Compositeness of hadrons in field theoretical approach

Tetsuo Hyodo

Tokyo Institute of Technology

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

Excited hadrons

Fundamental fields in QCD: quarks and gluons

- Asymptotic fields: hadrons (color singlet composites)
 - mesons ~ qq, baryons ~ qqq

Excitation of hadrons (above two-hadron threshold):

- Internal quark dynamics
- Inter-hadron dynamics (resonances)
- Structure of excited hadrons?

Introduction

Structure of hadron resonances

Example) baryon excited state

What are 3q state, 5q state, MB state, ...?

Clear (model-independent) definition of the structure?

Definition of hadron structure

Number of quarks and antiquarks (≠ quark number) ?

- $|\Lambda(1405)\rangle = \bigcirc + \bigcirc + \cdots$
- may not be a good classification scheme.
- **Number of hadrons**

Hadrons are asymptotic states --> different kinematical structure

C. Hanhart, Eur. Phys. J. A 35, 271 (2008)

Compositeness of hadrons?

Contents

Introduction Definition of compositeness S. Weinberg, Phys. Rev. 137, B672 (1965)

D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

Application to hadron models

Compositeness of bound states

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)

Generalization to resonances

T. Uchino, T. Hyodo, D. Jido, M. Oka, work in progress

Weinberg's compositeness and deuteron

Z: probability of finding deuteron in a bare elementary state

S. Weinberg, Phys. Rev. 137, B672 (1965)

$$|\text{deuteron}\rangle = \bigvee_{Z=0}^{N} \text{ or } \bigvee_{Z=1}^{Q} \text{ KN model space} \leftarrow \text{elementary particle}$$

model independent relation for weakly bound state

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right]R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right]R + \mathcal{O}(m_\pi^{-1})$$

a_s: scattering length r_e: effective range <-- Experiments R: deuteron radius (binding energy)

 $a_s = +5.41 \text{ [fm]}, \quad r_e = +1.75 \text{ [fm]}, \quad R \equiv (2\mu B)^{-1/2} = 4.31 \text{ [fm]}$

 $\Rightarrow Z \lesssim 0.2$ --> deuteron is almost composite!

Definition of the compositeness 1-Z

Hamiltonian of two-body system: free + interaction V

 $\mathcal{H} = \mathcal{H}_0 + V$

Complete set for free Hamiltonian: bare $|B_0 > +$ continuum

$$1 = |B_0\rangle\langle B_0| + \int dm{k}|\,m{k}\,
angle\langlem{k}|$$

$$\mathcal{H}_0 | B_0 \rangle = E_0 | B_0 \rangle, \quad \mathcal{H}_0 | \mathbf{k} \rangle = E(\mathbf{k}) | \mathbf{k} \rangle$$

Physical bound state |B> : eigenstate of full Hamiltonian

 $(\mathcal{H}_0 + V) | B \rangle = -B | B \rangle$

B: binding energy

Define Z as the overlap of B and B₀ : probability of finding the physical bound state in the bare state |B>

 $Z \equiv |\langle B_0 | B \rangle|^2$

1 - Z : Compositeness of the bound state

Model-independent but approximated method

With the Schrödinger equation, we obtain

$$1 - Z = \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \left\langle \mathbf{k} | V | B \rangle : B = \mathbf{k} \left\langle \mathbf{k} | V | B \rangle \right\rangle \left\langle \mathbf{k} | V | B \rangle \right\rangle$$

 $= 4\pi\sqrt{2\mu^3} \int_0^\infty dE \frac{\sqrt{E}|G_W(E)|^2}{(E+B)^2} \qquad \langle \mathbf{k} | V | B \rangle \equiv G_W[E(\mathbf{k})] \quad \text{for s-wave}$

- **Approximation:** For small binding energy B <<1, the vertex $G_W(E)$ can be regarded as a constant: $G_W(E) \sim g_W$
- Then the integration can be done analytically, leading to

 $1 - Z = 2\pi^2 \sqrt{2\mu^3} \frac{g_W^2}{\sqrt{B}}$

Compositeness <-- coupling gw and binding energy B

S. Weinberg, Phys. Rev. 137 B672 B678 (1965)

- Model-independent: no information of V
- Approximated: valid only for small B

Z in Yukawa model

Field theory with Yukawa coupling (ψ , ϕ ,B₀)

c.f. D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

Physical bound state B **at total energy** W=MB

Free (full) propagator of B_0 (B) field (positive energy part)

$$\Delta_0(W) = \frac{1}{W - M_{B_0}}, \quad \Delta(W) = \frac{Z}{W - M_E}$$

Z: field renormalization constant

Dyson equation: relation between full and free propagators

$$\Delta(W) = \Delta_0(W) + \Delta_0(W)g_0G(W)g_0\Delta(W)$$

Master formula of compositeness

Solution of Dyson equation and renormalization

$$\Delta(W) = \frac{1}{W - M_{B_0} - g_0^2 G(W)} \to \frac{1}{W - g_0^2 G(W; a)}$$

