Resonance or virtual state causing cross-section peaks just above thresholds

Kiyoshi Katō¹, Yuma Kikuchi^{2,3}, Myagmarjav Odsuren⁴, Takayuki Myo^{5,6}, Victor S. Vasilevsky⁷ and Nurgali Takibayev⁸

Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University¹,

Department of Physics, Osaka City University², RIKEN Nishina Center³,

School of Engineering and Applied Sciences, National University of Mongolia⁴,

General Education, Faculty of Engineering, Osaka Institute of Technology⁵, Research Center

for Nuclear Physics (RCNP), Osaka University⁶,

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine⁷

IETP, Department of Physics and Technology, al-Farabi Kazakh National University⁸

 $kato@nucl.sci.hokudai.ac.jp^1$

It is a long standing problem to determine its resonance energy and width of the first excited $1/2^+$ state of ⁹Be, which is closely connected with the problem to clarify whether it is a resonant state or not. From analyses of the scattering length for the ⁸Be+n scattering and the *R*-matrix calculations, it has been shown that the first excited $1/2^+$ state is a virtual state. On the other hand, recently the first excited $1/2^+$ state has been discussed as a three-body resonance of $\alpha + \alpha + n$.

Experimentally, the photodisintegration cross section of ${}^{9}\text{Be}+\gamma \rightarrow \alpha + \alpha + n$ in a low energy region has been measured to deduce a production rate of ${}^{9}\text{Be}$ from the astrophysical point of view. In the low energy region up to $E_{\gamma} = 6$ MeV, the enhancement of the cross section has been observed at several energy positions corresponding to excited states of ${}^{9}\text{Be}$, which are understood to be due to the electro-magnetic dipole transitions. In particular, the first excited $1/2^{+}$ state is observed as a sharp peak just above the ${}^{8}\text{Be}(0^{+})+$ n threshold.

Recently, we studied the $1/2^+$ state of ⁹Be and the photodisintegration cross section applying the complex scaling method to the $\alpha + \alpha + n$ three-cluster model [1]. The results indicate that there is no sharp resonant state corresponding to the distinct peak observed just above the ⁸Be+n threshold in the photodisintegration cross section of ⁹Be. However, the recent experimental data of the $1/2^+$ cross section can be well reproduced by the $\alpha + \alpha + n$ three-cluster model calculation. From these results, we discuss that the first excited $1/2^+$ state in ⁹Be is a ⁸Be+n virtual state but not resonant one.

Reference

[1] M. Odsuren, Y. Kikuchi, T. Myo, M. Aikawa, and K. Katō, Phys. Rev. C92, 014322 (2015).