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Overview:

  Classical physics: RC circuit

Exponential decay is ubiquitous in nature.

Kirchoff’s loop rule: VR = IRVC = Q/C
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Overview:

  Classical physics: RC circuit

Exponential decay is ubiquitous in nature.

Kirchoff’s loop rule: VR = IRVC = Q/C
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Overview:

  Classical physics: beer foam

Exponential decay is ubiquitous in nature.

A Leike, Eur. J. Phys. 23, 21 (2002).

ℎ(𝑡) = ℎ!𝑒
"#$

- beer-dependent parameter𝜏



Overview:

  Quantum physics: nuclear decay

Exponential decay is ubiquitous in nature.

  atomic relaxation

ℎ(𝑡) = ℎ!𝑒"#$

- decay width (inverse lifetime)Γ



Overview:

  Deviations from exponential decay exist at least on
     extremely short and extremely long time scales

Quantum physics: deviations from exponential
decay always exist in QM
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t

~ 1 – t2

~ 1/t3

~ e-γt

Survival Probability:

𝑃 𝑡 = 𝜓! 𝑒"%&# 𝜓!
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Overview:
Deviations from exponential decay result from
influence of the continuum threshold

Hydrogen spectrum:



Overview:
Bound state influence on the long-time
deviations

Good ole’ finite square well:

continuum 𝐸 > 0

−𝑉!

𝐸 < 0bound states



Overview:
Bound state influence on the long-time
deviations

Good ole’ finite square well:

As well becomes more
shallow bound state eventually
vanishes at continuum
threshold (delocalization)

Bound state becomes an anti-bound state
                                     (virtual bound state)

continuum 𝐸 > 0

−𝑉!
𝐸 < 0



Overview:
What is an anti-bound state?

N. Hatano and G. Ordonez, 
J. Math. Phys. 55, 122106 (2014).

(ii) bound state
(i) bound state



Overview:
What is an anti-bound state?

(ii) anti-bound state
(i) bound state



Overview:
Deviations from exponential decay in
quantum mechanics

  Long time deviations result from the
     continuum threshold

  Question:  What happens when bound state
     appears near the continuum threshold?

𝐸

threshold gap: Δ%



Overview:
Deviations from exponential decay in
quantum mechanics

  Long time deviations result from the
     continuum threshold

  Question:  What happens when bound state
     appears near the continuum threshold?

Equivalent question:
   anti-bound state( )

𝐸

threshold gap: Δ%



Overview:
Deviations from exponential decay in
quantum mechanics

Nanowire model: semi-infinite chain with end-point
impurity

  Certain system parameters: exponential decay
     vanishes completely

𝜀(



Overview:
Nanowire model: system dynamics are
fixed according to timescale (ΔQ)-1

t-1

t-3

Near zone

Far zone

Δ! = 0
Δ! ≠ 0

Long time ‘near zone’

1 ≪ 𝑡 ≪
1
Δ)

Long time ‘far zone’

1
Δ)

≪ 𝑡



Outline:

  Nanowire fabrication methods
  Prototype model

  Open quantum systems - definition
  Non-exponential decay - details

  Long-time deviations
  Prototype model: t-1 --> t-3

  Comparison model



Nanowire fabrication: top-down methods 

Effective 1-D systems with impurities can be constructed at the
nanoscale by various methods:

  ‘Top-down’ vs. ‘bottom-up’ methods

T. Otsuka, E. Abe, S. Katsumoto, Y. Iye, G. L. Khym, and
K. King, J. Phys. Soc. Japan 76, 084706 (2007).

Top-down approach: quantum dot-quantum wire etched
into AlGaAs/GaAs heterointerface:

Effective 1-D quantum wire

Localized quantum dot



Nanowire fabrication: bottom-up methods 

Bottom-up approach: structures are created rather than
simply modified at the nanoscale.

Laser-assisted catalytic growth of nanowire superlattices:
TEM images show clear localization
in layers:

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617
(2002)

Gallium Arsenide
layer

Gallium Phosphide
layer



Prototype Model

Prototype Model: simplified chain model with end-point
impurity

𝐻 = −𝐽2
&'(
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𝑐&
*𝑐&+( + 𝑐&+(
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tight-binding chain:

𝜀(
−𝑔

−𝐽
𝐽 = 𝑔 = 1/2

we will use (in this talk):



Open Quantum Systems

Our prototype model is an example of an open quantum
system (OQS).

