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Peak-shaped resonance in e-
 - N2 scattering 

measured by Brüche (1927) 
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electronic 
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Not exactly Lorentzian 

due to coupling betw. 

electronic & internuclear 

motion 

 



Fine structure in the resonance profile due to the 

coupling betw. electronic & internuclear N-N motion  

but not exactly 

e-
 - N2  

R.E. Kennerly, Phys. Rev. A 21,  1876 (1980) 

vibrational states 



          Asymmetrically shaped photoabsorption spectra 
     measured and theory formulated:                       

 

Measurement: H. Beutler, Zeit. f. Phys. 93, 177 (1935) 

Reformulated and generalized: U. Fano, Phys. Rev. 124, 1866 (1961)   

Xe  spectrum betw. Xe+(2P3/2) and Xe+(2P1/2) thresholds  

J. Res. Natl Inst. Stand. Tech. 110, 583 (2005) (Engl. transl.) 

Theory: U. Fano, Nuovo Cim. 12, 154  (1935), directed by E. Fermi 

Beutler-Fano profile 



 



review: 

V L Sukhorukov et al.,  

J. Phys. B 45,  

092001 (2012) 



Fano’s profile 

Ugo Fano (1912－2001) 

（プロフィール，横顔） 



Beutler-Fano profile from Breit-Wigner one-level formula 

for the phase shift :  High-school mathematics 
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reduced energy 

for resonance at E  Er –  i /2 

 )()( EE rb  

)(cot Eq b-

shape parameter 

Beutler-Fano 

profile 

The variety of profiles stems from the interference 

between the resonance and the background. 



Beutler-Fano profile for a resonance at E  Er – i /2 



 

Original figure in U. Fano (1961)  

 

U. Fano, Phys. Rev.  
 124,  1866 (1961) 



Ugo Fano’s theory 

• isolated resonance for one open channel 

• isolated resonance for more than one open channel 

• overlapping resonances for one open channel  

• NOT for overlapping resonances for more than one open channel 

for any transition operator 

U. Fano, Phys. Rev. 124, 1866 (1961) 

Mixing betw. bound (F) and continuum (y) configurations 

May be re-interpreted (similarly to Feshbach) as: 
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Stark effect: Perturbation by static electric field 

without 
with electric field 

electric field 
bound st. 

resonance st. 

field 

ionization tunneling effect 
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Atomic/molecular physics is rich in resonances. 

For example,  

an infinite series of eigenstates of QHQ 

coupled to continuum produces  

an infinite series of Feshbach resonances. 
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Neutral atom A:   

          electron-ion interaction e 

- - A(E)  
    

Asymptotic Coulomb potential  ∝ -a /r 
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sudden increase of mnl  by 1 Coulomb 
channel 

Infinite series of bound Rydberg states  

         Enl  E - [2 (n - mnl )2]-1 a.u.  

            mnl  quantum defect:  

              slowly varying with n (or Enl) 

resonance-like behavior  



Coupled Coulomb channels 

Multichannel Quantum Defect Theory: 

   Theory similar to multichannel scattering  

   theory leads to elucidation of the regularity  

   in the bound and resonance Rydberg series. 
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Photoabsorption spectra of He atom 

60 eV 

（60 eV < hn   < 78 eV) 

75.5 eV 77.5 eV 

N = 2 

N = 2 

N = 2 



Energy diagram of helium 

 

1-electron excited 
} (1s2p) 

} (1s2s) 

1-electron transitions 1s2 →1snp 
by 1-photon absorption 1s2 

1-electron transition  1s2 →1s p 
by 1-photon absorption 

photoionization 



Atomic/molecular physics is rich in resonances. 

infinite series of eigenstates of QHQ 

       due to the long-range Coulomb potential  -a /r 

       due to over-critical attractive dipole potential  -b /r2 

→ infinite series of resonances by coupling with continuum 
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Infinite series of bound states are supported by a potential  

    with an asymptotic form  ~ -b /r2   for b >b l  

    for an angular-momentum-dependent critical value b l   
 



e- + H(n l ) channels 

Asymptotic dipole potential couples nl  and nl  channels 

with  l   l ±1 with a common channel energy  kn
2 

(common because of the sublevel degeneracy).  

→ Diagonalization of the asymptotic potential matrix  r-2 

results in diagonal dipole potentials  r-2, 

i.e., in decoupled single-channel dipole potentials. 

