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The survival probability P (t) near two coalescing eigenstates at an exceptional point has
been reported in the literature as following P (t) ∼ t2e−Γt, in which Γ is the decay width of
the coalesced eigenvalue; this result has been confirmed in a microwave cavity experiment
[1]. However, the theoretical analysis used to obtain this result usually employs a heuristic
finite Hamiltonian that describes only the two modes coalescing in the vicinity of the
exceptional point. In this work, we emphasize that this ad hoc approach washes out
the details of the continuum and, in particular, ignores the existence of the continuum
threshold; as a result it does not correctly describe the time evolution near the exceptional
point on all time scales and completely fails in some cases.

To report our results, we divide the exceptional points in Hermitian open quantum
systems into two cases: at an EP2A two virtual bound states coalesce before forming a
resonance, anti-resonance pair with complex conjugate eigenvalues, while at an EP2B two
resonances coalesce before forming two different resonances [2]. We use two simple models
to study the EP2A and EP2B as representative cases. For the EP2A we point out that
the evolution is non-exponential on all timescales and that the influence of the continuum
threshold may be quite significant [3]. When the EP2A appears very near the threshold
we obtain the novel evolution P (t) ∼ 1 − C1

√
t + D1t on intermediate timescales, while

further away the parabolic decay (Zeno dynamics) on short timescales is very prominent.
For the EP2B, which is the case studied in the microwave cavity experiment, we find the
survival probability evolves as P (t) ∼ (1−C2t+D2t

2)e−Γt on intermediate timescales. In
either case, an inverse power law decay controls the system dynamics on long time scales.
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Stafford, Phys. Rev. E 75, 027201 (2007).
[2] S. Garmon, M. Gianfreda, and N. Hatano, Phys. Rev. A 92, 022125 (2015).
[3] S. Garmon, T. Petrosky, L. Simine, and D. Segal, Fortschr. Phys. 61, 261 (2013).
[4] N. Hatano and G. Ordonez, J. Math. Phys. 55, 122106 (2014).

1


