

Many-body resonances in double quantum-dot systems

Akinori Nishino Kanagawa University

Collaborators

Naomichi Hatano (IIS, University of Tokyo)

Takashi Imamura (RCAST, University of Tokyo) Gonzalo Ordonez (Butler University)

Summary

We study double quantum-dot (DQD) systems with an interdot Coulomb interaction

- Exact many-electron scattering eigenstates

Many-body resonant states

Electron transport in open quantum-dot systems

Part I:

Experiments: Quantum dot (QD) ⁵

2D elec. systems are realized on heterostructures of semiconductors.

Quantum dot on GaAs/AlGaAs [D. Goldhaber-Gordon et al., Nature391(1998)156]

Kondo effect in QD [W. G. van der Wiel et al., Science289(2000)2105]

- ✓ Mesoscopic systems
- ✓ Finite bias voltage (The system is far from equilibrium.)
 ✓ Coulomb interactions for the electrons localized on QD

Open quantum systems

Closed systems Open systems

Bound states

Scattering states

Equilibrium states in the TD limit ? Nonequilibrium steady states between equilibrium states ?

Landauer formula

Interacting cases >> Many-electron scattering eigenstates

Open quantum-dot (QD) system

Interacting resonant-level model (IRLM) ("a minimal model" for QD systems with interactions)

- Spinless electrons
- Lead-dot coupling $m{t}$
- Single energy level ϵ_{d}
- Coulomb interaction U

$$egin{aligned} H =& \sum_{\ell=1,2} \Bigl(\sum_k \epsilon(k) ilde{c}_\ell^\dagger(k) ilde{c}_\ell(k) + rac{t}{\sqrt{2}} ig(c_\ell^\dagger(0) d + d^\dagger c_\ell(0)ig) \Bigr) \ &+ \epsilon_{\mathbf{d}} d^\dagger d + oldsymbol{U} \sum_{\ell=1,2} c_\ell^\dagger(0) c_\ell(0) d^\dagger d \quad \Bigl(ilde{c}_\ell(k) = \int \!\!dx \, \mathrm{e}^{-\mathrm{i}kx} c_\ell(x) \Bigr) \end{aligned}$$

Calculation of current in IRLM

- □ Bethe ansatz approach
 - [P. Mehta & N. Andrei, PRL96(2006)216802]
- □ Numerical renormalization group (NRG)
 - [L. Borda, K. Vladar & A. Zawadowski, PRB75(2007)125107]
- Nonequilibrium Greens function (NEGF) approach
 [B. Doyon, PRL99(2007)076806]
 [A. Golub, PRB76(2007)193307]
- □ Time-dependent DMRG (TDDMRG)
 - [E. Boulat, H. Saleur & P. Schmitteckert, PRL101(2008)140601]
- Extension of Landauer formula with exact scattering eigenstates
 - [A.N., T. Imamura & N. Hatano, PRL102(2009)146803]
- Functional RG (FRG) & Real time RG in frequency space
 [C. Karrasch et al., EPL90(2010)30003]

Universal electric current

[A.N., T. Imamura & N. Hatano, PRB86(2011)035306] For the IRLM with linearized dispersion relations $\epsilon(k) = k$,

Negative differential conductance appears for U > 0!

Calculation of current in IRLM

- □ Bethe ansatz approach
 - [P. Mehta & N. Andrei, PRL96(2006)216802]
- □ Numerical renormalization group (NRG)
 - [L. Borda, K. Vladar & A. Zawadowski, PRB75(2007)125107]
- Nonequilibrium Greens function (NEGF) approach
 [B. Doyon, PRL99(2007)076806]
 [A. Colub. DBP76(2007)102207]
 - [A. Golub, PRB**76**(2007)193307]
- Negative differential conductance for U > 0
- □ Time-dependent DMRG (TDDMRG)
 - [E. Boulat, H. Saleur & P. Schmitteckert, PRL101(2008)140601]
- Extension of Landauer formula with exact scattering eigenstates
- [A.N., T. Imamura & N. Hatano, PRL102(2009)146803]
- Functional RG (FRG) & Real time RG in frequency space [C. Karrasch et al., EPL90(2010)30003]

Summary of Part I and comments

- We need to consider the effect of the Coulomb interaction for the open QD systems.
- Many-electron scattering states play important roles to study the electron transport in the systems.
- The effect of the Coulomb interaction appear in physical quantities through many-body bound states.
- □ We apply the approach to other QD systems.

Part II: Many-body resonances in double quantum-dot systems

Double quantum-dot (DQD) systems

- Spinless electrons
- Linear dispersion relation $\epsilon(k) = k$
- Lead-dot coupling $t_{\ell\alpha}$ $(\ell, \alpha = 1, 2)$ Dot-dot coupling t'
- Single energy level $\epsilon_{\mathrm{d}\alpha}$
- Interdot Coulomb interaction $oldsymbol{U}$

$$\begin{split} H = &\sum_{\ell=1,2} \left(\int dx \, c_{\ell}^{\dagger}(x) \frac{1}{\mathrm{i}} \frac{d}{dx} c_{\ell}(x) + \sum_{\alpha=1,2} \left(t_{\ell\alpha} c_{\ell}^{\dagger}(0) d_{\alpha} + t_{\ell\alpha}^{*} d_{\alpha}^{\dagger} c_{\ell}(0) \right) \right) \\ &+ t' d_{1}^{\dagger} d_{2} + t'^{*} d_{2}^{\dagger} d_{1} + \sum_{\alpha=1,2} \frac{\epsilon_{\mathrm{d}\alpha}}{n_{\mathrm{d}\alpha}} n_{\mathrm{d}\alpha} + U n_{\mathrm{d}1} n_{\mathrm{d}2} \qquad (n_{\mathrm{d}\alpha} = d_{\alpha}^{\dagger} d_{\alpha}) \end{split}$$