If overcritical, they support infinite series of bound states. 
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Other dipole-supported series of states 

Electron (or positron) bound by a polar molecule 

having a dipole moment  m      V(r) ∝ m  cosc / r 
2 

 

 

Efimov states bound by a dipole potential  

    in terms of the hyper radius 

c 

m r 



Types of resonance states  

in atomic/molecular systems 

• autoionizing Rydberg states: series coupling 

• two or more electrons excited 

• inner-shell electron(s) excited 

• Feshbach resonances with respect to vibrational 
excitation 

• electronically & vibrationally excited molecules 

• predissociating states 

 



Vibrationally excited Rydberg states  

R 

R 
 

V (R) 
 

A B AB* 

AB+ e- 

AB 

AB 

internuclear distance 



Vibrational predissociation 

 

internuclear distance 
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Nonadiabatic coupling of a bonding adiabatic 

state with a repulsive adiabatic state turns 

vibrational states into dissociative states. 



Vibrational predissociation 
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An adiabatic electronic state turns into a replusive 

diabatic state by nonadiabatic coupling with a 

lower  adiabatic electronic state. 

R 



Atomic and molecular processes 
• low-E electron impact on atoms 

          compound-state resonances 

• low-E electron impact on molecules 

          compound-state resonances decaying into 

          different arrangement channels 

• high-E electron impact on atoms/molecules 

          excitation of the target into resonance states 

• low E ion-atom, atom-atom collisions 

• atom-molecule, molecule-molecule collisions 

          direct and reactive processes 

• high-E ion-atom collisions 

• single-photon absorption 

          two(or more)-electron excited states 

          Auger processes (inner-shell excitation) 

• multiphoton absorption 
 



Standard computational methods for resonances 

• Direct calculation of  Er - i /2 

      → No observable physical quantities 

       e.g.: complex coordinate scaling  r → r eiq  

              For molecules, exterior complex scaling, or scaling 

              only outside of a sphere enclosing the molecule 

• S - or K- matrix calculation → resonance information 

      Coupled-channel equations 

          defined in terms of the target and/or projectile states 

          or  of the adiabatic states of the whole system 

        R-matrix method 

        Kohn or Schwinger variational method 

 



R-matrix method: Concept 

 

internal 
region 

external 
region 

Example: electron-molecule collision  e-
 - M 

molecule 

quantum-chemistry-like calculation 

Internal  (r < a) 

External  (r > a) 

→ yy-1 of channel wave func. at r  a 
a 

coupled-channel calculation with 

of the total system M- 

local potentials (multipole explansion) 

channel wave funcs. connected smoothly at r  a 

M 



R-matrix method: General computer codes  

• Electron-atom (ion) and positron-atom (ion) collisions 

            automatic search / fitting of resonances  

• Electron-molecule and positron-molecule collisions 

• Atomic and molecular bound-state calculations 

• Photoionization of atoms and molecules 

• Multiphoton processes:  

        time-independent and time-dependent approaches 

P. G. Burke, R-matrix theory of atomic collisions, 
(Springer, Heidelberg, 2011) 



Coordinate system 

• independent-particle coordinates 

            → Jacobi coordinates 

• complex coordinates 

• hyperspherical (HS) coordinates 

               for few-body systems 



Hyperspherical coordinates: Two-electron systems 

 

r2 

r1 

r 

a 

hyper radius   r  ,  hyper angle   a 

r1 

r2 

N 

e- For general three-body systems:  

HS coordinates are defined  

in terms of the Jacobi coordinates. 

(r1, r2) → (r, a)  polar coordinates  

(r1, r2) → (r, W)  (r, a, r1, r2) ^    ^ 
 

Extension for N -body systems: 

0  r < ,  others: angular coord. 

e- 

r12 

Only a single coordinate 

extends to infinity. 



Hyperspherical coordinates: General 3-body systems 

 



Applications of hyperspherical coordinates 

• Efimov states 

       dipole-supported states in terms of  r  

• Coulomb three-body systems 

       complete breakup expressible by r →  

       asymptotic form for 3-body breakup known  

• HS coupled-channel equations in r 

• Concept of new correlation quantum numbers 
 



Coulomb three-body breakup 
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For scattering by V(r) with asymptotic form 

For breakup 

R.K. Peterkop, Opt. Spectrosc. 13, 87 (1962) 

M.R.H. Rudge and M.J. Seaton, Proc. R. Phys. Soc. 283, 262 (1965) 

M.R.H. Rudge, Rev. Mod. Phys. 40, 564 (1968) 

Review: McCurdy et al., J. Phys. B 37, R137 (2004)  
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Hyperspherical coupled-channel equations 
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coupled-channel eqs. 

I. Expansion in terms of hyperspherical harmonics 

II. Expansion in terms of adiabatic states → converges rapidly  
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Un(r) : similar to molecular potential energy curves 

→ visual understanding of the dynamics 

● single-channel (adiabatic) approximation already reasonable 

  ● concept of new electron-correlation quantum numbers 



     

The success of  

the hyperspheical coordinate method  

owes much  

to the adiabatic expansion. 
    



