3次元スピングラスの マルチカノニカル・ モンテカルロ計算

羽田野 直道^{A,B}
James E. Gubernatis^B

^A青山学院大学・物理 ^BLos Alamos National Laboratory

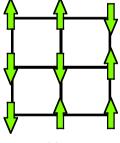
士J模型

$$H = -\sum_{\alpha=1,2} \sum_{\langle i,j \rangle} J_{ij} \, \sigma_i^{(\alpha)} \sigma_j^{(\alpha)}$$

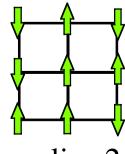
$$J_{ij}=\pm 1($$
固定)

オーバーラップ秩序変数

$$q = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^{(1)} \sigma_i^{(2)}$$



replica 1

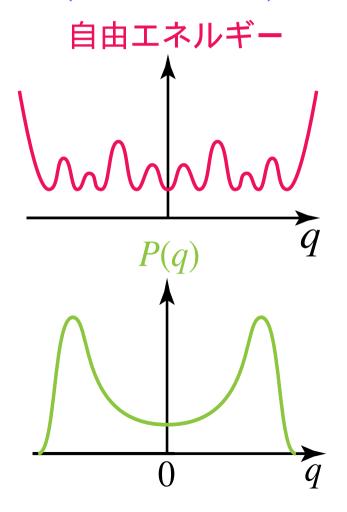


replica 2

低温相の性質

平均場描像

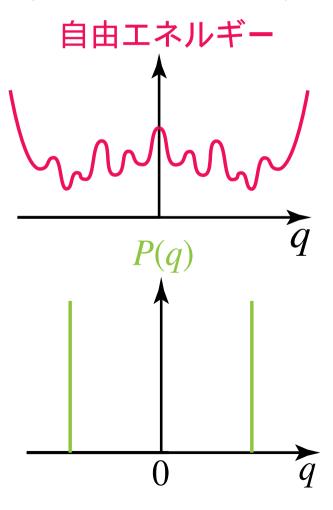
(Parisi et al.)