Relation to other DQD systems

 t_{11}

 t_{12}

 t_{21}

 t_{11}

Various DQD systems are reproduced at special values of parameters. cf. [Tanaka & Kawakami, PRB 72 (2005) 085304]

T-shaped: $t_{12} = t_{22} = 0$ Parallel: t' = 0 Serial: $t_{12} = t_{21} = 0$

 t_{21}

 t_{22}

[W. G. van der Wiel et al., Science**289**, 2015 (2000)]

 t_{11}

[H. Jeong et al., Science**293, 2221**(2001)]

 t_{22}

16 **One-electron scattering eigenstates** Eigenstates with plane-wave incident states $e_{1,k}$ **Transmitted** wave ϵ_{d1} **Reflected wave** $T_k e^{\mathrm{i}kx}$ $R_{k}e^{\mathrm{i}kx}$ t_{21} t_{11} x = 0x = 0 t_{12} t_{22} **Incident wave** e^{ikx} $ar{\epsilon_{ m d2}}$ $e_{2,k}$ $e_{\alpha,k} = \frac{1}{\sqrt{2\pi}} \frac{(k - \epsilon_{\mathrm{d}\bar{\alpha}} + \mathrm{i}\Gamma_{\bar{\alpha}\bar{\alpha}})t_{1\alpha} - (\mathrm{i}\Gamma_{\alpha\bar{\alpha}} - t')t_{1\bar{\alpha}}}{(k - \epsilon_{\mathrm{d}1} + \mathrm{i}\Gamma_{11})(k - \epsilon_{\mathrm{d}2} + \mathrm{i}\Gamma_{22}) - (\mathrm{i}\Gamma_{12} - t')(\mathrm{i}\Gamma_{21} - t')}$ $\mathbf{R}_{k} = 1 - \mathrm{i} \sum_{\alpha} t_{1\alpha} \sqrt{2\pi} e_{\alpha,k}, \quad \mathbf{T}_{k} = -\mathrm{i} \sum_{\alpha} t_{2\alpha} \sqrt{2\pi} e_{\alpha,k}, \quad (\bar{\alpha} = 3 - \alpha)$ $\Gamma_{\alpha\beta} = \frac{1}{2} \sum t_{\ell\alpha} t_{\ell\beta}$: level-width matrices

Resonances in one-electron scattering

Resonant poles \iff Poles of T_k in the k-complex plane \iff Poles of $e_{\alpha,k}$ in the k-complex plane

$$k = \overline{\epsilon}_{d} - i \overline{\Gamma} \mp \frac{1}{2} \sqrt{(\Delta \epsilon_{d} - i \Delta \Gamma)^{2} + 4(t' - \Gamma_{12})(t' - \Gamma_{21})}$$
$$= \zeta_{\pm} - i \eta_{\pm}$$

Scattering states & resonant states

Scattering eigenstates: plane-wave incident states

Resonant states: incident elec. is on DQD

cf. Properties of resonant states in QD systems [Hatano, Sasada, Nakamura & Petrosky, PTP119(2008)187]

Roles of resonant poles

Conductance at U=0

Roles of resonant poles

Exact two-electron scattering eigenstates

Eigenstates with two-electron plane-wave incident states

Two-body bound states & resonant poles

Two-electron transmitted wave

$$\begin{split} \langle 0 | c_2(x_2) c_2(x_1) | k_1, k_2 \rangle \\ = & T_{k_1} T_{k_2} \big(\mathrm{e}^{\mathrm{i}(k_1 x_1 + k_2 x_2)} - \mathrm{e}^{\mathrm{i}(k_2 x_1 + k_1 x_2)} \big) \\ + & \frac{\mathrm{i} U}{E - 2 \bar{\epsilon_d} - U + 2 \mathrm{i} \bar{\Gamma}} \sum_{s = \pm} Z^s_{k_1 k_2} \mathrm{sgn}(x_1 - x_2) \mathrm{e}^{(\mathrm{i} E \bar{x} + \mathrm{i}(\frac{E}{2} - (\zeta_s - \mathrm{i} \eta_s)) | x_1 - x_2 |)} \end{split}$$

Resonant states appear as two-body bound states!

Two-body resonant states

One-body resonant states Two-body resonant states two incident elec. on DQD an incident elec. on DQD $e^{(i\zeta_{\pm}+\eta_{\pm})x}$ $\mathrm{e}^{(\mathrm{i}\zeta_{\pm}+\eta_{\pm})x}$ ${
m e}^{ar{\Gamma}ar{x}-\eta_{\pm}|x_{1}-x_{2}|} {
m e}^{ar{\Gamma}ar{x}-\eta_{\pm}|x_{1}-x_{2}|}$ \boldsymbol{x} \boldsymbol{x} ϵ_{d1} ϵ_{d1} x = 0x = 0x = 0x = 0 ϵ_{d2} ϵ_{d2}

No incoming electron!

$$ar{x} = rac{x_1 + x_2}{2}, \quad ar{\Gamma} = rac{\Gamma_{11} + \Gamma_{22}}{2}, \quad \Gamma_{lpha lpha} = rac{1}{2} \sum_\ell |t_{\ell lpha}|^2$$

The 2-body resonant state is the resonant state of 2-body bound states!

Summary

We studied the DQD systems with arbitrary lead-dot and dot-dot couplings and an interdot Coulomb interaction.

- Exact many-electron scattering eigenstates
- Relation between many-body bound states and many-body resonant poles
- One-body and two-body resonant states
- Future problems
- Calculation of electric current for the DQD systems
- How can we observe many-body resonant states?