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Overview:

Exponential decay is ubiquitous in nature.

» Classical physics: RC circuit

Kirchoft’s loop rule: Ve=Q/C =—=c¢ R § Vr=IR
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Overview:

Exponential decay is ubiquitous in nature.

» Classical physics: beer foam

t

h(t) = hye =

_i‘ v
T - beer-dependent parameter ?
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A Leike, Eur. J. Phys. 23, 21 (2002).




Overview:

Exponential decay is ubiquitous in nature.

» Quantum physics: nuclear decay

h(t) = hye Tt

[ - decay width (inverse lifetime)

> atomic relaxation




Overview:

Quantum physics: deviations from exponential
decay always exist in QM

» Deviations from exponential decay exist at least on
extremely short and extremely long time scales

Survival Probability:

P(6) = |(Wole ™t |wo)|’




Overview:

Deviations from exponential decay result from
influence of the continuum threshold
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Overview:

Bound state influence on the long-time
deviations

Good ole’ finite square well:

continuum

bound states
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Overview:

Bound state influence on the long-time

deviations
A
Good ole’ finite square well:
As well becomes more continuum | E > 0
shal.low bound s.tate eventually Y
vanishes at continuum
threshold (delocalization E<O
( ) PN -V,

Bound state becomes an anti-bound state
(virtual bound state)




Overview:

What is an anti-bound state?

(=

(ii) bound state

(i) bound state

N. Hatano and G. Ordonez,
J. Math. Phys. 55, 122106 (2014).




Overview:

P\» What is an anti-bound state?

...... _//\\_ (1)
(a)
(ii) anti-bound state \\ /
(i) bound state Y "
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Overview:

Deviations from exponential decay in
quantum mechanics

> Long time deviations result from the
continuum threshold

> Question: What happens when bound state
appears near the continuum threshold?
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threshold gap: Ao




Overview:

Deviations from exponential decay in
quantum mechanics

> Long time deviations result from the
continuum threshold

> Question: What happens when bound state
appears near the continuum threshold?

| E
o | ——

\_Y_}

threshold gap: Ao

( Equivalent question:)
anti-bound state



Overview:

Deviations from exponential decay in
quantum mechanics

Nanowire model: semi-infinite chain with end-point
Impurity
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> Certain system parameters: exponential decay
vanishes completely




Overview:

Nanowire model: system dynamics are
fixed according to timescale (Aq)™

Long time ‘near zone'
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Outline:

» Nanowire fabrication methods
> Prototype model

» Open quantum systems - definition
» Non-exponential decay - details

» Long-time deviations
» Prototype model: t' --> t?
» Comparison model



Nanowire fabrication: top-down methods

Effective 1-D systems with impurities can be constructed at the
nanoscale by various methods:

» ‘Top-down’ vs. ‘bottom-up” methods

Top-down approach: quantum dot-quantum wire etched
into AlGaAs/GaAs heterointerface: Vi Ve \i,
. L L

Localized quantum dot

Effective 1-D quantum wire —

T. Otsuka, E. Abe, S. Katsumoto, Y. lye, G. L. Khym, and
K. King, J. Phys. Soc. Japan 76, 084706 (2007).



Nanowire fabrication: bottom-up methods

Bottom-up approach: structures are created rather than
simply modified at the nanoscale.

Laser-assisted catalytic growth of nanowire superlattices:

A TEM images show clear localization
a i 5
> in layers:

d s
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Figure 1 Synthesis of nanowire superlattices. a, A nanocluster catalyst (shown gold)
nucleates and directs one-dimensional semiconductor nanowire (blue) growth with the . . . )
catalyst remaining at the terminus of the nanowire. b, Upon completion of the first growth Gallium PhOSphlde Gallium Arsenide

step, a different material (red) can be grown from the end of the nanowire. ¢, Repetition of |ayer |ayer
stens a and h leads to a comnnsitinnal siinerlattice within a sinale nannwire

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617
(2002)



Prototype Model

Prototype Model: simplified chain model with end-point

Impurity
B A B A
-
tight-binding chain: we will use (in this talk):
B _]Z(CiTcHl Sevic) 'ﬁ | = G
=1 _]
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Open Quantum Systems

Our prototype model is an example of an open quantum
system (OQS).




