ety - ETYH OO 71 75 LRI

Techniques in Program Development for Statistical and Quantum Physics

R R (R KR AR IS8R / Synge Todo (Department of Physics, University of Tokyo)

AV 2 —RBREHREEEZ NI b o TN ELITo TS NBEETHD, 077 L 3Z0EEDRH
HRTH 2, 07 L 3FEVEDIREIC, LrL, Bo/@biidhdririintinikn, 2527035
LIINEDEEETE2DIMEEDDT, 0T ARBICEVWRER -7z, TREERLZZ Do TiERS
BV, BIET 22 0Ra— FREICHRE T2 I3 TUITXVDEA I ? Tur T AFFBCHET 248 FEZH
e, TRITILONEMES T — XMEICHETAMREEDL LN UDEBALED, FFa Xy e LTHELAED,
I— FOEFMCHETZaX Y b 2D 352 e RUITH S b BHAINTVWS, LErLEDYS, a—FE2EXH
D ZANCHITORFTZHE EE /2D, BB RF 2 XY MM T 20, 227077 LRBCHET2EMAER
RIIANTH-oTHHL W,

COMEDRRICLIT Y 7 by = 7HBEFELE LT, 7 X MREIRHRE) 252, 7 X Mgz i, Bic7 X b
O—RZELSZADTAZETERY, TAMEHBHFEIIBWTIX, E3T7AMEEL LT, vr 7 o08E
ftikE 7 A ba— R UCHIECRAT 2, X2, BEROa—r2EEX, 207X 22V 735, ZL T, 3N
TOTAMBRRTZ I 2R LB S, a— FOEEZIMDRVTWL, ZOFIEZHEDIET Z LT, #TE
MECEIEL, ENOTHAMAMRERI - FEEZ N TE S, £, 7077 20MERHEVARED FF 2 XY
b, EBRICa—- FEEEXEBDIRNCH O UDHREN->TWDE Z2ITR D,

AHERTIE. ZOT R NFEHRFELERNE LRI BBOMNRT 5, 7 X MNKEBHFICE D, RLEr0RZET
2. Rifaoblenrar s LT 2 Z e BAIRRICR 5, ZORFETFIEIE. NERY = 6IEFITKHKR Y 7
P27 ET, HEZWVE, AL ORKER L — T TOMBEEITRILIEH T2 2N TE S, EBEDOT R MK
BFFETIE, MELHDIEL e S 02ay 4 VL, KEDTRAM2ETT LIRS, A#HETIE. LY
AT B, TANIZVL—=LT—=7 MGEHA VT 7L —2ay X=Va VEHIRTLKY, 7 A MNREIBIFEE R —
FT3Y—LRBRBEICOWTHENT 5,

A computer is a tool that performs long and tedious tasks for humans many orders of magnitude faster, and
a program is a blueprint for that tool. Programs work as we wrote, but they do not always work as expected.
Writing a program should not take long or not be painful as we use them to make life easier. How can we
effortlessly develop working clean code? Textbooks on program development emphasize the importance of having
well-defined specifications for the program’s internal structure and data structure in advance, documenting them,
and adding appropriate comments throughout the code. However, it is not easy, even for people with specialized
training in program development, to design the details in advance and maintain documentation.

Test-driven development (TDD) is a development method that aims to solve these problems. TDD means more
than just writing lots of test code. In TDD, we write tests first to define program functions and specifications
in the form of code. Next, we write a minimum amount of code to pass the tests. Then, while ensuring that all
tests pass, we refactor the code by removing duplications. By repeating this procedure, we can create code that
is fast, works correctly, and is clean and reusable. In addition, documentation of the program specifications and
usage will have been available before we start writing the code.

This lecture explains TDD with actual examples. TDD makes it possible to develop programs with fewer
defects without being anxious. It can be used in various situations, from small tools to huge software, from
individual to large-group development. In actual TDD, we compile programs over and over again and run a
large number of tests. This lecture will also introduce tools and environments that support TDD, such as build

systems, test frameworks, continuous integration, and version control systems.



