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Abstract

Stochastic processes are widely used in the analyses of complex networks, ranging from
generation of a network with particular characteristics to modeling of dynamics in a
network, and even to a structural analysis of a network. In this thesis, we analyze two
kinds of stochastic processes on complex networks.

One is the branching processes which describe the information diffusion on a network,
especially an online social network. Our goal is to understand the nature of the diffusion
process on a network such as Twitter in which the diffusion of information is quite ubiq-
uitous. In such a case, because the information diffusion occurs very frequently on a huge
network, it is expected that there exist some essential differences in its dynamics from
the one which had been discussed for a long time. We propose a model macroscopically
describing the diffusion which occurs locally in the network, based on a data analysis of
the Twitter data. We then show what are theoretically expected from the model.

The other stochastic process that we consider is a random walk. We treat the random
walk as a hypothetical process on a network and use it to analyze the community structure
of the network. We here focus on one of the state-of-the-art methods called map equation.
While a quantity called resolution limit is known as an important quantity of a community
detection method, it had only been known empirically for the map equation. In the present
thesis, we analytically show its resolution limit and demonstrate its effect in several real
networks.
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Chapter 1

Introduction

The target of the present thesis is an arbitrary complex system which can be expressed as
a network or a graph, and the aim is to understand their structures and dynamics on them.
Examples of networks which we have in mind include neural networks [138], road network
in a city [26], relationship network of human being [122], commercial products [108], or
scientific disciplines [131], etc. The ingredients of a network are nodes and links connecting
those nodes; in the case of a social network, for example, a node represents a person and
a link indicates that the connected persons are friends.

While there exist many datasets of networks available these days, their structures and
dynamics on them have not been fully investigated. Important goals of the researches in
this field as physics are to develop theoretical tools which are applicable to various kinds
of dataset and to figure out laws hidden in the systems. On the other hand, computer
science focuses more on the feasibility, structure, expression, and mechanization of the
algorithms [1].

Another important aspect of researches in physics is that they try to understand the
networks in reality. One might expect that the real networks are well modeled by the
regular lattices or the Erdős-Rényi random graphs [47]. It is known, however, that many
real networks have properties which cannot be seen in those simple graphs, such as the
so-called scale-free property [23] (or simply a fat-tail distribution) and the small-world
property [150]. In this sense, such real networks are called complex networks [46,53,103].

The scale-free property means that the degree distribution (the distribution of the
number of links connected to a node) of the network exhibits a power law. Let us consider
the Erdős-Rényi random network, in which each pair of nodes are connected randomly
with a certain probability, for comparison. Its degree distribution is a Poisson distribution,
and thus its tail decays exponentially. In contrast to the Poisson distribution, the power-
law distribution decays much slower, which means that the existence of the node with a
large degree, or a hub, is much more probable than expected in the random network. The
Barabási-Albert network [23] is the most famous model generating a scale-free network,
in which a node is added at each step of generation according to the process called
preferential attachment. In the process of the preferential attachment, a new node with a
given degree is connected to the existing nodes with the probability proportional to their

5



degrees. Because the variance of a power-law distribution diverges when its exponent
is small, it often causes an essential difference from the result of a distribution with an
exponential tail.

The other property, namely the small-world property, means that the network has a
small average path length despite of its highly clustered structure. It is the property that
a network such as a regular lattice does not have, while many social networks have this
feature. The Watts-Strogatz model [150] is known as a fundamental model that generates
a small-world network. Although this model does not have a scale-free distribution,
it is often used to analyze the property of a small-world network. Other than these
fundamental properties of complex networks, there may be more characteristic features
in social networks.

Even though the graph theory [45, 156] and the discipline of complex network [12,
46, 103, 112] have existed for a long time, their significance have been raised even more,
partly due to the thrive of the online social networks. Ever since the birth of major online
social networks, e.g. Twitter [2], Facebook [3] etc., enormous amount of people have been
involved and the related social data are getting even richer and larger. Therefore, it is a
very good time to explorer the structure and the dynamics of things which can be seen
from their data, especially the social data.

Another factor which raise the significance and accelerates the research of complex
networks is the emergence of big data. Big data is special in the following way [104]. A
typical dataset had been a sparse (random) sampling of the total existing data. Since it
only covers a tiny fraction of the total data, the result is affected by the sampling bias;
in response, a number of tools in statistics have been developed in order to eliminate the
sampling bias and extract out meaningful results from such data. In contrast, the big
data is not just a dataset which is large in size, but the one which contains (almost) all
existing data, which is free of the sampling bias. It is expected to allow us the analysis
which had not been able to do before.

We can think of many issues and applications of the complex networks with the social
data. In the application of marketing for example, we can argue: the relationship between
the products and the consumers, to which social groups the promotion should be released,
how a viral marketing campaign spreads, etc. It is also important to note that despite its
obvious significance, quite surprisingly from the modern viewpoint, many companies had
overlooked the data analysis of human activities for a long time [104]. That is partially
why many results about the collective human behavior are relatively recent. In order to
investigate such issues in real world, scientists need to reveal the community structure
and the behavior of information spreading on the network; stochastic methods are typical
tools for such purposes.

The present thesis consists of two parts. In the first half, chapters 2 and 3, we discuss
the information diffusion in a complex network, especially in an online social network.
Although the model here is similar to many models which had been proposed in the
literature [70, 119, 144, 157] (chapter 2), there are some conceptual and technical differ-
ences (Sec. 3.3). While many models assume that the seed node of the diffusion occurs
randomly in a network and estimate the spreading behavior under some assumptions on
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the microscopic processes, we focus on the daily diffusion rooted at a hub node. In this
situation, the process occurs frequently in a fairly large scale, which enables us to observe
the statistics of its microscopic process clearly. From the analysis of the diffusion data on
the Twitter network which we sampled, we found that its microscopic behavior was not
the same as often assumed in the literature indeed (Sec. 3.5). Thanks to the big data of
Twitter, we are able to observe the statistics of events which are tiny compared to the
total data. Based on this finding, we build a phenomenological model (Sec. 3.2) and the-
oretically analyze what is expected to be happening in reality (Sec. 3.6) and can possibly
happen on the model. In particular, we focus on the chance that the daily diffusion goes
viral (Sec. 3.7).

In the second half, chapters 4 and 5, we discuss the community detection of a net-
work using a random walker. Roughly speaking, communities are sets of nodes which are
densely connected relative to their neighbors. Although it sounds simple, finding com-
munities is a difficult task. One of the difficulties is that one often needs to evaluate all
possible partitions of the network to identify the optimal solution and it requires enor-
mous amount of computational cost. Another difficulty is the lack of a unified definition
of a community (Sec. 4.1). In many cases, communities are defined algorithmically as
the resulting partition which optimizes a quality function. While some definitions qualify
too many subgraphs as communities, there are definitions which do not qualify clearly
modular subgraphs as communities if they are in a very large network. Many benchmark
tests have been done to determine which one is the best to be used.

The aim here is to investigate a theoretical restriction of a method called the map
equation, which shows a strong performance in a recent benchmark test (chapter 5). Al-
though it had been said that the map equation should have the resolution limit, namely
the lower bound of the detectable community size, its analytic form had not been shown.
We derive the estimate of the resolution limit of the map equation analytically and re-
veal how its performance is restricted (Sec. 5.3). We further show that the hierarchical
extension of the map equation [133] is a natural way to raise the resolution. Finally, we
confirm our findings with synthetic networks and show what can be seen in real networks.
In Conclusion, we will also mention a new problem emerged from our research.

7





Chapter 2

Diffusion models on complex
networks

Before we move on to the diffusion model that we propose, we review several stochastic
models which are utilized in the analysis of information diffusion in complex networks,
especially focusing on branching processes. We first introduce the Galton-Watson branch-
ing process, one of the most fundamental models to describe spreading phenomena, and
then explain the Bellman-Harris branching process as well as its extensions. The Bellman-
Harris process is a generalization of the Galton-Watson process which takes into account
a temporal effect of spreading activity of each node. While the branching processes are
microscopic models, the discussion of macroscopic models is also effective. We will in-
troduce a macroscopic model proposed by Wu and Huberman [157], which looks similar
to the model that we will consider in the next chapter. Finally, we will list some other
treatments of the information diffusion.

2.1 Galton-Watson branching process

The Galton-Watson process [19, 65] is the most fundamental branching process. An ex-
ample of the resulting tree produced by this branching process is shown in Fig. 2.1. The
process starts from a single node, namely the seed, and each node generates some new
nodes at random. Note that the overlaps of the descendants, i.e. the loops, are not
considered in any of the branching processes in the following.

The number of new nodes generated from the node i, Yi, is a stochastic variable. We
assume that Yi is independent and identically distributed (i.i.d.), i.e.,

P (Yi = k) = pk. (2.1)

Note that every node is generated as an active node and once it generates new nodes, it is
assumed that the node never generates new nodes again, i.e. becomes inactive. Therefore,
the branching process continues until no node generates a new node. The distance d from
the seed node is called generation. The number of nodes in the dth generation is denoted
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Figure 2.1: An example of the resulting tree of the Galton-Watson branching process.

by Xd. Since it is assumed that the process starts from a single seed, we have X0 = 1.
When the number of nodes in the dth generation is i (Xd = i), the transition probability
that the number of nodes is j in the (d+ 1)th generation (Xd+1 = j) is given by

p(j|i) = p (Xd+1 = j|Xd = i) = p

(
i∑

k=1

Yk = j

)
. (2.2)

Major subjects of interest in the Galton-Watson branching process include the tipping
point, the transition point above which the diffusion grows exponentially on average, and
the extinction probability, the probability that the process eventually dies out; we review
how these quantities are derived in the following.

The method of the generating function is the standard treatment in order to un-
derstand the properties of the Galton-Watson process {Xn}. We define the generating
function of pk as

f(s) =
∞∑
k=0

pks
k (2.3)

with

f0(s) = s, f1(s) = f(s), fn+1(s) = f (fn(s)) . (2.4)

We will see below that fn(s) is the generating function of the n-step transition probability.
Using f(s), we can write the generating function of the one-step transition probability
p(k|i) as follows:

∞∑
k=0

p(k|i)sk =
∞∑
k=0

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

ki=0

δ∑i
ν=1 kν=k

i∏
ν=1

(
pkνs

kν
)
= [f(s)]i . (2.5)
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Similarly, for the n-step transition probability pn(k|i), we can show that

∞∑
k=0

pn(k|i)sk = [fn(s)]
i . (2.6)

The proof of (2.6) is given by the mathematical induction as follows. It was shown for
n = 1 in (2.5). We then assume that (2.6) holds for n ≥ 1. For the (n + 1)th step,
according to the assumption of independence of Xi, we have

∞∑
j=0

pn+1(j|i)sj =
∞∑
j=0

∞∑
k=0

pn(j|k)p(k|i)sj. (2.7)

Since the relation (2.6) holds for the n-step transition probability, we have

∞∑
j=0

pn+1(j|i)sj =
∞∑
k=0

p(k|i)[fn(s)]k. (2.8)

The right-hand-side of (2.8) is the replacement of s in (2.5) with fn(s), and thus,

∞∑
j=0

pn+1(j|i)sj = [f (fn(s))]
i = [fn+1(s)]

i, (2.9)

which proves (2.6). Because we assumed that X0 = 1, (2.6) means that fn(s) is the
generating function of the n-step transition probability:∑

k

P (Xn = k|X0 = 1)sk =
∑
k

pn(k|1)sk = fn(s). (2.10)

The mean value of X1 is obtained as the derivative of the generating function f(s),
i.e.,

f ′(1) =
df(s)

ds

∣∣∣∣
s=1

=
∞∑
k=0

kpk = k, (2.11)

where we assume that k is finite. For the n-step process, the mean value of Xn reads

f ′
n(1) =

dfn(s)

ds

∣∣∣∣
s=1

=
∞∑
k=0

kpn(k|1). (2.12)

Since fn(s) = fn−1(f(s)) and

f ′
n(1) = f ′

n−1(1)f
′(1) = kf ′

n−1(1), (2.13)

we have

f ′
n(1) = k

n
. (2.14)
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Therefore, the branching process grows exponentially for k > 1 and decays for k < 1, i.e.,
k = 1 is the tipping point.

The extinction probability q is expressed as

q = lim
n→∞

P (Xn = 0). (2.15)

Note that when Xn−1 = 0, we have Xn = 0. The probability P (Xn = 0) that the process
dies in the nth generation is given by

fn(0) = pn(0|1) = P (Xn = 0|X0 = 1) = P (Xn = 0). (2.16)

Hence, we have q = fn(0) = fn−1(0) in the limit where n → ∞. Replacing fn(0) and
fn−1(0) in the relation fn(0) = f(fn−1(0)) with q, we obtain the following equation for
the extinction probability:

q = f(q). (2.17)

For k ≤ 1, q = 1 is the only solution. For k > 1, there exists a solution 0 < q < 1 which
satisfies (2.17).

The branching process that we reviewed above arose from the statistical analysis of
the extinction of family names by Galton in the nineteenth century. A family name is
usually inherited from fathers to their sons, while the offsprings are males or females
at random; the name gets extinct if the family has no sons. The process is sometimes
called the Bienaymé-Galton-Watson branching process [4], since it is said that Bienaymé
considered the same stochastic process before Galton.

As a recent application of a branching process, Liben-Nowell and Kleinberg [97] dis-
cussed the propagation of Internet chain letters. Note that there exists an underlying
network in which the Internet chain letters propagate although its effect is not explicitly
considered. They observed that, in spite of the small width of the branching trees, the
depth of the trees can be unexpectedly deep. In order to describe this phenomenon, they
constructed a model which contains the effect of the response time of each active node and
some backward flow of the letters. It was later shown, however, that the regular Galton-
Watson branching process is enough to describe such a narrow diffusion process [59]. It
is also important to note that such a narrow diffusion is not a universal behavior of infor-
mation diffusion; Wang et al. [148] found that their dataset of the electric communication
can also be modeled as a branching process, in which the trees are typically wide and
shallow.

2.2 Bellman-Harris branching process

The Bellman-Harris branching process [19,27,65] is an age-dependent process which takes
into account a period of time until a node becomes viral. The viral node is the one which
may generate new nodes. As in the Galton-Watson process, each node emerges as an active
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Figure 2.2: An example of the Bellman-Harris branching process. The nodes of full circles
are active, while the nodes of open circles are inactive.
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Figure 2.3: The total number of active nodes in the example of Fig. 2.2.

node and becomes inactive after being viral. This is a non-Markovian process and is a
generalization of the static and Markovian Galton-Watson branching process. Again, we
assume that the branching process starts from one node and the probability that each node
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produces new nodes is i.i.d. As we mentioned, we introduce, as a stochastic variable, the
response time at which a node becomes a viral node and denote the cumulative distribution
of the response time as G(τ), i.e. the node becomes a viral node by time τ with probability
G(τ). The distribution function of the response time for each node is also assumed to be
i.i.d. We denote a node in the dth generation with a vector σ⃗d = (i0, i1, . . . , id); it means
that the node is the idth node in the dth generation which is a descendant of the id−1th
node in the (d− 1)th generation, where the id−1th node is a descendant of the the id−2th
node in the (d − 2)th generation, and so forth. Since the process always starts from a
seed node, we put i0 = 1. We denote kσ⃗d

and τσ⃗d
as stochastic variables, which represent

the number of descendants and the response time of node σ⃗d, respectively.
Let us now consider the number of active nodes I(t) at time t. It is counted as follows.

(The process is exemplified in Fig. 2.2.) If the time t is before the response time τσ⃗0 of the
seed, the seed is active and there are no further branches below, which means I(t) = 1.
If not, the seed node is no longer active and it must have produced kσ⃗0 descendants. We
then count the number of active nodes which are rooted at each of the kσ⃗0 descendants,
which we denote as I(i1)(t − τσ⃗0 ; τσ⃗1), where i1 is nothing but the label of a descendant
in the first generation, σ⃗1 = (1, i1), and τσ⃗1 is the response time of the i1th node. We do
the same procedure for I(i1)(t − τσ⃗0 ; τσ⃗1) as did for the seed; we repeat it until we count
all the active descendants. Hence, the number of the active nodes I(t) at time t is then
expressed as the following recursive relation:

I(id)(t; τσ⃗d
) =

{
1 if t < τσ⃗d∑kσ⃗d

id+1=1 I
(id+1)(t− τσ⃗d

; τσ⃗d+1
) if t ≥ τσ⃗d

,
(2.18)

where τσ⃗d+1
in I(id+1)(t− τσ⃗d

; τσ⃗d+1
) is a vector which has the same value as that of τσ⃗d

up
to the dth element and has id+1 for the (d+ 1)th element. Note that the total number of
active nodes reads I(t) = I(i0)(t, τσ⃗0) using the notation in Eq. (2.18).

We assume that every kσ⃗d
obeys an identical distribution pk irrespective of σ⃗d (just

as in (2.1)), and therefore omit the subscripts of kσ⃗d
and i in the following. We omit the

subscript of τσ⃗d
for the same reason. The probability distribution P [I(t) = N ] is then,

P [I(t) = N ] = [1−G(t)]δN,1+

∞∑
k=0

pk

∞∑
N1=0

∞∑
N2=0

· · ·
∞∑

Nk=0

δ∑k
i=1 Ni=N

∫ t

0

dG(τ)
k∏

i=1

P [I(i)(t− τ) = Ni],

(2.19)

where Ni is the number of active nodes rooted at the node i. Note that dG(τ) = g(τ)dτ ,
where g(τ) = dG(τ)/dτ is the probability distribution function. Using the generating
function for P [I(t) = N ] and pk, i.e.,

F (s, t) =
∞∑

N=0

P [I(t) = N ]sN , (2.20)

f(x) =
∑
k

pk x
k, (2.21)
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we can write Eq. (2.19) in terms of the generating functions as follows:

F (s, t) = s[1−G(t)] +

∫ t

0

dG(τ)f [F (s, t− τ)] . (2.22)

Similar argument holds for the total number of nodes S(t) emerged by time t. For
S(t; τσ⃗d

), we have

S(t; τσ⃗d
) =

{
1 if t < τσ⃗d

1 +
∑kσ⃗d

id=1 S
(id)(t− τσ⃗d

; τσ⃗d+1
) if t ≥ τσ⃗d

.
(2.23)

The count of the total number of active nodes in the process of Fig. 2.2 is exemplified in
Fig. 2.3. Again, we omit the subscripts of kσ⃗d

, τσ⃗d
, and id in the following. The probability

P [S(t) = N ] that the total number of nodes equals to N by time t reads

P [S(t) = N ] = [1−G(t)]δN,1+

∞∑
k=0

pk

∞∑
N1=0

∞∑
N2=0

· · ·
∞∑

Nk=0

δ1+∑k
i=1 Ni=N

∫ t

0

dG(τ)
k∏

i=1

P [S(i)(t− τ) = Ni].

(2.24)

Defining the generating function Φ(t) for the total size of the emerged nodes S(t) as

Φ(s, t) =
∞∑

N=1

P [S(t) = N ]sN , (2.25)

we obtain the analogous recursion relation as follows:

Φ(s, t) = s[1−G(t)] + s

∫ t

0

dG(τ)f [Φ(s, t− τ)] . (2.26)

In the second term, we have s in front of the integral because the delta function gives one
for N = 1 +

∑k
i=1Ni. The dynamics of the moments can be calculated from Eqs. (2.22)

and (2.26) of the generating functions.

