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What is the “Efimov effect”?	
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- An effect in quantum few-body 
systems predicted by the Soviet 

theoretical physist Vitaly Efimov.	


He considered 2 particles interacting 
with resonant forces. 

•  scattering length >> potential range 
•  an energy level at the threshold	


r0 a a >> r0
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If we put one more particle to this, 
an infinite number of bound states will appear…	


… even if its subsystems don’t bind!	
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These are “Efimov states” and  
possess a universal character --- don’t 
depend on the form of the potential.	




Efimov’s paper in 1970	
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Resonant  two-body fo rces  a re  shown to give r i s e  to a s e r i e s  of levels  in t h r e e - p a r t i c l e  s y s t e m s .  The 
n umb e r  of such levels  may be very large.  Poss ib i l i ty  of the exis tence  of such levels in s y s t e m s  of three  
a - p a r t i c l e s  (12C nucleus) and three  nucleons (3ti) is d i scussed .  

Th e  r a n g e  of n u c l e o n - n u c l e o n  f o r c e s  r o i s  
known  to be  c o n s i d e r a b l y  s m a l l e r  t han  the  
s c a t t e r i n g  l e n g t s  a. T h i s  f ac t  i s  a c o n s e q u e n c e  of 
the  r e s o n a n t  c h a r a c t e r  of n u c l e o n - n u c l e o n  f o r c e s .  
A p a r t  f r o m  t h i s ,  m a n y  o t h e r  f o r c e s  in  n u c l e a r  
p h y s i c s  a r e  r e s o n a n t .  The  a i m  of t h i s  l e t t e r  i s  to 
e x p o s e  an  i n t e r e s t i n g  e f f e c t  of r e s o n a n t  f o r c e s  in 
a t h r e e - b o d y  s y s t e m .  N a m e l y ,  f o r  a ' " r  o a 
s e r i e s  of bound  l e v e l s  a p p e a r s .  In a c e r t a i n  c a s e ,  
the  n u m b e r  of l e v e l s  m a y  b e c o m e  in f in i t e .  

Le t  us  e x p l i c i t l y  f o r m u l a t e  t h i s  r e s u l t  in  the  
s i m p l e s t  c a s e .  C o n s i d e r  t h r e e  s p i n l e s s  n e u t r a l  
p a r t i c l e s  of e q u a l  m a s s ,  i n t e r a c t i n g  t h r o u g h  a 
p o t e n t i a l  gV(r). At c e r t a i n  g = go two p a r t i c l e s  
ge t  bound  in t h e i r  f i r s t  s - s t a t e .  F o r  v a l u e s  of g 
c l o s e  to g o ,  the  t w o - p a r t i c l e  s c a t t e r i n g  l e n g t h  a 
i s  l a r g e ,  and  i t  i s  t h i s  r e g i o n  of g t h a t  we s h a l l  
con f ine  o u r s e l f  to. The  t h r e e - b o d y  c o n t i n u u m  
b o u n d a r y  i s  s h o w n  in the  f i g u r e  by c r o s s - h a t c h i n g .  
The  e f f e c t  we a r e  d r a w i n g  a t t e n t i o n  to i s  the  f o l -  
lowing .  As  g g r o w s ,  a p p r o a c h i n g  go ,  t h r e e - p a r -  

-~1 ~ 

Fig. 1. 

g<g. g>g, 

The level  spec t rum of three  neutra l  spinless  
par t i c les .  The scale is not indicative.  

t i c l e  bound  s t a t e s  e m e r g e  one a f t e r  the  o t h e r .  At 
g = go ( in f in i t e  s c a t t e r i n g  l eng th)  t h e i r  n u m b e r  i s  
i n f in i t e .  As  g g r o w s  on b e y o n d  go, l e v e l s  l e a v e  
in to  c o n t i n u u m  one a f t e r  the  o t h e r  ( s ee  fig.  1). 

The  n u m b e r  of l e v e l s  i s  g i v e n  by the  e q u a t i o n  

N ~ 1 l n ( j a l / r o )  (1) 
7T 

All  the  l e v e l s  a r e  of the  0 + kind;  c o r r e s p o n d i n g  
wave  funcLions  a r e  s y m m e t r i c ;  the  e n e r g i e s  
EN .~ 1/r o2 (we u s e ~ = m  = 1); the  r a n g e  of t h e s e  
bound  s t a t e s  i s  m u c h  l a r g e r  t han  r o. 

We wan t  to s t r e s s  tha t  t h i s  p i c t u r e  is  va l id  f o r  
a ,-, r o. T h r e e - b o d y  l e v e l s  a p p e a r i n g  at  a ~ r o 
o r  wi th  e n e r g i e s  E ~ 1 / r  2 a r e  not  c o n s i d e r e d .  

T h e  p h y s i c a l  c a u s e  of the  e f f ec t  i s  in the  
e m e r g e n c e  of e f f e c t i v e  a t t r a c t i v e  l o n g - r a n g e  
f o r c e s  of r a d i u s  a in  the  t h r e e - b o d y  s y s t e m .  We 
c a n  d e m o n s t r a t e  t ha t  they  a r e  of the  1/1~ 2 kind;  
R 2 = r 2 2  + r 2 3  + r 2 1 .  T h i s  f o r m  i s  v a l i d  f o r R  2: 
r o. Wi th  a ~ o0 the  n u m b e r  of l e v e l s  b e c o m e s  in -  
f i n i t e  a s  in the  c a s e  of two p a r t i c l e s  i n t e r a c t i n g  
wi th  a t t r a c t i v e  1 / r  2 p o t e n t i a l .  

