = (q − 1)Dq, we obtain the relations among
the singularity index αq, the multifractal spectrum f(αq), and the generalized
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dimension Dq as follows:

αq =
dτq

dq
=

d

dq

[
(q − 1) Dq

]
(D.15)

and
f(αq) = qαq − τq = qαq − (q − 1)Dq. (D.16)

The multifractal spectrum f(αq) reduces to a simple form for mono-fractal
objects with a mono-fractal dimension Dmono (= f(αq) = αq). Generally
speaking, calculating the multifractal spectrum from numerical and experi-
mental data is a tough task. Calculating f(αq) from the generalized dimen-
sion Dq is simpler in many cases.

D.2 Multifractal analysis for finite lattice sys-

tems

In the previous section we introduced the multifractal analysis for a contin-
uous systems. The purpose of this section is to extend the analysis to finite
lattice systems. The outline of the analysis is almost the same, but we need
some modification for discrete systems.

In the multifractal analysis for continuous systems, we regarded the cell
size ϵ as a free parameter and set it to an infinitesimal value ϵ → 0. For
lattice systems, however, we have the lattice constant as the smallest value.
We therefore consider an infinite number of lattice points as the limiting
operation. We also need to change the integral over r⃗ to the summation with
respect to the cells.

Let us consider a function Pj(x) on a one-dimensional lattice system as
a simple example. We set the lattice constant unity. The probability of the
ith cell of size l is given by

Qi

(
l

N

)
=

∑(i+1) l−1
k=i l |Pk(x)|2∑N

j=1 |Pj(x)|2
, (D.17)

where N is the total number of the lattice points. The partition function Zq

for lattice systems is defined as

Zq

(
l

N

)
=

m∑
i=1

[
Qi

(
l

N

)]q

, (D.18)
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where m = N/l is the total number of the cells. The generalized dimension
Dq is given by

Dq =
1

q − 1
lim

N→∞
lim

ϵ→ϵmin

ln Zq(l/N)

ln ϵ
. (D.19)

The cell size ϵ has the cutoff length ϵmin = l/N , because one cannot set the
size of the cells to the infinitesimal value because of the lattice constant. We
alternatively set the total number of the lattice N to an infinite value. We
can thereby obtain the generalized dimension Dq.
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