2.2.1 Iribarren-Moro model

Iribarren and Moro [70,71] used the Bellman-Harris branching process to analyze the data
of real viral marketing campaigns which run in eleven European markets. Each of them
is an online newsletter which is promoted by some invited subscribers and the campaign
propagates owing to the successive recommendations. In their work, they distinguish
the branching from the seed nodes, which they denote by the subscript zero, and that
of the other viral nodes, which they denote by the subscript one. Therefore, instead of
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Eqs. (2.22) and (2.26), we have

F0(s, t) = s[1−G0(t)] +

∫ t

0

dG0(τ)f0 [F1(s, t− τ)] , (2.27)

F1(s, t) = s[1−G1(t)] +

∫ t

0

dG1(τ)f1 [F1(s, t− τ)] , (2.28)

and

Φ0(s, t) = s[1−G0(t)] + s

∫ t

0

dG0(τ)f0 [Φ1(s, t− τ)] , (2.29)

Φ1(s, t) = s[1−G1(t)] + s

∫ t

0

dG1(τ)f1 [Φ1(s, t− τ)] . (2.30)

The inputs are the distributions of the number of new viral nodes pc,k in fc(x) (c = 0, 1)
and the distributions of the response time Gc(t). Note that the diffusion of information
that they consider is a diffusion on the subscribers’ network and not all of the receivers
(active nodes) become the viral nodes. Hence the number of viral nodes k is determined
by the probability λc that a node becomes viral and the number of the recommendations
k′ from the viral node. The average k′ from a non-seed node is called the fanout coefficient
and λ1 is called the transmissibility. The probability distribution of the number of new
viral nodes pc,k (which is denoted as p̃i,r in their paper) is then given by

pc,0 = 1− λc,

pc,k = λc qc,k for k > 0, (2.31)

where qc,k is the probability distribution of the number of the recommendations k from a
node. We denote its average as Rc =

∑
k kpc,k and the value R1 is called the reproductive

number. Equation (2.31) can be interpreted that, although every active node has a finite
response time to become viral, it also has a finite probability that the number of resulting
recommendations is zero. They showed that the viral marketing data can be well described
by setting qc,k equal to the Harris discrete distribution,

qc,k =
Hαcβc

βc + kαc
, k = 1, 2, . . . , (2.32)

where Hαcβc is a normalization constant. The distribution (2.32) shows the power-law
behavior pc,k ∼ r−αc in its tail.

The other input is the distribution of the response time Gc(t). In order to determine
the distribution which describes the real data, they looked at the time dependence of the
average number of active nodes i1(t), which is obtained by

i1(t) = ⟨I1(t)⟩ =
∂F1(s, t)

∂s

∣∣∣∣
s=1

. (2.33)
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Taking the derivatives of Eqs. (2.27) and (2.28), we have

i0(t) = 1−G0(t) +

∫ t

0

dG0(τ)
∑
k

k p0,k (F1(1, t))
k−1 i1(t− τ),

= 1−G0(t) +R0

∫ t

0

dG0(τ) i1(t− τ), (2.34)

i1(t) = 1−G1(t) +

∫ t

0

dG1(τ)
∑
k

k p1,k (F1(1, t))
k−1 i1(t− τ),

= 1−G1(t) +R1

∫ t

0

dG1(τ) i1(t− τ), (2.35)

where we used the normalization condition F (1, t) = 1. Observe that in Eqs. (2.34)
and (2.35), the contribution of the number of recommendations k only appears as the
average values R0 and R1, and therefore, the probability distribution pc,k is not explicitly
required. Setting the probability distribution function g1(t) = dG1(t)/dt to a lognormal
distribution,

g1(t) =
1√
2πtσt

e−(ln t−τ1)2/(2σ2
t ), (2.36)

they derived that

i1(t) ∼
1

2(1−R1)
erfc

(
ln t− τ 1√

2σt

)
, (2.37)

which shows a fairly good agreement with the real data. An important contribution of
their work is that they observed the lognormal behavior of the response time through the
Bellman-Harris branching process. If an exponentially decaying distribution were used,
the behavior of i1(t) would not explain the real data.

2.2.2 Vazquez model

Vazquez [144–146] generalized the Bellman-Harris branching process as follows. As il-
lustrated in Fig. 2.4, while the branching occurs simultaneously from a node at its re-
sponse time in the Bellman-Harris process, each descendant has its own generation time
in Vazquez’s model. As Iribarren and Moro did, in Ref. [145], Vazquez also distinguished
the distribution p0,k of the number of descendants from the seed nodes and that from the
other nodes which we denote as p1,k. Furthermore, the maximum depth of the generation
d of the process is set to D, while the generation depth of the Bellman-Harris process is
unbounded. Then, the probability P [S(0)(t) = N ] of the total number of nodes emerged
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Figure 2.4: Comparison between the Bellman-Harris branching process and the Vazquez
model. While the branching occurs simultaneously from a node in the Bellman-Harris
branching process, it occurs at descendant’s own response time in the Vazquez model.
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Figure 2.5: The boundary condition of the Vazquez model.

by time t is

P [S(0)(t) = N ] =
∞∑
k=0

p0,k

∞∑
N1=0

∞∑
N2=0

· · ·
∞∑

Nk=0

δ1+
∑k

i=1 Ni=N

k∏
i=1

[∫ t

0

dG0(τ)P (S(1)(t− τ) = Ni) + (1−G0(t))δNi,0

]
, (2.38)
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where P (S(d)(t) = Ni) (0 < d < D) is the probability of the total number of active nodes
S(d)(t) which is rooted at the node i in the generation d,

P [S(d)(t) = N ] =
∞∑
k=0

p1,k

∞∑
N1=0

∞∑
N2=0

· · ·
∞∑

Nk=0

δ1+
∑k

i=1 Ni=N

k∏
i=1

[∫ t

0

dG1(τ)P (S(d+1)(t− τ) = Ni) + (1−G1(t))δNi,0

]
. (2.39)

That is, a node which generates k descendants possesses k response times for each of the
descendants (equivalently, the generation times of the descendants). We again omitted
the subscripts of kσ⃗d

, τσ⃗d
, and id. At the Dth generation, he sets

P [S(D)(t) = N ] = δN,1 (2.40)

as the boundary condition, which is illustrated in Fig. 2.5. Note that this boundary condi-
tion does not mean that there always exists an active node at the generation D; Eq. (2.40)
comes into the calculation when the root nodes of the nodes in the Dth generation were
active. As before, in terms of the generating functions,

fc(x) =
∞∑
k=0

pc,k x
k, (c = 0, 1) (2.41)

Φd(x, t) =
∞∑

N=0

P [S(d)(t) = N ]xN , (2.42)

we obtain

Φd(x, t) =


x f0

[∫ t

0
dG0(τ)Φ1(x, t− τ) + 1−G0(t)

]
for d = 0,

x f1

[∫ t

0
dG1(τ)Φd+1(x, t− τ) + 1−G1(t)

]
for 0 < d < D,

x for d = D.

(2.43)

From this generating function (2.43), we have the average of the total number of the
active nodes S(d)(t), which reads

S(d)(t) =
∂Φd(x, t)

∂x

∣∣∣∣
x=1

= 1 +Rd

∫ t

0

dG(τ)Φd+1(x, t− τ). (2.44)

The average number of new nodes n(t) generated between t and t+ dt is obtained by the

derivative of S(0)(t). Denoting gc(τ) and Rc in the dth generation as g
(d)
c (τ) and R

(d)
c ,
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respectively, we have

n(t) =
dS(0)(t)

dt

= R
(0)
0 g

(0)
0 (t) +R

(0)
0

∫ t

0

dτ1g
(0)
0 (τ1)

S(1)(t− τ1)

dt

= R
(0)
0 g

(0)
0 (t)

+R
(0)
0

∫ t

0

dτ1g
(0)
0 (τ1)

[
R

(1)
1 g

(1)
1 (t− τ1) +R

(1)
1

∫ t−τ1

0

dτ2g
(1)
1 (τ2)

dS(2)(t− τ1 − τ2)

dt

]
...

=
D∑

d=0

zd

(
g
(0)
0 ∗ g(1)1 ∗ · · · ∗ g(d)1 (t)

)
, (2.45)

where ∗ denotes the convolution (the multiple ∗ denotes the higher-order convolution)
and

zd = R
(0)
0

d∏
l=1

R
(l)
1 = R0R

d−1
1 , (2.46)

which is the average number of nodes in the generation d. In Ref. [144], he assumed
that the descendant distributions and the response time distributions are different in each
generation, i.e. pc,k and gc(τ) (c = 0, 1, 2, . . . , D); within a generation, every node obeys
a common distribution.

In Ref. [144], Vazquez assumed the Poisson distribution for the response time distribu-
tion gc(t) and the power-law distribution for the distribution pc,k of the number of active
nodes. It reflects the fact that the diffusion process on a complex network should be af-
fected by the degree distribution of the underlying network which is typically a power-law
distribution. He found that n(t) grows exponentially in the period where time t is much
less than a characteristic time τ0, while it becomes a polynomial growth in the period
much larger than τ0.

The exponent γ of the degree distribution pc,k = k−γ of the underlying network is
crucial in this analysis because he derived that τ0 → ∞ for γ ≥ 3 as the network size N0

grows to infinity and τ0 → 0 for 2 < γ < 3 as N0 → ∞; see Ref. [144] for the detail. This
result is important because, in the analysis of the susceptible/infected (SI) model, it was
shown that the speed of the spreading becomes infinitely fast in the limit of an infinite
network above the infection threshold on a scale-free network when its exponent γ is in
the range 2 < γ < 3 [25]. The result of Vazquez revealed that the growth is not actually
instantaneous, but polynomial in time.

In Ref. [146], Vazquez et al. focused on the behavior of computer viruses which has an
extraordinarily long decay time. In many real phenomena, the response time distribution
gd(t) is often not a Poisson distribution, but a fat-tail distribution; indeed, they found

21



Figure 2.6: A schematic picture of the diffusion process of the Wu-Huberman model.

that the response time of E-mail activity is well fitted by a power-law distribution with
an exponential cutoff. They explained why the typical decay time of computer viruses is
unexpectedly large by applying the above theory with a fat-tail response time distribution.

2.3 Wu-Huberman model

The branching processes which we reviewed in the previous sections are microscopic mod-
els in which statistical laws are specified to each node. In order to explain the information
spreading of the Web contents, Wu and Huberman [157] introduced a model which de-
scribes the diffusion behavior from a macroscopic point of view. They focused on the
statistics of a web service called Digg [5]. Digg is a news aggregator on which users can
submit news stories. In Digg, users can vote, or digg, for a story; the more a story earns
the number of diggs, the more attention it collects. They found that the distribution of
the popularity, or the number of diggs, is a lognormal distribution. In order to explain
this, instead of building a microscopic model of each user, they modeled the accumulation
of the popularity as a random multiplicative process.

Let Nt represent the number of users who have received a story by time t; they equate
it to the number of diggs that the story received. Here, time is treated as a discrete
variable. Introducing a positive random variable X̃t, they assumed that number of the
new users who know the story at moment t is expressed as X̃tNt−1. Thus, we have the
total number of users who know the story Nt as

Nt =
(
1 + X̃t

)
Nt−1. (2.47)

Note that the number of new receivers X̃tNt−1 does not solely depend on the number
of receivers at the previous time step, but on the total number of receiver Nt−1 by the
previous time step (Fig. 2.6). In order to take account of the fact that the novelty of the

story decreases in time, they separate X̃t into the deterministic decaying factor rt (r1 = 1
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and r∞ = 0) and a positive i.i.d. random variables Xt with mean µ and variance σ2, i.e.,

Nt = (1 + rtXt)Nt−1 = N0

t∏
s=1

(1 + rsXs) , (2.48)

where N0 is the initial population. When the time step is short so that Xt may be small,
Eq. (2.48) can be approximated as

Nt ≈ N0

t∏
s=1

ersXs = N0 exp

(
t∑

s=1

rsXs

)
. (2.49)

Taking the logarithm of both sides, we can express it as

logNt − logN0 ≈
t∑

s=1

rsXs. (2.50)

The distribution of Nt therefore approaches to a lognormal distribution because of the
central limit theorem.

In order to justify their model, they further measured the ratio of the mean and the
variance of log(Nt/N0). If their model is correct, the ratio should be

⟨logNt − logN0⟩
var (logNt − logN0)

=

∑t
s=1 rsµ∑t
s=1 rsσ

2
=

µ

σ2
, (2.51)

where ⟨· · ·⟩ is the average with respect to the stories and var(· · · ) is their variance.
Although they did not obtain a straight line for the plot of ⟨logNt − logN0⟩ against
var (logNt − logN0), they confirmed that the relationship was almost linear. They also
found that the decay factor rt is a stretched-exponential function of t. In order to see
this, they used the following form of rt which can be obtained from (2.50):

rt =
logNt − logNt−1

logN1 − logN0

, (2.52)

where the denominator logNt − logN0 is to normalize r1 to unity.
Their approach is distinct from the other models of the information diffusion because

the diffusion occurs owing to the collection of attention. Such a diffusion of popularity
was also found in other services such as Wikipedia, Bugzilla, Essembly [155] and the count
of HTML views [159].

2.4 Other models of information diffusion

Many models have been proposed to describe the diffusion of information, or the word-of-
mouth, especially in the context of viral marketing and the propagation of news contents
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on the Web. Most of them use the analogy from the models of epidemics, e.g., the per-
colation models, the susceptible-infected-recovered (SIR)-type models, and the branching
processes.

The Daley-Kendal model [43] is a classical SIR-type model for rumor spreading, in
which they modified the dependence of the informed (or infected, in terms of epidemiology)
people from the original model of Kermark and Mckendrick [79]; there are many related
works, e.g., Refs. [10,56,106,165]. In the last decade, the behavior of an epidemic model
on complex networks had been studied energetically, mainly by physicists [25, 31, 119]
from the mathematical point of view. It is important to note that the model of the
(bond) percolation is equivalent to the SIR model when we are interested in the static
properties [62,110].

In the context of viral marketing, Goldenberg et al. modeled it as a percolation model
[58], while Leskovec et al. [90] considered a model which takes account of the saturation of
influence from a node. Other than the branching processes which we explained above, a
more detailed branching process which takes account of the effect of marketing activities
was also considered [143]. For the word-of-mouth in online social networks, people are not
only informed by the neighbors of the network, but also by some external sources such
as TV and newspapers. In the case of the contents with general interest, it is expected
that they collect large attention outside the network as well, and therefore such an effect
would be significant. Myers et al. [109] modeled such an out-of-network effect in the
spreading of information and applied to the diffusion on the Twitter network. There exist
many other approaches to the growth of popularity on the Web. Crane and Sornette [42]
observed the decay of the time evolution of the views on YouTube videos after endogenous
and exogenous bursts and found that the relaxation exponent can be classified into three
types. Yang and Leskovec [161] developed a method of data clustering for time series and
classified the shape of the popularity evolution in six types in their Twitter data.

Most studies focus on large-scale cascades of information and demonstrate the per-
formance of their models with some real data. While the investigation of the large-scale
cascades is important without any doubt, one of the reasons is perhaps because it is of-
ten easy to capture the statistical behavior even when the data is collected by a random
sparse sampling method. Although the dataset that we use in the next chapter is not
very large, because we make use of a dataset which is complete in principle, i.e. not
sparsely sampled, our analysis is qualitatively different from those by the sparse sampling
methods.
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Chapter 3

Local model of information diffusion
in online social networks

This chapter is one of the main chapters of the present thesis. We propose a stochastic
model [76] which describes the information diffusion in online social networks. In our
model, we concentrate on the diffusion phenomenon which spreads from a certain hub
node. In this sense, our local diffusion model of information is distinct from the other
models considered in the literature.

Before we tackle the problem of local diffusion phenomena, since the center of our
interest is the diffusion in the network such as Twitter and Facebook, we first review the
researches on Twitter and Facebook. Then, after introducing our local diffusion model,
we will compare it with the other models which we described in the last chapter. We
confirm the plausibility of our model and determine the distribution of the stochastic
variable, the retweet rate, in our model from the data analysis of the Twitter data that
we collected. The rest of the chapter is devoted to the theoretical analysis on the local
diffusion model. We first consider the behavior of the spreading when each diffusion step
is uncorrelated to each other. We then consider the case of correlated diffusion process
and discuss how the threshold of viral diffusion is altered owing to the strength of the
correlation.

3.1 Online social networks and the researches with

their data

There exist many online social networks, e.g. Twitter, Facebook, Google+, LinkedIn,
Instagram, Foursquare, Tumblr, Pinterest, Digg, etc. Although there are many differences
among the online social networks, they have some common basic structures; each user has
his or her own account of a web service and the users can share the information with whom
they are connected to, and thus the users form a network. The information they share
are blogs, pictures, movies, personal profiles, news stories which they found, etc. While
the connections such as friend in Facebook are undirected, some connections such as
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A B

Twitter

A is a follower of B. 

A does not require an aprroval of B to follow. 

A receives information from B. 

B does not receive information from A. 

A and B are friends

A B

Facebook

A and B are friends. 

One approves the requiest of the other. 

A receives information from B and vice versa.

Figure 3.1: The ways of connection between users in Twitter and Facebook.

follower in Twitter are directed. That is, when user A follows user B but B does not
follow A, then A receives the information of user B although the user B does not receive
information from A (See Fig. 3.1). In many online social networks, there exists a function
to spread the received information to the neighboring users, e.g. retweet in Twitter and
share in Facebook; this is basically what causes the information diffusion in online social
networks. The other common function that many online social networks has is the one to
rate the received information, e.g. favorite, like, or digg, which may result in raising the
popularity of the content; note, however, that there is no explicit effect caused by it in
the case of Twitter, while it helps to collect popularity in Digg explicitly. The function
of like in Facebook is more complicated.

Among the researches focusing on the major online social networks, most of them use
the Twitter data owing to the easiness of accessibility to its data, while there are not so
many papers published using the Facebook data because most of its data is not publicly
available. There exist numbers of data analysis on Twitter, especially at the early stage,
e.g., semantic analysis [152], statistics of some basic variables such as the number of
follow/followers, the number of posts, and the number of retweets [69,72,82,83,140,158],
characteristics of the posts and communication patterns [39, 67, 141, 160], influence of
users [21,35], etc. The researches on Facebook have been done mainly by the people who
are allowed to access to its data. A striking one is an experiment done by Bakshy et
al. [22]; they altered a function of Facebook itself for a short period of time in order to
investigate the behavior of the information diffusion on its network.

There are already many application with the Twitter data, e.g., the analysis in politics
[40], elections [33], stock market [32], spammer detection [28], and the prediction of the
spread of diseases [16,96,120]. For the studies of the information spreading, some authors
proposed the inference methods for the volume of the spreading [55,60,68]. How links are
formed is also an important problem and studied energetically [105,129,162,163].
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Figure 3.2: Information diffusion on an online social network. The node at the center
represents the seed and the linked nodes can receive the information. A solid line repre-
sents that the information has diffused through the link. While we take account of the
over-counting of nodes such as the one illustrated by the wavy line in the data analysis,
we ignore it in the sections of theoretical analyses, i.e. we assume a tree structure.

3.2 The local diffusion model

We now explain the local diffusion model [76] in the context of the Twitter network. The
information which diffuses in the Twitter network is a post of a user, which is called a tweet.
As we mentioned above, the tweet diffuses in the network owing to the function called
retweet. Figure 3.2 shows a schematic picture of the tweet diffusion process. Whenever
a user generates a tweet, it will be sent to N0 followers of the tweet owner, whom we
call users in the zeroth generation. Next, when n1 users out of N0 followers retweet, the
original tweet will be sent to the followers of the n1 retweeters; we call them users in the
first generation. We label the number of the receivers in the first generation as N1. Such
a chain of diffusion of a tweet continues until people stop retweeting or all the followers in
the last generation are the users who already received the tweet. We will refer to the total
number of receivers as Ntot =

∑∞
g=0Ng and the total retweet count as nRT =

∑∞
g=1 ng,

where g stands for the label of the generation. While N0 is simply the number of the
followers of the seed account, Ng for g ≥ 1 reads

Ng =

ng∑
f=1

kf − cg, (3.1)

where f stands for the label of each retweeter and kf stands for the number of his or
her followers. The factor cg is the number of over-counting of the followers (e.g., the
wavy line in Fig. 3.2). In the case where the network is close to the tree structure and
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the distribution of the number of followers is homogeneous, i.e. there is no strong local
structure such as communities, we can employ the approximation

Ng ≃ ng

∞∑
k=0

k pg(k) =: ngkg, (3.2)

where k and pg(k) are the number of the followers of the retweeters in the (g − 1)th
generation and its distribution, respectively. A more precise argument is done later in
Sec. 3.4.

Let us next estimate the number of the retweeters, ng. Since there are Ng−1 candidates
to generate the retweeters in the gth generation, we assume

ng = βgNg−1, (3.3)

where βg is a variable which we call the retweet rate. Although βg is a discrete variable
because ng and Ng−1 are integers, we treat it as if it were a continuous variable. In
Sec. 3.5, we will observe that the retweet rate has a distribution over many incidents of
tweet diffusion. We therefore regard βg as a continuous stochastic variable hereafter.

