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What is the “Efimov effect’™?

- An effect in quantum few-body
Systems predicted by the Soviet
theoretical physist Vitaly Efimov.

He considered 2 partiCleS interaCting
with resonant forces.
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a>=>r,

« scattering length >> potential range
* an energy level at the threshold



If we put one more particle to this,
an infinite number of bound states will appear...

... even if its subsystems don't bind!



These are “Efimov states” and
pPOssess a universal character --- don't
depend on the form of the potential.
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Efimov’s paper in 1970

Volume 33B, number 8 PHYSICS LETTERS 21 December 1970

ENERGY LEVELS ARISING FROM RESONANT TWO-BODY FORCES
IN A THREE-BODY SYSTEM

V. EFIMOV
A.F.Ioffe Physico-Technical Institute, Leningyrad, USSR

Received 20 October 1970

Resonant two-bodv forces are shown to give rise to a series of levels in three-particie syvstems. The
number of such levels may be very large. Possibility of the existence of such levels in systems ol three
a-particles (*“C nucleus) and three nucleons (3H) is discussed.




3 particles interacting throi}Jgh a potential gV(r)
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The level spectrum of three neutral spinless
particles. The scale is not indicative.



Physical cause of the Efimov effect

The hyperradius: R o T
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R describes the SIZE of the 3-particle triangle,
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while the shape is measured 2 hyperangles (0,9).

The effective potential
curve varies like:

1.25. ..
2mR2

Dipole potential

= Ene_%/so, sg = 1.00624. . . (universal constant)
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Unfortunately, in nuclear systems there’s the
Coulomb force —e?/r, and the Efimov effect
has not been observed so far...



Kraemer et al.’'s experiment in 2005

nature

LETTERS

Vol 440|16 March 2006|doi:10.1038/nature04626

Evidence for Efimov quantum states in an ultracold
gas of caesium atoms

T. Kraemer', M. Mark', P. Waldburger’, J. G. Danzl', C. Chin"?, B. Engeser’, A. D. Lange', K. Pilch!, A. Jaakkola’,
H.-C. Nagerl' & R. Grimm"?

- Evidence for Efimov states observed in an ultracold gas of
Cs atoms, where magnetic field induced Feshbach
resonances are used to control the scattering length a.

- “Efimov resonaces” were observed in the three-body
recombination rate as functions of a.



Three-body recombination
X+ X+ X = Xo+ X+ By
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- Important loss mechanism for trapped ultracold atoms.

- Three-body recombination is enhanced when 3 atoms
couple with an Efimov trimer for negative scattering
lengths.

- For positive scattering lengths, minima should be detected
due to destructive interference.



Kraemer et al.’s experiment in 2005

Efimov resonance
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Energy spectrum vs scattering length

1/a<0 0 1/a>0

2nd Efimov
trimer

1st Efimov
trimer

Energy, E

Inverse scattering length, 1/a

Figure 1 | Efimov's scenario. Appearance of an infinite series of weakly
bound Efimov trimer states for resonant two-body interaction. The binding
energy is plotted as a function of the inverse two-body scattering length 1/a.
The shaded region indicates the scattering continuum for three atoms

(a < 0) and for an atom and a dimer (a > 0). The arrow marks the
intersection of the first Efimov trimer with the three-atom threshold. To
illustrate the series of Efimov states, we have artificially reduced the
universal scaling factor from 22.7 to 2. For comparison, the dashed line
indicates a tightly bound non-Efimov trimer*’, which does not interact with
the scattering continuum.



Efimov effect

There exist an infinite number of 3-body (3B) bound states
if the 2-body (2B) scattering length is much larger than the
range of the 2B interaction: a>>r,,.

This occurs even when there’s no bound state for the 2B
subsystems.

Theory formulated in nuclear physics in 1970, but

experimentally confirmed only in 2006 in an ultracold gas
of Cs.

Evidence of Efimov physics seen measuring the three-
body recombination rates.
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Extended energy spectrum

Dimer-dimer -I:ﬂu.i_liiﬂnj.