Open Quantum Systems

Our prototype model is an example of an open quantum
system (OQS). Open quantum system consists of:

» Discrete system Hp

discrete l
component: Hp —>

HD — gdd-l-d



Open Quantum Systems

Our prototype model is an example of an open quantum
system (OQS). Open quantum system consists of:

» Discrete system Hp

» Embedded in a larger system (continuum) H

T L L L - ——
l \ continuum: H
-1 f f
He = _E (Cncn+1 + Cn+1cn)



Open Quantum Systems

Our prototype model is an example of an open quantum
system (OQS). Open quantum system consists of:

» Discrete system Hp

» Embedded in a larger system (continuum) H

» Coupled via Hp

—J
® L L L 7 ————
_g j\HDC
1+
HDC —_ E(Cld + d-l-Cl)

J=9g=1/2



Prototype model: Full Hamiltonian

H=HD+HC+HDC

1+ 1
H=¢g,d"d — EZ(C;[CTLH +c icn)— > (cId +dfc;)

n=1



Deviations from exponential decay

Quantum systems yield deviations from exponential
decay on at least very short and very long time scales:

C. B. Chiu, B. Misra, and E. C. G. Sudarshan, Phys. Rev. D 16, 520 (1977).
J. Martorell, J. G. Muga, and D. W. L. Spring, Lect. Notes. Phys. 789, 239 (2009).

P(f)
1




Short-time deviations from exponential decay

P(?)
Short time scales typically give  The—_ | _ 2
rise to parabolic decay:

Pit) ~1-¢

0

» Quantum Zeno effect = repeated measurements
result in decelerated decay
» quantum anti-Zeno effect =» accelerated decay

» Experimental confirmation — ultra-cold Na atoms
initially trapped in accelerating optical potential:

S. R. Wilkinson, ef al, Nature (London) 387, 575 (1997).
M. C. Fischer, et al, Phys. Rev. Lett. 87, 040402 (2001).



Long-time deviations from exponential decay

Long time deviations intimately connected with the
continuum threshold.

P(f)

1

_ 3
| ~18

0
» Mathematically proven for quantum systems:

L. A. Khalfin, Soc. Phys. JETP 6, 1053 (1958).
M. N. Hack, Phys. Lett. A 90, 220 (1982).




Long-time deviations from exponential decay

P(1)
1
> Typically gives rise to

inverse power law decay

» Typical asymptotic decay
law: P(t) ~t~3 0

> Experimental verification: luminescence
decay properties of dissolved organic materials

following laser excitation:

C. Rothe, et al, Phys. Rev. Lett. 96, 163601 (2006).

> Array of single-mode optical waveguides:

A. Crespi, et al, Phys. Rev. Lett. 122, 130401 (2019).



Formalism: survival probability for an
initially prepared state

Survival probability:  P(t) = [A(t)|?

A = (bole™ o) = [ o712t o] 72 o)
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Survival probability:

Formalism: survival probability for an

initially prepared state

1

A(t) = (Yole ™ t|yy) ===
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background integral

P(t) = |A(D)|?
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Physical motivations: bound state at threshold

question: what happens as bound
state approaches continuum threshold?

Im z

0.0 0.5 1.5 2.0

Answer: long-time non-exponential decay effects
enhanced as bound state approaches threshold.