Combining Eqs. (3.2) and (3.3), we have

Nm = JmNm−1 = · · · =
m∏
g=1

JgN0, (3.4)

nm = βmNm−1 = · · · = βm

m−1∏
g=1

JgN0, (3.5)

where

Jg = βgkg (g ≥ 1), (3.6)

which is a stochastic variable because βg is a stochastic variable. In the framework of
the branching process, βg, kg, and Jg for g ≥ 1 correspond to the transmissibility of a
generation (not of a single user), the fanout coefficient, and the reproductive number of a
generation, respectively. Although the probability distribution of J1 may strongly depend
on the characteristics of the seed account, Jg for g ≥ 2 are expected to obey a common
probability distribution; indeed, the first generation and the rest of the generations are
distinguished in the models of Refs. [71,145] as well. Therefore, the number of viewers of
the tweet in each generation, Ng, is expressed as a random multiplicative process because
of the hierarchical structure of the followers. We do not consider the time dependence of
the retweet rates for simplicity. It is a plausible assumption for the daily tweet diffusion
since most of the tweets finish diffusing very quickly [83]. In spite of the highly clustered
structure of the online social network, the validity of the tree approximation for a diffusion
path is discussed and empirically proven in Refs. [71,110,146] and the references therein.

We can regard our model as a macroscopic modeling of the Galton-Watson process,
which is even simpler. What is distinct from other models is that, we can directly observe
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Figure 3.3: Classification of the diffusion models. The model that we consider is static,
macroscopic, and diffusive.

the statistics of the retweet rates βg thanks to the complete data of Twitter; the accessi-
bility is a characteristic of Twitter data and measuring such a stochastic variable would
not be possible with a sparse sampling data. In section 3.5, we will directly observe the
statistics of the retweet rates βg and confirm that our modeling is indeed plausible.

We give a couple of comments on the details of functions in Twitter. First, the word
retweet is sometimes used for two different meanings in the literature. The retweet button
was first introduced at the end of 2009. Retweeting used to be simply a name of custom
on Twitter to transfer the tweet of another user; it is called informal retweet nowadays,
while the retweet by clicking the retweet button is called formal retweet. Galuba et al. [55]
also introduced a model of tweet diffusion in a very different manner from ours, but
they limited themselves to the URL-embedded tweets and counted the informal retweets,
whereas we analyze tweets in general and count the formal retweets in our model. The
other comment is that the chain of retweets among the followers is not the only way in
which tweets diffuse; as long as the tweet owner is a public user, anyone can read the tweet
and any user has the right to retweet. Although, we do not treat such other processes in
our model. We only count the formal retweets by non-private users because we believe
that it gives the major contribution to the daily tweet diffusion.
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Figure 3.4: The difference between a branching process and our model.

3.3 Comparison with other diffusion models

Now we compare the model that we proposed with the other models of information diffu-
sion which we listed in the previous chapter. The classification diagram of the models is
shown in Fig. 3.3. As we stated above, our model is a local model in which the diffusion is
always rooted at a predetermined hub, while other models select a seed node at random.
Other than that, the differences are whether the model is microscopic or macroscopic,
static or dynamical, and diffusive or accumulative.

The branching processes are microscopic models in which a stochastic variables is
assigned to each node, while our model and the Wu-Huberman model are macroscopic in
which a stochastic variable is assigned to each generation. The Galton-Watson process,
the most fundamental model of the branching process, is a static model, i.e. the response
time is not taken into account. The Bellman-Harris process is an age-dependent dynamical
model which consider the response time of each node and the model of Iribarren and Moro
considered the response time with a fat-tail distribution. The model of Vazquez is also
the Bellman-Harris-type process in which each node becomes a viral node at its own time.
In both model of Iribarren and Moro and that of Vazquez, the degree distribution of a
viral node is assumed to be a power-law distribution.

In the model of Iribarren and Moro, each node has a fixed probability λc, i.e. the
transmissibility, to become a viral node. Note that, even though the transmissibility is
not explicitly considered as in the Galton-Watson process, it can be implemented easily
by defining the distribution pk as in Eq. (2.31). Since the reproducing process of each
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node is assumed to be independent in any branching process, it implies that the number
of viral nodes among a generation obeys the following binomial distribution:

p(ng;Ng−1) =

(
Ng−1

ng

)
λng
c (1− λc)

Ng−1−ng . (3.7)

On the other hand, the ratio of the number of viral nodes compared to the number of
receivers within a generation, i.e. the retweet rate βg, is allowed to obey an arbitrary dis-
tribution in our model (see Fig. 3.4); as we will show below, the distribution of the retweet
rate of a generation is very different from the binomial distribution indeed. Moreover, we
will consider the case in which the retweet rates are correlated later.

The model by Wu and Huberman is a macroscopic model with the decaying factor
rt of the diffusion rate. Although their model looks similar to ours, their model is for
a physically different process. In Digg that they focused on, when a news story collects
some popularity, it earns a higher probability to be peered, which results in collecting
more popularity; thus, their model is an accumulative process rather than a diffusive
process. In contrast, the information diffusion in Twitter occurs owing to the cooperation
of the retweeting users and the total amount of the spreading cannot be regarded as the
source of higher popularity.

Although our model is distinct from other information diffusion models because it
assigns a stochastic variable for each generation, the idea of dividing the nodes in the
network into the generations exists in other topics in the literature [24, 41, 52, 111] as
well; it is often called ring. For example, Baronchelli et al. [24] analyzed the mean first
passage time of a random walker using the ring structure. The loop effect, or the back
flow from the point of view of the ring, is essential in their model, which is distinct from
the situation that we consider.

3.4 Justification of the formulation with generating

functions

In Sec. 3.2, we expressed the number of receivers of the tweet as Eq. (3.2). In the following
sections, we will calculate the statistical averages of the stochastic variables ng and Ng

for g ≥ 1. In this section, we show that our estimation in Eq. (3.2) is justified when we
calculate their mean values. As above, we neglect the existence of the loops and every
node has a common degree distribution pk.

First of all, the probability p(ng) of the number of retweeters ng in the gth generation
can be written as

p(ng) =
∞∑

ng−1=0

· · ·
∞∑

n1=0

p(ng|ng−1)p(ng−1|ng−2) · · · p(n2|n1)p(n1;N0), (3.8)

where

p(n1;N0) =

∫
dβ1 p(β1)δn1=⌊β1N0⌋. (3.9)
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The symbol ⌊x⌋ (x ∈ R) represents the largest integer less than x. Defining a generating
function fβ(s) as

fβ(s) =
∞∑
k=0

pks
βk, (3.10)

we have

∞∑
ng=0

p(ng|ng−1)s
ng =

∞∑
ng=0

∫ ∞

0

dβg

∞∑
k1=0

· · ·
∞∑

kng−1=0

× δng=⌊βg
∑

ν kν⌋

(
p(βg)

ng−1∏
ν=1

pkν

)
sβg

∑
ν kν

=

∫ ∞

0

dβg p(βg)

ng−1∏
ν=1

[
∞∑

kν=0

pkνs
βgkν

]

=

∫ ∞

0

dβg p(βg)
[
fβg(s)

]ng−1 . (3.11)

In the above calculation, we neglected the fact that ng is an integer and treated its sum
as if it were an integral; we use this trick in the following repeatedly. Using (3.11), we
can write down the generating function of ng as follows:

F (s) ≡
∞∑

ng=0

p(ng)s
ng

=
∞∑

ng=0

∞∑
ng−1=0

· · ·
∞∑

n1=0

p(ng|ng−1)s
ngp(ng−1|ng−2) · · · p(n2|n1)p(n1;N0)

=

∫ ∞

0

dβg p(βg)
∞∑

ng−1=0

· · ·
∞∑

n1=0

[
fβg(s)

]ng−1 p(ng−1|ng−2) · · · p(n2|n1)p(n1;N0)

=

∫ ∞

0

dβg

∫ ∞

0

dβg−1 p(βg)p(βg−1)

∞∑
ng−2=0

· · ·
∞∑

n1=0

(
fβg−1

[
fβg(s)

])ng−2 p(ng−2|ng−3) · · · p(n2|n1)p(n1;N0)

...

=

∫ ∞

0

dβg · · · dβ2 p(βg) · · · p(β2)
∞∑

n1=0

[
fβ2,...,βg(s)

]n1 p(n1;N0)

=

∫ ∞

0

dβg · · · dβ1

[
fβ2,...,βg(s)

]⌊N0β1⌋ , (3.12)
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where we denoted

fβx,βx+1,...,βg(s) := fβx

[
fβx+1,...,βg(s)

]
for x = 2, 3, . . . , g − 1. (3.13)

Note that when βd = 1 for any d, our model reduces to the Galton-Watson branching
process. Using Eq. (3.12), we can calculate the mean value of ng as

⟨ng⟩ =
dF (s)

ds

∣∣∣∣
s=1

=

∫ ∞

0

dβg · · · dβ1N0β1

[
fβ2,...,βg(1)

]⌊N0β1⌋−1 d

ds
fβ2,...,βg(s)

∣∣∣∣
s=1

=

∫ ∞

0

dβg · · · dβ1N0β1(β2k) · · · (βgk)

= N0k
g−1⟨β1 · · · βg⟩, (3.14)

where ⟨· · ·⟩ stands for the statistical average with respect to the stochastic variables. In
the above calculation, we used dfβ(1)/ds = βk and the normalization condition fβ(1) = 1.

We can calculate the mean value of the number of receivers Ng similarly. The gener-
ating function of Ng reads

G(s) ≡
∞∑

Ng=0

p(Ng)s
Ng =

∞∑
Ng=0

∞∑
ng=0

p(Ng|ng)p(ng)s
Ng

=
∞∑

Ng=0

∞∑
ng=0

∞∑
k1=0

· · ·
∞∑

kng=0

δNg=
∑

ν kν

ng∏
ν=1

(
p(kν)s

kν
)
p(ng)

=
∞∑

ng=0

[fβ=1(s)]
ng p(ng). (3.15)

Then, we have the mean value ⟨Ng⟩ as follows:

⟨Ng⟩ =
dG(s)

ds

∣∣∣∣
s=1

=
∞∑

ng=0

p(ng)ng [fβ=1(1)]
ng−1 dfβ=1(s)

ds

∣∣∣∣
s=1

= ⟨ng⟩k
= N0k

g⟨β1 · · · βg⟩. (3.16)

Now, we see that Eqs. (3.14) and (3.16) are consistent with Eqs. (3.4) and (3.5). We also
see that the treatment in Eqs. (3.4) and (3.5) are not precise when we calculate higher
moments of ng and Ng.

3.5 Data analysis for the retweet rate βg

Using the data sampled by the tool Twitter API [6], we directly observed the behav-
iors of β1 and β2. We chose The New York Times (@nytimes) and Reuters Top News
(@Reuters) for the seed accounts and sampled the diffusion data with n2 > 0. The data
are summarized in Table 5.1.
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3.5.1 Possible errors, selection of the seed accounts, and restric-
tions

There are some inevitable errors in our data. We cannot sample the data of private users
and there might be some miscounts in ng because the follow-followed relation might have
changed by the time we sampled the data. In order to sample the data as accurately as
possible, we need to select the seed accounts carefully; we chose the seed accounts which
tweet frequently and the number of whose followers are not changing rapidly so that we
can expect the network around the seed account is almost static during the period of
sampling. In order to see the statistical behavior clearly, it is good to choose an account
with a large number of followers and high retweet rates. (We omitted the data with more
than 800 retweets because Twitter API seems to fail to count the retweets correctly in
such cases.) In the data analysis of the retweet rate βg, we take into account the factor
of over-counting cg in Eq. (3.1), and thus we do not assume a tree structure nor the
homogeneity of the distribution of the followers.

3.5.2 Result

Figures 3.5(a) and 3.5(b) show the histograms of β1 and their normal Q-Q plots [153].
They show that the retweet rate β1 seems to obey lognormal distributions with slight
additive shifts, i.e.

β1 = eω1 + δ1, (3.17)

where ω1 obeys Gaussian distributions N (µ1, σ
2
1) with µ1 being the mean and σ2

1 being the
variance of g = 1. For β1, the mean µ1 and the variance σ2

1 seem to depend strongly on
the character of the seed account. The slight additive shift might be due to the systematic
activities by Twitter bots.

We expect that the retweet rate β2 also obeys lognormal distributions with slight
additive shifts. Figures 3.5(c) and 3.5(d) show the histograms of β2 and their normal Q-Q
plots; they indeed indicate the lognormal behaviors. For β2, the mean µ2 and the variance
σ2
2 are very close for both of the seed accounts; it seems to be plausible to model in such

a way that the retweet rate βg obeys a common probability distribution for g ≥ 2.

In Table 5.1, we listed the averages of the over-counting of the users in the first
generation, i.e. c1/

∑n1

f=1 kf in Eq. (3.1). The over-counting of users are less than 5% on
average, and thus the networks around the seed accounts have almost the tree structures.
Although it is still doubtful whether the tree-structure approximation is appropriate in all
generations, it is hard to imagine a drastic qualitative change to the diffusion phenomenon
due to the loop correction since there is no back flow.

Since we are fixing the seed account, N0 is a constant and the distribution of β1 is
proportional to that of n1. The number of followers in the first generation, N1, and the
number of retweeters among them, n2, can take different values for each sample. As are
shown in Figs. 3.6(c) and 3.6(d), both of them obey lognormal distributions and they are
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Figure 3.5: The histograms of the retweet rates and the normal Q-Q plots of the logarithms
of the retweet rates. (a) and (c) are of β1 and β2 for @Reuters. (b) and (d) are of β1 and
β2 for @nytimes.

not independent of each other. The correlation coefficients of n2 and N1, ρ(n2, N1), have
large positive values (see Table 5.1); the correlation coefficient which is calculated by

ρ(n2, N1) =
⟨n2N1⟩ − ⟨n2⟩⟨N1⟩√

⟨n2
2⟩ − ⟨n2⟩2

√
⟨N2

1 ⟩ − ⟨N1⟩2
(3.18)

varies from −1 to 1. The fact that n2 and N1 are correlated supports our fundamen-
tal assumption that the diffusion is actually occurring along the network. If they were
not correlated, it would imply that the retweeters might have been triggered by some-
thing other than the retweeters of the previous generation such as external sources of
information.

Our result that the retweet rate β2 obeys a lognormal distribution is plausible because
independent lognormal distributions have the reproductive property; i.e. for the two
stochastic variables β2 and N1, which obey lognormal distributions, we have

p(lnn2) = p(ln β2) ∗ p(lnN1) = N (µ1, σ
2
1) ∗ N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2), (3.19)
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Figure 3.6: The histograms of the retweet rates and the normal Q-Q plots of the logarithms
of the number of followers and the retweet count in the second generation. (a) and (c)
are of N1 and n2 for @Reuters. (b) and (d) are of N1 and n2 for @nytimes.

where ∗ stands for the convolution. We here assumed that β2 and N1 are independent of
each other.

3.6 Estimation of the diffusion range

(uncorrelated retweet rate)

In the following sections, we will analyze what can be estimated and expected from the
model which we introduced above [76]. For simplicity, we will assume that the distribution
of the retweet rate βg is the same for each generation. From the model, we can estimate
how much of the retweet rate βth(m) is required to reach the mth generation on average
and the average of the total number of retweets, ⟨nRT⟩, for given parameters. In this
section, we restrict ourselves to the case where the retweet rates βg are independent of
each other and their averages have a common value ⟨β⟩.
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@Reuters @nytimes

Number of seed tweets 1352 1140

Period from Jun. 26, 2012 from Jun. 19, 2012
to Aug. 9, 2012 to Aug. 18, 2012

N0 1 940 477 5 882 680

⟨nRT⟩ 74.0 97.3

(⟨β1⟩, ⟨β2⟩) (3.27× 10−5, 7.90× 10−5) (1.43× 10−5, 8.52× 10−5)

(⟨N1⟩, ⟨n2⟩) (75 276, 4.46) (76 533, 4.54)

ρ(n2, N1) 0.468 0.481

⟨c1/
∑n1

f=1 kf ⟩ 0.0471 0.0470

Fitting parameters µ1 = −10.51 µ1 = −11.51
for β1 = eω1 + δ1 σ2

1 = 0.6 σ2
1 = 0.77

p(ω1) = N (µ1, σ
2
1) δ1 = 0 δ1 = 1.0× 10−6

Fitting parameters µ2 = −9.65 µ2 = −9.51
for β2 = eω2 + δ2 σ2

2 = 0.68 σ2
2 = 0.69

p(ω2) = N (µ2, σ
2
2) δ2 = −1.0× 10−5 δ2 = −1.0× 10−5

Fitting parameters µ = 10.64 µ = 10.58
for N1 = eω + δ σ2 = 0.99 σ2 = 1.04
p(ω) = N (µ, σ2) δ = 0 δ = 2000

Fitting parameters µ = 0.48 µ = 0.49
for n2 = eω + δ σ2 = 1.12 σ2 = 1.23
p(ω) = N (µ, σ2) δ = 0.5 δ = 0.5

Table 3.1: Data of tweet diffusion from @Reuters and @nytimes. The angular brackets
⟨· · ·⟩ stands for the sample average.
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Figure 3.7: (a) Threshold where the diffusion reaches the mth generation on average. We
set k = 500. The points are for @Reuters and @nytimes in the case where we assumed
⟨β⟩ = ⟨β2⟩. (b) The average of the total number of retweets ⟨nRT⟩ as a function of the
diffusion range M for various values of the average retweet rate ⟨β⟩. We set k = 500 and
plotted the cases where ⟨β⟩ equals ⟨βg⟩ of @Reuters and @nytimes. We set the values of
them for N0, respectively.

According to Eq. (3.5), the average of the number of retweets in the mth generation

reads ⟨nm⟩ = N0k
m−1⟨β⟩m. Then we have the threshold for the retweet rate where the

diffusion reaches the mth generation on average, i.e. ⟨nm⟩ ≥ 1:

βth(m) =
(
N0k

m−1
)− 1

m
= N

− 1
m

0 k
1
m
−1
. (3.20)

The behavior of Eq. (3.20) is exemplified in Fig. 3.7(a); in the case of the seed accounts
which we investigated, the tweets diffuse up to the second or the third generation (see
⟨β1⟩ and ⟨β2⟩ in Table 5.1). While we employed the mean value of nm in the definition of
the threshold, it is also plausible to consider the median of nm instead.

For a given range M of the diffusion, it is straightforward to calculate the average of
the total number of retweets,

⟨nRT⟩ =
M∑
g=1

⟨ng⟩ = N0⟨β⟩
M−1∑
g=0

(
⟨β⟩k

)g
= N0⟨β⟩

1−
(
⟨β⟩k

)M
1− ⟨β⟩k

. (3.21)

The behavior of Eq. (3.21) is exemplified in Fig. 3.7(b); it shows that ⟨nRT⟩ is not very
sensitive to the diffusion range M in the case where ⟨β⟩k is small.

3.7 Viral diffusion

In this section, we focus on the situation where the diffusion goes viral, i.e., the infor-
mation which spreads to users who are extraordinarily far from a seed user [77]. The
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situation that we imagine for a viral diffusion is the diffusions of information of general
interest, e.g., such as postings with funny jokes, poetic writings, important news which
are not broadcasted on other mass media, etc. The higher the retweet rate is, the wider
the range of the diffusion is, which also results in a large number of retweets. A naive
description of a tweet which enjoys many retweets would be the retweeting by a single
user with a large number of the followers. Although it might be an important factor, even
the accounts with millions of followers do not receive thousands of retweets for their daily
tweets. Therefore, such a naive description does not explain the whole mechanism of the
viral diffusion. The cooperation by many users is presumably crucial to the spread of the
tweet.

Let us define a viral diffusion more precisely. As before, we assume a tree structure
with a homogeneous degree distribution for the underlying network. We also assume an
infinite path length from a seed user. Mathematically speaking, we define a viral diffusion
as the diffusion which never stops on such a network; there exists a transition point for
the retweet rate at which the diffusion goes viral. Our goal here is not to reproduce the
statistical behavior of the data precisely, but to explore mathematical properties of the
semi-microscopic diffusion law; even though diffusions always die out in reality because
of the loop structure and the finite path length, as well as the decay of the retweet rate
due to the temporal effect and the distance from the seed user, the analysis of such a
transition point on the present toy model seems a plausible guideline for a viral diffusion.