Renormalization condition, pole at $W=M_B$: $M_B = g_0^2 G(M_B; a)$

The field renormalization constant: residue of the propagator

$$Z = \lim_{W \to M_B} \frac{W - M_B}{W - g_0^2 G(W; a)} = \frac{1}{1 - g_0^2 G'(M_B)}$$

Physical coupling constant: residue of T-matrix

$$g^2 = g_0^2 Z$$

Compositeness in Yukawa theory

$$1 - Z = -g^2 G'(M_B)$$

Experiments, Lattice QCD, Model calculation, ...

Dynamical chiral model

Chiral coupled-channel approach: MB scattering, B*

- Interaction <-- chiral symmetry
- Amplitude <-- unitarity in coupled channels

A review: T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

Test: single-channel scattering of meson m and baryon M.

 $T(W) = \frac{1}{1 - V(W)G(W;a)} \bigvee^{V(W)}$ cutoff parameter

V: 4-point interaction, attractive

 $V(W) = \begin{cases} V^{(\text{const})} = Cm & \text{constant interaction} \\ V^{(WT)}(W) = C(W - M) & \text{WT interaction} \end{cases}$

Natural renormalization condition

Mass and coupling of the bound state in dynamical model

Mass: bound state condition (pole at W=MB)

 $1 - V(M_B)G(M_B; a) = 0$

Coupling constant: residue of the pole

$$g^{2} = \lim_{W \to M_{B}} (W - M_{B})T(W) = \begin{cases} -[G'(M_{B})]^{-1} \\ -\left[G'(M_{B}) + \frac{G(M_{B};a)}{M_{B} - M}\right]^{-1} \end{cases}$$

constant interaction WT interaction

Apply the master formula of compositeness

$$1 - Z = -g^2 G'(M_B)$$

Compositeness of bound states

Compositeness in Yukawa theory

$$1 - Z = -g^2 G'(M_B) = \begin{cases} 1 & \text{constant interaction} \\ \left[1 + \frac{G(M_B; a)}{(M_B - M)G'(M_B)}\right]^{-1} & \text{WT interaction} \end{cases}$$

- constant interaction --> purely composite bound state
- WT interaction --> mixture of composite and elementary
- Purely composite bound state for WT interaction:
 - $G'(M_B) = -\infty$ or $G(M_B; a) = 0$

 $M_B = M + m$ or $C \to -\infty$

zero energy bound state
 infinitely strong two-body attraction

Model space ≠ structure of generated resonances

Check of natural renormalization scheme

WT Natural renormalization condition

<-- to exclude elementary contribution from the loop function

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

 $G(W = M; a_{\text{natural}}) = 0$

1) a = anatural, vary B

2) B = 5 **MeV**, vary a

Application to resonances

Naive generalization: input pole position and residue $1 - Z = -g^2 G'(M_B)$

- no completeness: Z is not normalized
- g, M_B are complex: Z is complex

```
Number of degrees of freedom
```

```
Bound states: g, M<sub>B</sub> <--> g<sub>0</sub>, a
2 2
```

Resonances: Re g, Im g, Re z_R, Im z_R <--> g₀, a **4 2**

Definition with simple Yukawa model is insufficient?

Extension of the Yukawa model

Yukawa model:

 g_0 controls both $B_0\psi\phi$ coupling and $\psi\phi \rightarrow - \psi\phi$

Add contact interaction to control $\psi \phi \rightarrow \psi \phi$

wavefunction renormalization + vertex renormalization

 $g^2 = ZZ_3g_0^2$

Origin of the phase of the residue?

T. Uchino, T. Hyodo, D. Jido, M. Oka, work in progress

Summary

Summary 1

Compositeness of the bound state

Expressed in terms of physical quantities

Summary

Summary 2

Application to hadron models

Bound state by energy-indep. int.

--> purely composite state

Bound state by energy-dep. (chiral) int.
--> mixture of composite and elementary

Natural scheme corresponds to Z ~ 0
--> composite particle is generated

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)