Many-body resonances in He isotopes and those mirror nuclei

In collaboration with Kiyoshi KATO 加藤幾芳 Hokkaido Univ. Yuma KIKUCHI 菊地右馬 RCNP, Osaka Univ.

Resonances and non-Hermitian systems in quantum mechanics@ YITP, 2012.12

Outline

- Structure of Light Unstable Nuclei
 - He isotopes (neutron-rich)
 - Mirror nuclei (proton-rich)
- Cluster Orbital Shell Model (COSM)
 - Core nuclei + valence protons / neutrons
- Complex Scaling Method (CSM)
 - Many-body resonances & continuum states
 - Give continuum level density, Green's function
 - Strength functions

Mirror symmetry between proton-rich & neuron-rich (with Coulomb)

Neutron-rich He isotopes : experiment

Method

- Cluster Orbital Shell Model (COSM)
 - Open channel effect is treated.
 ⁸He : ⁷He+n, ⁶He+n+n, ⁵He+n+n+n, ...
- Complex Scaling Method

 $\mathbf{r} \rightarrow \mathbf{r} e^{\mathrm{i}\theta}, \mathbf{k} \rightarrow \mathbf{k} e^{-\mathrm{i}\theta}$

- Resonances with correct boundary condition as <u>Gamow states</u> $E=E_r-iG/2$
- Give continuum level density (resonance+continuum)
- Beyond drip-lines, a-cluster states

A. T. Kruppa, R. G. Lovas, B. Gyarmati, PRC37(1988) 383 (⁸Be as 2a)
S. Aoyama, TM, K. Kato, K. Ikeda, PTP116(2006) 1 (CSM review)
C. Kurokawa, K. Kato, PRC71 (2005) 021301 (¹²C as 3a)

Cluster Orbital Shell Model (*n*-rich)

• System is obtained based on RGM equation

 $H(^{A}\text{He}) = H(^{4}\text{He}) + H_{\text{rel}}(N_{V}n) \quad \Phi(^{A}\text{He}) = A \left\{ \psi(^{4}\text{He}) \cdot \sum_{i=1}^{N} C_{i} \cdot \chi_{i}(N_{V}n) \right\}$ valence neutron number i : configuration

 $\psi(^{4}\text{He})$: $(0s)^{4}$ No explicit tensor correlation $\chi_{i}(N_{V}n) = A \{\varphi_{i1}\varphi_{i2}\varphi_{i3} L\} \qquad \varphi_{i} (L \boxtimes 2) \begin{array}{c} \text{Relative motion with} \\ \text{Gaussian expansion} \end{array}$

• Orthogonarity Condition Model (OCM) is applied.

$$\sum_{i=1}^{N} \left\langle \chi_{j} \left| \sum_{k}^{N_{v}} \left(T_{k} + V_{k}^{cn} \right) + \sum_{k < l}^{N_{v}} \left(V_{kl}^{nn} + \frac{\bigvee_{j}^{V} \bigvee_{j}^{V}}{A_{c}m} \right) \chi_{i} \right\rangle C_{i} = \left(E - E_{4\text{He}} \right) C_{j}$$

 $\langle \varphi_i | \phi_{\rm PF} \rangle = 0$ Remove Pauli Forbidden states (PF)

Y. Suzuki, K. Ikeda, PRC38(1988)410, H. Masui, K. Kato, K. Ikeda, PRC73(2006)034318

Complex Scaling for 2-body case $U(\theta) : \mathbf{r} \rightarrow \mathbf{r} \cdot \exp(i\theta), \quad \mathbf{k} \rightarrow \mathbf{k} \cdot \exp(-i\theta), \quad \theta \in \mathbb{C}$

J.Aguilar and J.M.Combes, Commun. Math. Phys.,22('71)269. E.Balslev and J.M.Combes, Commun. Math. Phys.,22('71)280. B.G.Giraud, K.Kato, A.Ohnishi J. Phys. A **37** ('04)11575

Complex Scaling for 3-body case $U(\theta) : \mathbf{r} \rightarrow \mathbf{r} \cdot \exp(i\theta), \quad \mathbf{k} \rightarrow \mathbf{k} \cdot \exp(-i\theta), \quad \theta \in \mathbb{Q}$

Halo nuclei : "Core nuclei+n+n" with Borromean condition ⁶He=⁴He+n+n, ¹¹Li=⁹Li+n+n, ¹⁴Be=¹²Be+n+n, ...