Whenever the diffusion goes viral, however, we can easily imagine that the effect
of correlation and fluctuation plays an important role. As we have seen in Sec. 3.5,
the distribution of the retweet rate obeys a lognormal distribution which has a fat tail
and it is interesting to see how it affects the dynamics. Although we consider a weak
correlation of a certain form, we will show that it can largely enhance the chance of the
viral diffusion indeed. We will first discuss the transition point of the viral diffusion in
the case of independent retweet rates, and then we will show that the transition point is
shifted owing to the correlation between the retweet rates.

In the following, we assume that every retweet rate βg obeys a common lognormal
distribution for simplicity, although its average and variance depend on the character of
the seed node at g = 1 in reality. Then we set

p(Jg) =
1

Jg
√
2πσ2

exp

[
− 1

2σ2
(ln Jg − µ)2

]
, (3.22)

where Jg = βgk as before and express Jg as

Jg = eµ+ξg , (3.23)

where µ and σ2 are constant and ξ is a stochastic variable which obeys a Gaussian distri-
bution N (0, σ2).
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3.7.1 The case of independent diffusion rate

In the following, we will consider the average number of the informed nodes Ntot, normal-
ized by N0. In the case where the stochastic variables Jg are independent of each other
and all their averages are the same, i.e. ⟨Jg⟩ = ⟨J⟩, we have

⟨Ntot⟩
N0

= 1 + ⟨J⟩+ ⟨J⟩2 + ⟨J⟩3 + · · ·

=
1

1− ⟨J⟩
(3.24)

for ⟨J⟩ < 1. In the case of the lognormal distribution (3.22), we have ⟨J⟩ = exp (µ+ σ2/2).
Since Jg = βgk, and hence ⟨J⟩ = ⟨β⟩k, Eq. (3.24) gives the transition point

βex = k
−1

(3.25)

for the viral diffusion. In the case of the Twitter network, k ∼ O(102) and hence the
transition point is βex ∼ O(10−2). On the other hand, in the case of some major news
accounts such as The New York Times (@nytimes) and Reuters Top News (@Reuters),
⟨β⟩ ∼ O(10−5), which is much lower than the transition point. Because of the restriction
of Twitter API [6], we cannot measure the value of the retweet rate βg of the viral diffusion

explicitly. Although the possibility of reaching the transition point βex = k
−1

depends on
the average and the variance of the retweet rate, the threshold appears to be too high to
reach in reality if we assume that Jg are independent of each other.

3.7.2 The case of correlated diffusion rates

In order to make a better estimate of the transition point, let us now consider the quantity
⟨Ntot⟩/N0 in the case where the stochastic variables Jg are not independent of each other.
Instead of setting ξg in Eq. (3.23) as an independent Gaussian variable, we now set

p({ξg}) =
1

Z
exp

[
−1

2

∑
ij

ξiΣ
−1
ij ξj

]
, Z =

√
(2π)N

detΣ−1
, (3.26)

where Z is the normalization factor and Σ−1 is the inverse matrix of the covariance
matrix Σij = ⟨ξiξj⟩. The matrix Σ−1 is an infinite-dimensional matrix; we first treat it as
an N ×N matrix and take the limit N → ∞ in the end. We assume the following matrix
for Σ−1:

Σ−1 =


σ−2 −η 0 · · ·
−η σ−2 −η · · ·
0 −η σ−2 · · ·
...

...
...

. . .

 . (3.27)
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The statistical average of the number of the informed nodes is now given by

⟨Ntot⟩
N0

= 1 +
∞∑

m=1

⟨
m∏
g=1

Jg⟩, (3.28)

where the average ⟨· · ·⟩ is now taken with respect to the correlated distribution (3.26). In
order to calculate the average, we diagonalize the matrix Σ−1 with a unitary matrix U to
obtain

P (x⃗) =
1

Z
exp

[
−1

2

N∑
i=1

(σ−2 − ηλi)x
2
i

]
, (3.29)

where

x⃗ = Uξ⃗, Umn =
1

L
sin(mkn), (3.30)

λα = 2 cos kα, kα =
πα

(N + 1)
, (3.31)

L2 =
1

2
(N + 1). (3.32)

See Appendix A for detail. After this diagonalization, we have

⟨
m∏
g=1

Jg⟩ = emµ

∫
dξ⃗ P (ξ⃗) exp

(
m∑
g=1

ξg

)

= emµ

∫
dNx

Z
exp

[
−1

2

N∑
i=1

aix
2
i

]
exp

(
N∑
j=1

bjxj

)

= emµ exp

(
N∑
j=1

b2j
2aj

)
, (3.33)

where

ai = σ−2 − ηλi = σ−2 − 2η cos ki,

bj =
1

L

m∑
g=1

sin(gkj), (3.34)

and we used the relation

m∑
g=1

ξg =
1

L

m∑
g=1

N∑
j=1

sin(gkj)xj =
N∑
j=1

bjxj. (3.35)
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Substituting these values into Eq. (3.33), we obtain

⟨
m∏
g=1

Jg⟩ = emµ exp

[
N∑
j=1

m∑
g,g′=1

sin gkj sin g
′kj

aj(N + 1)

]

= emµ exp

[
1

2(N + 1)

N∑
j=1

m∑
g,g′=1

a−1
j(

cos kj(g − g′)− cos kj(g + g′)

)]
. (3.36)

Let us now consider the case where ϵ ≡ η/σ−2 ≪ 1 and analyze the expansion of a−1
j

with respect to ϵ:

a−1
j = σ2 (1 + 2ϵ cos kj + o(ϵ)) . (3.37)

From the zeroth-order expansion, we simply obtain ⟨
∏m

g=1 Jg⟩ = ⟨J⟩m, which reduces to
the non-correlated case (3.24). Including the first-order correction of ϵ, we have

⟨
m∏
g=1

Jg⟩ = ⟨J⟩m exp

[
2ϵσ2

2(N + 1)

N∑
j=1

m∑
g,g′=1

cos kj (cos kj(g − g′)− cos kj(g + g′))

]
. (3.38)

After some algebra, we obtain

⟨
m∏
g=1

Jg⟩ = ⟨J⟩meϵσ2(m−1). (3.39)

Hence, the total number of the informed nodes normalized by N0 reads

⟨Ntot⟩
N0

= 1 +
∞∑

m=1

⟨
m∏
g=1

Jg⟩ = 1 +
⟨J⟩

1− ⟨J⟩eϵσ2 (3.40)

for ⟨J⟩eϵσ2
< 1. Since ⟨J⟩ = ⟨β⟩k again, the transition point for the viral diffusion βex

now reads

βex = k
−1
e−ϵσ2

(3.41)

instead of Eq. (3.25). The correlation between the retweet rates thus shifts the transition
point to a lower retweet rate.

We expect that the perturbative estimate (3.39) of the transition point gives an upper
bound of the true transition point. In Fig. 3.8, we can confirm it by comparing (i) (solid
lines) numerical estimates of Eq. (3.36) substituted into

⟨Ntot⟩M
N0

= 1 +
M∑

m=1

⟨
m∏
g=1

Jg⟩, (3.42)
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Figure 3.8: Numerically calculated results of ⟨Ntot⟩/N0 in Eq. (3.42), where the sum is
taken up to M = 10 (blue), 20 (green), 30 (red). The dotted lines indicate the approxi-
mated results with the perturbative estimate (3.39) and the solid lines indicate the results
with numerical estimates of Eq. (3.36). The parameters are set to σ2 = 2, ϵ = 0.05 for (a)
and σ2 = 2, ϵ = 0.1 for (b). We set N = 30 for the calculation of Eq. (3.36); the result is
the same as long as N ≥ M . The broken line shows the behavior of Eq. (3.40), which is
the case of M = ∞ with the perturbative estimate (3.39).

and (ii) (dotted lines) perturbative estimates Eq. (3.39) substituted into Eq. (3.42). The
former is always greater than the latter as far as we checked. We hence expect that it is
also true in the limit M → ∞. Then the true curve of ⟨Ntot⟩/N0 in the limit M → ∞
should be greater than its perturbative estimate (3.40) (dashed lines in Fig. 3.8). It
implies that the true transition point of the viral diffusion is equal to or lower than the
perturbative estimate (3.41).

Let us next write down the transition point in terms of the correlation coefficient
of the retweet rates instead of the off-diagonal element ϵ = η/σ−2 of the matrix Σ−1.
The matrix Σ−1 which contains the off-diagonal element ϵ is the inverse matrix of the
covariance matrix Σ of ξg, which is related to that of Jg by Eq. (3.23). Expressing the
inverse of the covariance matrix as Σ−1 = σ−2FN , the covariance matrix Σ reads

Σik = Σki =
σ2

detFN

detFi−1 detFN−k ϵ
k−i (3.43)

for i ≤ k, where the subscript of the matrix FN denotes the number of dimensions and
we defined detF0 = 1. The determinant of Fg has the following recursion relation

detFg = detFg−1 − ϵ2 detFg−2. (3.44)

In the limit N → ∞, it reduces to

1

r
= 1− ϵ2r, (3.45)
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where

r = lim
N→∞

detFN−1

detFN

. (3.46)

Considering the fact that r needs to satisfy rn < ∞(n → ∞), we have

r =
1−

√
1− 4ϵ2

2ϵ2
. (3.47)

Hereafter, we will work in the limitN → ∞. Noting that detFg−1 and r are both 1+O(ϵ2),
we have the matrix elements of Eq. (3.43) as

⟨ξgξg+1⟩ = ϵσ2 detFg−1
detFN−g−1

detFN

= ϵσ2 detFg−1r
g+1

= ϵσ2 +O(ϵ2). (3.48)

Hence, up to the accuracy of O(ϵ), the off-diagonal element ϵ is written in terms of the
covariance of ⟨ξgξg+1⟩ as

ϵ = σ−2⟨ξgξg+1⟩. (3.49)

The covariance of ξg is written in terms of the covariance of Jg according to Eq. (3.23)
using Wick’s theorem:

⟨JiJj⟩ − ⟨Ji⟩⟨Jj⟩
= eµi+µj

(
⟨eξi+ξj⟩ − ⟨eξi⟩⟨eξj⟩

)
= eµi+µj

(
∞∑

w=0

1

w!
⟨ξi + ξj⟩w −

∞∑
u,v=0

1

u!v!
⟨ξi⟩u⟨ξj⟩v

)

= eµi+µj

(
∞∑
l=1

∞∑
m,n=0

1

(l + 2m)!(l + 2n)!
l!
(l + 2m)!

2mm!l!

(l + 2n)!

2nn!l!
⟨ξiξj⟩l⟨ξ2i ⟩m⟨ξ2i ⟩n

)
= eµi+µje

1
2
(σ2

i +σ2
j )(e⟨ξiξj⟩ − 1)

= ⟨Ji⟩⟨Jj⟩(e⟨ξiξj⟩ − 1). (3.50)

Therefore, Eq. (3.49) now reads

ϵ = σ−2 ln
⟨JgJg+1⟩
⟨Jg⟩⟨Jg+1⟩

. (3.51)

Substituting Eq. (3.51) into Eq. (3.41), we have the shift of the threshold of the transition
point βex in the form

βex = k
−1
(
⟨βg⟩⟨βg+1⟩
⟨βgβg+1⟩

)
= k

−1
[
1 + ρ(βg, βg+1)

V (βg)

⟨βg⟩2

]−1

, (3.52)
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Figure 3.9: The dependence of the transition point of the viral diffusion, Eq. (3.52), as a
function of the correlation coefficient ρ(βg, βg+1). The result of Eq. (3.25) corresponds to
the case where ρ = 0.

where ρ(βg, βg+1) is the correlation coefficient which varies from −1 to 1 and V (βg) is the
variance of βg.

We exemplify the behavior of Eq. (3.52) in Fig. 3.9. If V (βg)/⟨βg⟩2 ∼ O(1), the
transition point would be lowered only up to a half of the case of the independent process,
while it is lowered significantly in the case where V (βg)/⟨βg⟩2 ≳ O(102); even when
ρ(βg, βg+1) = 0.2, the diffusion is about twenty times more likely to go viral than the
uncorrelated case.

3.7.3 Remarks

When we discuss the viral diffusion, the average of the retweet rate is not the only sig-
nificant factor, but its fluctuation and the correlation may also play important roles.
Equation (3.52) means that the transition point where the diffusion goes viral is shifted
owing to the correlation ρ(βg, βg+1) of the retweet rates between the generations. The
larger the variance V (βg) of the retweet rate is compared to the square of its average ⟨βg⟩,
the easier it is to make the diffusion go viral. On the other hand, it is hopeless to expect
the information diffusion with very narrow variance of the retweet rate to go viral, unless

it is constantly very close to the transition point of the uncorrelated case, βex = k
−1
.

We defined the transition point of the viral diffusion as a theoretical guideline of the
information diffusion on an online social network such that the information reaches the
nodes which are extraordinarily far from the seed node. We showed how the correla-
tion between the nodes enhance the chance of the viral diffusion. Although we used a
perturbation expansion with respect to the off-diagonal matrix element ϵ in Eq. (3.37),
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its higher-order expansion is straightforward. Note that ϵ cannot be too large, in other
words, ρ(βg, βg+1) cannot be close to one, in order to retain the positivity of the covariance
matrix Σ, which also validates the perturbation expansion. We numerically showed that
the true transition point may be even lower than the current result of the perturbative
approach.

For Twitter, the transition point would be unrealistically far to reach without the
correlation between the generations. The significant change of the transition point due
to the correlation seems to be essential in understanding the reason why such postings
sometimes diffuse extraordinary far from the seed user.

The transition point (3.52) may be still far to reach even after taking into account
the correlation effect. The assumptions which we made on the underlying network such
as the homogeneity of distribution and the infinite path length may cause the change of
the estimation of the transition point. In order to analyze the diffusion more precisely,
removing these assumptions is an interesting future problem. The heterogeneity would
describe the effect of complex diffusion paths. Although the average path lengths are
usually very short for many networks in real world [46], the path length of the diffusion
can be much longer than the average path length of the underlying network, because the
diffusions do not always occur along the shortest paths [21,59,97,118].
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Chapter 4

Methods of community detection in
complex networks

Community structure is an important property of a complex network. One way to detect
communities in a network is to consider a random walk on a network as a hypothetical
stochastic process. The aim of this chapter is to review several methods of community
detection. We first explain how communities are defined and go over a brief history of the
community detection methods. Then, short tutorials of the spectral clustering (Secs. 4.4)
and the method of the modularity (Sec. 4.5) follow, which are both very famous and
extensively studied. The random walk interpretation of the spectral clustering and the
method of the modularity are also explained, although they are originally formulated in
terms of graph quantities.

4.1 How communities are defined

Intuitively speaking, Fig. 4.1 is perhaps the picture that everyone imagines from the word
“community structure” in a network. We can regard each set of nodes enclosed by a
dashed line as a community. Nodes are densely connected within a community compared
to the nodes outside the community. Community structure is an important property
of a network because the fact that nodes are densely connected often has a significant
meaning; in a protein network, it means the nodes with a similar function [37] and in
a friendship network, it implies a social group such as people in the same school, the
people with a common hobby, and so on. It may seem that defining a community itself
is a simple matter and the problem is how to detect it. There is, however, no unified
definition of a community; indeed, there exist many [53]. While they are conceptually
close, if not equivalent, to each other, each of them is defined in different plausible ways.
The following are the ideas (not the precise definitions) of a community in some detection
methods.

weak definition [123] A community is a subgraph whose sum of its internal degrees
of the community is greater than the sum of their external degrees.
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Figure 4.1: An example of communities in a network. Each community is enclosed by a
dashed line.

modularity [114] A community is a subgraph which has more internal links than
expected in a null model which does not have a community structure in principle.

map equation [131] Consider a random walker on the network. A community is a
subgraph where the random walker seldom escapes from there.

clique percolation [117] A community is a subgraph which is close to a complete
graph.

Girvan-Newman method [57] A community is a subgraph which is disconnected
from the rest of the network by removing some significant links.

There are a lot more definitions than the ones which we listed above. While some of
them are defined by the local structure of a subgraph, in many methods, communities are
algorithmically defined. That is, communities are defined as the resulting products after
a certain optimization process. Hence, a definition of a community is often embedded in
a method. There exist many equivalent names for a community; it is called a module or
a cluster as well. In this thesis, we call it a community in a conceptual argument and call
it a module when we do a mathematical argument.

Which definition and method are the best is not determined yet. For some definitions,
we cannot determine which is better because, depending on the problem, one definition
may be more appropriate than the other definitions. Some methods, however, can be
ranked according to benchmark tests. Some of them may have higher accuracy and/or
numerical efficiency compared to others. The accuracy that we mean here is the ability
to detect fuzzy communities, i.e. the communities with many links between other com-
munities compared to the internal links. (It is called the detectability.) Moreover, as long
as the methods share the intuitive definition of a community, perhaps they are not all
independent, but are mathematically related closely to each other.

Other than the above conceptual issue, a community has yet more degrees of freedom in
its definition. A community is conventionally defined as a set of nodes and the links which
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connect those nodes, but we do not consider the overlap of communities. It is, however,
possible to define a community as a set of links and allow communities to overlap. It
is quite natural, for example in the case of a social network, because everyone usually
belongs to many different social groups and it is appropriate to choose one community.
Considering the hierarchical structure is also essential. A community often consists of
some communities of a smaller scale and those small communities may also consist of
communities of an even smaller scale. Therefore, it is not natural to choose one scale for
the communities, but we should consider the whole hierarchy of the community structure.

A network can be weighted and directed. For a network of companies in which nodes
are connected according to the business connection between them, their links have different
weights depending on the amount of the transaction. In the case of a collaboration
network among the researchers in a certain field, some researchers collaborate for many
times and thus have multiple links between them; those multiple links can be regarded
as a weighted single link. The direction is also an important property and there are
numbers of examples. In a citation network of academic papers, the links indicate the
citations among articles. Such links are always in one direction because one can cite a
published paper while the paper in the past can never cite papers which will be published
in future. While the extension of a community detection method for unweighted networks
to weighted networks is usually an easy task, the extension to directed networks often
cause a conceptual problem since we do not have a common view of the role of the
direction in communities.

4.2 A brief history of the community detection

A number of community detection methods have been invented, developed, and applied
to a variety of networks [53]. The history of the community detection goes back to the
work by Rice [127] who studied the clusters of people in small political bodies based on
the voting similarity and to the method considered by Weiss and Jacobson [151] who
studied work groups within a government agency. The method of Weiss and Jacobson
was to remove the nodes which belong to different groups; it can be regarded as the origin
of a modern divisive method [57].

Methods of spectral clustering [51,101,116,137] are traditional methods of community
detection and had been studied mainly by the researchers who are not in the disciplines of
physics. Those methods make use of the eigenvectors of the unnormalized or normalized
graph Laplacians which we will introduce later. Finding the exact solution in a spectral
clustering method is an optimization problem of a quality function in a discrete space. It
is, however, computationally infeasible in many cases. Therefore, it is usual to replace the
discrete space with a continuous one and solve a relaxed problem, although the accuracy
of the resulting partition is often not very high [101]. We have to specify the number of
modules as an input for the spectral clustering. In some cases, we can estimate a plausible
input from a gap in eigenvalues of the graph Laplacian.

The divisive method which was proposed by Girvan and Newman [57] in 2002 is one of
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the most famous methods and is historically important; many physicists started to work
on the problem of community detection stimulated by their work. In their method, they
consider a quantity called edge betweenness for each link. When we consider the shortest
paths of every node pair, the edge betweenness of a link is the number of the shortest
paths that contain it. Higher the edge betweenness of a link is, more likely the link
connects two modules; therefore, the links with high edge betweenness tend to disconnect
the modules. We remove the links with high betweenness successively, until a set of nodes,
i.e. a module, is isolated. A problem of the method of Girvan and Newman is that it is
not numerically efficient because one needs to calculate the shortest paths of every node
pair. Another problem is that the method does not tell us where to stop the algorithm.
If we do not stop the algorithm, we divide the network until each node becomes a single
module, which is expected to take a very long time in the case of a large network.