Our  r e s u l t  m a y  be  c o n s i d e r e d  a s  a g e n e r a l i z a -  
t i on  of T h o m a s  t h e o r e m  [1]. A c c o r d i n g  to the  
l a t t e r ,  when  g--~ g o '  t h r e e  s p i n l e s s  p a r t i c l e s  do 
h a v e  a bound  s t a t e .  We a s s e r t  t ha t  in f ac t  t h e r e  
a r e  m a n y  s u c h  s t a t e s ,  and  f o r  g = go  t h e i r  n u m -  
b e r  i s  i n f in i t e .  

Note  t ha t  the  e f f e c t  d o e s  not  d e p e n d  on the  
f o r m  of t w o - b o d y  f o r c e s  - i t  i s  only  t h e i r  r e s o n a n t  
c h a r a c t e r  t h a t  we r e q u i r e .  

F r o m  eq. (1) one  f i n d s  t ha t  the  m a g n i t u d e  of the  
s c a t t e r i n g  l e n g t h  at  w h i c h  (N+ 1)s t  l e v e l  a p p e a r s  
i s  a p p r o x i m a t e l y  e~ t i m e s  ( ~ 2 2  t i m e s )  l a r g e r  
t h a n  t ha t  f o r  Nth  one.  T h u s ,  if we a s s u m e  tha t  
the  t h r e e - b o d y  g r o u n d  s t a t e  a p p e a r s  at  a ~ t o ,  
the  f i r s t  e x c i t e d  l e v e l  f r o m  t h i s  0 + - s e r i e s  wi l l  
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3 particles interacting through a potential gV(r)	
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3-body continuum	


1-body+2-body continuum	




Physical cause of the Efimov effect	
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Unfortunately, in nuclear systems there’s the 
Coulomb force –e2/r, and the Efimov effect 
has not been observed so far…	
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Kraemer et al.’s experiment in 2005	


• Evidence for Efimov states observed in an ultracold gas of 
Cs atoms, where magnetic field induced Feshbach 
resonances are used to control the scattering length a. 

•  “Efimov resonaces” were observed in the three-body 
recombination rate as functions of a.	
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Evidence for Efimov quantum states in an ultracold
gas of caesium atoms
T. Kraemer1, M. Mark1, P. Waldburger1, J. G. Danzl1, C. Chin1,2, B. Engeser1, A. D. Lange1, K. Pilch1, A. Jaakkola1,
H.-C. Nägerl1 & R. Grimm1,3

Systems of three interacting particles are notorious for their
complex physical behaviour. A landmark theoretical result in
few-body quantum physics is Efimov’s prediction1,2 of a universal
set of bound trimer states appearing for three identical bosons
with a resonant two-body interaction. Counterintuitively, these
states even exist in the absence of a corresponding two-body
bound state. Since the formulation of Efimov’s problem in the
context of nuclear physics 35 years ago, it has attracted great
interest in many areas of physics3–8. However, the observation of
Efimov quantum states has remained an elusive goal3,5. Here we
report the observation of an Efimov resonance in an ultracold gas
of caesium atoms. The resonance occurs in the range of large
negative two-body scattering lengths, arising from the coupling of
three free atoms to an Efimov trimer. Experimentally, we observe
its signature as a giant three-body recombination loss9,10 when the
strength of the two-body interaction is varied. We also detect a
minimum9,11,12 in the recombination loss for positive scattering
lengths, indicating destructive interference of decay pathways.
Our results confirm central theoretical predictions of Efimov
physics and represent a starting point with which to explore the
universal properties of resonantly interacting few-body systems7.
While Feshbach resonances13,14 have provided the key to control
quantum-mechanical interactions on the two-body level, Efimov
resonances connect ultracold matter15 to the world of few-body
quantum phenomena.
Efimov’s treatment of three identical bosons1,2 is closely linked to

the concept of universality7 in systems with a resonant two-body
interaction, where the s-wave scattering length a fully characterizes
the two-body physics. When jaj greatly exceeds the characteristic
range l of the two-body interaction potential, details of the short-
range interaction become irrelevant because of the long-range nature
of the wavefunction. Universality then leads to a generic behaviour in
three-body physics, reflected in the energy spectrum of weakly bound
Efimov trimer states. Up to now, in spite of their great fundamental
importance, these states could not be observed experimentally. An
observation in the realm of nuclear physics, as originally proposed by
Efimov, is hampered by the presence of the Coulomb interaction, and
only two-neutron halo systems with a spinless core are likely to feature
Efimov states3. In molecular physics, the helium trimer is predicted to
have an excited state with Efimov character4. The existence of this state
could not be confirmed5. A different approach to experimentally
studying the physics of Efimov states is based on the unique properties
of ultracold atomic quantum gases. Such systems15 provide an unpre-
cedented level of control, enabling the investigation of interacting
quantum systems. The ultralow collision energies allow us to explore
the zero-energy quantum limit. Moreover, two-body interactions can
be precisely tuned on the basis of Feshbach resonances13,14.