Four-body recombination
{a < 0) (i =0
b _db _3b
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Efimov effect in atomic and molecular physics

- Helium has long been considered to be a candidate for
seeing the Efimov effect.

- The “He dimer has a scattering length (=200a,) much
larger than the potential range (=10a,).

- Mostly, “He, is predicted to have an excited state
with Efimov character, but this state has not yet
been observed experimentally.

- Numerous theoretical investigations have been carried out
so far on the helium trimer “He; and its isotope “He,*He.

- These investigations have been extended to mixed
systems *He,H, He,H-, *He,Li, ..., “He,Cs or other rare
gas trimers Ne; and Ar.
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Hiyama & other’s extension to the “He tetramer

 The work has been extended to 4-body systems by
Lazauskas&Carbonell and Hiyama&Kamimura...

PHYSICAL REVIEW A 85, 022502 (2012)

Variational calculation of “He tetramer ground and excited states using a realistic pair potential

E. Hiyama"
RIKEN Nishina Center, RIKEN, Wako 351-0198, Japan

M. Kamimura' 4 4
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan and RIKEN Nishina Center, RIKEN, Wako 351-0198, Japan H e H e

(Received 27 November 2011; published 2 February 2012)

We calculated the “He trimer and tetramer ground and excited states with the LM2M2 potential using our
Gaussian expansion method for ab initio variational calculations of few-body systems. The method has been
extensively used for a variety of three-, four-, and five-body systems in nuclear physics and exotic atomic and
molecular physics. The trimer (tetramer) wave function is expanded in terms of symmetric three- (four-) body
Gaussian basis functions, ranging from very compact to very diffuse, without assumption of any pair correlation
function. The calculated results for the trimer ground and excited states are in excellent agreement with values
reported in the literature. The binding energies of the tetramer ground and excited states are obtained as 558.98
and 127.33 mK (0.93 mK below the trimer ground state), respectively. We found that precisely the same shape
of the short-range correlation (r;; < 4 A) in the dimer appears in the ground and excited states of the trimer
and tetramer. The overlap function between the trimer excited state and the dimer ground state and that between
the tetramer excited state and the trimer ground state are almost proportional to the dimer wave function in the
asymptotic region (up to ~1000 A). Also, the pair correlation functions of trimer and tetramer excited states are
almost proportional to the squared dimer wave function. We then propose a model which predicts the binding
energy of the first excited state of *Hey (N > 3) measured from the *Hey_; ground state to be nearly ﬁBz
where B, is the dimer binding energy.




Triatomic helium systems
4He “He

“He “He “He SHe

- Weakly bound systems: binding energy about 1mK=100neV.

- “He, has been a candidate for seeing “Efimov states”, since
“He, has a large scattering length a=200a,.

- Theoretical treatment simple since “He, has only 1 bound state
with 1=0.

- Experimentally, “He, (ground state) observed by Luo et al., and
Schéllkopf and Toennies, “He,; and “He, also observed.



Three-body recombination
He + He +~ He — Hes + He + £—0,1—0

C
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* We calculate the recombination rate up to 10mK.

* Relatively simple and an interesting benchmark.

| and my collaborators in U.S. are among the first
to carry out such calculations.




He-He systems: bound state properties

- Use the dimer potential —l *He®He W.F. |
developed by Jeziorska et 5 | / -
al. S 2 i

- We can also include Sm OJ —
retardation: change from £ f *He*He Energy Lev. -
1/r to 1/r’, for details see - |/He-He potential -
the quantum field theory AT 0o
book by Itzykson & Zuber! r(auw)

- “He*He: one bound state. E._=-4.95x10° a.u.=1.56mK

- 4He3He,3He3He: no bound E,.=-5.47x10° a.u.=-1.73mK

state



Elastic scattering cross section for “He+*He
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Numeriacal method:

Adiabatic hyperspherical method

- Use Whitten-Smith’s hyperspherical coordinates
- Consist of 1 hyperradius, 5 hyperangles
- Simplify imposing the permutation symmetry

- Adiabatic expansion method

- First calculate eigenfunctions and eigenvalues of the
fixed-hyperradius Hamiltonian

- Construct a set of coupled radial equations

- R-matrix method

- Extract the scattering S-matrix from the coupled radial
equations.