In order to determine where to stop the algorithm with the edge betweenness [57],
Newman and Girvan later introduced a quality function called modularity [114] in 2004.
Ever since, the method of maximizing the modularity itself has become the most popular
method in this field. As we briefly mentioned in Sec. 4.1, the modularity quantifies how
nodes inside a module are densely connected than they are expected in a random graph
without a community structure; we will explain the modularity in detail in Sec. 4.5. There
have been many extensions of the method of the modularity. One of the reasons why the
modularity collected huge attention is because the method automatically determines the
number of modules, while many of classical methods required the number of the modules
to be an input. Numerical efficiency is another reason of the popularity. Although the
exact optimization of the modularity is an NP-complete problem because it requires the
trial of all possible partitions, the greedy optimization algorithm often shows a decent
performance at a reasonable computational cost. The algorithm proposed by Blondel
et al. [30], or the Louvain method, is known as a numerically efficient algorithm for the
modularity optimization.

Although many detection methods treat undirected networks for simplicity, needless
to say, it is important to develop methods for directed networks. While there is an
extension of the modularity to the directed network introduced by some authors [81,
89], the method which naturally takes account of the flow was invented by Rosvall and
Bergstrom [131] in 2008. It is based on the information theory and the correct partition
is obtained by minimizing the quality function which is called map equation. This is the
method which we discuss mainly in the second half of this thesis and we will explain it
in great detail later in the next chapter. The method of the map equation is not only
useful for the directed networks, but also has good features that the modularity has;
the method automatically determines the number of the modules during the optimization
process and the optimization is done at a reasonable computational cost. Its extraordinary
performance is proved in recent benchmark tests [15, 85]. Before the method of the map
equation, Rosvall and Bergstrom invented another method which is also based on the
information theory [130], although it did not show a decent performance in the benchmark
[85] compared to the map equation.

There are many other methods such as the one using synchronization [17], a quan-
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tity called communicability [49], Surprise [13], order statistics local optimization method
(OSLOM) [88], and the one in a framework of statistical inference, which is called stochas-
tic block model [75, 115]. The quality function called the conductance is also popular in
computer science [53], which is close to the quality functions used in the spectral cus-
tering. The method of clique percolation [117], which was introduced by Palla et al. is
also famous because it enables us to detect overlapping communities. The definition of a
community in the clique percolation is a little bit different from other methods; instead
of defining a community as a result of partitioning, it defines a community as a subgraph
which is close to a complete graph, or a clique. A community is detected locally and is not
affected by the existence of other communities, and thus we are able to make it overlapped
with others. There are some other methods which allow communities to be overlapped,
such as the one with the communicability [49] and the ones which define communities
with links [11, 50, 80] as we mentioned above. Reference [80] shows the link-community
version of the map equation.

Invention of new methods and algorithms are not the only goal. There are also some
researches which discuss the robustness [74], significance [87, 88], and the properties [20,
38, 63, 93] of the communities. It was shown that the community-size distribution of a
real network often obeys a power law [38, 63]. As we will show in the next chapter,
such a distribution is observed in some networks by the method of the map equation
as well, and thus it is expected to be a property independent of the detection method.
The detectability, which measures the ability to detect a fuzzy module, is studied as
well [121, 126]. There are analytical results shown recently, while it used to be discussed
numerically in some benchmark tests.

4.3 Benchmarks and applications

One of the classical examples of the real-world networks that is used as a benchmark of
the community detection is Zachary’s karate club network in the United States [164] as
shown in Fig. 4.2. Each node represents a member of the karate club and a pair of nodes
are connected if the interaction exists between them outside of the club activity. There
were 34 members in total including the instructor and the president of the club. There
was a conflict between the instructor and the president in the club and the members were
separated into the people who supported the instructor and the people who supported the
president. The problem is whether a detection method is able to detect the communities
correctly. The important feature of this network is that the answer, i.e. who supported
whom, is known by interview. Lusseau’s dolphins’ network [18,100,130] is another exam-
ple in which the correct communities are known. Other than these networks, the methods
of community detection have been applied to networks of many disciplines. For biochem-
ical netowrks, there have been researches for protein networks [37, 128, 139], a metabolic
network [66], and a gene network [154]. In Ref. [154], the authors analyzed the abstracts
of articles in the Medline database in order to build a network of genes; a pair of genes
are connected if they are mentioned together in an article. As a result of a community
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Figure 4.2: Zachary’s karate club network. Node 1 represents the instructor and node 34
represents the president.

detection, one obtains sets of genes which are functionally related within each module.
There are also works on the Web contents [125,142] and politics [107,122].

Other than the benchmarks of the real world networks, there are some benchmark
tests with synthetic networks. One of the most basic synthetic benchmark networks is of
Girvan and Newman [57]. The network consists of 128 nodes and is divided into equal size
modules (i.e., 32 nodes in every module). A pair of nodes are connected with probability
Pin if they belong to the same module and if not, they are connected with probability Pout

(Pin > Pout), while keeping the average degree of a node to 16. Higher the probability
Pout is, more difficult an algorithm to detect the correct modules.

The Girvan-Newman benchmark network is, however, not difficult enough to test the
performances of the algorithms and the setting of the equal size modules is not realistic
since many real networks consist of communities of many scales. For the benchmark
test which is more difficult and more realistic, Lancichinetti, Fortunato and Radicchi
proposed another type of synthetic networks, which is called LFR-benchmarks [85,86]. In
the LFR-benchmark network, both the degree distribution of the nodes and the module
size distribution are chosen to follow power laws. Each node has a fraction (1 − µ) of
its links which are connected to the nodes in the same module and the rest of its links
are connected to the nodes outside of the module at random; the parameter µ is called
mixing parameter. Although the LFR-benchmarks have skew module-size distributions,
most of the modules have similar size.
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A benchmark network based on Relaxed Caveman structure, which is constructed
by rewiring the links of the isolated modules of the complete graphs, is also considered
[14, 15, 149]. By setting the distribution of the module sizes highly skewed, one can
construct a benchmark network which is even more difficult than the LFR-benchmark
network.

In many benchmark tests, the network loses its initial community structure as one
raises the mixing parameter (or the rate of rewiring) and one discusses whether the initial
community structure is detectable or not. Aldecoa et al. call them open benchmarks
[14, 15]. The open benchmarks have the following weakness; when an algorithm fails to
detect the designed structure at a certain value of the mixing parameter, one cannot
distinguish whether it is due to the poor performance of the algorithm or because the
community structure of the network does not correspond to that of the initial network
anymore. In order to overcome this limitation, Aldecoa et al. considered a type of
benchmark called closed benchmarks [14, 15], in which the initial and the final networks
have designed community structures and the initial network is converted to the final
network by rewiring. One observes the evolution of the result of the detected structure
in the conversion process. Note that any networks for the initial and the final networks
can be chosen, including the ones used in the above open benchmark tests.

4.4 Spectral clustering

In this section, we basically follow Ref. [101], although we use a different convention for
the normalized graph Laplacian and a slightly different notation. The methods of spectral
clustering make use of the eigenvectors of unnormalized and normalized graph Laplacians.
As we will explain in Sec. 5.1, they appear as the matrix which is responsible for the time
evolution of a random walker. Unnormalized and normalized graph Laplacians, L, Lrw,
and Lsym are defined as{

L = D − A unnormalized graph Laplacian,

Lrw = LD−1 Lsym = D−1/2LD−1/2 normalized graph Laplacian,
(4.1)

where A is the adjacency matrix and D = diag(kα) (kα is the degree of the node α). Both
Lrw and Lsym are called the normalized graph Laplacians.

4.4.1 RatioCut, Ncut, and conductance

In the following, we denote a network, or a graph, as V . Before we analyze the properties
of the graph Laplacians, we first show the goal of the spectral clustering. We define
a quantity called cut size (or simply, cut); it is the number of links which connect the
modules. This quantity plays an important role in the analysis of the next chapter as well.
Mathematically, it can be expressed as follows. Let the number of links which connect
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the module A and the module B be denoted by

W (A,B) =
∑

i∈A,j∈B

wij, (4.2)

where wij = 1 if there exists a link between the node i and the node j. The cut size for
the partition {A1, A2, . . . , Am} is then

cut(A1, A2, . . . , Am) =
1

2

m∑
i=1

W (Ai, Ai), (4.3)

where Ai is the complement of Ai in V . The factor 1/2 is to take account of the double
counting of the links between the modules. At a glance, it may seem that the one which
minimizes the cut size gives the correct partition. It is, however, not correct because
we would obtain the network without any partitions, which gives the cut size equal to
zero. Therefore, we need to balance the cut size with the size of the modules. The quality
functions that we consider are RatioCut [64,116] and Ncut (or the Normalized cuts) [137].
Their definitions are as follows:

RatioCut(A1, A2, . . . , Am) =
m∑
i=1

cut(Ai, Ai)

|Ai|
, (4.4)

Ncut(A1, A2, . . . , Am) =
m∑
i=1

cut(Ai, Ai)

vol(Ai)
. (4.5)

In this section, |X| denotes the number of vertices and vol(X) the sum of degrees in a
(sub)graph X. In the above definitions, the total number of vertices |Ai| and the total
number of links vol(Ai) in the module i are the factors which regulate the size of the
modules. Hence, the problem is to minimize the RatioCut or the Ncut. Indeed, those
quantities can be expressed in terms of the graph Laplacians.

The conductance Φ(S) of a subgraph S, which is often used in computer science, is
quite similar to the RatioCut. It is defined as

Φ(S) =
2 cut(S, S)

min(|S|, |S|)
. (4.6)

Note that the conductance is a global quantity because it has |S| in the denominator,
even though its argument is a subgraph.

4.4.2 Partitioning as an eigenvector problem

For simplicity, we consider partitioning a network V into two clusters, A and A. The
partitioning into more than two clusters is discussed later. The RatioCut can be expressed
with the unnormalized graph Laplacian L as follows. We consider a |V |-dimensional vector
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|f⟩, whose element fi takes one of two values depending on whether the node vi belongs
to A or A as follows:

fi =


√

|A|/|A| vi ∈ A,

−
√

|A|/|A| vi ∈ A.
(4.7)

Let ⟨f | be the transpose of |f⟩. The inner product ⟨f |L|f⟩ is then

⟨f |L|f⟩ = ⟨f |D|f⟩ − ⟨f |A|f⟩ =
∑
i

kif
2
i −

∑
ij

fifjwij

=
1

2

(∑
i

kif
2
i − 2

∑
ij

fifjwij +
∑
j

kjf
2
j

)

=
1

2

∑
ij

wij(fi − fj)
2 (4.8)

=
1

2

∑
i∈A,j∈A

wij

√ |A|
|A|

+

√
|A|
|A|

2

+
1

2

∑
i∈A,j∈A

wij

−

√
|A|
|A|

−

√
|A|
|A|

2

= cut(A,A)

(
A

A
+

A

A
+ 2

)
= |V |

(
cut(A,A)

|A|
+

cut(A,A)

|A|

)
= |V | · RatioCut(A,A), (4.9)

where |V | = |A|+|A|. Equation (4.8) holds for an arbitrary vector. Therefore, minimizing
the RatioCut is equivalent to minimizing the inner product ⟨f |L|f⟩ by arranging the
partition A and A. Note that the norm of the vector |f⟩ is

⟨f |f⟩ =
∑
i

f 2
i = |A| |A|

|A|
+ |A| |A|

|A|
= |V |, (4.10)

which is independent of the partition. The vector |f⟩ also has a property∑
i

fi =
∑
i∈A

√
|A|/|A| −

∑
i∈A

√
|A|/|A|

= |A|
√
|A|/|A| − |A|

√
|A|/|A| = 0, (4.11)

which means that |f⟩ is perpendicular to |1⟩, the vector whose elements are all equal to
unity.

In practice, the minimum of the RatioCut is computationally difficult to achieve be-
cause of the discreteness of the vector space of |f⟩; one needs to test the values of ⟨f |L|f⟩
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according to (4.7) for all possible partition. It is then usual to relax the condition and treat
the vector |f⟩ as a continuous vector. Therefore, in the relaxed condition, the problem to
be considered is

min
f∈R|V |

⟨f |L|f⟩ subject to |f⟩ ⊥ |1⟩, ⟨f |f⟩ = |V |. (4.12)

The resulting vector gives the best estimate for the minimum value of the RatioCut in the
case of bisection. Finding such a vector can be expressed as an eigenvalue problem. The
unnormalized graph Laplacian L is positive semi-definite (which is obvious from Eq. (4.8))
and the smallest eigenvalue is zero with the eigenvector |1⟩ as long as L is irreducible,
i.e. the network consists of one connected component; it means that L has eigenvalues
0 = λ1 < λ2 ≤ · · · ≤ λ|V |. Thus, ignoring the trivial eigenvector with the smallest
eigenvalue, i.e. setting |f⟩ ⊥ |1⟩, the eigenvector with the second smallest eigenvalue is
the one which satisfies the condition (4.12). In order to obtain the partition from the
obtained eigenvector, we need to digitalize it. By assigning each node vi to A and A as{

vi ∈ A if fi ≥ 0

vi ∈ A if fi < 0,
(4.13)

we obtain the bisection of the network.
The partitioning with respect to the Ncut can be discussed similarly. Defining a vector

|f̂⟩ as

f̂i =


√

vol(A)/vol(A) vi ∈ A,

−
√

vol(A)/vol(A) vi ∈ A,
(4.14)

we obtain

⟨f̂ |L|f̂⟩ = vol(V ) · Ncut(A,A). (4.15)

In this case, however, the norm of |f̂⟩ reads

⟨f̂ |f̂⟩ =
∑
i

f̂ 2
i = |A| vol(A)

vol(A)
+ |A| vol(A)

vol(A)
, (4.16)

which obviously depends on the partition. Hence, the minimum of the Ncut cannot be
obtained as the second eigenvector of the unnormalized graph Laplacian.

Instead, let us consider the following similarity transformation:

⟨f̂ |L|f̂⟩ = ⟨g|D−1/2LD−1/2|g⟩ =: ⟨g|Lsym|g⟩, (4.17)

where

|g⟩ = D1/2|f̂⟩,

⟨g|g⟩ = ⟨f̂ |D|f̂⟩ = vol(A)
vol(A)

vol(A)
+ vol(A)

vol(A)

vol(A)
= vol(V ). (4.18)
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The norm of the vector |g⟩ is invariant under the different choice of the partitions and is
perpendicular to D1/2|1⟩:

⟨1|D1/2|g⟩ = ⟨1|D|f⟩ = vol(A)

√
vol(A)

vol(A)
− vol(A)

√
vol(A)

vol(A)
= 0. (4.19)

That is, under the relaxed condition where we replace the discrete vector space of |g⟩ with
the continuous space, the minimum value of the Ncut is given by

min
g∈R|V |

⟨g|Lsym|g⟩ subject to |g⟩ ⊥ D1/2|1⟩, ⟨g|g⟩ = vol(V ). (4.20)

Analogously to the case of the unnormalized graph Laplacian L, the normalized graph
Laplacian Lsym is also positive semi-definite and has a zero eigenvalue with the eigenvector
D1/2|1⟩. Therefore, the eigenvector of Lsym with the second smallest eigenvalue gives the
best estimate for the minimum value of the Ncut. In order to obtain the partition from
the eigenvector, we follow the same procedure as (4.13). Note that the eigenvectors
⟨f̂ | can be regarded as the left-eigenvectors of Lrw, i.e. ⟨f̂ |Lrw = ⟨f̂ |λ, or in terms
of the unnormalized graph Laplacian L, |f̂⟩ is the generalized eigenvectors of L, i.e.
L|f̂⟩ = λD|f̂⟩.

The spectral clustering can partition a network into more than two modules. For a
given network, we consider a trial partition {Aj} (j = 1, 2, . . . ,m); note again that the
number of modules m is an input. We then construct the following |V | × m indicator
matrix H based on the trial partition:

Hij = (a1|11⟩, · · · , aj|1j⟩, · · · , am|1m⟩) =

{
aj i ∈ Aj,

0 otherwise,
(4.21)

where |1j⟩ (j = 1, 2, . . . ,m) is an indicator vector whose ith element is unity if node i is
in the module j and zero otherwise, and aj ̸= 0 is a constant factor.

We first explain the case of the RatioCut with the unnormalized graph Laplacian L.
If we set aj = 1/

√
|Aj| in (4.21), the indicator matrix H has the following relation to the

RatioCut:

Tr
(
HTLH

)
=

k∑
i=1

a2j⟨1j|L|1j⟩ =
k∑

i=1

cut(Aj, Aj)

|Aj|
= RatioCut(A1, . . . , Am), (4.22)

where HT is the transpose of H. For the calculation of ⟨1j|L|1j⟩, we used Eq. (4.8). The
equality (4.22) means that, if we adjust the trial partition {Aj} so that Tr

(
HTLH

)
may

be minimized, it turns out to be the correct partition in the sense of the RatioCut. Note
also that HTH = I holds. Relaxing the discrete-space problem to the continuous-space
problem again, we end up with the following:

min
H∈R|V |×m

Tr
(
HTLH

)
subject to HTH = I. (4.23)
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The solution of (4.23) is given by H which contains the first m eigenvectors of L with the
smallest m eigenvalues as columns. Finally, from the matrix H which is obtained as the
result of the eigenvector problem, we can obtain the partition with the following procedure
(we will explain why it works below). We regard each row of H as an m-dimensional
vector, where the ith row vector corresponds to node i, and apply the widely-known k-
means method [102] to these vectors. For the k-means method, there exists a convenient
heuristic algorithm called the Loyd algorithm [99].

In order to understand the last step of the procedure, let us consider the ideal case
where the network consists ofm pieces of mutually disjoint componentsAj (j = 1, 2, . . . ,m).
In such a case, L is expressed as a block-diagonal matrix with m blocks and there exists
m degenerated eigenvectors with the zero eigenvalue (the smallest eigenvalue). Each of
them is an indicator vector up to the degrees of freedom of a constant factor aj. If we
align those indicator vectors to form the indicator matrix H, each row of it becomes the
m-dimensional vector which indicates the module which the node belongs to. A non-ideal
case can be regarded as the perturbed one of the ideal case; it is expected that the row
vectors of H in the non-ideal case are close to those of the ideal case as long as the
perturbation is small (see Ref. [101] and references therein for a quantitative argument).
Note that, while the correct partition is obtained by the eigenvectors of the unnormalized
graph Laplacian L (i.e. the indicator vectors) in the ideal case, the indicator matrix H
which is obtained as the result of the discrete optimization problem does not necessarily
consist of the eigenvectors of L in non-ideal cases.

For the normalized graph Laplacian Lsym, note that the eigenvectors are not the indi-
cator vectors even in the ideal case, but are D1/2|1j⟩ (j = 1, . . . ,m), and such a difference
appears in the non-ideal case as well. Analogously to the unnormalized graph Laplacian,
by setting aj = 1/

√
vol(Aj) in (4.21) and denoting the corresponding indicator matrix as

Ĥ, we have

Tr
(
ĤTLĤ

)
=

k∑
i=1

a2j⟨1j|L|1j⟩ =
k∑

i=1

cut(Aj, Aj)

vol(Aj)
= NCut(A1, . . . , Am). (4.24)

We also have ĤTDĤ = I. Therefore, under the relaxed condition of the continuous vector
space, the problem becomes as follows:

min
Ĥ∈R|V |×m

Tr
(
ĤTLĤ

)
subject to ĤTDĤ = I, (4.25)

or using T̂ = D1/2Ĥ,

min
T̂∈R|V |×m

Tr
(
T̂ TLsymT̂

)
subject to T̂ T T̂ = I. (4.26)

Thus, in order to find the partition using the k-means method, we can use the first m
eigenvectors of Lsym with the smallest m eigenvalues in T̂ , as well as the first m left-

eigenvectors of Lrw, or equivalently the first m generalized eigenvectors of L|f̂⟩ = λD|f̂⟩
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in Ĥ. In the case of clustering with T̂ , the elements of the eigenvectors may happen to
be very small compared to that of Ĥ because of the factor D1/2, e.g. a weighted network
containing nodes with extremely low degrees. Hence, instead of using the m-dimensional
row vectors themselves for the k-means method, it is required to normalize each norm to
unity beforehand [101,116].