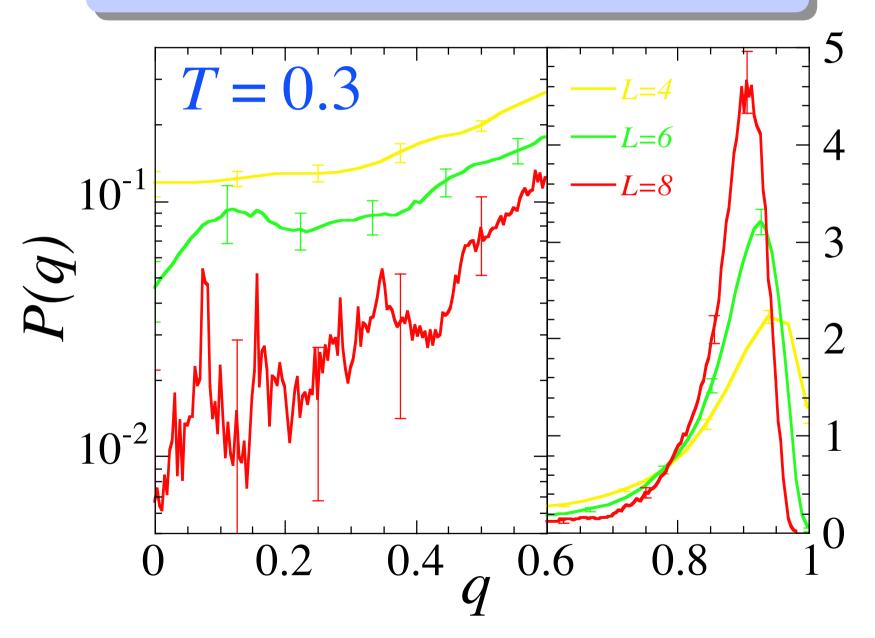


液滴描像

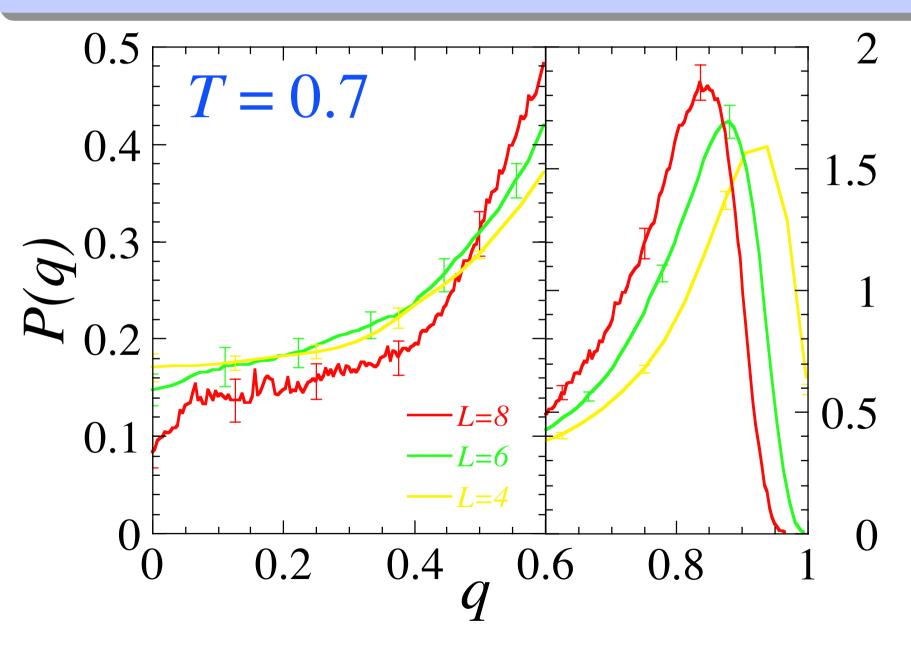
(Fisher & Huse)



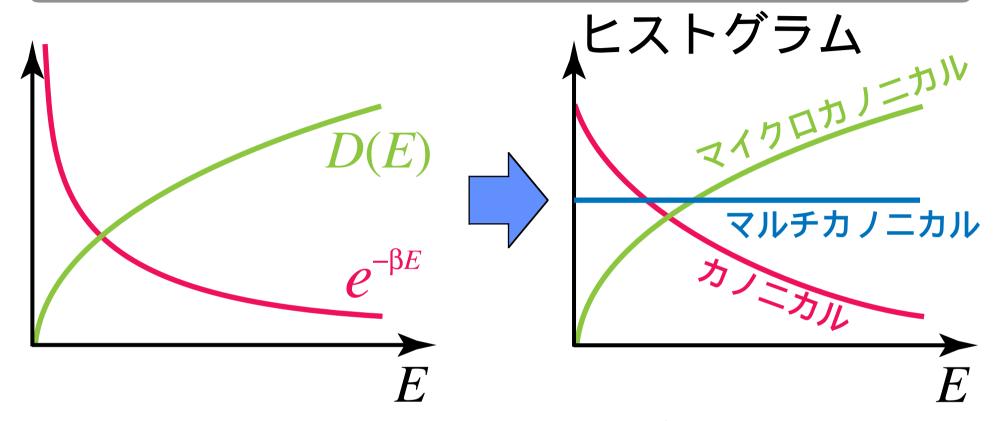
秩序変数の分布関数



秩序変数の分布関数(高温)



マルチカノニカル・モンテカルロ法



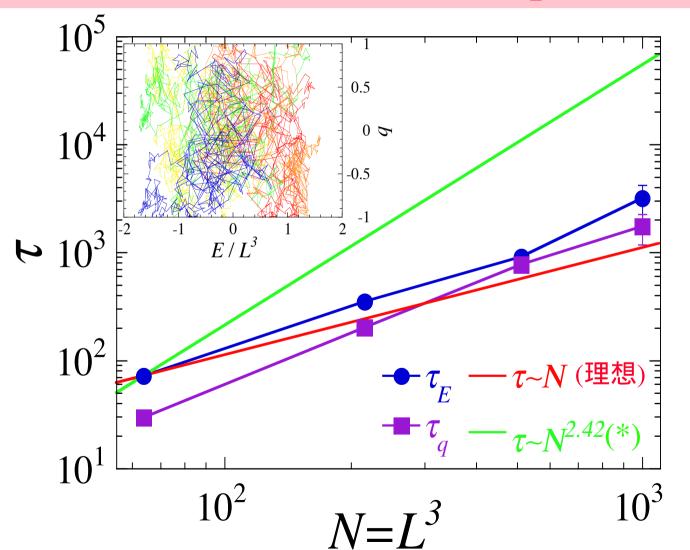
マイクロカノニカル:低エネルギー状態が少ない カノニカル:高エネルギー状態が少ないため、