Whitten-Smith’s hyperspherical coordinates
(R7 Q) — (R7 97 907 a? 57 f)/)

- The hyperradius R
measures the SIZE of the molecular triagle.

- The hyperradius (8,0)
measure its SHAPE.

- The Euler angles (a,[3,y)
describes the orientation of the body-fixed
frame in space.




Schrodinger equation

[ 22 a2 A2 | 1542
_ﬁ o I N + Tﬁ
21 OR? 2 R?2

FV(R,0,9)| Y = EY

« N\?is the squared “grand angular momentum
operator”.

* |nteraction potential:
V(R,0,0) = v(riz2)+v(rez)tv(ra)t+w(riz, r23,731),

» Good quantum numbers:
J(total angular momentum), M(projection),and Il

(parity)



B
Adiabatic expansion method

* We first solve the R-fixed Schrodinger equation:
N2 + L2732
2uR?

+ V(R,0,p)| Pu(R;Q2) = Uy(R)PL(R,; 2).

to obtain U (R)(potential curves) & ® (R;Q)(channel functions)

* The total wave function is expanded as
Ymax
YR, = F(R)D(R Q).
=0
We then obtain a set of coupled radial equations:

2 g2 2
[_ﬁd +U,(R)| F, E(R)—;L > [PW/(R)% + Qu(R)| Fup(R) = EF,u(R),

2udR? !
®ARD) ).

with the nonadiabatic couplings:

2

PR ) ), Qu(R) = <<¢V(R; Q) 8‘;2

P (R) = ((®u(R; ) \8%



Adiabatic
hyperspherical
potential curves

The lowest
potential curve:
*He?+43He

The higher
potential curves:
3B continuum
states.
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“He, and “He,*He bound state energies

- We have found 2 bound states for “He,(J=0%),
one bound state for 4He,*He (J"'=0*) and none for
J>0.

- The effect of retardation is found to be more
significant than the 3B term.

Bound state energies in mK

retardation yes yes no no
3-body term yes no yes no
“Hes
n=20 —130.86 —131.12 —-133.44 —-133.70
n=1 —2.5882 —-2.5900 —-2.7838 —-2.7856
*He3He

n=20 —-16.237 —-16.293 —-17.346 —17.405




Recombination rates for

*He+*He+*He—*He,+*He
24
10 % (la')llllllll 1 |||lll éolrrlllplilel{e | llllllll LA
250 — no 3-body term
10 §_ --- unretarded
2 10%F
=
j” 10'275 —
10—28§_
10’29_E
107

E (mK)

*Threshold law: at ultracold energies, K4 oc EAmin,

Amin = 0,3,2,3,4,...for JT=01T,17,27,37,4T, ...



Recombination rates for

‘He+*He+’He—*He,+°He
10-23§ 1 1 lllllll I 1 llll”l 1 I |ll|||l I 1 lllll?
: (b) — complete :
107 F — no 3-body term E
25F --- unretarded =
—~ 107 F —- unretarded, no 3-body termj
@E 10—26é _
N 107 i
et
10‘29'5
-30
10 3
10

E (mK)
*Threshold law: at ultracold collision energies, K3Jr| X EAmi“,
Amin =0,1,2,3, for J/'=0T1,17,27,3™.
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Gaussian Expansion Method (GEM)

In terms of Jacobi coordinates:

the Schrodinger equation is given by

2 2

— Vig — U = EV.
oz 0 21123 1

3
V33,1+ Z v(rij)

1=i<j

We express tgle wave function in the form

k - -
Vv = Z Z A'l(lk)lkn;lk {¢nklk (Tij)wn;{l; (Tij,k)] )

JM
k=1 Nk ,lk ,’I’L;{z 7l;€
with

b (7) = Npurle ™" Y (7), oy (F) = N vt e 2™ Yipns (7).