Although the method with the unnormalized graph Laplacian L looks more tractable,
there are some arguments [101] that one should use the normalized graph Laplacian, Lrw

especially, rather than the unnormalized one, because it has many plausible properties
that a correct partition should have.

4.4.3 Random walk interpretation of the spectral clustering

The method of Ncut can be interpreted in terms of the random walk. Here, we assume
the knowledge of Sec. 5.3.1; and use Eqs. (5.26) and (5.8). Let us consider the stationary
distribution of a random walk on a network. We assume that the network is connected
and is non-bipartite so that the unique stationary state is obtained. We then have a
relation

Ncut(A,A) = P (A|A) + P (A|A), (4.27)

where P (X|Y ) is the transition probability from the module Y to the module X. It can
be proved as follows. From Eqs. (5.26) and (5.8) in Sec. 5.3.1, we see that the stationary
probability distribution that the random walker is in the module A is vol(A)/vol(V ) and
the joint probability that the random walker is in the module A before a transition and
is in the module A after the transition P (A,A) is

P (A,A) = qA↷ =
1

vol(V )

∑
i∈A,j∈A

wij =
cut(A,A)

vol(V )
. (4.28)

Thus, the transition probability P (A|A) reads

P (A|A) = P (A,A)

P (A)
=

cut(A,A)

vol(V )

vol(V )

vol(A)
=

cut(A,A)

vol(A)
. (4.29)

Hence, from the definition of Ncut, we have Eq. (4.27). It means that the correct partition
in the sense of Ncut is the partition in which the random walker seldom walks between
the modules. It is consistent with the interpretations of the other methods with a random
walk.

4.5 Modularity

4.5.1 Modularity and its extensions

As we mentioned in section 4.2, the modularity was first introduced as a criterion to deter-
mine where to stop the algorithm of Girvan and Newman [57] by the same authors [114].
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They claimed that one should accept the partition which gives the highest modularity.
The modularity is originally defined in terms of the graph quantities.

The idea of the modularity is as follows. The modularity is a quality function of the
partitions which evaluates how densely links are connected within the modules and the one
with the highest value is regarded as the correct partition. The quality function compares
the structure of the network in question to a network with no community structure in
principle, which is called a null model. A partition scores high if the modules have the
internal links more than they are expected to have in the null model. A typical model for
the null model is configuration model (it is a part of the definition of the modularity in
many papers). The configuration model is a network which is generated by randomizing
the links of the original network data while keeping the degree of each node. Let us
first consider the number of links expected for a pair of nodes i and j. For a given link,
the probability that one end of the link is i and the other end of the links is j reads
ki/2L× kj/2L, where ki and kj are the degrees of the nodes i and j, respectively, and L
is the total number of links. Since i and j can be either end of L links, the expectation
number of the links between them is

2L× ki
2L

ki
2L

=
kikj
2L

. (4.30)

In the original network, the number of links between i and j is given by the element of
the adjacency matrix Aij. With these quantities, the modularity is defined as follows:

Q =
1

2L

∑
ij

(
Aij −

kikj
2L

)
δ(Ci, Cj), (4.31)

where the sum is taken over every node pair, and the delta function δ(Ci, Cj) gives one if
the node i and j are in the same module. The modularity compares the actual connectivity
of the node pair, Aij, and the corresponding expectation value in the configuration model,
kikj/2L, for each module. The factor 1/2L is for the normalization. Equation (4.31) can
also be written as the sum over modules as follows:

Q =
m∑
i=1

[
li
L
−
(

di
2L

)2
]
. (4.32)

Here, the sum is taken over every module and li is the number of links within the module
i. The total degree di of the module i is twice the number of links li within the module
plus the number of links which is connected to outside of the module. The expression
(4.32) is often more tractable. The larger the value of the modularity Q is, the stronger
the community structure is. Therefore, the goal of the method of the modularity is to
find the partition which gives the largest value of the modularity Q.

There are many extensions to the modularity. The spectral interpretation and opti-
mization was discussed by Newman himself [113]. As we mentioned above, the extension
to the directed networks were discussed in Refs. [81,89]. Muff et al. considered a quantity
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called local modularity, although the modularity is a quantity of the whole network. The
philosophy of the local modularity is as follows. The configuration model that is used as
the null model in the modularity assumes that any nodes have possibility to be connected
irrespectively of the distance between them. In real networks, however, it is not true and
there must be a scope for each node, and hence they modified the modularity to a local
quantity. Reichardt and Bornholdt [124] considered the community detection as a Potts
model of a spin system and obtained the generalization of the modularity as follows:

Qγ =
m∑
i=1

[
li
L
− γ

(
di
2L

)2
]
, (4.33)

where the parameter γ is the factor which controls the balance between the actual network
and the null model.

4.5.2 Resolution limit of the modularity

As an important property of the modularity, its resolution limit was derived analytically
by Fortunato and Barthélemy [54] in 2007. It is the limit of a module size below which the
method cannot detect even when its quality function is correctly optimized. The modules
with the size less than the resolution limit are merged in the process of optimization, and
thus the resolution limit is the critical size above which a module does not get merged.
We will discuss the origin and the meaning of the resolution limit in great detail in
the next chapter; in this section, we go over how it is derived for the modularity. We
follow the explanation by Good et al. [61] rather than the original one by Fortunato and
Barthélemy [54].

As shown in Fig. 4.3, we consider two modules in a network and examine if the quality
function Q increases or decreases by merging them. If the size of the modules are too
small, the modularity Q gives a higher value when we merge them, i.e., they are not
resolved. Let M1 and M2 be the modules to be evaluated and we refer to M3 as the rest
of the network. Note that M3 may consist of many modules. We refer to M12 as the
merged module of M1 and M2. According to Eq. (4.32), the difference of the modularity
∆Q reads

∆Q =
lint
L

−
(
d1 + d2
2L

)2

+

(
d1
2L

)2

+

(
d2
2L

)2

=
lint
L

− d1d2
2L2

, (4.34)

where d1 and d2 are the total degrees of M1 and M2, respectively, and lint is the number
of links between them. The modules of size d1 and d2 are not resolved when ∆Q > 0, i.e.,

lint >
d1d2
2L

. (4.35)
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Figure 4.3: A schematic picture of two modules M1 and M2 in a network. The subgraph
M3 indicates the rest of the network and may consist of many modules. The number of
links between the module M1 and M3 is denoted by l13 and the number of links between
the module M2 and M3 is denoted by l23.

For simplicity, let us consider the case where the numbers of internal links are the same,
d1 = d2 = 2l. The most extreme case is when lint = 1, and therefore we have the resolution
limit

l <

√
L

2
. (4.36)

The resolution limit of the modularity is ruled by the total number of links L or the total
degree K. It means that, if a module with size less than

√
2L =

√
K was detected, one

should doubt that the module may consist of more than two modules which we would
intuitively regard as communities.

4.5.3 Random walk interpretation of the modularity

The interpretation of the modularity in terms of a random walk was shown by Delvenne et
al. [44] in 2010. (See also [135].) They introduced a quality function called stability which
can be regarded as a generalization of the modularity. We again assume the knowledge
of Sec. 5.1 and use the opposite convention for the time evolution of the random walker
to Ref. [44]. (We define the time evolution matrix as that of the ket state |p⟩, instead of
the bra state ⟨p|.)

Now, let us consider the following stochastic process in order to introduce the stability.
We partition the network into m modules and put a different label ξi ∈ R (i = 1, 2, . . . ,m)
to each of them as shown in Fig. 4.4; each node has the label of the module to which it
belongs. We consider a random walk in its stationary state on the network and let the
random walker emits the labels of the nodes as it walks around. Then, we regard the
emitted label at a discrete time t as a stochastic variable Xt in the Markov chain. If the
partitioning is the correct one, the random walker seldom escapes from a module, which
means that the value of the auto-covariance of Xt, i.e.

cov [Xt+τ , Xt] ≡ ⟨Xt+τ Xt⟩ − ⟨Xt⟩2 (t = 0, 1, 2, . . . , N), (4.37)
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Random walker

Figure 4.4: An example of the random walk and its array of labels for the stability.

stays high for a given time interval τ . Here, the angular bracket ⟨· · ·⟩ means the average
with respect to the stationary distribution of the random walker and we used a property
of the stationarity that ⟨Xt+τ ⟩ = ⟨Xt⟩. We set N to the total number of nodes |V | in the
network V . The auto-covariance cov [Xt+τ , Xt] can be expressed in the matrix form as
follows. We denote the stationary distribution of the random walker as |π⟩ and its one-
step time evolution matrix as T , which we will explain in Sec. 5.1. Using the indicator
matrix H in (4.21) with aj = 1, we can express the value of the label at the node α,
xt(α) ∈ Xt, as xt(α) =

∑m
j=1Hαjξj. We then have the average of Xt,

⟨Xt⟩ = ⟨xt|π⟩ = ⟨ξ|HT |π⟩, (4.38)

where HT is the transpose of H. The moment ⟨Xt+τ Xt⟩ is given by

⟨Xt+τ Xt⟩ =
N∑
αβ

xt+τ (β)xt(α) pτ (β, α)

=
N∑
αβ

xt+τ (β)xt(α) pτ (β|α)πα

=
N∑
αβ

(
m∑
i=1

ξiH
T
iβ

) (
m∑
j=1

Hαjξj

)
T τ
βα πα

= ⟨ξ|HTT τΠH|ξ⟩, (4.39)
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Module 1 Module 2

Figure 4.5: The random walker oscillates between the modules 1 and 2.

where Π = diag(πα). From Eqs. (4.38) and (4.39), we have

cov [Xt+τ , Xt] = ⟨ξ|Rτ |ξ⟩, (4.40)

Rτ = HT (T τΠ− |π⟩⟨π|)H. (4.41)

The matrix Rτ is called clustered auto-covariance matrix of the network.
If the network has a clear community structure, the random walker in the module

i tends to stay in the same module, which means that value of (Rτ )ii is large. Hence,
the trace of the clustered auto-covariance matrix trRτ sounds appropriate for the quality
function. There is, however, one more restriction that we need to add.

Let us consider the case of a network in Fig. 4.5 as an example. In this network, the
auto-covariance oscillates because the random walker tends to escape and come back to
the module periodically. Since we are interested in the process that the random walker
stays in a module and wish to eliminate the process that the random walker returns to
the module where it left, the stability of the clustering is defined as

r(t;H) = min
0≤s≤t

trRs(H). (4.42)

Finally, the stability curve r(t) is obtained as

r(t) = max
H

r(t;H). (4.43)

It means that we compute the minimum value r(t;H) of trRt(H) for every possible par-
tition and choose the one which gives the maximum among them.

At t = 1, the stability r(1;H) coincides with the modularity Q. To see this, let us
first consider the second term in Eq. (4.41). Observe that the element (HT |π⟩)i equals
the sum of the visiting frequencies of the random walker to the nodes in the module i.
We thus have, according to Eq. (5.3),

tr(HT |π⟩⟨π|H) =
m∑
i=1

(∑
α∈i kα

2L

)2

=
m∑
i=1

(
di
2L

)2

. (4.44)
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For the first term in Eq. (4.41), since TΠ = AD−1D/2L, we have

tr(HTTΠH) =
1

2L
tr(HTAH) =

m∑
i=1

li
L
. (4.45)

Therefore, we obtain

Q = trRt=1(H) = r(1;H). (4.46)

When we set t = 0, the stability detects each node in the network as a single module,
while in the case of larger values of the Markov time t, it detects larger modules. Hence,
we can regard the Markov time t as a resolution parameter of communities. Other than
the connection to the modularity, connections to other quality functions at different time
are also discussed in Ref. [44].
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Chapter 5

The map equation

In this chapter, we first explain the dynamics of a random walker on a network and then
describe the formulation of the method of the map equation and some other extensions.
After that, we will discuss the resolution limit of the map equation [78], which is one of
the main results of the present thesis.

5.1 Time evolution of a random walker

We first take a look at the dynamics of a random walker. For a uniform random walk, the
walker should have an equal probability of transition to each neighboring node, and thus
the transition probability to one neighboring node from the node α should be 1/kout

α , where
kout
α is the out-degree of the node α. Accordingly, the time evolution of the probability

distribution vector pt at discrete time (Markov time) t is expressed as

pt+1 = AD−1pt ≡ Tpt, (5.1)

where A is the adjacency matrix, D = diag(kα), and T is the transition matrix. Equation
(5.1) can also be expressed as

pt+1 − pt =
(
AD−1 − I

)
pt = −(D − A)D−1pt

≡ −LD−1pt

≡ −Lrwpt, (5.2)

where I is the identity matrix, L = D − A is called the unnormalized graph Laplacian,
and Lrw = LD−1 and Lsym = D−1/2LD−1/2 are called the normalized graph Laplacians.
As we explained in the last chapter, the methods of the spectral clustering make use of
the properties of the unnormalized and the normalized graph Laplacians [101].

In the case of an undirected unweighted network, since the ergodicity is satisfied, the
stationary distribution pt→∞ = π is given by

πα =
kα
2L

. (5.3)
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The stationarity condition Tπ = π can be readily confirmed by substituting Eq. (5.3) into
Eq. (5.1). In the case of a directed network, the ergodicity may not be satisfied, i.e., there
may be some sources and sinks of flow. Thus, the random walker may not have a unique
stationary state with a nonzero probability at each node, or it may not have a stationary
state at all.

In order to avoid the problem of the ergodicity, one can consider a random surfer which
has an additional process called teleportation. In the case where there is no node with no
out-going links, the equation of the time evolution of a random surfer is expressed as

pα,t+1 = µ
∑
β

Tαβ pβ,t + (1− µ)vα, (5.4)

where 1 − µ (0 ≤ µ < 1) is the teleportation rate and vα is an element of the preference
vector, i.e. the frequency at which the random surfer teleports to the node α. It says that
the random surfer moves in the same way as the random walk with probability µ and it
teleports to other nodes according to the distribution v with probability 1 − µ. If there
exists a node with no out-going links, the random surfer always teleports at that node;
mathematically, it corresponds to replacing the row of the transition matrix in which all
elements are equal to zero with the elements of the preference vector. Since the preference
vector satisfies the normalization condition

∑
α vα = 1, the time evolution in Eq. (5.4)

conserves the probability,
∑

α pα,t+1 = 1.

Thanks to the teleportation, every node has a nonzero probability, i.e. the ergodicity
is recovered, and the existence of a unique stationary state is proved by the Perron-
Frobineous theorem (as long as the dynamics is aperiodic). The method of the random
surfer was used in the celebrated paper of the PageRank [34], the fundamental search
technique of Google. If the teleportation rate 1 − µ were too large, the stationary dis-
tribution would become close to the uniform distribution and insensitive to the structure
of the underlying network, and thus it needs to be small enough; it is empirically known
that 1−µ = 0.15 shows good performance in many cases. Although the preference vector
is often chosen to be uniform for each node, vα = 1/N (N is the total number of nodes),
it is arbitrary in principle as long as the ergodicity is obtained [84]. In the stationary
limit, since we have pα,t+1 = pα,t = πα, the formal stationary distribution of Eq. (5.4)
becomes [84]

πα = (1− µ)
∑
β

(I − µT )−1
αβ vβ

= vα +
∑
β

∞∑
k=1

µk
(
T k
αβ − T k−1

αβ

)
vβ. (5.5)

Here we expanded πα with respect to µ.
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5.2 The map equation

The method of the map equation was invented by M. Rosvall and C. Bergstrom in 2008
[131]. The map equation is the name of a quality function to be optimized in order
to obtain the community structure and the algorithm to optimize the map equation is
often called Infomap [7]. The method of the map equation is an information-theoretic
approach to the community detection and is about the encoding of a trajectory of a
(uniform) random walker on the network in the stationary state. As we mentioned above,
although the module is thought of as a region where a random walker stays for a relatively
long time, the communities are defined as the partition of the network which optimizes the
quality function. We first review the formulation of the map equation and then analyze
the properties of it in great detail.

5.2.1 Derivation of the (original) map equation

We start from encoding of the movement of a random walker on the network and consider
the minimal description length of its trajectory. In this section, we assume that the
network is undirected and unweighted. A simple way to describe it is to put labels on
each node. By recording the nodes that the random walker visited, one can reconstruct
the trajectory of the random walker using the array of the labels as shown in Fig. 5.1(a).
Under this labeling, the minimal description length averaged over the transition steps is
given by the Shannon entropy as

H = −
∑
α

pα log pα, (5.6)

where pα is the stationary probability that the random walker exists at the node α and the
basis of the logarithm is chosen to be two. This is one way of encoding the movement of
the random walker. However, there is a better way of encoding, so that one can compress
the description length even more.

The above description was a one-level description; we used only codes of one kind,
or one codebook, to indicate the node where the random walker is. We now consider a
two-level description. That is, we use two kinds of codebooks as follows:

module codebook Its code indicates the movement between modules.

node codebook Its code indicates the movement within a module and the exiting from
the module.

We can readily see how the two-level description compresses the description length in
the example of Fig. 5.1(b). If we divide the network into two modules, the blue module
and the red module, the codes which are used for the movements in the blue module can
be reused for the movements in the red module, and therefore, it results in compressing
the description length. By choosing the partition of the network properly so that the
random walker may rarely travel across the modules (notice that the intuitive definition
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of a module appears here!), one obtains the maximum compression, i.e. the minimum
description length under this procedure. The minimum description length L(M) under
the partition M is given as follows:

L(M) = q↷H(Q) +
m∑
i=1

pi⟳H(P i), (5.7)

where

q↷ =
m∑
i=1

qi↷, (5.8)

H(Q) = −
m∑
i=1

qi↷
q↷

log

(
qi↷
q↷

)
, (5.9)

pi⟳ = qi↷ +
∑
α∈i

pα, (5.10)

H(P i) = −qi↷
pi⟳

log

(
qi↷
pi⟳

)
−
∑
α∈i

pα
pi⟳

log

(
pα
pi⟳

)
. (5.11)

The label i is for a module and m is the number of modules. As defined in Eq. (5.8),
q↷ represents the sum of the exiting probability from each module qi↷ and H(Q) is the
Shannon entropy for the movement between modules. Similarly, pi⟳ is the probability
that the random walker stays inside the module i and the probability that it escapes
from the module. Equation (5.11) is the corresponding Shannon entropy. Notice that the
encoding for the exiting from a module is required in Eqs. (5.10) and (5.11). Once an
exiting code appeared during the movement within a module, one realizes that the next
code is for the transition between the modules, which means that the codes for the the
transition within a modules can also be reused for the transition between the modules.
Without them, one has to choose the codes for the transitions between the modules so
that they may not overlap with the codes for the transition within a module.

Substituting Eqs. (5.8), (5.9), (5.10), and (5.11) into Eq. (5.7), we can write the
description length given by the map equation as

L(M) = −
m∑
i=1

qi↷ log

(
qi↷
q↷

)
−

m∑
i=1

qi↷ log

(
qi↷
pi⟳

)
−

m∑
i=1

∑
α∈i

pα log

(
pα
pi⟳

)
(5.12)

= q↷ log q↷ − 2
m∑
i=1

qi↷ log qi↷ +
m∑
i=1

pi⟳ log pi⟳ −
∑
α

pα log pα. (5.13)

Hence, L(M) in (5.7) and (5.13) are the quality function, and the correct modules are
obtained as the partition where L(M) gives the minimum value. Hereafter, we use the
word the description length to indicate the description length given by the map equation,
for simplicity. Note that we can neglect the last term in (5.13) because it does not depend
on how we partition the network.
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(a)

(b)

Codebook I

Movement between the modules

Movement within the module 

+ Exiting from the module

Movement within the module 

+ Exiting from the module

Codebook II-1 Codebook II-2

Figure 5.1: (a) Labeling of nodes without partitioning into the modules. (b) Labeling of
nodes with the module structure.

The program code for the map equation and a nice demonstration is distributed on [8].
In the demonstration, the encoding is done according to the Huffman coding. Note,
however, that the choice of the coding algorithm is not important in both theory and
application; we always deal with the Shannon entropy which is the lower bound of the
code length, and thus the probability distribution of the random walker is enough for the
optimization.