Vibrational excitation in electron-molecule collisions  

  Vibrational motion (nuclear motion) normally 

hard to excite by the light e-  impact. 

e-  AB(v) → AB- → AB(v  ’)  e- 

  Resonances greatly enhance the cross section. 



Vibrational excitation in electron-molecule collisions  

Resonance 

Non-
resonance 

v 01 

  Vibrational motion (nuclear motion) normally 
hard to excite by the light e-  impact. 

If the interaction time is long, 

however, the energy transfer 

from e-  to vibration motion 

can be efficient.  

  Resonance enhancement 

of vibrational excitation by 

temporary electron capture 

e-
  CO 

e-  AB(v) → AB(v  ’)  e- 



e-
 - O2  collisions （compound-state limit） 

 60q

v  0 v’ e-
  O2 

v’  1 

v’  2 

v’  3 

v’  4 

temporary 
O2

-
 (v”) 

equally spaced peaks 

 at common positions  
irrespective of v ’ 

fine structure due 
to different v” 

v” 

Incident electron energy  (eV) 

e-  O2(v)  O2
-(v”)  e-  O2(v’) 



Vibrational excitation via compound-state resonance 

R 

R 

 

V (R) 
 

A B 

AB 

resonance st. 

Er 

AB－ 

AB(v ) +  e-(Er )  →   AB－(v)  → AB(v) +  e- 

equally spaced  

vibrational levels v 

v= 0 

v  =1 v =0    

v=1     

Resonance energy Er  of 

the incident electron is  

common to all v  
v  =2 



e-
 - H2  collisions （impulse limit） 

0  v v  0 v’ 

v’  3 

v’  2 

v’  1 

v’  4 

v’  5 

v’  6 

Incident electron energy  (eV) 



Resonance lifetime vs. vibrational period 

tvib :  vibrational period (time for one vibration) @ 10-14 s 

tres :   resonance lifetime (@ collision time) 
   

tres >> tvib  enough time for the resonance state to develop 

                         well-defined vibrational levels  

tres << tvib   little time for developing resonance vib. levels,  

                        i.e., almost no nuclear motion during the collision 

                       → adiabatic approximation for scatt. amplitude 

 

              superposition of resonances with varying  Er(R), (R) 

 

 

)();()()(   RRFRf if vv qq 



Boomerang model 

tres @ tvib 
    

Only one or a few vibrations before the resonance decays. 

Not enough time for developing vibrational states of AB-.  
                           

Time enough only for forming a standing wave: wave number kAB                 

e-(E)  AB(v)  AB-(kAB)  e-  AB(v’)  

Scattering amplitude essentially determined by the overlap 

                                ,  which oscillates with kAB = kAB(E). 

  irregular oscillations with E 

)(  ),( ABABAB k－ v'

A B 



e-
 - N2  collisions （boomerang resonance） 



Competition with dissociative channels 

Dissociative electron attachment occurs 

almost only via resonances. 

e-  AB(v) → AB- → AB(v  ’)  e- 

→ A    B    e- 

→ A  B- dissociative attachment 

dissociation 



AB +  e  →  AB－ 

 

  
    

Coupling with the dissociative mode 

R 

R 

dissociation 
or 

 

V (R) 
 

A B 
AB－ 

autodetachment  

e  

stabilization 
point 

AB
 

AB－ 

AB +  e  →  A+B
ー 

    

dissociative attachment 

competing with 

autodetachment of an electron 

A+B
－ 

→ A + B + e  

resonance 
state 

A+B
－ 

dissociative attachment 

dissociation 

B－ 



 

Resonance state may change its geometry. 

q 

CO2
- 

CO2 

Linear molecule may be excited in the bending mode 

or in the asymmetric stretching mode. 

C O O 



Geometry dependence of the resonance parameters 

 

RESCIGNO, ISAACS, OREL, MEYER, AND McCURDY, PHYS. REV. A 65 032716 (2002) 

Complex 2A1 resonance energy of CO2
-, in units of hartrees, as a function of symmetric-

stretch distance, in units of bohrs, and bend angle, in degrees. Left panel shows the real 

part of the energy surface and the right panel shows the corresponding width. 

q R 
R 

Er  

R R 

q q 

CO2 



Resonance information 
      

from the S matrix 

 



Breit-Wigner one-level formula for the phase shift  

22 
)2()(

2
   ,

2
 cot   , 1

 

