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Overview:

  Classical physics: RC circuit

Exponential decay is ubiquitous in nature.

Kirchoff’s loop rule: VR = IRVC = Q/C
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Overview:

  Classical physics: RC circuit

Exponential decay is ubiquitous in nature.

Kirchoff’s loop rule: VR = IRVC = Q/C
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exponential lifetime:

𝑡" = 𝑅𝐶



Overview:

  Classical physics: beer foam

Exponential decay is ubiquitous in nature.

A Leike, Eur. J. Phys. 23, 21 (2002).

ℎ(𝑡) = ℎ!𝑒
"#$

- beer-dependent parameter𝜏



Overview:

  Quantum physics: nuclear decay

Exponential decay is ubiquitous in nature.

  atomic relaxation

ℎ(𝑡) = ℎ!𝑒"#$

- decay width (inverse lifetime)Γ



Overview:

  Deviations from exponential decay exist at least on
     extremely short and extremely long time scales

Quantum physics: deviations from exponential
decay always exist in QM
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P(t)

t

~ 1 – t2

~ 1/t3

~ e-γt

Survival Probability:

𝑃 𝑡 = 𝜓! 𝑒"%&# 𝜓!
'



Overview:
Deviations from exponential decay result from
influence of the continuum threshold

Hydrogen spectrum:



Overview:
Bound state influence on the long-time
deviations

Good ole’ finite square well:

continuum 𝐸 > 0

−𝑉!

𝐸 < 0bound states



Overview:
Bound state influence on the long-time
deviations

Good ole’ finite square well:

As well becomes more
shallow bound state eventually
vanishes at continuum
threshold (delocalization)

Bound state becomes an anti-bound state
                                     (virtual bound state)

continuum 𝐸 > 0

−𝑉!
𝐸 < 0



Overview:
What is an anti-bound state?

N. Hatano and G. Ordonez, 
J. Math. Phys. 55, 122106 (2014).

(ii) bound state
(i) bound state



Overview:
What is an anti-bound state?

(ii) anti-bound state
(i) bound state



Overview:
Deviations from exponential decay in
quantum mechanics

  Long time deviations result from the
     continuum threshold

  Question:  What happens when bound state
     appears near the continuum threshold?

𝐸

threshold gap: Δ%



Overview:
Deviations from exponential decay in
quantum mechanics

  Long time deviations result from the
     continuum threshold

  Question:  What happens when bound state
     appears near the continuum threshold?

Equivalent question:
   anti-bound state( )

𝐸

threshold gap: Δ%



Overview:
Deviations from exponential decay in
quantum mechanics

Nanowire model: semi-infinite chain with end-point
impurity

  Certain system parameters: exponential decay
     vanishes completely

𝜀(



Overview:
Nanowire model: system dynamics are
fixed according to timescale (ΔQ)-1

t-1

t-3

Near zone

Far zone

Δ! = 0
Δ! ≠ 0

Long time ‘near zone’

1 ≪ 𝑡 ≪
1
Δ)

Long time ‘far zone’

1
Δ)

≪ 𝑡



Outline:

  Nanowire fabrication methods
  Prototype model

  Open quantum systems - definition
  Non-exponential decay - details

  Long-time deviations
  Prototype model: t-1 --> t-3

  Comparison model



Nanowire fabrication: top-down methods 

Effective 1-D systems with impurities can be constructed at the
nanoscale by various methods:

  ‘Top-down’ vs. ‘bottom-up’ methods

T. Otsuka, E. Abe, S. Katsumoto, Y. Iye, G. L. Khym, and
K. King, J. Phys. Soc. Japan 76, 084706 (2007).

Top-down approach: quantum dot-quantum wire etched
into AlGaAs/GaAs heterointerface:

Effective 1-D quantum wire

Localized quantum dot



Nanowire fabrication: bottom-up methods 

Bottom-up approach: structures are created rather than
simply modified at the nanoscale.

Laser-assisted catalytic growth of nanowire superlattices:
TEM images show clear localization
in layers:

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617
(2002)

Gallium Arsenide
layer

Gallium Phosphide
layer



Prototype Model

Prototype Model: simplified chain model with end-point
impurity

𝐻 = −𝐽2
&'(

)

𝑐&
*𝑐&+( + 𝑐&+(

* 𝑐&

tight-binding chain:

𝜀(
−𝑔

−𝐽
𝐽 = 𝑔 = 1/2

we will use (in this talk):



Open Quantum Systems

Our prototype model is an example of an open quantum
system (OQS).