5.2.2 The map equation in directed networks

In the case of directed networks, the ergodicity may not be satisfied. In such a case, as
we discussed in Sec. 5.1, we need to consider a random surfer instead of a random walker.
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There are two ways to discuss the description length of the random surfer; the encoding
which records the teleportation [131] and the one which ignores the teleportation [84,133].

In the former case, we use the stationary distribution πα in Eq. (5.5) for the node
visiting probability. For the probability that the random surfer exits from a module, we
have [131]

qi,↷ = µ
∑
β/∈i

∑
α∈i

Tβα pα + (1− µ)
N −Ni

N − 1

∑
α∈i

pα, (5.14)

where Ni is the number of nodes in the module i. The scheme which records the telepor-
tation is a straightforward extension of the formulation for the undirected network and
was the one suggested in the original paper of the map equation [131]. The teleportation
process, however, ignores the topology of the network, and thus causes incorrect cohesion
between the nodes.

By ignoring the teleportation, we obtain a result with better accuracy. Following
Ref. [133], we define the node visiting probability as

π̃α =
∑
β

qβ↷α. (5.15)

The summand qβ↷α is the transition probability from the node β to α,

qβ↷α = µTαβ πβ, (5.16)

where µ is the probability that the random surfer does not teleport and πβ is the node
visiting probability in Eq. (5.5). Hence, Eq. (5.15) is the node visiting probability in
which the teleportation is ignored. Note that the distribution π̃α is not a stationary
distribution; the in-flow and the out-flow of the probability are no longer equal, i.e. the
balance condition is broken, because we ignore the teleportation. Although the map
equation fundamentally considers the stationary distribution of a random surfer, we can
formulate the map equation for an arbitrary state in principle.

We need another modification to the map equation when we ignore the teleportation.
Remember that, in Eq. (5.7), we used the exiting probability qi↷ for the entropy to specify
the module that the random surfer is in and it was due to the balance condition. Now we
need to distinguish the exiting probability qi↷ and the entering probability qi↶, i.e., the
probability that the random surfer enters the module i. Hence, we replace q↷H(Q) with

q↶H(Q) = −q↶

m∑
i=1

qi↶
q↶

log

(
qi↶
q↶

)
, (5.17)

where q↶ =
∑

i qi↶. For the probability pi⟳ = qi↷ +
∑

α∈i pα, we do not replace qi↷ with
qi↶.
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5.2.3 Hierarchical version of the map equation

There is a way to compress the description length of the random walker further more. In
the original version of the map equation, we considered the two types of the codebook,
the one to describe the movement between the modules and the other to describe the
movement within a module (and escape from it); it is sometimes called the two-level
method. One can increase the levels of description and the extended version is called
the multi-level method or the hierarchical map equation [133]. That is, in the case of the
three-level method for example, in addition to the structure of the nodes and the modules,
the supermodules, i.e. the modules of modules, are considered. An additional codebook
records the transitions between the supermodules. One can extend the hierarchy as long
as the description length is compressed. Hierarchical clustering does not only compress
the code length, but is also a natural way to observe the network structure. In a large
network, it is usual that a module at a coarser level has some modules of finer scale inside.
Therefore, it is not fair to detect the modules only of one scale.

The multi-level method is formulated as follows. Here, we consider directed unweighted
networks and use the scheme which ignores the teleportation, i.e., we need to distinguish
the exiting probability and the entering probability of a module. At the coarsest level
with the partition M, we have the quality function of the multi-level method as

L(M) = q↶H(Q) +
m∑
i=1

L(Mi). (5.18)

The first term is the same as the two-level method and we have the sum of the description
length L(Mi) of each module. For the description length L(Mi) of the module i with mi

submodules, we have

L(Mi) = qi⟳H(Qi) +

mi∑
j=1

L(Mij). (5.19)

The probability qi⟳ in this case represents

qi⟳ = qi↷ +
∑
j

qij↶, (5.20)

i.e., the sum of the exiting probability qi↷ and the probability qij↶ that the random surfer
enters into the submodule j in the module i. In the first term of Eq. (5.19), H(Qi) is
the corresponding Shannon entropy. The hierarchy of the codebooks of the submodules
continues until it reaches the finest level. There, we have

L(Mij...k) = pij...k⟳H(Pij...k), (5.21)

where pij...k⟳ is the sum of the exiting probability from the submodule k and the node-visit
frequencies in it, whereas H(Pij...k) is the corresponding Shannon entropy. Assembling
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them all, we can express the multi-level method as follows:

L(M) = q↷H(Q) +
m∑
i=1

qi⟳H(Qi) +
m∑
i=1

mi∑
j=1

qij⟳H(Qij) + · · ·+
∑
ij...k

pij...k⟳H(Pij...k),

(5.22)

with

H(Q) = −
m∑
i=1

qi↷
q↷

log
qi↷
q↷

, (5.23)

m∑
i=1

H(Qi) = −
m∑
i=1

qi↶
qi⟳

log
qi↶
qi⟳

−
m∑
i=1

mi∑
j=1

qij↷
qi⟳

log
qij↷
qi⟳

, (5.24)

∑
ij...k

H(Pij...k) = −
∑
ij...k

qij...k↶
pij...k⟳

log
qij...k↶
pij...k⟳

−
∑
ij...k

∑
α∈ij...k

pα
pij...k⟳

log
pα

pij...k⟳
. (5.25)

As before, pα is the probability that the random walker is at the node α.
Note that the hierarchical extension here is quite natural, because it is not an algorith-

mic extension, but the extension of the quality function itself. In Sec. 5.3.4, we will show
that the hierarchical map equation does not only give the modules of the different scales,
but also makes the resolution of the modules better. The readers might have an impres-
sion that the hierarchical map equation is just analogous to the original map equation,
and hence the two-level method is enough for most of the time. It is not true, however.
One should always use the hierarchical map equation whenever it is possible because it
simply gives the result with better quality.

5.2.4 Other extensions and some features of the map equation

There are some other extensions of the method of the map equation. Kim and Jeong [80]
built a link-community version of the map equation. That is, the modules are assigned
for links instead of nodes, so that the nodes can belong to multiple modules. The map
equation with overlapping modules was considered by Esquivel and Rosvall [48] as well.
The time evolution of the modules was considered in Ref. [132] and the memory effect of
the random walker was took into account in Ref. [134]. Other than the hierarchical map
equation by Rosvall and Bergstrom [133], a generalization in order to obtain the different
module size was done by Schaub et al. [136] as well. Recently, Lambiotte and Rosvall [84]
discussed the modification of the teleportation process for the directed network and its
effect to the map equation.

The method of the map equation is outstanding in many ways. Because it is a flow
method, it naturally takes account of the directedness of the network; some methods are
formulated for undirected networks first and the extension for the directed networks is
considered later, and thus it is debatable whether the extension is natural [89]. The idea
of the map equation is rather simple and is numerically efficient, so that it is tractable in
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the analysis of large networks. It was also proved in the benchmark test by Lancichinetti
et al. [85] that the map equation has high detectability, i.e., it can resolve fuzzy modules
well. Many classical methods of the community detection require the number of modules
as an input, even though it is not known a priori in many cases. The map equation does
not require such an input; the algorithm automatically determines the optimum number
of modules in the process of minimization of the value of the description length. Indeed,
this is the heart of the present thesis. The fact that the method does not require the
number of modules as an input means that there exists an intrinsic scale that the quality
function possesses and the modules are detected according to that scale.

5.3 Resolution limit of the map equation

As we explained in the last chapter, the modularity has the resolution limit of the scale
O(

√
K), where K is the total degree of the network. This remark is very important

because it says that, even if one wants to search for the modules with the size less than
O(

√
K), it is impossible no matter how one tunes the optimization algorithm.

The fact that the modularity has a resolution limit is rather obvious. The modularity
does not require the number of modules as an input, and hence an algorithm automatically
determines the size and the number of modules from the information of the adjacency
matrix according to the intrinsic scale that the modularity has. Imagine that one wants
to partition the world map into modules. It makes sense that it should be partitioned
into countries, rather than partitioned into cities or villages. In contrast, if a method has
a very fine resolution limit, it implies that even if one wants to see the structure of the
scale which is larger than the resolution limit, the modules of a such scale will be broken
down if they contain modular structures inside. Such a problem can usually be solved by
adopting a hierarchical algorithm or a hierarchical extension of the quality function.

The map equation does not require the number of modules as an input, and therefore,
it does have its own resolution limit. The resolution limit of the map equation had been
discussed in the literature and is empirically known that it has a very fine resolution limit.
Nevertheless, its analytical expression had been missing. It is important to evaluate it
analytically and see what exactly determines it; we know that the resolution limit is ruled
by a global quantity (or quantities) of a network, but it is not obvious whether it is the
total degree, the number of nodes, the number of module-connecting links, i.e. the cut
size, or something else.

It seems difficult to derive the resolution limit of the map equation in a very general
case including directed networks; for a directed network without the ergodicity, one needs
to introduce teleportation, and hence the stationary distribution of a random surfer de-
pends on the teleportation rate µ. Moreover, as we mentioned in Sec. 5.1, the preference
vector v of the teleportation process does not need to be uniform, i.e., the resolution limit
depends on the details of the teleportation. For this reason, we restrict ourselves to the
case of undirected networks. We also treat the unweighted networks for simplicity. The
extension to the weighted network is trivial; we just replace the number of links to the
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Figure 5.2: Detectable region of a module
of the complete graph with n nodes in a
ring of such modules. The ring consists of
m modules. The figure shows the case of
n = 4 and m = 3.
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Figure 5.3: The value of the change in the
description length ∆L when we merged two
of the modules, as a function of the number
of modules m.

sum of weights.

Before we tackle on the resolution limit formally, let us observe how the map equation
behaves in a simple example. We consider a ring ofm modules, each consists of a complete
graph of n nodes as shown in Fig. 5.2. Figure 5.3 shows the change in the description
length ∆L when we merged the two of the complete graphs as a single module, as a
function of the number of modules m. Indeed, the sign of ∆L changes at a certain value
of m; such a critical point corresponds to the resolution limit of the map equation. We
will come back to this example after the argument of a general case.

5.3.1 Value of the description length in terms of the graph quan-
tities

The description length L(M) is written in terms of the Shannon entropies. It consists of
the probabilities of the random walker such as the stationary distribution of the existence
probability in a module πi and the exiting probability qi↷ from the module i. In the case
of the undirected networks, however, we can write down those quantities in terms of the
number of links as follows. First, according to Eq. (5.3), the existence probability in a
module πi reads

πi =
∑
α∈i

kα
K

=
2li + louti

K
, (5.26)

where li is the number of links in the module i and louti is the number of links which
connect the nodes in the module i and the nodes in the other modules. The exiting
probability qi↷ is the joint probability that the random walker is in the module i before
the transition and is out of it after the transition. Since we have Tβα = 1/kα (where β is
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a neighbor of α) for the transition probability, we have

qi↷ =
∑
β/∈i

∑
α∈i

Tβαpα =
∑
β/∈i

∑
α∈i

1

kα

kα
K

=
louti

K
. (5.27)

The sum over β /∈ i counts the number of links which are connected to the nodes outside
of the module i, louti . Substituting them into the original expression of the description
length, Eq. (5.13), we have

L(M) =
(
∑m

i=1 l
out
i )

K
log

(
∑m

i=1 l
out
i )

K
− 2

m∑
i=1

louti

K
log

louti

K

+
m∑
i=1

2(li + louti )

K
log

2(li + louti )

K
−
∑
α

kα
K

log
kα
K

=
1

K

[(
m∑
i=1

louti

)
log

(
m∑
i=1

louti

)
− 2

m∑
i=1

louti log louti

+2
m∑
i=1

(li + louti ) log 2(li + louti )−
∑
α

kα log kα

]

=
1

K

[
2C log 2C + 2

m∑
i=1

Li +K + 2C −
∑
α

kα log kα

]
. (5.28)

Here, the sum
∑m

i=1 l
out
i corresponds to the twice of the quantity called the cut size C in

the spectral clustering and we denote the local quantities of a module as Li, i.e.,

Li = −louti log louti + (li + louti ) log(li + louti ). (5.29)

From Eq. (5.28), we readily see that there is no resolution limit caused by the total
degree K; when we consider the difference of the description length ∆L(M) caused by
a minimization step of L(M), the value of K never changes its sign. The cut size C is,
however, a global quantity of a network, and thus cause the resolution limit. In other
words, as long as the minimization procedure does not change the cut size C, the map
equation does not receive restrictions by global quantities.

Let us now consider a local update for minimization such that the cut size is decreased
by δ, where C ≫ δ > 0. We let the partition before the update be A and let the
partition after the update be B. Expanding the difference of the description length
∆L(M) = L(B)− L(A) with respect to δ up to the first order, we obtain

∆L(M) =
1

K
[2 (C − δ) log 2 (C − δ)− 2C log 2C + 2R− 2δ]

≃ 2

K
[−δ (2 + log(eC)) +R] , (5.30)
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Figure 5.4: A schematic picture for the greedy update of two modules M1 and M2. Note
that M3 may consist of many modules.

where e is the basis of natural logarithm and we defined

R ≡
∑
i′

Li′(B)−
∑
i

Li(A). (5.31)

The specific value of R depends on the type of update that we consider. From (5.30), we
see that any local update would be accepted whenever the following condition is satisfied:

R ≲ δ (2 + log(eC)) . (5.32)

For the updates which increase the cut size, i.e. δ < 0, on the other hand, no local
update would be accepted whenever the cut size C is sufficiently large. In general, the
modification of small modules gives a small value of R and thus it tends to be affected by
the global structure. Depending on the balance of the size of modules to be evaluated and
the links around them, however, large modules may be affected by the global structure
as well. We will see such an example in Appendix B, where we discuss the update called
fine tuning and coarse tuning.

5.3.2 Estimation of the resolution limit

We apply the equation for a general update (5.32) in order to analyze the resolution limit
of the map equation. As was done for the discussion of the modularity [54] in the last
chapter, let us compare the description length for the partition in which small modules
are resolved and the one in which they are not resolved. As shown in Fig. 5.3.2, we
denote the modules to be evaluated by M1 and M2, which have lint inter-connecting
links between them, the merged module of those by M12, and the rest of the network
as M3. Note that M3 may consist of many modules and thus Fig. 5.3.2 represents a
completely general situation. We consider an update from the partition A in which M1

and M2 are separated to the partition B in which M1 and M2 are merged. Then we
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have

R = −lout3 log lout3 + lout2 log lout2 + lout1 log lout1

+ (l1 + lout1 + l2 + lout2 − lint) log(l1 + lout1 + l2 + lout2 − lint)

− (l2 + lout2 ) log(l2 + lout2 )− (l1 + lout1 ) log(l1 + lout1 ), (5.33)

where lout3 = l13 + l23, l13 is the number of links between M1 and M3, and l23 is the
number of links between M2 and M3, respectively.

Here we consider the extreme case in which lint = 1, namely δ = 1, and set the sizes
of two modules equal, namely l1 = l2 = lc, because it gives the greatest value of R for
the same module size. We can readily see it from (5.33); if we set l2 = ξl1(ξ < 1), R is
always less than in the case of ξ = 1 because the function x log x is super-linear. We also
set l13 = l23 = h. Then, using the approximation that lc + h ≫ 1, we have

R ≃ 1 + 2 [lc + (1 + h) log(1 + h)− h log h]− log [e(lc + h)] . (5.34)

When h = 1, according to Eq. (5.32), we obtain the inequality for the resolution limit

22lc+ϵ

lc + 1
≲ C, (5.35)

where ϵ = 3− 2 log e ≃ 0.1146. When h is fairly larger than unity, because (1+h) log(1+
h)− h log h ≃ log[e(1 + h)], we have

(1 + h)222lc−1

lc + h
≲ C. (5.36)

Therefore, the map equation cannot detect the module with less than lc links whenever
the cut size C satisfies the above conditions. This limit is much lower than the resolution
limit of the modularity [54], i.e., the intrinsic scale of the map equation is much smaller
than that of the modularity. That is, whether it is good or bad, the map equation detects
smaller modules if they exist. Note that Eqs. (5.35) and (5.36) are the resolution limits
only when we evaluate it around the global minimum of the description length; otherwise,
because the value of the cut size C may change during updates, they are only practical
restrictions during an optimization process.

The following two examples are worth mentioning. Again, we let l1 = l2 = l and
l13 = l23 = h in Fig. 5.3.2. First, when lint = 0, we have ∆L(M) = 4l/K > 0; thus, the
modules without direct links never get merged as it should. Second, we let M3 be a single
module. Calculating ∆L according to Eq. (5.28), we obtain ∆L(h = 1) > 0 for l ≥ 2,
∂∆L/∂h > 0 and ∆L(h → ∞) = 4(l − 1)/K for any l. Therefore, the map equation can
detect modules of arbitrary size with l ≥ 2 in such a case.

5.3.3 Illustrations of the resolution limit

As an illustration, we again consider the ring of modules that we introduced at the
beginning of Sec. 5.3; the ring has m modules and each module consists of a complete
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graph of n nodes. The elements of the description length L(M) are

K = 2m

(
n(n− 1)

2
+ 1

)
, (5.37)

qA↷ =
2m

K
, qB↷ =

2(m− 1)

K
, (5.38)

q1↷ = q2↷ = q12↷ =
2

K
, (5.39)

q1⟳ = q2⟳ =
n(n− 1) + 4

K
, (5.40)

q12⟳ =
2n(n− 1) + 6

K
. (5.41)

For this graph, we have C = m. The plot in Fig. 5.5 shows an excellent agreement between
the numerical result and the approximated one above; points are the exact value of m at
which ∆L(M) = 0 for a given n and the solid line shows the curve of Eq. (5.35).

The resolution limit of the modularity (dashed line) is also shown in Fig. 5.5. The
modules with the internal links li less than

√
L/2 cannot be resolved, i.e., in terms of n

and m,

n(n− 1)

2
<

[
m

2

(
n(n− 1)

2
+ 1

)]1/2
, (5.42)

n2(n− 1)2

2 + n(n− 1)
< m. (5.43)

The resolution limit of the modularity is much below that of the map equation.

5.3.4 How to eliminate the resolution limit

Although we observed that the resolution of the map equation is extremely small typically,
it does exist. The next natural question is whether we can eliminate the resolution limit
and how we can achieve it. Although it is an intrinsic scale that the quality function has,
it is possible to control by altering the quality function itself. Both the modularity and
the map equation have a factor which favors the large modules and a factor which favors
the small modules. If we modify the balance of their competition, we can make the quality
function have higher resolution, i.e., make it favor the partition with smaller modules.
Such an adjustment for the modularity was proposed by Reichardt and Bornholdt [124]
before the original paper of the resolution limit by Fortunato and Barthélemy [54]. Such
an approach has a problem, however, that we usually do not know the value of γ in
Eq. (4.33) to choose a priori. As an alternative way to overcome the resolution limit,
there is a method proposed by Berry et al. [29], in which they consider re-weighting of
the links between the modules.

In the case of the map equation, we can naturally eliminate the resolution limit without
introducing an extra parameter. We here propose to use the hierarchical map equation.
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Figure 5.5: Detectable region of a module of the complete graph with n nodes in a ring
of m modules. The right figure is the case of n = 6 and m = 6. Each point shows
the numerically exact value of m which gives ∆L(M) = 0 for a given n. The solid and
the dashed lines show the resolution limits of the map equation (Eq. (5.35)) and the
modularity, above which the module with n nodes are not resolved, respectively.

As we did for the two-level method, we can write down (5.22) in the following form:

L(M) = q↷ log q↷ +
∑
i1

qi1⟳ log qi1⟳ +
∑
i1i2

qi1i2⟳ log qi1i2⟳ + · · ·

+
∑

i1i2...ik

qi1i2...ik⟳ log qi1i2...ik⟳ −
∑
α

pα log pα

− 2

(∑
i1

qi1↷ log qi1↷ +
∑
i1i2

qi1i2↷ log qi1i2↷ + · · ·+
∑

i1i2...ik

qi1i2...ik↷ log qi1i2...ik↷

)
.