Note that bound state transitions to virtual bound state (2"d sheet)
after reaching threshold



Prototype model: continuum and discrete spectra

Return to prototype: J=g=1/2

H=HD+HC+HDC

(00)

1 1
H=¢g,d’d — EZ(c;[an +e¢ icn)— > (cld +dfc;)

n=1



Prototype model: continuum spectrum

take continuum limit, introduce half-chain Fourier series:

1+ 1
H=¢g,d"d — EE(C,:I;Cn_H +c cn)— > (cld + dfcy)

n=1

(N — )



Prototype model: continuum spectrum

take continuum limit, introduce half-chain Fourier series:

T rT[
H = e dtd + f dk excicy + | dk Vi(ctd +dfcy)
0 0
N — o
Continuum: / £k { )
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Prototype model: discrete spectrum

Obtain the discrete spectrum from:

yields linear

1 1 .
— olynomial
<d‘z—H‘d> z—¢e5 —2(2) « POy

Discrete dispersion relation:

Z—Ed—Z(Z)=Z—€d—%(Z— 22—1)=0

yields solution:

1 however, let’s examine the

Z, = &g T 4e, dispersion more carefully...



Prototype model.:
Bound state absorption into continuum

We re-write the dispersion slightly: z—2¢;++v2z>-1=0

z=—1 z=+1
We see the root vanishes for z = +1, which occurs at:
1
Eq = if

These are the points where solution crosses from one
Riemann sheet into the other (localization/delocalization).



Prototype model: linear dispersion plot

1 |
7, = €4+ — o | I
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Prototype model: linear dispersion plot

1
Z, = &5 +— d- '
- ’ dey A= z=+1

transitions to / "3 we have purely non-exponential
anti-bound state 431 decay for [g4] < 1/2



Long-time dynamics for prototype model

Focus on the complete, Im 2
non-exponential case )
(anti-bound state only): 1
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Long-time dynamics for prototype model

Im z
9
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vicinity of lower threshold
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Long-time dynamics: near zone and far zone

A= (8 et f"o _ Vs? =2its ;
th — . e Z
2miggt? ), A, + G
L
Consider the timescale: 1 <Kt < A (Long-time ‘near zone’)

Q
amplitude: Ay, (t) ~t~1/2 A, (D)2 ~t71



Long-time dynamics: near zone and far zone

At_h (t) = e S dZ

et f"o _ Vs? = 2its
0

Zﬂigd tz

Consider the timescale: 1 <Kt < A (Long-time ‘near zone’)
Q

amplitude: Ay, (t) ~t~1/2 A, (D)2 ~t71

1 b (4 9
Asymptotic limit: = Kt (Long-time ‘far zone’)

Q

A () ~ t73/2 A (O ~ 7
t

Note that for A, = 0, the near zone becomes fully asymptotic




Long-time dynamics: numerical results for

Near zone

A, (D)% ~ ™1

Far zone

A, (D)]* ~ 73

prototype model
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S. Garmon, T. Petrosky, L. Simine, and D. Segal,
Fortschr. Phys. 61, 261 (2013).



Long-time dynamics for general open quantum
systems

Similar effect observed in the following works:
S. Longhi, Phys. Rev. Lett. 97, 110402 (2006).

Axel D. Dente, Raul A. Bustos-Marun, and Horacio M. Pastawski,
Phys. Rev. A 78, 062116 (2008).

One can demonstrate the time scale separating near and far zones
should be inversely related to A, fairly generally:

S. Garmon, T. Petrosky, L. Simine, and D. Segal, Fort. Physik, 61, 261 (2013).

Another approach: using a bound state in continuum as a method
to eliminate the effect of the resonance from the decay

S. Garmon, K. Noba, G. Ordonez, and D. Segal,
Phys. Rev. A, 99, 010102(R) (2019).



Summary

Bound state influence on long time dynamics in OQS:

» Bound state transition to anti-bound state
(virtual bound state) at continuum threshold

» Purely non-exponential dynamics when only
anti-bound states are present

» Long time dynamics for prototype model:
» Long-time near zone: P(t) ~t~!
» Long-time far zone: P(t) ~ t~>

» Amplification of non-exponential decay as bound
state transitions to anti-bound state; near zone
becomes asymptotic dynamics



