Photodisintegration cross section of ⁹Be in the complex-scaled $\alpha + \alpha + n$ three-body model

Y. Kikuchi^{1,2}, M. Odsuren³, T. Myo^{4,5}, and K. Katō⁶

Department of Physics, Osaka City University¹, RIKEN Nishina Center²,

School of Engineering and Applied Sciences, National University of Mongolia³,

General Education, Faculty of Engineering, Osaka Institute of Technology⁴, 5

Research Center for Nuclear Physics (RCNP), Osaka University⁵,

Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University⁶

yuma@sci.osaka-cu.ac.jp¹

The photodisintegration cross section of ⁹Be shows different features in different energy regions. In low energy region up to $E_{\gamma} = 6$ MeV, the cross section is dominated by the electromagnetic transitions into the resonances of ⁹Be, and has been studied within the $\alpha + \alpha + n$ three-body model. On the other hand, the photodisintegration cross section in higher energy region shows a significant electric dipole strength, considered to be the transition into continuum states of $\alpha + \alpha + n$. It is interesting to discuss the mechanism of the photodisintegration of ⁹Be in low and higher energy regions on the same footing.

In the present work, we investigate the photodisintegration cross section of ⁹Be in low and higher energy regions by using the $\alpha + \alpha + n$ three-body model and the complex scaling method (CSM). The purposes of this work are following two: One is to investigate the excited states of ⁹Be in low energy region connected with the ground state through the electromagnetic transitions. The other is to investigate the mechanism of the dipole transition in ⁹Be in higher energy region. In the preset work, we employ the $\alpha + \alpha + n$ three-body model and calculate the photodisintegration cross section by applying the CSM to the $\alpha + \alpha + n$ three-body model.

In this contribution, we present our calculated photodisinegration cross section of ⁹Be. Also, we discuss the mechanism of the dipole transition. Using CSM, we decompose the dipole strength into the contributions of each decay channel, and show that the transitions into the ⁸Be(2⁺) + n continuum states dominate the dipole strength in higher energy region.

Reference

[1] YK, M. Odsuren, T. Myo, and K. Katō, Phys. Rev. C93, 054605 (2016).