(5.44)

In the case where the balance condition of the probability flow is not satisfied, we needed
to distinguish the entering probability and the exiting probability [133]. Note, however,
that they are equal in undirected networks, and hence we use a single notation. Let
us then consider the difference of the description length by an update of minimization
process. The modification of the partition at a certain level does not affect the partitions
in higher and lower levels, while it alters the normalization factor for the probabilities of
the movements between submodules at one level below. Therefore, the difference of the
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description length for the alteration in the xth level is

∆L(M) = qBi1i2...ix−1⟳ log qBi1i2...ix−1⟳ − qAi1i2...ix−1⟳ log qAi1i2...ix−1⟳

− 2

∑
i′x

qBi1i2...i′x↷ log qBi1i2...i′x↷ −
∑
ix

qAi1i2...ix↷ log qAi1i2...ix↷


+

∑
i′x

qBi1i2...i′x⟳ log qBi1i2...i′x⟳ −
∑
ix

qAi1i2...ix⟳ log qAi1i2...ix⟳

 , (5.45)

which is analogous to that of two-level method,

∆Ltwo−level(M) = qB↷ log qB↷ − qA↷ log qA↷ − 2

(
m′∑
i′=1

qBi′↷ log qBi′↷ −
m∑
i=1

qAi↷ log qAi↷

)

+

(
m′∑
i′=1

pBi′⟳ log pBi′⟳ −
m∑
i=1

pAi⟳ log pAi⟳

)
. (5.46)

Instead of q↷ in the two-level method in the above equation, we have

qi1i2...ix−1⟳ = qi1i2...ix−1↷ +
∑
ix

qi1i2...ix↷ (5.47)

for the multi-level method; hence, other than the extra term qi1i2...ix−1↷ in qi1i2...ix−1⟳,
the mathematical structure of the hierarchical map equation is analogous to that of the
two-level method.

The resolution limit still exists for the hierarchical map equation in principle. There
is, however, a big quantitative difference for the detection of modules in a supermodule.
When we modify the partition of modules in a supermodule, the nonlocal part of the
difference of the description length is a function of the links inside of the supermodule.
Thus, the limitation comes from the structure of the supermodule, not from the whole
network. For this reason, even when we do not explicitly use the higher levels of the
hierarchy, we may obtain a higher resolution with the hierarchical map equation.

5.3.5 Illustration of the elimination of the resolution limit by
the hierarchical map equation

A good example that demonstrates this fact is the graph of the Sierpinski triangles as
shown in the inset of Fig. 5.6. We consider the Sierpinski triangles of many sizes by
changing its depth of hierarchy. Using the code distributed at [8], we detected the modules
of those graphs with the two-level method and the multi-level method, respectively. For
the multi-level method, we focus on the results in the finest level, where every module
should be a triangle of three nodes; the cut size C that each graph is supposed to have is
known.
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Figure 5.6: Detected size of modules for each Sierpinski triangle of different size with
the two-level method (circular points) and the multi-level method (cross points). The
Sierpinski triangles up to three hierarchies are shown at the top. If we partition the graph
into the modules of three nodes, each graph has a unique value of the cut size C; for
example, the Sierpinski triangle with three hierarchies has C = 12. The boundary of
the shaded region shows the resolution limit of the module size which is calculated by
Eq. (5.35).

The points in the plot of Fig. 5.6 show the size of the detected modules l in each
graph. The curve is the resolution limit of the two-level method, Eq. (5.35). While the
result of the two-level method (circular points) is harmed by the resolution limit, the
multi-level method (cross points) detects the correct modules in any network size. Even
in the case where the algorithm does not reach the global minimum, the small modules
may be detected because the cut size C changes during the updates.

The effect of the resolution limit as well as the difference between the two-level method
and the multi-level one can be seen in the partitioning of real networks as well. Figure 5.7
shows the module size distribution of the rating network in Amazon.com [9, 73, 98, 108].
Although the size of a module here means the number of nodes, not the number of links
within a module, the multi-level method detects small modules much more than the two-
level method does. This is not trivial, because the multi-level solution is not constructed
as a simple decomposition of the two-level solution, but by an attempt to find a global
optimal modular description. It implies that the multi-level method detects the modules
which could not be detected by the two-level method because of the resolution limit.
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Figure 5.7: Module size distributions of the rating network in Amazon.com (bipartite
network). The circular points represent the result of the two-level method and the cross
points represent the result of the multi-level method.

The result of Fig. 5.7 is consistent with Eq. (5.35). In this network, the total number
of modules found by the multi-level method is 483, 657 and the total number of links is
5, 743, 258. Since the value of cut size is bounded below by the number of modules (minus
one) and above by the total number of links in the network, Eq. (5.35) predicts lc ≈ 12
(see Table 5.2). Although the histogram in Fig. 5.7 is plotted with respect to the number
of nodes n in a module, n ≈ 12 is about where the results of the two-level method and
the multi-level method deviate from each other. Note that the number of nodes n within
a module is bounded by the number of links l within the module by n ≤ l + 1. The
equality holds for a module of a tree. Therefore, the results of the two-level method and
the multi-level method should deviate from each other by about n ∼ l.

The exponent of the community size distribution is changed suddenly below the point
where the deviation occurs; this sudden change seems to happen because the multi-level
solution typically has a three-level structure below the size where the deviation occurs
and has a two-level structure above it.

In addition to the rating network of Amazon.com, we list the results for four more
real networks with the distributed code of Infomap [8]. Figure 5.8 shows the module size
distributions of (a) the citation network of publications in the arXiv’s High Energy Physics
– Theory (hep-th) section (direction is ignored) [91], (b) the road network of California
in the U. S. A. [94], (c) the collaboration graph of authors of scientific papers from
DBLP computer science bibliography [95], (d) the friendship network of Facebook [147],
(e) the membership network of the software development hosting site GitHub (bipartite
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Table 5.1: Data of real networks.

# of nodes # of links # of communities # of communities
(two-level) (multi-level)

Amazon 3,376,972 5,743,258 349,016 483,657
arXiv hep-th 48,239 352,807 1,355 2,211
California 1,965,206 2,766,607 82,322 344,485
Facebook 63,731 817,090 2,268 2,819

Pennsylvania 1,088,092 1,541,898 46,899 189,109
DBLP 1,103,412 4,225,686 82,494 118,868
GitHub 177,386 440,237 24,855 30,386

network) [36], and (f) the road network of Pennsylvania in the U. S. A. [92] in the log-log
scale. We used the data distributed at [9]. The size of each network and the total number
of detected modules are listed in Table 5.1. Note that the restriction of the two-level
method affects the resolution of modules gradually in real networks, so that we cannot
always expect a clear branch from the plot of the multi-level method, as we observed in
the Amazon network. Nonetheless, the multi-level method always detects small modules
more often than the two-level method does in all cases.
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Table 5.2: Table of the left-hand side of Eq. (5.35).

lc 22lc+ϵ/(lc + 1) (approx.)
1 2.2
2 5.8
3 17.3
4 55.4
5 184.8
6 633.5
7 2,217.3
8 7,883.9
9 28,381.9
10 103,206.8
11 378,424.9
12 1,397,261.1
13 5,189,826.9
14 19,375,353.9
15 72,657,576.9
16 273,534,407.3
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(e) GitHub membership
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(f) Pennsylvania road network
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Figure 5.8: The community size distributions of (a) the citation network of publications
in the arXiv’s High Energy Physics – Theory (hep-th) section (direction is ignored), (b)
the road network of California in the U. S. A., (c) the collaboration graph of authors of
scientific papers from DBLP computer science bibliography, (d) the friendship network of
Facebook, (e) the membership network of the software development hosting site GitHub
(bipartite network), and (f) the road network of Pennsylvania in the U. S. A. in the log-
log scale. The circular points represent the result of the two-level method and the cross
points represent the result in the finest level of the multi-level method. Note that the size
of a module here does not mean the number of links, but the number of nodes within the
module.
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Chapter 6

Conclusion

In the present thesis, we discussed the information diffusion and the community detec-
tion of complex networks. In both topics, the underlying frameworks are the stochastic
processes.

In the first half, we focused on the information diffusion in complex networks, especially
in online social networks. The diffusion of information such as news or stories is ubiquitous
in online social networks thanks to the functions which encourage the spreading, such as
retweet in Twitter. We proposed a model to describe it (Sec. 3.2) and analytically analyzed
the behavior of diffusion predicted by the model. Although the Galton-Watson branching
process is known as one the fundamental models for such a diffusion process, we found a
behavior which cannot be described with it in the Twitter data which we collected.

In order to characterize the diffusion, we divided the users around the seed user in
generations, namely the distance from the seed user, and measured retweet rate, i.e., the
ratio of users who retweet among the users in each generation. We defined the retweet
rates as stochastic variables. While each retweet rate should obey a Poisson distribution
in the Galton-Watson branching process, we observed a fat-tail distribution, which is well
fitted by a lognormal distribution (Fig. 3.5). Although we are not yet sure its microscopic
origin, our model phenomenologically takes account of this fact; by setting the retweet
rate always equals to one, our model reduces to the Galton-Watson branching process.

Furthermore, based on the model that we proposed, we analyzed the possibility of the
viral diffusion and the effect of the correlation between the retweet rates on it. In the
case where the diffusion goes viral, it is natural to expect that the neighbors of the user
who retweeted are likely to retweet as well, i.e. there exists a correlation between the
generations. By assuming weak correlation of a form which can be treated analytically, we
calculated how it alters the tipping point of the viral diffusion (Eq. (3.52)); although the
tipping point of the viral diffusion seems extremely high in the case of the uncorrelated
case, we found that the tipping point largely decreases due to the correlation (Fig. 3.9).

Investigating how our model can be described microscopically is an important future
work. Moreover, it is interesting to see what information we can obtain from the higher
moments of the statistics of the number of retweets.

In the second half, we discussed analytical properties of the map equation, which is
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one of the state-of-the-art methods of community detection. The map equation makes
use of a random walker in a network. Although the quality function of the map equation
seems difficult to handle analytically because it is formulated in terms of the Shannon
entropies, for undirected networks, it turns out to be tractable if we write the entropies
down in terms of the graph quantities.

We estimated the so-called resolution limit of the map equation (Eq. (5.35)), the
lower bound of the module size which the method can detect. It is orders of magnitude
lower (high resolution) than it is for the modularity in practice. More importantly, the
resolution limit of the map equation is less restrictive, because it is determined by the
number of links between modules, where the resolution limit of modularity is determined
by the total degree of the network. Furthermore, we showed that it is possible to overcome
the resolution limit naturally by using the hierarchical version of the map equation. We
confirmed our results with some synthetic graphs and showed what we obtain for the real
networks.

In this work, we thoroughly investigated features of the resolution limit for undirected
unweighted networks. It is, however, still unknown what can be said in the case of a
directed network; it has a crucial difference from the undirected case, because we may
need to introduce a step called teleportation in order to make the random surfer to have
a stationary state.

Methods with very high resolution limits may show poor performances in detecting
large communities, because they tend to decompose a large module into smaller ones.
Although the tendency seems more difficult to analyze in general, it is important to
understand when such a decomposition occurs and how we can avoid it.

It is expected that the landscape of the quality function of the map equation can also
be investigated based on a similar analysis as we did for the resolution limit. It will give
us an insight in which conditions the optimization becomes really hard.

A better accuracy of detection methods enables us to observe the community structure
even more precisely and we can understand more about the properties of the complex
networks. Fortunately, there are many kinds of network data nowadays. The community
detection is, however, not only about finding the densely connected components. What is
essential is to detect structures of the network; the dense connection among nodes is just
one aspect of them. There should be many structures hidden in the complex networks
(some of them may be dynamical) and we may be able to detect them from the aspect
which is totally different from the typical perspective of today.
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Appendix A

Diagonalization of the covariance
matrix

In this Appendix, we explain the diagonalization of the inverse of the covariance matrix
Σ−1 in Sec. 3.7.2. In the following, we denote the matrix to diagonalize as A.

In order to obtain for the eigenvalues and eigenvectors of A of the form

A =


σ−2 C−1 0 0 · · ·
C−1 σ−2 C−1 0 · · ·
0 C−1 σ−2 C−1 · · ·
0 0 C−1 σ−2 . . .
...

...
...

. . . . . .

 , (A.1)

we consider the following matrix B:

B = δi+1,j + δi−1,j =


0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
0 0 1 0

. . .
...

...
...

. . . . . .

 , i.e., A = σ−2I + C−1B. (A.2)

Since we can take B as a tight-binding model with the fixed ends, it is easy to imagine
that the eigenvectors are given as v⃗n = (sin(kn), sin(2kn), · · · , sin(Nkn))/Z, where kn =
πn/(N+1) and Z is the norm. Therefore, the unitary matrix which diagonalizes B would
be

Umn =
1

Z
sin(mkn),

(
kn =

πn

N + 1

)
(A.3)

Z2 =
N∑

m=1

sin2(mkn) =
1

2

N∑
m=1

[
1− cos

(
2πmn

N + 1

)]
=

N + 1

2
. (A.4)
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For the last equality, note that the sum from m = 1 to m = N + 1 reads

N+1∑
m=1

cos

(
2πmn

N + 1

)
= 0, (A.5)

and the sum that we consider here is from one to N , and thus for n ̸= 0,

N∑
m=1

cos

(
2πmn

N + 1

)
= −1. (A.6)

Let us confirm that U actually diagonalizes B and solve for the eigenvectors. We have

UαγBγδU
†
δβ =

1

Z2

∑
γ,δ

sin(αkγ)(δγ+1,δ + δγ−1,δ) sin(βkδ)

=
1

Z2

∑
γ

sin(αkγ)

[
sin

(
πβ(γ + 1)

N + 1

)
+ sin

(
πβ(γ − 1)

N + 1

)]
=

1

Z2
cos

(
πβ

N + 1

)∑
γ

sin

(
παγ

N + 1

)
sin

(
πβγ

N + 1

)
=

1

Z2
cos

(
πβ

N + 1

)∑
γ

[
cos

(
πγ(α− β)

N + 1

)
− cos

(
πγ(α+ β)

N + 1

)]
. (A.7)

For α ̸= β, we have zero. For α = β, we have∑
γ

[
cos

(
πγ(α− β)

N + 1

)
− cos

(
πγ(α+ β)

N + 1

)]
= N −

∑
γ

cos

(
2πγα

N + 1

)
= N + 1. (A.8)

Hence, it is confirmed that U actually diagonalizes B. The eigenvalue λα then reads

λα = UαγBγδU
†
δα =

N + 1

Z2
cos

(
πα

N + 1

)
= 2 cos kα. (A.9)
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Appendix B

Fine tuning and coarse tuning in the
map equation

The analysis which we carried out for the resolution limit of the map equation corresponds
to the greedy update for the minimization procedure, i.e., we consider whether the two
selected modules should be merged or not. We can also analyze the restriction to another
type of update by the global structure using the result for an arbitrary update. Although
the greedy algorithm is commonly used to optimize a quality function in practice, as long
as we execute the greedy algorithm, there is no chance to separate two modules once they
are merged. In order to correct an implausible partitioning, there are updates called fine
tuning and coarse tuning [133], which we analyze here. As shown in Fig. B.1, fine tuning
evaluates the movement of a node from a module to another. Similarly, coarse tuning
evaluates the movement of a module from a supermodule to another.

In this section, we discuss the property of fine tuning by evaluating R in Eq. (5.31)
of the two-level method. Figures B.2(a) and B.2(b) show the general schematic pictures
of modules for fine tuning. We consider the difference of the map equation due to the
movement of the node M∗. We refer to the partition before the movement as A; we
denote M1 +M∗ =: MA

I and M2 =: MA
II . We refer to the partition after the movement

as B; we denote M1 =: MB
I and M∗ + M2 =: MB

II . As we did in the main text, we
denote the rest of the network by M3, which may consist of many modules. Recalling
the evaluation of a general update, we have

R ≲ δ (2 + log eC) (B.1)

with δ = −(l1∗ − l2∗) (note that δ is defined as the minus of the change in the cut size C)
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and

R = LB
I + LB

II − LA
I − LA

II , (B.2)

LB
I = −(l1∗ + l12 + l13) log(l1∗ + l12 + l13)

+ (l1 + l1∗ + l12 + l13) log(l1 + l1∗ + l12 + l13), (B.3)

LB
II = −(l1∗ + l3∗ + l12 + l23) log(l1∗ + l3∗ + l12 + l23)

+ (l2 + lout∗ + l12 + l23) log(l2 + lout∗ + l12 + l23), (B.4)

LA
I = −(l2∗ + l3∗ + l12 + l13) log(l2∗ + l3∗ + l12 + l13)

+ (l1 + lout∗ + l12 + l13) log(l1 + lout∗ + l12 + l13), (B.5)

LA
II = −(l2∗ + l12 + l23) log(l2∗ + l12 + l23)

+ (l2 + l2∗ + l12 + l23) log(l2 + l2∗ + l12 + l23). (B.6)

As shown in Figs. B.2(a) and B.2(b), lxy (x, y = {1, 2, 3, ∗}) represents the number of links
connecting Mx and My and lout∗ = l1∗ + l2∗ + l3∗. A large value of

∑m
i=1 l

out
i encourages

an update when l2∗ > l1∗ (δ > 0) and discourages an update when l2∗ < l1∗ (δ < 0). As
an example, let us evaluate R by fixing l12 = l3∗ = 0, l13 = l23 = 1, and changing l1∗
and l2∗; see Figs. B.3(a) and B.3(b). Each plot in Fig. B.4 shows a contour plot of R for
various values of l1 and l2 with a certain set of l1∗ and l2∗. The update is accepted when
the inequality (B.1) is satisfied, i.e., the node M∗ is moved from the module M1 to the
module M2. The plots show that the map equation tries to equate the size of modules;
even when the node M∗ is more densely connected to the module M2 than to the module
M1, i.e. l2∗ > l1∗, the node M∗ would not be moved to M2 if l1 is not large enough
compared to l2 and vice versa. A similar discussion holds for coarse tuning. In summary,
we analyzed how the map equation behaves under a tuning update, in addition to that
of the greedy update which we analyzed for the resolution limit.
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▶

Figure B.1: An example of tuning update. Fine tuning considers the movement of a node
from a module to another and coarse tuning considers the movement of a module from a
supermodule to another.

(a) (b)

Figure B.2: General schematic picture for tuning; (a) represents the partition before the
update and (b) represents the partition after the update.
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(a)

1

1

(b)

1

1

Figure B.3: A schematic picture of the specific fine tuning update that we analyze in
Fig. B.4.
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Figure B.4: Contour plots of R for various values of l1 and l2, where (a) (l1∗, l2∗) = (1, 1),
(b) (l1∗, l2∗) = (10, 10), (c) (l1∗, l2∗) = (1, 5), (d) (l1∗, l2∗) = (5, 10), (e) (l1∗, l2∗) = (5, 1),
and (f) (l1∗, l2∗) = (10, 5).
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[13] R. Aldecoa and I. Maŕın. PloS ONE, 6(9):e24195, 2011.

[14] R. Aldecoa and I. Maŕın. Phys. Rev. E, 85(2):026109, 2012.
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[31] M. Boguñá, R. Pastor-Satorras, and A. Vespignani. Phys. Rev. Lett., 90(2):028701,
2003.

[32] J. Bollen, H. Mao, and X. Zeng. J. Comp. Sci., 2(1):1–8, 2011.

[33] J. Borondo, A. J. Morales, J. C. Losada, and R. M. Benito. Chaos, 22(2):023138,
2012.

[34] S. Brin and L. Page. Computer Networks and ISDN Systems, 30(1―7):107–117,
1998.

[35] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. Proceedings of the Fourth
International AAAI Conference on Weblogs and Social Media - ICWSM ’10, 10:10–
17, 2010.

102



[36] S. Chacon. The 2009 GitHub contest. https://github.com/blog/466-the-2009-
github-contest, 2009.

[37] J. Chen and B. Yuan. Bioinformatics, 22(18):2283–90, 2006.

[38] A. Clauset, M. E. J. Newman, and C. Moore. Phys. Rev. E, 70(6):066111, 2004.

[39] P. Cogan, M. Andrews, M. Bradonjic, W. S. Kennedy, A. Sala, and G. Tucci. In
Proceedings of the First ACM International Workshop on Hot Topics on Interdis-
ciplinary Social Networks Research - HotSocial ’12, pages 25–31. ACM, 2012.

[40] M. Conover, J. Ratkiewicz, M. Francisco, B. Gonçalves, F. Menczer, and A. Flam-
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