
Derivation of the Lieb-Robinson bound

I. DEFINITION AND NOTATION

A. Definition of the system

We consider a finite-volume lattice system with spins (or sites) labeled as i = 1, 2, . . . , n, where the Hilbert space
of each spin is d-dimensional. We denote the finite set of sites as X, Y , Z and so on, and the cardinality of X as |X|
(e.g. X = {i1, i2, . . . , i|X|}). We define the distance dX,Y as the shortest path length for which one needs to connect
X to Y .

B. Definition of k-local operator

We first define the k-local operator O(k) as follows:

O(k) =
∑
|Z|≤k

oZ , (1)

where oX is a local operator supported on the finite set Z. The k-local operator includes the interactions of up to
k-body coupling with finite k. Explicitly, this operator can be described as

O(k) =
∑

i1<i2<···<ik

∑
µ1,...,µk

oµ1,...,µk

i1,...,ik
sµ1

i1
⊗ · · · ⊗ sµk

ik
, (2)

where {sµi }µ,i are operator bases at the site i; for example, when we consider a (1/2)-spin system, {sµi }µ,i = {σxi , σyi , σzi }
with {σµi }µ=x,y,z the Pauli matrices.

C. Definition of extensiveness

We next define the extensiveness as follows: the k-local operator O(k) satisfies the extensiveness if

max
i∈[1,n]

( ∑
Z:Z3i

‖oZ‖
)
≤ g, (3)

where g is a O(1) constant and
∑
Z:Z3i denotes the summation with respect to the support Z which contains the

spin i. Note that if the operator O(k) satisfies the extensiveness, it also satisfies

‖O(k)‖ ≤ gn, (4)

because of

‖O(k)‖ ≤
∑
Z

‖oZ‖ ≤
n∑
i=1

∑
Z:Z3i

‖oZ‖ ≤ gn.

D. Definition of the Hamiltonian

In the following, we consider Hamiltonians which are extensive k-local operators with k = O(1):

H =
∑
|Z|≤k

hZ with
∑
Z:Z3i

‖hZ‖2 ≤ g for i = 1, 2, . . . , n, (5)

We also define the finite-range interaction as follows;∑
Z:Z3{i,j}

‖hZ‖ = 0, for di,j > `H , (6)

where `H corresponds to the interaction length.
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II. LIEB-ROBINSON BOUND

In this section, we show the Lieb-Robinson bound and its proof in the case of the finite-range interacting systems;
even if we consider more general systems (e.g. with exponentially decaying interactions), the Lieb-Robinson bound
can be also obtained and its proof is essentially the same as in this case.

The Lieb-Robinson bound restricts the velocity of the information transfer in the time evolution of quantum many-
body systems. In other words, if we send some information from a subsystem X to a subsystem Y by the use of the
time-evolution of a local Hamiltonian, we need finite time which is proportional to the distance between X and Y .

Lieb-Robinson bound. Let OX and OY be arbitrary operators on the subsystems X and Y , respectively. We then
bound the norm of the commutator [OX(t), OY ] from above by

‖[OX(t), OY ]‖ ≤ 2

k
‖OX‖ · ‖OY ‖ · |X|

(2kg|t|)m0

m0!
, (7)

with

m0 =

⌊
dX,Y
`H

+ 1

⌋
, (8)

where OX(t) ≡ e−iHtOXeiHt and the Hamiltonian (5) is finite-range as in Eq. (6).
The RHS of the inequality is roughly given by

(C|t|)m0

m0!
∼
(

const.× |t|
m0

)m0

∼ e−const.×dX,Y log(dX,Y /|t|), (9)

which implies the super-exponential decay with respect to the distance dX,Y .

Proof. We first prove the following inequality:

d

dt
‖[OX(t), OY ]‖ ≤ 2‖OX‖ · ‖[HX(t), OY ]‖. (10)

In order to prove this inequality, we start with the following equation:

‖[OX(t+ δt), OY ]‖ = ‖[e−iH(t+δt)OXe
iH(t+δt), OY ]‖

= ‖[e−iHte−iHδtOXeiHδteiHt, OY ]‖
= ‖[(OX − iδt[H,OX ] +O(δt2), OY (−t)]‖
= ‖[(OX − iδt[HX , OX ] +O(δt2), OY (−t)]‖, (11)

where we define HX as

HX =
∑

Z1:Z1∩X 6=∅
hZ1

. (12)

We then obtain

‖[e−iHXδtOXe
iHXδt, OY (−t)]‖+O(δt2) =‖[OX , eiHXδtOY (−t)e−iHXδt]‖+O(δt2)

=‖[OX , OY (−t) + iδt[HX , OY (−t)]‖+O(δt2)