-






-
- -

r

rr
rbr

EEdE

dEE 


  

convenient for locating resonances and for resonance fitting, 
    

but more convenient is d (E)/dE 



Single-channel N  overlapping resonances 
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Breit-Wigner one-level formula:   Single channel  

For the phase shift  
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Parameter fitting 

Breit-Wigner one-level formula for  (E):  
      

convenient for locating resonances and for resonance fitting 
    

but more convenient is d (E)/dE 



Single-channel overlapping resonances 

For the phase shift  

For the S matrix 
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pole at  E  Er- i /2 

unitary for real E > 0 → flux conservation 

symmetric → time reversal  

Breit-Wigner one-level formula:  Multichannel  

(unitary & symmetric) 

　 i decay rate to each channel 

　T

b UUS  background S matrix 

total width 

U    unitary matrix,     I   unit matrix 



Breit-Wigner formula for multichannel scattering 

Diagonalize S as  OSOT  ,  i j    i j exp(2ihi). 
      

Define eigenphase sum     Si hi . 
    

Then, this   satisfies the same Breit-Wigner formula 
   

as the single-channel phase shift (Weidenmüller 1967). 

 d /dE 



Total energy  (au) 

Total energy  (au) 

Total energy  (au) -0.088 

-0.088 

-0.089 

-0.089 

-0.088 -0.089 

He(1Po) 

eigenphase sum   

In fact,  

5 Lorentzians were 
extracted by 

another technique ! 

d


/d
E

 d /dE 

   

twice sudden increase 

   

3 Lorentzians 

Aiba, Igarashi & Shimamura, 
J. Phys. B 40, F9  (2007)  



Eigenvalues of the time-delay matrix for He(1Po)  

 

Aiba, Igarashi & Shimamura, 
J. Phys. B 40, F9  (2007)  



Time delay due to scattering 

Single-channel time delay:  
Wave packet of outgoing spherical wave is delayed by the time 

 t 

+ b 

   

compared with no scattering.   For a Breit-Wigner resonance 

Multichannel time-delay matrix  (proposed by F.T. Smith, 1960)  

+ b 

   

being related to eigenphase sum 

d 



He(1Po) 

eigenphase  sum   

Q-matrix eigenvalues   qi 
   

5 Lorentzians Ln (E) 
avoiding each other 

Tr Q  d /dE 

  

Tr Q fitted to Sn  Ln 

with 5 Lorentzians 

and background 

Complicated overlapping 


 /

p
 

  

Other eigenvalues @ 0  

Aiba, Igarashi & Shimamura, 
J. Phys. B 40, F9  (2007)  

resonances resolved 



Multichannel overlapping resonances 

that is explicitly unitary and symmetric 
and that has poles at   

E  En  - i n /2,  n  1, …, N. 

No S - matrix representation is known 

Simonius (1974) proposed a representation 

that has resonance poles and is unitary,  

but not explicitly symmetric. 



Simonius representation of the S  matrix 
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elements of the vector gn :  resonance parameters 

resonance-order dependent 

 not explicitly symmetric 

Can be made symmetric, in principle, by choosing gn. 

not wrong, just inconvenient for application purposes, 

but convenient for theoretical formulation purpose  



N  eigenvectors corresponding to the resonance eigenvalues 
    

define the N - dimentional resonance eigenchannel space. 
    

Resonances decay only into this N - dimentional channel space, 
   

whereas they decay into all the physical channels  
and into all the eigenchannels of the S  matrix. 

Separation theorem for N overlapping resonances 

I. Shimamura, J. Phys. B 44, 201002 (2011) 

N  eigenvalues   qi (E)  of the Q  matrix form 
    

N  Lorentzian peaks avoiding each other at the crossing points,  
    

the other eigenvalules being quite small.  

Proof using the Simonius representation of resonance S  matrix 
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Importance of the time-delay matrix eigenvalues 

Useful for 

• Spotting resonances otherwise hidden 

• Resonance fitting 

• Resolving overlapping resonances 

• Separating out the resonance channel space 

from the whole channel space 

Resonances clearly stand out against background.  
 

Overlapping resonances can be easily resolved. 



                                                                                 

Strong background cancelling time dealy： e- + Ps 

Total energy (10-2 au) Total energy (10-2 au) 
 
 

Total energy (10-2 au) 

above Ps(n=3) threshold 

Igarashi and Shimamura, J. Phys. B 37, 4221 (2004) 



+ 
b 

Strong dipole background 

 b 

d b /dE 

Negative time delay due to the dipole background 

Dipole potential due to linear Stark effect 

The background  b diverges toward the threshold. 



 

Shimamura, Wakimoto & Igarashi,  
Phys. Rev. A 80, 032708 (2009) 

Weak resonance hidden behind a stronger one 