Efimov’s scenario1,2,7 can be illustrated by the energy spectrum of
the three-body system as a function of the inverse scattering length
1/a (Fig. 1). Let us first consider the well-known weakly bound
dimer state, which only exists for large positive a. In the resonance
regime, its binding energy is given by the universal expression
Eb ¼ 2"2/(ma2), where m is the atomic mass and " is Planck’s
constant divided by 2p. In Fig. 1, where the resonance limit
corresponds to 1/a ! 0, the dimer energy Eb is represented by a
parabola for a . 0. If we now add one more atomwith zero energy, a
natural continuum threshold for the bound three-body system
(hatched line in Fig. 1) is given by the three-atom threshold
(E ¼ 0) for negative a and by the dimer-atom threshold (Eb) for
positive a. Energy states below the continuum threshold are neces-
sarily three-body bound states. When 1/a approaches the resonance
from the negative-a side, a first Efimov trimer state appears in a range
where a weakly bound two-body state does not exist. When passing
through the resonance the state connects to the positive-a side, where
it finally intersects with the dimer-atom threshold. An infinite series
of such Efimov states is found when scattering lengths are increased
and binding energies are decreased in powers of universal scaling

LETTERS

Figure 1 | Efimov’s scenario. Appearance of an infinite series of weakly
bound Efimov trimer states for resonant two-body interaction. The binding
energy is plotted as a function of the inverse two-body scattering length 1/a.
The shaded region indicates the scattering continuum for three atoms
(a , 0) and for an atom and a dimer (a . 0). The arrow marks the
intersection of the first Efimov trimer with the three-atom threshold. To
illustrate the series of Efimov states, we have artificially reduced the
universal scaling factor from 22.7 to 2. For comparison, the dashed line
indicates a tightly bound non-Efimov trimer30, which does not interact with
the scattering continuum.

1Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A–6020 Innsbruck, Austria. 2James Franck Institute, Physics Department of the University of Chicago,
5640 S. Ellis Avenue Chicago, Illinois 60637, USA. 3Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Otto-Hittmair-Platz
1, A–6020 Innsbruck, Austria.
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Three-body recombination	


•  Important loss mechanism for trapped ultracold atoms. 
•  Three-body recombination is enhanced when 3 atoms 

couple with an Efimov trimer for negative scattering 
lengths. 

•  For positive scattering lengths, minima should be detected 
due to destructive interference. 
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X +X +X → X2 +X + Evl



 Kraemer et al.’s experiment in 2005	
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factors1,2,7 ep=s0 < 22:7 and e22p=s0 < 1/515 (where s0 ¼ 1.00624),
respectively.
Resonant scattering phenomena arise as a natural consequence of

Efimov’s scenario16. When an Efimov state intersects with the
continuum threshold at negative scattering lengths a, three free
atoms in the ultracold limit resonantly couple to a trimer. This
results in a triatomic Efimov resonance. At finite collision energies,
the phenomenon evolves into a triatomic continuum resonance17.
Another type of Efimov resonance18 is found at positive values of a
for collisions between a free atom and a dimer, when Efimov states
intersect with the dimer–atom threshold. While the latter type of
Efimov resonance corresponds to Feshbach resonances in collisions
between atoms and dimers18, triatomic Efimov resonances can be
interpreted as a three-body generalization to Feshbach resonances8.
Striking manifestations of Efimov physics have been predicted for

three-body recombination processes in ultracold gases with tunable
two-body interactions7,9–12,19. Three-body recombination leads to
losses from a trapped gas with a rate proportional to the third
power of the atomic number density. These losses are commonly
described20 in terms of a loss rate coefficient L3. In the resonant case
ðjaj.. lÞ, it is convenient to express this coefficient in the form
L3 ¼ 3CðaÞ"a4=m, separating a general a 4-scaling20,21 from an
additional dependence9,10,12 C(a). Efimov physics is reflected in a
logarithmically periodic behaviour C(22.7a) ¼ C(a), corresponding
to the scaling of the infinite series of weakly bound trimer states. For
negative scattering lengths, the resonant coupling of three atoms to
an Efimov state opens up fast decay channels into deeply bound
dimer states plus a free atom.
Triatomic Efimov resonances thus show up in giant recombination

loss. This striking phenomenon was first identified in numerical
solutions to the adiabatic hyperspherical approximation of the three-
body Schrödinger equation, assuming simple model potentials and
interpreted in terms of tunnelling through a potential barrier in the
three-body entrance channel9. A different theoretical approach7,10,
based on effective field theory, provides the analytic expression
CðaÞ ¼ 4;590sinhð2h2Þ=ðsin2½s0lnðjaj=a2Þ% þ sinh2h2Þ. The free pa-
rameter a2 for the resonance positions at a2, 22.7 a2,… depends on
the short-range part of the effective three-body interaction and is
thus not determined in the frame of the universal long-range theory.
As a second free parameter, the dimensionless quantity h2 describes
the unknown decay rate of Efimov states into deeply bound dimer
states plus a free atom, and thus characterizes the resonance width.
Our measurements are based on the magnetically tunable inter-

action properties of caesium atoms22 in the lowest internal state. By
applying fields between 0 and 150 G, we varied the s-wave scattering
length a in a range between22,500a0 to 1,600a0, where a0 is Bohr’s
radius. Accurate three-body loss measurements are facilitated by the
fact that inelastic two-body loss is energetically forbidden20. The
characteristic range of the two-body potential is given by the van der
Waals length23, which for caesium is l< 100a0. This leaves us with
enough room to study the universal regime requiring jaj.. l. For
negative a, a maximum value of 25 is attainable for jaj=l. Efimov’s
estimate 1

p ln ðjaj=lÞ for the number of weakly bound trimer states2

suggests the presence of one Efimov resonance in the accessible range
of negative scattering lengths.
Our experimental results (Fig. 2), obtained with optically trapped

thermal samples of caesium atoms in two different set-ups (see
Methods), indeed show a giant loss feature marking the expected
resonance. We present our data in terms of a recombination length9

r3 ¼ ½2m=ð
ffiffiffi
3

p
"ÞL3%1=4, which leads to the simple relation

r3=a¼ 1:36C1=4. Note that the general a4-scaling corresponds to a
linear behaviour in r3(a) (straight lines in Fig. 2). A fit of the analytic
theory7,10 to our experimental data taken for negative a at tempera-
tures T < 10 nK shows a remarkable agreement and determines the
resonance position to a2 ¼ 2850(20)a0 and the decay parameter to
h2 ¼ 0.06(l). The pronounced resonance behaviour with a small
value for the decay parameter (h2 ,, 1) demonstrates a sufficiently

long lifetime of Efimov trimers to allow their observation as distinct
quantum states.
All the results discussed so far are valid in the zero-energy collision

limit of sufficiently low temperatures. For ultralow but non-zero
temperatures the recombination length is unitarity limited19 to
5:2"ðmkBTÞ21=2. For T ¼ 10 nK this limit corresponds to about
60,000a0 and our sample is thus cold enough to justify the zero-
temperature limit. For 250 nK, however, unitarity limits the recom-
bination length to about 12,000a0. The Efimov resonance is still
visible at temperatures of 200 and 250 nK (filled triangles and open
diamonds in Fig. 2). The slight shift to lower values of jaj suggests the
evolution of the zero-energy Efimov resonance into a triatomic
continuum resonance17. In further experiments at higher tempera-
tures (data not shown) we observed the resonance to disappear above
,500 nK.
For positive scattering lengths, we found three-body losses to be

typically much weaker than for negative values. Our measurements
are consistent with a maximum recombination loss of C(a) < 70, or
equivalently r 3 < 3.9a, as predicted by different theories9,11,12

(straight line for a . 0 in Fig. 2). For a below 600a0 the measured
recombination length significantly drops below this upper limit
(inset in Fig. 2). The analytic expression from effective field theory7,12

for a . 0 reads CðaÞ ¼ 67:1e22hþ ðcos 2½s0 lnða=aþÞ%þ sinh2hþÞþ
16:8ð12 e24hþ Þ with the two free parameters aþ and hþ. The first
term describes recombination into the weakly bound dimer state
with an oscillatory behaviour that is due to an interference effect
between two different pathways9,11. The second term results from
decay into deeply bound states. We use this expression to fit our data
points with a. 5l< 500a0. This somewhat arbitrary condition is
introduced as a reasonable choice to satisfy a.. l for the validity of
the universal theory. The fit is quite insensitive to the value of
the decay parameter and yields hþ , 0.2. This result is consistent
with the theoretical assumption10 of the same value for the decay

Figure 2 | Observation of the Efimov resonance in measurements of
three-body recombination. The recombination length r3 / L1=43 is plotted
as a function of the scattering length a. The dots and the filled triangles show
the experimental data from set-up A for initial temperatures around 10 nK
and 200 nK, respectively. The open diamonds are from set-up B at
temperatures of 250 nK. The open squares are previous data20 at initial
temperatures between 250 and 450 nK. The solid curve represents the
analytic model from effective field theory7 with a2 ¼ 2850a0,
aþ ¼ 1,060a0, and h2 ¼ hþ ¼ 0.06. The straight lines result from setting
the sin2 and cos2-terms in the analytic theory to 1, which gives a lower
recombination limit for a , 0 and an upper limit for a . 0. The inset shows
an expanded view for small positive scattering lengths with a minimum for
C(a) / (r3/a)

4 near 210a0. The displayed error bars refer to statistical
uncertainties only. Uncertainties in the determination of the atomic number
densities may lead to additional calibration errors for r3 of up to 20%.
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parameter for positive and negative a, which in our case is
hþ ¼ h2 ¼ 0:06. For maximum C(a), we obtain aþ ¼ 1,060(70)a0.
According to theory7, the trimer state hits the dimer–atom threshold
at a¼ 1:1aþ < 1;170a0. The logarithmic periodicity of the Efimov
scenario suggests that adjacent loss minima occur at

ffiffiffiffiffiffiffiffiffi
22:7

p
£

1;060a0 < 5;000a0 and at 1;060a0=
ffiffiffiffiffiffiffiffiffi
22:7

p
< 220a0: While the for-

mer value is out of our accessible range, the latter value ða< 2lÞ is
too small to strictly justify universal behaviour in the resonance limit
ða.. lÞ. Nevertheless, our experimental results (inset to Fig. 2)
indicate a minimum at a < 210a0 and the analytic expression for
C(a) is found to describe our data quite well down to this minimum.
The occurrence of the interference minimum in three-body loss is

demonstrated more clearly in another set of experiments (Fig. 3),
where we simply measured the loss of atoms after a fixed storage time
in the optical trap. This minimum is located at a ¼ 210(10)a0 in
addition to a second minimum close to zero scattering length. We
point out that the existence of the minimum at 210a 0 is very
advantageous for efficient evaporative cooling of caesium as it
combines a large scattering cross-section with very low loss. In-
advertently, we have already benefited from this lossminimum for the
optimized production of a Bose–Einstein condensate of caesium24.
The comparison of our experimental results to available three–

body theory shows remarkable agreement, although the collision
physics of caesium is in general a very complicated multi-channel
scattering problem. We believe that the particular nature of the
broad, “open-channel dominated” Feshbach resonance25 that
underlies the tunability of our system plays a crucial role. For such
a resonance, the two-body scattering problem can be described in
terms of an effective single-channel model. It is very interesting to
investigate to what degree this great simplification of the two-body
physics extends to the three-body problem. Here we particularly
wonder how the regions of positive and negative scattering lengths
are connected in our experiment, where a is changed through a zero
crossing—that is, through a non-universal region, and not across the
universal resonance region.
In our case, there is no obvious connection between the Efimov

state that leads to the observed resonance for a , 0 and the states
responsible for the behaviour for a . 0. In our analysis of the
experimental data, we have thus independently fitted the data sets
for negative and positive a. Nevertheless, the resulting values for the
two independent fit parameters a2 and aþ do suggest a connection:
for the ratio aþ=ja2j our experiment yields 1.25(9), whereas uni-
versal theory7 predicts 0.96(3). These numbers are quite close in view
of the Efimov factor of 22.7. If it is not an accidental coincidence, we
speculate that the apparent relation between aþ and a2 may be a
further consequence of universality in a system where the resonant
two-body interaction can be modelled in terms of a single scattering

channel. In general, the multi-channel nature of three-body col-
lisions near Feshbach resonances26,27 leads to further interesting
questions, such as whether there may be resonance effects beyond
the Efimov scenario. Advances in three-body theory are necessary to
answer these questions and to provide a complete interpretation of
our present observations.
In the past few years, applications of Feshbach resonances in

ultracold gases and the resulting ability to create dimer states have
set the stage for many new developments in matter-wave quantum
physics. The observation of an Efimov resonance now confirms the
existence of weakly bound trimer states and opens up new ways6,8

of experimentally exploring the intriguing physics of few-body
quantum systems.

METHODS
Magnetic tuning of the two-body interaction. For Cs atoms in their ener-
getically lowest state (quantum numbers F ¼ 3 for the total spin andmF ¼ 3 for
its projection) the s-wave scattering length a varies strongly with the magnetic
field22. Between 0 and 150 G the dependence can in general be well approximated
by the fitting formula:

aðBÞ=a0 ¼ ð1;722þ 1:52B=GÞ 12
28:72

B=Gþ 11:74

" #

except for a few narrow Feshbach resonances22. The smooth variation of the
scattering length in the low-field region results from a broad Feshbach resonance
centred at about212G (equivalent toþ12G in the state F ¼ 3,mF ¼ 23). In all
our measurements we excluded the magnetic field regions where the narrow
Feshbach resonances influence the scattering behaviour through coupling to
other molecular potentials. The Efimov resonance is centred at 7.5 G.
Trap set-ups and preparation of the Cs gases. All measurements were
performed with trapped thermal samples of caesium atoms at temperatures T
ranging from 10 to 250 nK. We used two different experimental set-ups, which
have been described elsewhere24,28.

In set-up A we first produced an essentially pure Bose–Einstein condensate
with up to 250,000 atoms in a far-detuned crossed optical dipole trap generated
by two 1,060-nm Yb-doped fibre laser beams24. We then ramped the magnetic
field to 16.2 G, where the scattering length is negative with a value of250a0, thus
inducing a collapse of the condensate29. After an equilibration time of 1 s we were
left with a thermal sample at typically T ¼ 10 nK containing up to 20,000 atoms
at peak densities ranging from n0 ¼ 3 £ 1011 cm23 to 3 £ 1012 cm23. Alterna-
tively, we interrupted the evaporation process before condensation to produce
thermal samples at T < 200 nK in a crossed dipole trap generated by one of the
1,060-nm beams and a 10.6-mmCO2 laser beam. After recompression of the trap
this produced typical densities of n0 ¼ 5 £ 1013 cm23. The measurements in the
region of the loss minima as displayed in Fig. 3 were taken after a storage time of
200ms at initial densities of n0 ¼ 6 £ 1013 cm23.

In set-up B we used an optical surface trap28 in which we prepared a thermal
sample of 10,000 atoms at T < 250 nK via forced evaporation at a density of
n0 ¼ 1.0 £ 1012 cm23. The dipole trap was formed by a repulsive evanescent
laser wave on top of a horizontal glass prism in combination with a single
horizontally confining 1,060-nm laser beam propagating along the vertical
direction.
Determination of three-body loss rate coefficients. We measured three-body
loss rates in set-up A by recording the time evolution of the atom numberN and
the temperature T. A detailed description of this procedure has been given in
ref. 20. In brief, the process of three-body recombination not only leads to a loss
of atoms, but also induces ‘anti-evaporation’ and recombination heating. The
first effect is present at any value of the scattering length a. The second effect
occurs for positive values of awhen the recombination products remain trapped.
Atom loss and temperature rise are modelled by a set of two coupled nonlinear
differential equations. We used numerical solutions to this set of equations to fit
our experimental data. From these fits, together with measurements of the
trapping parameters, we obtained the rate coefficient L3. In set-up Bwe recorded
the loss at decay times sufficiently short to make sure that heating is negligible.
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Figure 3 | Atom loss for small scattering lengths. Besides a minimum near
zero scattering length, we identify a minimum of recombination loss at
,210a0, which can be attributed to a predicted destructive interference
effect9,11,12.
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Evidence for Efimov quantum states in an ultracold
gas of caesium atoms
T. Kraemer1, M. Mark1, P. Waldburger1, J. G. Danzl1, C. Chin1,2, B. Engeser1, A. D. Lange1, K. Pilch1, A. Jaakkola1,
H.-C. Nägerl1 & R. Grimm1,3

Systems of three interacting particles are notorious for their
complex physical behaviour. A landmark theoretical result in
few-body quantum physics is Efimov’s prediction1,2 of a universal
set of bound trimer states appearing for three identical bosons
with a resonant two-body interaction. Counterintuitively, these
states even exist in the absence of a corresponding two-body
bound state. Since the formulation of Efimov’s problem in the
context of nuclear physics 35 years ago, it has attracted great
interest in many areas of physics3–8. However, the observation of
Efimov quantum states has remained an elusive goal3,5. Here we
report the observation of an Efimov resonance in an ultracold gas
of caesium atoms. The resonance occurs in the range of large
negative two-body scattering lengths, arising from the coupling of
three free atoms to an Efimov trimer. Experimentally, we observe
its signature as a giant three-body recombination loss9,10 when the
strength of the two-body interaction is varied. We also detect a
minimum9,11,12 in the recombination loss for positive scattering
lengths, indicating destructive interference of decay pathways.
Our results confirm central theoretical predictions of Efimov
physics and represent a starting point with which to explore the
universal properties of resonantly interacting few-body systems7.
While Feshbach resonances13,14 have provided the key to control
quantum-mechanical interactions on the two-body level, Efimov
resonances connect ultracold matter15 to the world of few-body
quantum phenomena.
Efimov’s treatment of three identical bosons1,2 is closely linked to

the concept of universality7 in systems with a resonant two-body
interaction, where the s-wave scattering length a fully characterizes
the two-body physics. When jaj greatly exceeds the characteristic
range l of the two-body interaction potential, details of the short-
range interaction become irrelevant because of the long-range nature
of the wavefunction. Universality then leads to a generic behaviour in
three-body physics, reflected in the energy spectrum of weakly bound
Efimov trimer states. Up to now, in spite of their great fundamental
importance, these states could not be observed experimentally. An
observation in the realm of nuclear physics, as originally proposed by
Efimov, is hampered by the presence of the Coulomb interaction, and
only two-neutron halo systems with a spinless core are likely to feature
Efimov states3. In molecular physics, the helium trimer is predicted to
have an excited state with Efimov character4. The existence of this state
could not be confirmed5. A different approach to experimentally
studying the physics of Efimov states is based on the unique properties
of ultracold atomic quantum gases. Such systems15 provide an unpre-
cedented level of control, enabling the investigation of interacting
quantum systems. The ultralow collision energies allow us to explore
the zero-energy quantum limit. Moreover, two-body interactions can
be precisely tuned on the basis of Feshbach resonances13,14.

Efimov’s scenario1,2,7 can be illustrated by the energy spectrum of
the three-body system as a function of the inverse scattering length
1/a (Fig. 1). Let us first consider the well-known weakly bound
dimer state, which only exists for large positive a. In the resonance
regime, its binding energy is given by the universal expression
Eb ¼ 2"2/(ma2), where m is the atomic mass and " is Planck’s
constant divided by 2p. In Fig. 1, where the resonance limit
corresponds to 1/a ! 0, the dimer energy Eb is represented by a
parabola for a . 0. If we now add one more atomwith zero energy, a
natural continuum threshold for the bound three-body system
(hatched line in Fig. 1) is given by the three-atom threshold
(E ¼ 0) for negative a and by the dimer-atom threshold (Eb) for
positive a. Energy states below the continuum threshold are neces-
sarily three-body bound states. When 1/a approaches the resonance
from the negative-a side, a first Efimov trimer state appears in a range
where a weakly bound two-body state does not exist. When passing
through the resonance the state connects to the positive-a side, where
it finally intersects with the dimer-atom threshold. An infinite series
of such Efimov states is found when scattering lengths are increased
and binding energies are decreased in powers of universal scaling

LETTERS

Figure 1 | Efimov’s scenario. Appearance of an infinite series of weakly
bound Efimov trimer states for resonant two-body interaction. The binding
energy is plotted as a function of the inverse two-body scattering length 1/a.
The shaded region indicates the scattering continuum for three atoms
(a , 0) and for an atom and a dimer (a . 0). The arrow marks the
intersection of the first Efimov trimer with the three-atom threshold. To
illustrate the series of Efimov states, we have artificially reduced the
universal scaling factor from 22.7 to 2. For comparison, the dashed line
indicates a tightly bound non-Efimov trimer30, which does not interact with
the scattering continuum.
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Efimov effect	

•  There exist an infinite number of 3-body (3B) bound states 

if the 2-body (2B) scattering length is much larger than the 
range of the 2B interaction: a>>r0. 

•  This occurs even when there’s no bound state for the 2B 
subsystems. 

•  Theory formulated in nuclear physics in 1970, but 
experimentally confirmed only in 2006 in an ultracold gas 
of Cs. 

• Evidence of Efimov physics seen measuring the three-
body recombination rates. 

14 
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Extended energy spectrum 	




Efimov effect in atomic and molecular physics	


• Helium has long been considered to be a candidate for 
seeing the Efimov effect. 

•  The 4He dimer has a scattering length (≈200a0) much 
larger than the potential range (≈10a0). 

• Mostly, 4He3 is predicted to have an excited state 
with Efimov character, but this state has not yet 
been observed experimentally. 

• Numerous theoretical investigations have been carried out 
so far on the helium trimer 4He3 and its isotope 4He2

3He. 
•  These investigations have been extended to mixed 

systems 4He2H, 4He2H-, 4He2Li, …, 4He2Cs or other rare 
gas trimers Ne3 and Ar3.   
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Hiyama & other’s extension to the 4He tetramer	
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Variational calculation of 4He tetramer ground and excited states using a realistic pair potential

E. Hiyama*

RIKEN Nishina Center, RIKEN, Wako 351-0198, Japan

M. Kamimura†

Department of Physics, Kyushu University, Fukuoka 812-8581, Japan and RIKEN Nishina Center, RIKEN, Wako 351-0198, Japan
(Received 27 November 2011; published 2 February 2012)

We calculated the 4He trimer and tetramer ground and excited states with the LM2M2 potential using our
Gaussian expansion method for ab initio variational calculations of few-body systems. The method has been
extensively used for a variety of three-, four-, and five-body systems in nuclear physics and exotic atomic and
molecular physics. The trimer (tetramer) wave function is expanded in terms of symmetric three- (four-) body
Gaussian basis functions, ranging from very compact to very diffuse, without assumption of any pair correlation
function. The calculated results for the trimer ground and excited states are in excellent agreement with values
reported in the literature. The binding energies of the tetramer ground and excited states are obtained as 558.98
and 127.33 mK (0.93 mK below the trimer ground state), respectively. We found that precisely the same shape
of the short-range correlation (rij ! 4 Å) in the dimer appears in the ground and excited states of the trimer
and tetramer. The overlap function between the trimer excited state and the dimer ground state and that between
the tetramer excited state and the trimer ground state are almost proportional to the dimer wave function in the
asymptotic region (up to ∼1000 Å). Also, the pair correlation functions of trimer and tetramer excited states are
almost proportional to the squared dimer wave function. We then propose a model which predicts the binding
energy of the first excited state of 4HeN (N " 3) measured from the 4HeN−1 ground state to be nearly N

2(N−1) B2

where B2 is the dimer binding energy.

DOI: 10.1103/PhysRevA.85.022502 PACS number(s): 31.15.xt, 36.40.−c, 36.90.+f, 21.45.−v

I. INTRODUCTION

In the early 1970s, Efimov pointed out the possibility of
having an infinite number of three-body bound states even
when none exists in the separate two-body subsystems [1–3].
This occurs when the two-body scattering length is much larger
than the range of the two-body interaction. As a candidate
for such three-body states, Efimov discussed the famous
Hoyle state [4] (the second 0+ state at 7.65 MeV in the
12C nucleus), taking a model of three α particles (clusters
of three 4He nuclei) as well as the three-nucleon bound state
(3H nuclei). In nuclear systems, the Borromean states, weakly
bound three-body states though having no bound two-body
subsystems, are familiar but not classified as Efimov states.

In atomic systems, triatomic 4He (trimer) is expected to
have bound states of Efimov type since realistic 4He-4He
interactions [5–9] give a large 4He-4He scattering length
(#115 Å), much greater than the potential range (∼10 Å),
and a very small 4He dimer binding energy (#1.3 mK).
(Experimentally, in Ref. [10] a scattering length of 104+8

−18 Å
and a binding energy of 1.1+0.3

−0.2 mK were obtained.)
As is mentioned in recent reviews about the 4He trimer

[11,12] (further references therein), (i) a lot of three-body
calculations using realistic pair potentials have shown that the
4He trimer possesses two bound states with binding energies
of nearly 126.4 and 2.3 mK, (ii) it is already rather well
established that, if the 4He trimer excited state exists, it should
be of Efimov nature, and (iii) it is suggested that the 4He trimer
ground state may be considered as an Efimov state since the

*hiyama@riken.jp
†mkamimura@riken.jp

ground- and excited-state binding energies move along the
same universal scaling curve under any small deformation
of the two-body potential (for details, see, e.g., Sec. III of
Ref. [13]). Experimentally, the 4He trimer ground state has
been observed in Ref. [14] to have the 4He-4He bond length
of 11+4

−5 Å, in agreement with theoretical predictions, whereas
reliable experimental evidence for the 4He trimer excited state
is still missing.

Only very recently has experimental evidence of Efimov
trimer states been reported in work using ultracold gases of
cesium atoms [15,16], potassium atoms [17], lithium-7 atoms
[18,19], and lithium-6 atoms [20–24], in which the two-body
interaction between those alkali-metal atoms was manipulated
so as to tune the scattering length to values significantly greater
than the potential range. These experiments have accessed the
study of a wide variety of interesting physical systems in the
atomic and nuclear fields. Recently, the study has extended to
the Efimov physics and its universality in four-atom systems
(tetramers).

Although the interactions between 4He atoms cannot be
manipulated, the study of 4He trimers using realistic pair
potentials has provided fundamental information about the
Efimov physics. Now it is a challenging subject to precisely
investigate the structure of 4He tetramers using a realistic
4He-4He potential.

So far there exist in the literature a large number of
4He trimer calculations [25–39] giving well-converged results
with realistic 4He-4He interactions. However, calculations of
the tetramer remain limited [25,28–31]; in those papers, the
binding energies obtained for the tetramer ground state agree
well with each other, while those of the loosely bound excited
state differ significantly from one another.