𝜀(
−𝑔

−𝐽



Open Quantum Systems

  Discrete system HD

Our prototype model is an example of an open quantum
system (OQS).  Open quantum system consists of:

discrete 
component: HD

𝐻* = 𝜀(𝑑+𝑑

−𝐽



Open Quantum Systems

  Embedded in a larger system (continuum) HC

  Discrete system HD

Our prototype model is an example of an open quantum
system (OQS).  Open quantum system consists of:

continuum: HC
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+𝑐-1/ + 𝑐-1/

+ 𝑐-



Open Quantum Systems

  Coupled via HDC

  Embedded in a larger system (continuum) HC

  Discrete system HD

Our prototype model is an example of an open quantum
system (OQS).  Open quantum system consists of:

𝐻*, =
1
2
𝑐/
+𝑑 + 𝑑+𝑐/

−𝑔

−𝐽

HDC

𝐽 = 𝑔 = 1/2



Prototype model: Full Hamiltonian

𝐻 = 𝜀(𝑑+𝑑 −
1
2
7
-./
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𝐻 = 𝐻* + 𝐻, + 𝐻*,
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Deviations from exponential decay

Quantum systems yield deviations from exponential
decay on at least very short and very long time scales:

C. B. Chiu, B. Misra, and E. C. G. Sudarshan, Phys. Rev. D 16, 520 (1977).
J. Martorell, J. G. Muga, and D. W. L. Spring, Lect. Notes. Phys. 789, 239 (2009).
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~ e-γt



Short-time deviations from exponential decay

Short time scales typically give
rise to parabolic decay:
 
                    P(t) ~ 1 – t2 

  Experimental confirmation – ultra-cold Na atoms
     initially trapped in accelerating optical potential:

  quantum anti-Zeno effect  accelerated decay

  Quantum Zeno effect  repeated measurements
     result in decelerated decay

S. R. Wilkinson, et al, Nature (London) 387, 575 (1997).
M. C. Fischer, et al, Phys. Rev. Lett. 87, 040402 (2001).
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P(t)

t

~ 1 – t2



Long time deviations intimately connected with the 
continuum threshold. 

Long-time deviations from exponential decay

  Mathematically proven for quantum systems:
L. A. Khalfin, Soc. Phys. JETP 6, 1053 (1958).

M. N. Hack, Phys. Lett. A 90, 220 (1982).

1

0

P(t)

t~ 1/t3



  Array of single-mode optical waveguides: 

Long-time deviations from exponential decay

  Typically gives rise to 
     inverse power law decay

  Typical asymptotic decay 
     law: 𝑃 𝑡 	~	𝑡"2

  Experimental verification: luminescence
     decay properties of dissolved organic materials
     following laser excitation: 

C. Rothe, et al, Phys. Rev. Lett. 96, 163601 (2006).

1

0

P(t)

t~ 1/t3

A. Crespi, et al, Phys. Rev. Lett. 122, 130401 (2019).
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Formalism: survival probability for an
initially prepared state

Survival probability: 𝑃 𝑡 = 𝐴 𝑡 '

𝐴 𝑡 = 𝜓! 𝑒"%&# 𝜓! =
1
2𝜋𝑖

?
3
𝑒"%4# 𝜓!

1
𝑧 − 𝐻 𝜓!



Formalism: survival probability for an
initially prepared state

Survival probability:

background integral

𝛀

𝑃 𝑡 = 𝐴 𝑡 '

𝐴 𝑡 = 𝜓! 𝑒"%&# 𝜓! =
1
2𝜋𝑖

?
3
𝑒"%4# 𝜓!

1
𝑧 − 𝐻 𝜓!



Physical motivations: bound state at threshold
question: what happens as bound
state approaches continuum threshold?

Answer: long-time non-exponential decay effects
enhanced as bound state approaches threshold.

Note that bound state transitions to virtual bound state (2nd sheet)
after reaching threshold



Prototype model: continuum and discrete spectra

Return to prototype:
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Prototype model: continuum spectrum

take continuum limit, introduce half-chain Fourier series:

𝐻 = 𝜀(𝑑+𝑑 −
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(𝑁 → ∞)
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Prototype model: continuum spectrum

take continuum limit, introduce half-chain Fourier series:

threshold

on

Continuum:

𝑘 ∈ 0, 𝜋 𝜀5 = −cos 𝑘

𝑉5 = −
cos 𝑘
𝜋

𝐻 = 𝜀(𝑑+𝑑 + ?
!