Schrödinger Eq. and Wave Func. in CSM

 $U(\theta)HU^{-1}(\theta) = H_{\theta} = T_{\theta} + V_{\theta} \qquad T_{\theta} = e^{-2i\theta} \cdot T, \quad V = V(\mathbf{r}e^{i\theta})$ $H\Phi = E\Phi \quad \to \quad H_{\theta}\Phi_{\theta} = E\Phi_{\theta}, \qquad \Phi_{\theta}(\mathbf{r}) = e^{i3/2\cdot\theta} \cdot \Phi(\mathbf{r}e^{i\theta})$

Asymptotic Condition in CSM $(r \rightarrow \infty)$

	No Scaling	Scaling	
Bound			damping condition
Resonance			
Continuum	e ^{ik•}		

Spectrum of ⁶He with ⁴He+n+n model

Hamiltonian

- V_{a-n}: microscopic KKNN potential
 - s,p,d,f-waves of a-n scattering
- V_{nn}: Minnesota potential with slightly strengthened
 - (+ Coulomb for *p*-rich nuclei)

Fit energy of ⁶He(0⁺)

A. Csoto, PRC48(1993)165.
K. Arai, Y. Suzuki and R.G. Lovas, PRC59(1999)1432.
TM, S. Aoyama, K. Kato, K. Ikeda, PRC63(2001)054313.
TM et al. PTP113(2005)763.

He isotopes : Expt vs. Complex Scaling

TM, K.Kato, K.Ikeda PRC76('07)054309 TM, R.Ando, K.Kato PRC80('09)014315 TM, R.Ando, K.Kato, PLB691('10)150 ? TUNL Nuclear Data Evaluation

Energy of ⁸He with complex scaling

Eigenvalue problem with 32,000 dim. Full diagonalization of complex matrix @ SX8R of NEC

TM, Kikuchi, Kato PRC84 (2011) 064306 PRC85 (2012) 034338

Expt: Charity et al. PRC84(2011)014320

S-factor of ⁶He-n component in ⁷He

Mirror Symmetry in resonances

TM, Kikuchi, Kato PRC84 (2011) 064306, 85 (2012) 034338

Thresholds of [A=6]+N system

<u>Mirror symmetry breaking</u> due to the channel coupling effect caused by Coulomb force

Continuum Level Density (CLD) in CSM

$$\Delta E = -\frac{1}{\pi} \operatorname{Im} \left[\operatorname{Tr} \left[G(E) - G_0(E) \right] \right], \qquad G_{(0)} = \frac{1}{E - H_{(0)}},$$
$$\Delta E = \frac{1}{2i\pi} \operatorname{Tr} \left[S(E)^{\dagger} \frac{d}{dE} S(E) \right] \rightarrow \frac{1}{\pi} \frac{d\delta}{dE} \quad \text{(single channel case)}$$

S. Shlomo, NPA539('92)17

K. Arai and A. Kruppa, PRC60('99)064315

R. Suzuki, T. Myo and K. Kato, PTP113('05)1273.

a+*n* scattering with complex scaling using discretized continuum states

30 Gaussian basis functions

Strength function S(E) in CSM

T. Berggren, NPA109('68)265, TM, A. Ohnishi and K. Kato, PTP99('98)801

Summary

Light Unstable Nuclei

- He isotopes (*n*-rich) & Mirror nuclei (*p*-rich)
- Mirror symmetry & Channel coupling (threshold)
- Complex Scaling
 - Many-body resonance spectroscopy
 - Continuum level density (resonance+continuum)
 - Strength functions using Green's function
 - Coulomb breakups, Nucleon removal, ...
 - Application to reaction theory (CDCC, LS eq.,...)