YITP workshop, Resonances and non-Hermitian systems in quantum mechanics, Des.11-13, 2012

Scattering calculations of d+d, t+p and ³He+n with realistic nuclear interactions

Niigata University S. Aoyama

Main part of this talk

S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont and D. Baye, FBS52, (2012)97.

Central and Tensor Force in Lattice QCD

Dominant reactions in primordial nucleosynthesis

Normally, the primordial nucleosybtesis is explained by the reaction chain calculation which is based on a simple nuclear model or a mere extrapolation from experiments.

2: $p(n, \gamma)d$ 3: $d(p, \gamma)^3$ He 4: $d(d, n)^{3}$ He 5: $d(d, p)^{3}$ H

1: $n \leftrightarrow p$

- 6: ${}^{3}\mathrm{H}(d,n){}^{4}\mathrm{He}$
- 7: ${}^{3}\mathrm{H}({}^{4}\mathrm{He},\gamma){}^{3}\mathrm{H}$
- 8: ${}^{3}\text{He}(n,p){}^{3}\text{H}$
- 9: ${}^{3}\text{He}(d, p){}^{4}\text{He}$
- 10: ${}^{3}\text{He}({}^{4}\text{He}, \gamma){}^{7}\text{Be}$
- 11: ${}^{7}\text{Li}(p, {}^{4}\text{He}){}^{4}\text{He}$
- 12: ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$

 $d(d,\gamma)^4$ He

Can we understand these reactions in *ab-initio* way? Is there some effects of tensor interaction in Big-Bang?

Transfer reaction

Tensor force accelerate the nuclear generation in Big-Bang. K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont and D. Baye, PRL107 (2011) 132502.

Radiative capture (MRM)

K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont and D. Baye, PRL107 (2011) 132502.

We can add a new evidence of D-wave components (tensor) of deutron and ⁴He to the text book in nuclear physics.

Hamiltonian for nuclear *ab-initio* calculation

Realistic Interaction: AV8' (+Coulomb+3NF)

 V_{ij} : Central+LS+Tensor+Coulomb

Pudliner, Pandharipande, Carlson, Pieper, Wiringa: PRC56(1997)1720

$$V_{ijk}$$
: Effective three nucleon force

Hiyama, Gibson, Kamimura, PRC 70(2003)031001

Effective Interaction: MN (+Coulomb) V_{ij} : Central+Coulomb

Thompson, LeMere, Tang, NPA(1977)286

$$V_{ijk}:=0$$

Microscopic R-matrix Method

D. Baye, P. -H.Heenen, M. Libert-Heinemann, NPA291(1977).

S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont and D. Baye, FBS52(2012)97.

How to connect w.f. at channel radius ?

D. Baye, P. -H.Heenen, M. Libert-Heinemann, NPA291(1977). S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont, D. Baye, FBS52(2012)97.

$$(H + \mathcal{L} - E)\Psi_{\text{int}}^{JM\pi} = \mathcal{L}\Psi_{\text{ext}}^{JM\pi} \qquad \text{S. Adyama, K. Aral, Y. Suzuki, P. Descouvement,} \\ FBS52(2012)97.$$

$$\mathcal{L} = \sum_{\alpha} \frac{\hbar^2}{2\mu_{\alpha}R} |\phi_{\alpha}^{JM\pi}\rangle \delta(\rho_{\alpha} - R) \left(\frac{\partial}{\partial\rho_{\alpha}} - \frac{b_{\alpha}}{\rho_{\alpha}}\right) \rho_{\alpha} \langle \phi_{\alpha}^{JM\pi}|$$
Bloch Operator open channel $b_{\alpha} = 0$
closed channel $b_{\alpha} = 2k_{\alpha}RW'_{-\eta_{\alpha},\ell+1/2}(2k_{\alpha}R)/W_{-\eta_{\alpha},\ell+1/2}(2k_{\alpha}R)$