6
𝑑𝑘	𝜀5𝑐5

+𝑐5 + ?
!

6
𝑑𝑘	𝑉5 𝑐5

+𝑑 + 𝑑+𝑐5

(𝑁 → ∞)



Prototype model: discrete spectrum

Obtain the discrete spectrum from:

yields linear
polynomial

however, let’s examine the
dispersion more carefully…

𝑑 1
𝑧 − 𝐻 𝑑 =

1
𝑧 − 𝜀( − Σ 𝑧

Discrete dispersion relation:

𝑧 − 𝜀( − Σ 𝑧 = 𝑧 − 𝜀( −
1
2
𝑧 − 𝑧' − 1 = 0

yields solution:

𝑧7 = 𝜀( +
1
4𝜀(



Prototype model:
Bound state absorption into continuum

We re-write the dispersion slightly:

We see the root vanishes for 𝑧 = ±1, which occurs at: 

These are the points where solution crosses from one
Riemann sheet into the other (localization/delocalization).

𝑧 − 2𝜀# + 𝑧$ − 1 = 0

𝑧' − 1

𝑧 = −1 𝑧 = +1

𝜀( = ±
1
2



𝑧 = −1

Prototype model: linear dispersion plot

bound state

𝑧7 = 𝜀( +
1
4𝜖( 𝑧 = +1



𝑧 = −1

Prototype model: linear dispersion plot

transitions to
anti-bound state

we have purely non-exponential
decay for |εd| < 1/2

𝑧7 = 𝜀( +
1
4𝜖( 𝑧 = +1



Long-time dynamics for prototype model
Focus on the complete,
non-exponential case
(anti-bound state only):

𝐴#8" 𝑡 =
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Long-time dynamics for prototype model

vicinity of lower threshold

define  𝑧, = −1 + Δ-
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Long-time dynamics: near zone and far zone

(Long-time ‘near zone’)

𝐴#8" 𝑡 =
𝑒"%#

2𝜋𝑖𝜀(𝑡'
?
!

0
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Consider the timescale: 1 ≪ 𝑡 ≪
1
Δ)

𝐴#8" 𝑡 '	~	𝑡"/amplitude: 𝐴#8" 𝑡 	~	𝑡"//'



Long-time dynamics: near zone and far zone

(Long-time ‘near zone’)

(Long-time ‘far zone’)

Note that for ΔQ = 0, the near zone becomes fully asymptotic

𝐴#8" 𝑡 =
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Consider the timescale: 1 ≪ 𝑡 ≪
1
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Asymptotic limit:
1
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𝐴#8" 𝑡 '	~	𝑡"2

amplitude: 𝐴#8" 𝑡 	~	𝑡"//'

𝐴#8" 𝑡 	~	𝑡"2/'



Long-time dynamics: numerical results for
prototype model

S. Garmon, T. Petrosky, L. Simine, and D. Segal, 
Fortschr. Phys. 61, 261 (2013).
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Far zone

Near zone
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𝐴#8" 𝑡 '	~	𝑡"/

𝐴#8" 𝑡 '	~	𝑡"2



One can demonstrate the time scale separating near and far zones 
should be inversely related to ΔQ fairly generally:

Long-time dynamics for general open quantum 
systems

S. Garmon, T. Petrosky, L. Simine, and D. Segal, Fort. Physik, 61, 261 (2013).

Similar effect observed in the following works:
S. Longhi, Phys. Rev. Lett. 97, 110402 (2006).

Axel D. Dente, Raúl A. Bustos-Marún, and Horacio M. Pastawski,
Phys. Rev. A 78, 062116 (2008).

S. Garmon, K. Noba, G. Ordonez, and D. Segal, 
Phys. Rev. A, 99, 010102(R) (2019).

Another approach: using a bound state in continuum as a method
to eliminate the effect of the resonance from the decay



Summary
Bound state influence on long time dynamics in OQS:

  Bound state transition to anti-bound state 
     (virtual bound state) at continuum threshold

  Purely non-exponential dynamics when only
     anti-bound states are present

  Long time dynamics for prototype model:
  Long-time near zone: 𝑃 𝑡 	~	𝑡"/
  Long-time far zone: 𝑃 𝑡 	~	𝑡"2

  Amplification of non-exponential decay as bound
     state transitions to anti-bound state; near zone
     becomes asymptotic dynamics