Efimov states in mixed 3-body and 4-body

systems
M

M M

mM
M=Fermion, m=Light atom

Efimov states are predicted to exist in (2+1) and

(3+1) systems for certain range of the mass ratio

M/m.



Summary

Presented a theoretical description of Efimov physics
and discussed applications in atomic and molecular

physics.

Studied triatomic helium systems “He; and “He,*He
using the most realistic helium interaction potential.
Ongoing and future work: search for Efimov states or
other novel quantum states in mixed triatomic and
tetraatomic systems using the Gaussian expansion
method.



Collision induced dissociation rates for
*He,+*He—*He+*He+*He

10-7 | llllllll I lllllll| I llllllll | llllllll LN

-8 — complete
9 f — no 3-body term
10 E ~~~ unretarded

E (mK)
*Threshold law: at ultracold collision energies, Dgn X E)‘mi”_l_z.
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Collision induced dissociation rates for

‘He,+3He—*He+*He+3He
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Whitten-Smith’s hyperspherical coordinates

(R,Q2) = (1,0, 0,2,8,7)

Hyperraq!us Hyperangles
p1=¢&1/d1o, o = d12&
dio _ (mz/p)(my + mo)

m1 + mo + ms3

mi dipp; M2

5 mM1moms3 .
= d
W = T o s+ p2/d12
R* = p1 + p3, R € [0,00) m3
[ (f1)a = Rcos(n/4 —0/2) cos(p/2 + ¢12/2) ,
(71)y = Rsin(n/4 — 0/2)sin(p/2 + p15/2)  Eulerangles
(ﬁl)z =0

N

(P2)a = —Rcos(n/4 —0/2)sin(p/2 + p12/2)
Eﬁzgy = Rsin(w/4 — 0/2) cos(p/2 + p12/2)
L p2)z =20

—1
w12 = 2tan” “(mo/p)
O<R<o00,0<0<7/2,0< <27
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Schrodinger equation

7-12 82 A2 + 14_57:L2
- V(R,0, = E
DR + 2R + V( )| P (U
« A\?is the squared “grand angular momentum operator”:
A2 2h%2 9 %,
= _ Sin 20—
21 R2 wR?2sin 2006 00
72 0 7.\
—> th— — COS 60—
uR2sin“ 6 Oy 2
2
n JZ J3 JZ

pR2(1 —sin @) + pnR2(1 4 sin 6) + 2uR?
*/\? has eigenvalues A(A+4)#’
* Interaction potential:
V(R,0,9) = v(ri2)+v(ra3)+v(ra1)+w(riz, r23,731),
* Good quantum numbers: J(total angular momentum),
M(projecztion),and ['(parity)



Adiabatic hyperspherical potential curves

* The lowest potential curve corresponds asymptotically to

*He,+*°He:
2 .
1 [ [ 1
Uo(R)——Qoo(R) — Ego+ 123os ¥ 1) oo b
2 2uR?

* The higher potential curves correspond to the 3B
continuum states:

A+ + P

! 21 R2

= By symmetry requirement, the atom-diatom channel
exists only for the parity-favored cases: N=(-1)".

= We have also calculated the potential curves for
Jh=1- 2% ...

U,(R) , for R — oo.
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Three-body recombination rates

 The event rate constant for 3B recombination

X+X+X—=X,+X: Vmax 32(2.J + 1)72
2 Kz3=Y K{"=31%" %} 7 1S3 12,
J,I J.Nv=1 H

 The event rate constant for 3B recombination
X+X+Y—-X,+Y or X+X+Y—-XY+X:
Ymax 32(2.J 4 1) 72

K3 = ZKJH =2!> > 14 SgL |2
J,Mr=1 H

« k=(2uE)"? is the hyperradlal wave number, S’ _ the
scattering matrix element.

* Collision induced dissociation rate:

Ymax (2J —I‘ 1)7'(' Jn 2
D3=3) D} 1Syol®
Jzn JZH ,,Zl p1,23k1,23

m1(mo + m3)
m1 + mo + ms3

123 = , k123 = [2u1 23(E—Eqo)]*/2.