=‖[OX(t), OY ]‖+ iδt[OX , [HX , OY (−t)]‖+O(δt2)

≤‖[OX(t), OY ]‖+ 2δt‖OX‖ · ‖[HX(t), OY ]‖+O(δt2). (13)

From (11) and (13), we prove the inequality (10) by taking δt→ 0.
By integrating the inequality (10) and utilizing the fact of ‖[OX(t = 0), OY ]‖ = ‖[OX , OY ]‖ = 0, we obtain the

following inequality:

‖[OX(t), OY ]‖ ≤ 2‖OX‖
∑

Z1:Z1∩X 6=∅

(
‖[hZ1

(0), OY ]‖+

∫ t

0

‖[hZ1
(t1), OY ]‖dt1

)

= 2‖OX‖
∑

Z1:Z1∩X 6=∅

∫ t

0

‖[hZ1
(t1), OY ]‖dt1, (14)



3

(m � 1)`H

Zm�1

FIG. 1: The regions {Zj}mj=1 in the inequality (16) is defined as Zj : Zj∩Zj−1 6= ∅. Because the interactions in the Hamiltonian
are short-range with interaction length `H , for each of the terms hZj , the subset Zj satisfies dX,i < j`H for an arbirtrary site
i ∈ Zj .

where we use ‖[hZ1
(0), OY ]‖ = 0 as long as Z1 ∩ Y = ∅. Because we assume the finite-range interaction, we here

note that arbitrary site i in the set Z1 : Z1 ∩ X satisfies di,X < `H for ∀i ∈ Z1(Figure 1). If all the commutators
‖[hZ1

, OY ]‖ vanish, namely dX,Y > `H we apply the same process to ‖[hZ1
(t), OY ]‖ and obtain

‖[OX(t), OY ]‖ ≤ 4‖OX‖
∑

Z1:Z1∩X 6=∅
‖hZ1

‖
∑

Z2:Z2∩Z1 6=∅

∫ t

0

∫ t1

0

‖[hZ2
(t), OY ]‖dt2dt1 (15)

as long as Z1 ∩ Y = ∅. Note that arbitrary site i in the set Z2 satisfies di,X < 2`H .
By iteratively applying this process, we have

‖[OX(t), OY ]‖ ≤2m‖OX‖
∑

Z1:Z1∩OX 6=∅
‖hZ1‖

∑
Z2:Z2∩Z1 6=∅

‖hZ2‖ · · ·
∑

Zm−1:Zm−1∩Zm−2 6=∅
‖hZm−1‖

∑
Zm:Zm∩Zm−1 6=∅

∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

‖[hZm(tm), OY ]‖dtmdtm−1 · · · dt1.

≤2m‖OX‖
∑

Z1:Z1∩OX 6=∅
‖hZ1‖

∑
Z2:Z2∩Z1 6=∅

‖hZ2‖ · · ·
∑

Zm−1:Zm−1∩Zm−2 6=∅
‖hZm−1‖

∑
Zm:Zm∩Zm−1 6=∅

∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

2‖hZm‖ · ‖OY ‖dtmdtm−1 · · · dt1 (16)

under the assumption that all the commutators ‖[hZm−1 , OY ]‖ vanish. From dX,i < (m − 1)`H for an arbitrary site
i ∈ Zm−1, as long as dX,Y ≥ (m− 1)`H , we can ensure [hZm−1 , OY ] = 0. Therefore, the condition [hZm−1 , OY ] = 0 is
ensured up to m = mmax with

mmax =

⌊
dX,Y
`H

+ 1

⌋
. (17)

Because of the extensiveness (5) of the Hamiltonian, we obtain∑
Z1:Z1∩X 6=∅

‖hZ1
‖ ≤

∑
i:i∈X

∑
Z1:Z13i

‖hZ1
‖ ≤

∑
i:i∈X

g = g|X|. (18)

Similarly, we have ∑
Z1:Z1∩Z2 6=∅

‖hZ2
‖ ≤

∑
i:i∈Z1

∑
Z2:Z23i

‖hZ2
‖ ≤

∑
i:i∈Z1

g = g|Z1| ≤ kg, (19)

where we utilize k-locality of the Hamiltonian as in Eq. (5).
By the use of the inequalities (18) and (19) in (16), we obtain

‖[OX(t), OY ]‖ ≤2m+1‖OX‖ · ‖OY ‖ · |X|km−1gm
∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

dtmdtm−1 · · · dt1

=
2

k
‖OX‖ · ‖OY ‖ · |X|

(2kgt)m

m!
. (20)

By taking m as mmax =: m0, we can obtain the main inequality. �


