Derivation of the Lieb-Robinson bound

I. DEFINITION AND NOTATION
A. Definition of the system

We consider a finite-volume lattice system with spins (or sites) labeled as ¢ = 1,2,...,n, where the Hilbert space
of each spin is d-dimensional. We denote the finite set of sites as X, Y, Z and so on, and the cardinality of X as | X|
(e.g. X = {i1,i2,...,%x|}). We define the distance dx y as the shortest path length for which one needs to connect
XtoY.

B. Definition of k-local operator

We first define the k-local operator O®) as follows:
oW — Z 0z, (1)
|Z|<k

where ox is a local operator supported on the finite set Z. The k-local operator includes the interactions of up to
k-body coupling with finite k. Explicitly, this operator can be described as
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where {s!'},, ; are operator bases at the site i; for example, when we consider a (1/2)-spin system, {s!'},; = {o7,0!,07}
with {o!'},=¢,y,» the Pauli matrices.

C. Definition of extensiveness

We next define the extensiveness as follows: the k-local operator O%) satisfies the extensiveness if
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where g is a O(1) constant and )~ ,.,-, denotes the summation with respect to the support Z which contains the
spin i. Note that if the operator O®) satisfies the extensiveness, it also satisfies

JO®|| < gn, (4)
because of

n
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D. Definition of the Hamiltonian

In the following, we consider Hamiltonians which are extensive k-local operators with & = O(1):
H= Y hyz with Y |hzla<g for i=1,2,...,n, (5)
|Z|<k Z:Z3i
We also define the finite-range interaction as follows;
Z |hz|| =0, for d;;>lm, (6)
7:Z231{i,5}

where /g corresponds to the interaction length.



II. LIEB-ROBINSON BOUND

In this section, we show the Lieb-Robinson bound and its proof in the case of the finite-range interacting systems;
even if we consider more general systems (e.g. with exponentially decaying interactions), the Lieb-Robinson bound
can be also obtained and its proof is essentially the same as in this case.

The Lieb-Robinson bound restricts the velocity of the information transfer in the time evolution of quantum many-
body systems. In other words, if we send some information from a subsystem X to a subsystem Y by the use of the
time-evolution of a local Hamiltonian, we need finite time which is proportional to the distance between X and Y.

Lieb-Robinson bound. Let Ox and Oy be arbitrary operators on the subsystems X and Y, respectively. We then
bound the norm of the commutator [Ox (t), Oy] from above by

If0x(0,0v1l < 20x] - [0y x| LD, (7)

with

[t

where Ox (t) = e" " *Ox et and the Hamiltonian (5) is finite-range as in Eq. (6).
The RHS of the inequality is roughly given by

m
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which implies the super-exponential decay with respect to the distance dx y.

Proof. We first prove the following inequality:

%H[Ox(t),Oylll < 2[|0x || - [[Hx(2), Oy]l- (10)

In order to prove this inequality, we start with the following equation:

[[Ox (t+ 6t), Oy]|| = [[[e” I+ Ox e 0 Oy ]|
_ H[e—th —zH(StO ezHét iHt O ]”
= [[(Ox —i6t[H,Ox] + O(5t*), Oy (=t)]|
= |[(Ox —idt[Hx,Ox] + O(6t%), Oy (—1)]|], (11)
where we define Hx as
Hy = Z hz,. (12)
Zl:ZlﬂX;é@
We then obtain

lle= >t Ox ™", Oy (1)) + O(6t)

Ox,eiHXétOy<—t)e_iHX5t]|| + O((5t2)
Ox, Oy(—t) + iét[Hx, Oy(—t)]H + 0(5t2)
Ox (1), Oy]|| +i6t[Ox, [Hx, Oy (—t)]|| + O(5t?)

I
I
I

<[[[0x (t), Oy]ll + 26t Ox | - [[Hx (1), Ov]l| + O(6¢*). (13)
From (11) and (13), we prove the inequality (10) by taking ¢ — 0.
By integrating the inequality (10) and utilizing the fact of |[Ox (¢t = 0),0y]| = ||[Ox,Oy]| = 0, we obtain the

following inequality:

O (), 0¥l < 210xIl ) (II[hz1(0)70Y]II+/O II[hzl(t1)70Y]IIdt1>
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—2ox] Y / iz, (t1), Oy [dts, (14)
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FIG. 1: The regions {Z;}}L; in the inequality (16) is defined as Z; : Z;NZ;_1 # (). Because the interactions in the Hamiltonian
are short-range with interaction length /g, for each of the terms hzj, the subset Z; satisfies dx,; < jfy for an arbirtrary site
1€ Zj.

where we use ||[hz,(0),0y]|] = 0 as long as Z; NY = (). Because we assume the finite-range interaction, we here
note that arbitrary site ¢ in the set Z; : Z3 N X satisfies d; x < ¢p for Vi € Z;(Figure 1). If all the commutators
l[hz,,Oy]|| vanish, namely dx y > ¢y we apply the same process to ||[hz, (¢), Oy]|| and obtain

lox®, ol <4ox| Y lhal S / / 1z (1), Oy [dtdty (15)
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as long as Z1 N'Y = (). Note that arbitrary site ¢ in the set Zs satisfies d; x < 2(y.
By iteratively applying this process, we have
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Oy ||t dty—1 - - - dty (16)

under the assumption that all the commutators ||[hz,,_,, Oy]|| vanish. From dx,; < (m — 1)y for an arbitrary site
i € Zm—1, as long as dx,y > (m — 1){y, we can ensure [hy Oy] = 0. Therefore, the condition [hz, _,,Oy] =0is
ensured up to m = Myax With

m—17

Mimax = VX’Y + 1J. (17)
ly

Because of the extensiveness (5) of the Hamiltonian, we obtain
Yoo bzl <) D lhall< Y g=9lX]. (18)
Z1:Z1NX#0 iHEX Z1:215i ii€X
Similarly, we have
Yoo hzli< Y Y0 lhzl < Y 9=9lZ < kg, (19)
ZlizlﬂZ27£@ 1E€EZY Zo: 221 RISV

where we utilize k-locality of the Hamiltonian as in Eq. (5).
By the use of the inequalities (18) and (19) in (16), we obtain

t ty tm—1
li0x(0), 0v1 <2+ [Ox| - [Ov |- X6 tg™ [ [*os [Tttt
0 Jo 0

(2kgt)™

2
== : X
O -lloy ] - 1X ==

By taking m as mmpax =: Mg, we can obtain the main inequality. [J



