On the possible existence of $4 n$ resonances

R. Lazauskas ${ }^{1}$, J. Carbonell ${ }^{2}$, E. Hiyama ${ }^{3}$ and M. Kamimura ${ }^{4}$
IPHC, IN2P3-CNRS/Univ. Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2, France ${ }^{1}$,
Institut Physique Nucléaire, Univ. Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex, France ${ }^{2}$, Nishina Center, RIKEN, Wako, 351-0198, Japan ${ }^{3}$, Department of Physics, Kyushu University, Fukuoka 812-8581, Japan ${ }^{4}$
rimantas.lazauskas@iphc.cnrs.fr ${ }^{1}$

We examine possibility for a four neutron system to posses a narrow resonance as suggested by a recent experimental result in RIKEN [1]. Since any sensitive modification of the nucleon-nucleon (NN) potentials or on the leading contributions of the three-nucelon (NNN) forces affect strongly the nuclear chart, we have introduced [2] a phenomenological $\mathrm{T}=3 / 2$ three neutron force, in addition to a realistic NN interaction, as an artefact to accommodate a 4 n nearthreshold states. We inquired what would be the strength of such a 3 n force in order to generate a resonance compatible with the experimental findings. The reliability of the resulting three-neutron force in the $\mathrm{T}=3 / 2$ channel is examined, by analyzing its consistency with the low-lying $\mathrm{T}=1$ states of ${ }^{4} \mathrm{H},{ }^{4} \mathrm{He}$ and ${ }^{4} \mathrm{Li}$ and the ${ }^{3} \mathrm{H}+\mathrm{n}$ scattering.

Two independent configuration space methods are used in solving the four-body problem: the Gaussian expansion method $[3,4,5]$ to solve the Schrodinger equation and the Lagrange-mesh technique applied to solve the Fadeev-Yakubowsky equation [6]. The boundary conditions related to the four-body problem in the continuum are implemented by using the complex scaling method $[7,8]$ and the position of the 4 n resonances in the complex energy-plane are determined.

References

[1] K. Kisamori et al., Phys. Rev. Lett. 116 (2016), 052501
[2] E. Hiyama, R. Lazauskas, J. Carbonell, N. Kamimura, Phys. Rev. C93 (2016), 044004
[3] M. Kamimura, Phys. Rev. A 38, 621 (1988).
[4] H. Kameyama, M. Kamimura, and Y. Fukushima, Phys. Rev. C 40, 974 (1989).
[5] E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003).
[6] R. Lazauskas and J. Carbonell, Phys. Rev. C 72, 034003 (2005), Phys. Rev. C 71, 044004 (2005).
[7] Nuttal, J. and Cohen, H. L., Phys. Rev. 188 (1969) 1542.
[8] J. Carbonell, A. Deltuva, A.C. Fonseca, R. Lazauskas, Prog. Part. Nucl. Phys. 74, 55 (2014).