022502-11050-2947/2012/85(2)/022502(15) ©2012 American Physical Society

•  The work has been extended to 4-body systems by 
Lazauskas&Carbonell and Hiyama&Kamimura… 	


4He	
 4He	


4He	
4He	




Triatomic helium systems	


•  Weakly bound systems: binding energy about 1mK≈100neV. 
•  4He3 has been a candidate for seeing “Efimov states”, since 

4He2 has a large scattering length a≈200a0. 
•  Theoretical treatment simple since 4He2 has only 1 bound state 

with l=0. 
•  Experimentally, 4He2 (ground state) observed by Luo et al., and 

Schöllkopf and Toennies, 4He3 and 4He4 also observed. 
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4He	
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4He	




Three-body recombination	
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He + He + He → He2 +He + Ev=0,l=0

•  We calculate the recombination rate up to 10mK. 
•  Relatively simple and an interesting benchmark. 
•  I and my collaborators in U.S. are among the first 

to carry out such calculations.	




He-He systems: bound state properties 
• Use the dimer potential 

developed by Jeziorska et 
al. 

• We can also include 
retardation: change from  
1/r6  to 1/r7, for details see 
the quantum field theory 
book by Itzykson & Zuber! 

•  4He4He: one bound state. 
•  4He3He,3He3He: no bound 

state 

4He4He W.F.	


He-He potential	


4He4He Energy Lev.	
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20 

Eret=-4.95x10-9 a.u.=-1.56mK 
Eunret=-5.47x10-9 a.u.=-1.73mK 



Elastic scattering cross section for 4He+4He	
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! ! 8"a2  as E! 0



Numeriacal method:  
Adiabatic hyperspherical method 
• Use Whitten-Smith’s hyperspherical coordinates 

• Consist of 1 hyperradius, 5 hyperangles 
• Simplify imposing the permutation symmetry 

• Adiabatic expansion method 
•  First calculate eigenfunctions and eigenvalues of the 

fixed-hyperradius Hamiltonian 
• Construct a set of coupled radial equations 

• R-matrix method 
•  Extract the scattering S-matrix from the coupled radial 

equations. 
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Whitten-Smith’s hyperspherical coordinates	


• The hyperradius R 
measures the SIZE of the molecular triagle. 

• The hyperradius (θ,φ)  
measure its SHAPE. 

• The Euler angles (α,β,γ) 
describes the orientation of the body-fixed 
frame in space.  

23 

(R,Ω) ≡ (R, θ,ϕ,α,β, γ)



Schrödinger equation	
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•  Interaction potential:	


•  Λ2 is the squared “grand angular momentum 
operator”. 

•  Good quantum numbers:  
J(total angular momentum), M(projection),and Π
(parity)	




Adiabatic expansion method 
•  We first solve the R-fixed Schrödinger equation: 

with the nonadiabatic couplings: 

25 

to obtain Uν(R)(potential curves) & Φν(R;Ω)(channel functions) 
•  The total wave function is expanded as  

We then obtain a set of coupled radial equations:	




Adiabatic 
hyperspherical 
potential curves	

•  The lowest 

potential curve: 
4He2+4,3He 

•  The higher 
potential curves:  
3B continuum 
states.	
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4He3 and 4He2
3He bound state energies	


• We have found 2 bound states for 4He3(JΠ=0+), 
one bound state for 4He2

3He (JΠ=0+) and none for 
J>0. 

• The effect of retardation is found to be more 
significant than the 3B term. 
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Recombination rates for  
4He+4He+4He→4He2+4He 

• Threshold law: at ultracold energies, 
E (mK) 
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Recombination rates for 
4He+4He+3He→4He2+3He 

• Threshold law: at ultracold collision energies, 
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Gaussian Expansion Method (GEM)	
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the Schrödinger equation is given by	


We express the wave function in the form	


In terms of Jacobi coordinates:	


with	
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Efimov states in mixed 3-body and 4-body 
systems	
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Efimov states are predicted to exist in (2+1) and  
(3+1) systems for certain range of the mass ratio 
M/m.	
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M=Fermion, m=Light atom	




Summary 
• Presented a theoretical description of Efimov physics 
and discussed applications in atomic and molecular 
physics. 

• Studied triatomic helium systems 4He3 and 4He2
3He 

using the most realistic helium interaction potential. 
• Ongoing and future work: search for Efimov states or 
other novel quantum states in mixed triatomic and 
tetraatomic systems using the Gaussian expansion 
method. 
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Collision induced dissociation rates for 
4He2+4He→4He+4He+4He 

E (mK) 
• Threshold law: at ultracold collision energies, 
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Collision induced dissociation rates for 
4He2+3He→4He+4He+3He 
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Whitten-Smith’s hyperspherical coordinates 

Hyperradius Hyperangles 

Euler angles 
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Schrödinger equation 

• Λ2 has eigenvalues 
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•  Interaction potential:	


•  Λ2 is the squared “grand angular momentum operator”: 

•  Good quantum numbers: J(total angular momentum), 
M(projecztion),and Π(parity)	


!(! + 4)!2



Adiabatic hyperspherical potential curves	
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•  The lowest potential curve corresponds asymptotically to 
4He2+4,3He:	


•  The higher potential curves correspond to the 3B 
continuum states: 	


  By symmetry requirement, the atom-diatom channel 
exists only for the parity-favored cases: Π=(-1)J. 

  We have also calculated the potential curves for 
JΠ=1-, 2+,… 



Three-body recombination rates 
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•  The event rate constant for 3B recombination 
X+X+X→X2+X: 

•  The event rate constant for 3B recombination 
X+X+Y→X2+Y or X+X+Y→XY+X : 

•  k=(2µE)1/2 is the hyperradial wave number, SJΠ
0<-ν the 

scattering matrix element. 
•  Collision induced dissociation rate: 