$$\sum_{\alpha n} C_{\alpha'n',\alpha n} f_{\alpha n} = \langle \Phi_{\alpha'n'}^{JM\pi} | \mathcal{L} | \Psi_{\text{ext}}^{JM\pi} \rangle$$

$$C_{\alpha'n',\alpha n} = \langle \Phi_{\alpha'n'}^{JM\pi} | H + \mathcal{L} - E | \mathcal{A} \Phi_{\alpha n}^{JM\pi} \rangle_{\text{int}}$$

$$\Phi_{\alpha n}^{JM\pi} = u_{\alpha n}(\rho_{\alpha})\phi_{\alpha}^{JM\pi}$$

$$\mathcal{R}_{\alpha'\alpha} \equiv \frac{\hbar^2 R}{2} \left(\frac{k_{\alpha'}}{\mu_{\alpha'}\mu_{\alpha}k_{\alpha}}\right)^{\frac{1}{2}} \sum_{n'n} u_{\alpha'n'}(R)(C^{-1})_{\alpha'n',\alpha n}u_{\alpha n}(R)$$

$$\mathcal{Z}_{\alpha'\alpha} \equiv I_{\alpha}(k_{\alpha}R)\delta_{\alpha'\alpha} - \mathcal{R}_{\alpha'\alpha}k_{\alpha}aI_{\alpha}'(k_{\alpha}R)$$
Elastic scattering case $S_{\alpha\alpha}^{J\pi} = \eta_{\alpha}^{J\pi}e^{2i\delta_{\alpha}^{J\pi}}$

Correlated Gaussian function with triple global vectors for four nucleon system

Double global vector representation (DGVR)

Y. Suzuki, W. Horiuchi and W. Orabi, K. Arai, FBS42(2008)33

Matrix Elements of Physical Quantities Associated with Resonance States

$$<\widetilde{\Phi_{1}}(k_{1})|\hat{O}|\Phi_{2}(k_{2})>=\lim_{\alpha\to 0}\int \Phi_{1}^{*}(-k_{1}^{*},\ \vec{r}\)\hat{O}\Phi_{2}(k_{2},\ \vec{r}\)e^{-\alpha r^{2}}d\vec{r},$$
(2.1)

Norm =>Hokkyo, PTP33(1965)1116

Comlex expectation value =>Romo, NPA116(1968)618

Complex root mean square radius=>Gyarmati, Vertse, NPA 160(1971)523 Interpretation =>Berggren, Phys.Lett.B33(1970)547, B373(1996)1

Norm Density
$$N = \tilde{\chi}^* \chi$$

 $\frac{\partial}{\partial t} \int_R \tilde{\chi}^* \chi dr = -\left(\frac{\hbar}{2mi}\right) \left[\tilde{\chi}^* \left(\frac{\partial \chi}{\partial r}\right) - \left(\frac{\partial \tilde{\chi}}{\partial r}\right)^* \chi\right]_{r=R} = 0$
 $(\chi|\chi) \equiv \int \tilde{\chi}^*(r,t)\chi(r,t)dr = 1$

Complex Scaling is a useful method to easily define the norm density!

Probability Density
$$P = \chi^* \chi$$

The basis function for the sub-system is determined by SVM

		\square							23
potential	cluster	present			literature				
		N_k	E	$R^{\rm rms}$	P_D	E	$R^{\rm rms}$	P_D	
			(MeV)	(fm)	(%)	(MeV)	(fm)	(%)	
	$d(1^+)$	8	-2.18	1.79	5.9	-2.24	1.96	5.8	
AV8'	$t(\frac{1}{2}^{+})$	30	-8.22	1.69	8.4	-8.41	-	-	
(with TNF)	$h(\frac{1}{2}^{+})$	30	-7.55	1.71	8.3	-7.74	-	-	– Hiyama
	$^{4}\text{He}(0^{+})$	(2370)	-27.99	1.46	13.8	-28.44	-	14.1	
	$d(1^{+})$	4	-2.10	1.63	0	-2.20	1.95	0	-
MN	$t(\frac{1}{2}^{+})$	15	-8.38	1.70	0	-8.38	1.71	0	Uariuch
	$h(\frac{1}{2}^{+})$	15	-7.70	1.72	0	-7.71	1.74	0	
	$^{4}\text{He}(0^{+})$	(1140)	-29.94	1.41	0	-29.94	1.41	0	
present									

SVM (Stochastic Variational Method)

Y. Suzuki, K. Varga, Stochastic variational approach to quantum-mechanical few-body problems (Lecture notes in physics, Vol. 54). Springer, Berlin Heidelberg New York K. Varga, Y. Suzuki, Phys Rev C 52(1995).