𝜀(
−𝑔

−𝐽



Open Quantum Systems

  Discrete system HD

Our prototype model is an example of an open quantum
system (OQS).  Open quantum system consists of:

discrete 
component: HD

𝐻* = 𝜀(𝑑+𝑑

−𝐽



Open Quantum Systems

  Embedded in a larger system (continuum) HC

  Discrete system HD

Our prototype model is an example of an open quantum
system (OQS).  Open quantum system consists of:

continuum: HC

𝐻, = −
1
2
7
-./

0

𝑐-
+𝑐-1/ + 𝑐-1/

+ 𝑐-



Open Quantum Systems

  Coupled via HDC

  Embedded in a larger system (continuum) HC

  Discrete system HD

Our prototype model is an example of an open quantum
system (OQS).  Open quantum system consists of:

𝐻*, =
1
2
𝑐/
+𝑑 + 𝑑+𝑐/

−𝑔

−𝐽

HDC

𝐽 = 𝑔 = 1/2



Prototype model: Full Hamiltonian

𝐻 = 𝜀(𝑑+𝑑 −
1
2
7
-./

0

𝑐-
+𝑐-1/ + 𝑐-1/

+ 𝑐- −
1
2
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+𝑑 + 𝑑+𝑐/

𝐻 = 𝐻* + 𝐻, + 𝐻*,

𝜀(
−𝑔

−𝐽
𝐽 = 𝑔 = 1/2



Deviations from exponential decay

Quantum systems yield deviations from exponential
decay on at least very short and very long time scales:

C. B. Chiu, B. Misra, and E. C. G. Sudarshan, Phys. Rev. D 16, 520 (1977).
J. Martorell, J. G. Muga, and D. W. L. Spring, Lect. Notes. Phys. 789, 239 (2009).
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P(t)

t

~ 1 – t2

~ 1/t3

~ e-γt



Short-time deviations from exponential decay

Short time scales typically give
rise to parabolic decay:
 
                    P(t) ~ 1 – t2 

  Experimental confirmation – ultra-cold Na atoms
     initially trapped in accelerating optical potential:

  quantum anti-Zeno effect  accelerated decay

  Quantum Zeno effect  repeated measurements
     result in decelerated decay

S. R. Wilkinson, et al, Nature (London) 387, 575 (1997).
M. C. Fischer, et al, Phys. Rev. Lett. 87, 040402 (2001).

1

0

P(t)

t

~ 1 – t2



Long time deviations intimately connected with the 
continuum threshold. 

Long-time deviations from exponential decay

  Mathematically proven for quantum systems:
L. A. Khalfin, Soc. Phys. JETP 6, 1053 (1958).

M. N. Hack, Phys. Lett. A 90, 220 (1982).

1

0

P(t)

t~ 1/t3



  Array of single-mode optical waveguides: 

Long-time deviations from exponential decay

  Typically gives rise to 
     inverse power law decay

  Typical asymptotic decay 
     law: 𝑃 𝑡 	~	𝑡"2

  Experimental verification: luminescence
     decay properties of dissolved organic materials
     following laser excitation: 

C. Rothe, et al, Phys. Rev. Lett. 96, 163601 (2006).

1

0

P(t)

t~ 1/t3

A. Crespi, et al, Phys. Rev. Lett. 122, 130401 (2019).
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Formalism: survival probability for an
initially prepared state

Survival probability: 𝑃 𝑡 = 𝐴 𝑡 '

𝐴 𝑡 = 𝜓! 𝑒"%&# 𝜓! =
1
2𝜋𝑖

?
3
𝑒"%4# 𝜓!

1
𝑧 − 𝐻 𝜓!



Formalism: survival probability for an
initially prepared state

Survival probability:

background integral

𝛀

𝑃 𝑡 = 𝐴 𝑡 '

𝐴 𝑡 = 𝜓! 𝑒"%&# 𝜓! =
1
2𝜋𝑖

?
3
𝑒"%4# 𝜓!

1
𝑧 − 𝐻 𝜓!



Physical motivations: bound state at threshold
question: what happens as bound
state approaches continuum threshold?

Answer: long-time non-exponential decay effects
enhanced as bound state approaches threshold.

Note that bound state transitions to virtual bound state (2nd sheet)
after reaching threshold



Prototype model: continuum and discrete spectra

Return to prototype:

𝐻 = 𝜀(𝑑+𝑑 −
1
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Prototype model: continuum spectrum

take continuum limit, introduce half-chain Fourier series:

𝐻 = 𝜀(𝑑+𝑑 −
1
2
7
-./

0

𝑐-
+𝑐-1/ + 𝑐-1/

+ 𝑐- −
1
2
𝑐/
+𝑑 + 𝑑+𝑐/

(𝑁 → ∞)



𝑘
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Prototype model: continuum spectrum

take continuum limit, introduce half-chain Fourier series:

threshold

on

Continuum:

𝑘 ∈ 0, 𝜋 𝜀5 = −cos 𝑘

𝑉5 = −
cos 𝑘
𝜋

𝐻 = 𝜀(𝑑+𝑑 + ?
!

6
𝑑𝑘	𝜀5𝑐5

+𝑐5 + ?
!