自由エネルギーの極小に捕捉される

マルチカノニカル:どのエネルギーも一様に出現

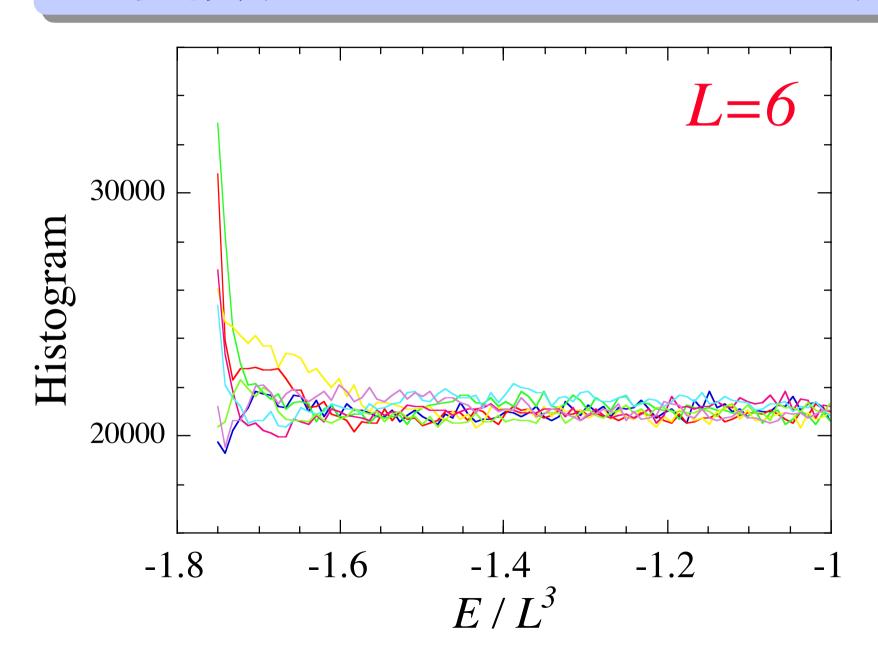
二変数マルチカノニカル法

二変数ヒストグラム h(E,q) を平らに

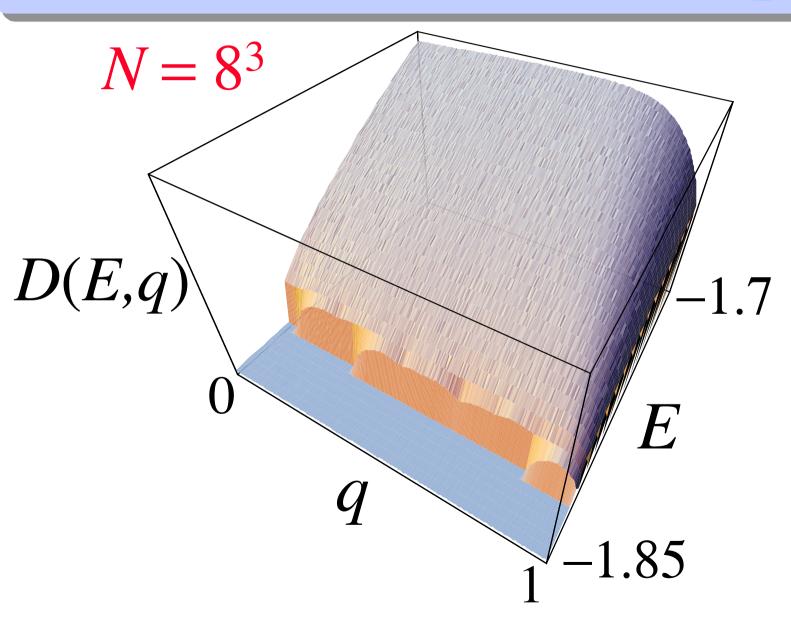


(*) Monovariate multicanonical Berg & Janke, PRL80, 4771 ('98)

一変数マルチカノニカル法



二変数状態密度 D(E,q)



まとめ

- 一変数マルチカノニカル・ モンテカルロ法
 - \rightarrow 時間相関長: $\tau \sim N$

・低温相の性質

 $\rightarrow P(q; T=0.3)$

液滴描像を支持

Aoyama+ 計画

並列コンピュータARK

Dual Pentium II 350MHz 69 台

Fast Ethernet 100Mbps

スイッチング・ハブ 24Gbps

RAID ディスク110GB

最高処理速度 約 10Gflops

http://www.phys.aoyama.ac.jp/~aoyama+