Threshold positions in the present calculation

S. Aoyama, K. Arai, Y. Suzuki, P. Descouvemont, D. Baye, FBS52(2012)97

Included channels in the present calculation

	model	channel			
	2N+2N	Ι	$d(1^+)+d(1^+)$		
			$d(1^+)+d^*(1^+)$		
			$d^{*}(1^{+})+d^{*}(1^{+})$		
		Π	$\bar{d}(0^+) + \bar{d}(0^+)$		
			$\bar{d}(0^+) + d^*(0^+)$		
			$d^{*}(0^{+})+d^{*}(0^{+})$		
		III	$d^{*}(2^{+})+d^{*}(1^{+})$		
			$d^{*}(2^{+})+d^{*}(2^{+})$		
		IV	$d^{*}(3^{+})+d^{*}(1^{+})$		
FULL			$d^{*}(3^{+})+d^{*}(2^{+})$		
			$d^{*}(3^{+}) + d^{*}(3^{+})$		
		V	$2n(0^+)+2p(0^+)$		
			$2n(0^+)+2p^*(0^+)$		
			$2n^*(0^+)+2p(0^+)$		
			$2n^{*}(0^{+})+2p^{*}(0^{+})$		
	3N+N	1	$t(\frac{1}{2}^+) + p(\frac{1}{2}^+)$		
			$t^*(\frac{1}{2}^+) + p(\frac{1}{2}^+)$		
		2	$h(\frac{1}{2}^+) + n(\frac{1}{2}^+)$		
			$h^*(\frac{1}{2}^+) + n(\frac{1}{2}^+)$		

Thanks to the reduction of basis function by SVM for the sub-system. We can reduce the dimension of matrix elements very much! Dimensions of matrix elements for FULL in the LS-coupled case

0+ 6660 1+ 16680 2+ 22230 0- 4200 1- 11670 2- 12480

For 2+, it takes about 200 days with 1CPU(1Core). And we need about 20Gbyte memory for the MRM calculation.

All pseudo states (discretized continuum state) are employed in the MRM calculation.

${}^{1}S_{0}$ d+d elastic phase shift within d+d channel


```
<sup>1</sup>S<sub>0</sub> d+d elastic phase shift (0+)
```


For effective interaction, d+d scattering picture is good!

R.-Matrix analyses : Hofmann, Hale, PRC77(2008)044002.

Coupling between d+d channel and 3N+N channels

Tensor force makes the coupling of rearrangement strong

¹S₀ t+p elastic phase shift (0+)

For effective interaction, t+p scattering picture is good!

¹D₂ elastic phase shift (2+)

Phase shift with Realistic interaction is not different so much from effective interaction for ${}^{1}D_{2}$

³P₀ elastic phase shift (0-)

Energy levels for negative parity states

Effective interaction (MN) gives same phase shift for 0-.1-.2- ! W. Horiuchi, Y. Suzuki PRC78(2008)034305

Summary

By using the triple global vector representation method with MRM, we calculated the four nucleon scattering phase shifts with a realistic interaction (AV8'+3NF) and an effective interaction (MN).

The distortion of the deuteron cluster for ${}^{1}S_{0}$

due to the tensor interaction is very large.

For negative parity states, the energy splitting of ${}^{3}P_{J}$ is very large for the realistic interaction, but they are degenerating for the effective interaction.

In progress

Determining resonant pole position in the excited region of ⁴He with complex scaling is in progress. (We got much computational time of HPCI from Oct.)