6
𝑑𝑘	𝑉5 𝑐5

+𝑑 + 𝑑+𝑐5

(𝑁 → ∞)



Prototype model: discrete spectrum

Obtain the discrete spectrum from:

yields linear
polynomial

however, let’s examine the
dispersion more carefully…

𝑑 1
𝑧 − 𝐻 𝑑 =

1
𝑧 − 𝜀( − Σ 𝑧

Discrete dispersion relation:

𝑧 − 𝜀( − Σ 𝑧 = 𝑧 − 𝜀( −
1
2
𝑧 − 𝑧' − 1 = 0

yields solution:

𝑧7 = 𝜀( +
1
4𝜀(



Prototype model:
Bound state absorption into continuum

We re-write the dispersion slightly:

We see the root vanishes for 𝑧 = ±1, which occurs at: 

These are the points where solution crosses from one
Riemann sheet into the other (localization/delocalization).

𝑧 − 2𝜀# + 𝑧$ − 1 = 0

𝑧' − 1

𝑧 = −1 𝑧 = +1

𝜀( = ±
1
2



𝑧 = −1

Prototype model: linear dispersion plot

bound state

𝑧7 = 𝜀( +
1
4𝜖( 𝑧 = +1



𝑧 = −1

Prototype model: linear dispersion plot

transitions to
anti-bound state

we have purely non-exponential
decay for |εd| < 1/2

𝑧7 = 𝜀( +
1
4𝜖( 𝑧 = +1



Long-time dynamics for prototype model
Focus on the complete,
non-exponential case
(anti-bound state only):

𝐴#8" 𝑡 =
1
2𝜋𝑖

?
"/

"/"%0 𝑒"%4#

𝜂9 𝑧
𝑑𝑧 − ?

"/"%0

"/ 𝑒"%4#

𝜂99 𝑧
𝑑𝑧

𝜂% 𝑧 = 𝑧 − 𝜀# − Σ% 𝑧



Long-time dynamics for prototype model

vicinity of lower threshold

define  𝑧, = −1 + Δ-

𝐴#8" 𝑡 =
1
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Long-time dynamics: near zone and far zone

(Long-time ‘near zone’)

𝐴#8" 𝑡 =
𝑒"%#

2𝜋𝑖𝜀(𝑡'
?
!

0
𝑒":

𝑠' − 2𝑖𝑡𝑠

Δ) + 𝑖
𝑠
𝑡
𝑑𝑧

Consider the timescale: 1 ≪ 𝑡 ≪
1
Δ)

𝐴#8" 𝑡 '	~	𝑡"/amplitude: 𝐴#8" 𝑡 	~	𝑡"//'



Long-time dynamics: near zone and far zone

(Long-time ‘near zone’)

(Long-time ‘far zone’)

Note that for ΔQ = 0, the near zone becomes fully asymptotic

𝐴#8" 𝑡 =
𝑒"%#

2𝜋𝑖𝜀(𝑡'
?
!

0
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𝑠' − 2𝑖𝑡𝑠

Δ) + 𝑖
𝑠
𝑡
𝑑𝑧

Consider the timescale: 1 ≪ 𝑡 ≪
1
Δ)

Asymptotic limit:
1
Δ)

≪ 𝑡

𝐴#8" 𝑡 '	~	𝑡"/

𝐴#8" 𝑡 '	~	𝑡"2

amplitude: 𝐴#8" 𝑡 	~	𝑡"//'

𝐴#8" 𝑡 	~	𝑡"2/'



Long-time dynamics: numerical results for
prototype model

S. Garmon, T. Petrosky, L. Simine, and D. Segal, 
Fortschr. Phys. 61, 261 (2013).

t-1
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Near zone

Far zone

Near zone

Far zone
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𝐴#8" 𝑡 '	~	𝑡"/

𝐴#8" 𝑡 '	~	𝑡"2



One can demonstrate the time scale separating near and far zones 
should be inversely related to ΔQ fairly generally:

Long-time dynamics for general open quantum 
systems

S. Garmon, T. Petrosky, L. Simine, and D. Segal, Fort. Physik, 61, 261 (2013).

Similar effect observed in the following works:
S. Longhi, Phys. Rev. Lett. 97, 110402 (2006).

Axel D. Dente, Raúl A. Bustos-Marún, and Horacio M. Pastawski,
Phys. Rev. A 78, 062116 (2008).

S. Garmon, K. Noba, G. Ordonez, and D. Segal, 
Phys. Rev. A, 99, 010102(R) (2019).

Another approach: using a bound state in continuum as a method
to eliminate the effect of the resonance from the decay



Summary
Bound state influence on long time dynamics in OQS:

  Bound state transition to anti-bound state 
     (virtual bound state) at continuum threshold

  Purely non-exponential dynamics when only
     anti-bound states are present

  Long time dynamics for prototype model:
  Long-time near zone: 𝑃 𝑡 	~	𝑡"/
  Long-time far zone: 𝑃 𝑡 	~	𝑡"2

  Amplification of non-exponential decay as bound
     state transitions to anti-bound state; near zone
     becomes asymptotic dynamics


