

Causality constraints and their symmetry classification in passive devices

Henning Schomerus, Lancaster University & RIKEN NH QM workshop, Tokyo University, 4 July 2022

NH effects

complex frequencies exceptional points

nonorthogonal modes NH skin effect

complications

finite life times

enhanced sensitivity

instability

quantum noise

Example I: quantum noise

Example I: quantum noise

Optica Vol. 8, Issue 2, pp. 184-192 (2021) • https://doi.org/10.1364/OPTICA.412596

Observing exceptional point degeneracy of radiation with electrically pumped photonic crystal coupled-nanocavity lasers

Kenta Takata, Kengo Nozaki, Eiichi Kuramochi, Shinji Matsuo, Koji Takeda, Takuro Fujii, Shota Kita, Akihiko Shinya, and Masaya Notomi

Furthermore, we find experimentally and confirm

theoretically the peculiar squared Lorentzian emission spectrum very near the exact EP, which

Example II: mode selection

topological zero mode

 $H = -ZH^*Z$, tr Z = 1 (C symmetry)

microwaves

with Poli et al 2015

lasers

with Zhao et al 2018

with Whittaker et al 2018

Example II: mode selection

Malzard, Cancellieri & HS 2018

Symmetry-protected Topological excitations oscillations

Goldstone modes: U(1) and time translation

microwaves

with Poli et al 2015

lasers

with Zhao et al 2018

excitons

with Whittaker et al 2018

Example III: skin effect

transition to directed amplification

zero mode relocalises

also in transport effects

- reflectionless transport depending on topological phase
- invisibility coinciding at skin-effect phase transition
- CPA and one-sided transparency

Here: passive systems

- physical limits from causality
- symmetry constraints
- visibility of effects: EPs, skin effect, edge states

Causality

recall output intensity $I(\omega) = \text{tr} (S^{\dagger}S - 1)/2\pi$

passive system: $1 - S^{\dagger}S$ is positive definite

generic wide-band limit:
$$S(\omega) = \frac{1 - i\Gamma \mathcal{G}(\omega)}{1 + i\Gamma \mathcal{G}(\omega)}$$
 with $\mathcal{G}(\omega) = \frac{1}{\omega - H}$

$$\Rightarrow 1 - S^{\dagger}S = 2 \Gamma Q \text{ with } Q = 2\mathcal{G}^{\dagger}(\omega + i\Gamma) (\gamma - F)\mathcal{G}(\omega + i\Gamma)$$

- time-delay op., gives density of states $\rho(\omega) = \operatorname{tr} Q/2\pi$
- $H = H_0 + iF i\gamma$: nontrivial NH in *F*, background losses γ
- Q positive definite: causality threshold γ

causality > Lee-Wolfenstein (Wiersig 2019) > positive lifetimes

Symmetry classification

- $H = H^*$ (TRS) \Rightarrow $F = -F^T$ (Majorana basis)
- $H = H^T$ (reciprocal) \Rightarrow $F = F^*$ (TRS)
- $H = PH^*P$ (PT) \Rightarrow $F = -PF^*P$ (charge conj, C)
- $H = PH^{\dagger}P$ (PTT') \Rightarrow F = -PFP (chiral)
- $H = -PH^*P$ (C) \Rightarrow $F = PF^*P$ (gen TRS)

 $H = -PH^{\dagger}P$ (CT') \Rightarrow F = PFP (parity)

- systematic pairing of NH and H symmetry classes
- classes of *H* and *iH* differ

Visibility of EPs

EP normal form
$$H = \begin{pmatrix} a - i\gamma & b \\ c & -a - i\gamma \end{pmatrix} \Rightarrow F = \frac{1}{2i} \begin{pmatrix} a - a^* & b - c^* \\ c - b^* & a^* - a \end{pmatrix}$$

causality threshold $\gamma_c = \sqrt{(\text{Im } a)^2 + |b - c^*|^2/4}$

EP $a^2 + bc = 0$: dos $\rho^{EP}(\omega) = \frac{1}{\pi} \frac{|b| + |c|}{\omega^2 + (|b| + |c|)^2/4}$ is a simple Lorentzian!

Visibility of skin effect and edge states

nonreciprocal dimer chain

$$H(k) = \begin{pmatrix} v_1 + 2w_1 \cos k & u_1^- + u_2^+ e^{-ik} \\ u_1^+ + u_2^- e^{ik} & v_2 + 2w_2 \cos k \end{pmatrix}$$

$$\Rightarrow F(k) \Rightarrow \gamma_c = \sqrt{\Delta v^2 + (|\Delta u_1| + |\Delta u_2|)^2}$$

 \Rightarrow skin effect disguised, edge states visible

acknowledgements/references

Intro:

Quantum noise in PT exact phase: $I(\omega) \rightarrow (\text{Lorentzian})^2$ at EP: Topological mode selection theory: Microwave demonstration: Topological laser: Exciton condensate: Nonlinear extensions:

Directed amplification & sensing: Nonreciprocal transport signatures:

Causality constraints:

HS, PRL 104, 233601 (2010)
G Yoo, H-S Sim & HS, PRA 84, 063833 (2011)
HS, Opt Lett 38, 1912-1914 (2013)
C Poli et al, Nat Commun 6, 6710 (2015)
H Zhao et al, Nat Commun 9, 981 (2018)
C Whittaker et al, PRL 120, 097401 (2018)
S Malzard et al, Opt Exp 26, 22506 (2018)
S Malzard & HS, New J Phys 20, 063044 (2018)
HS, Phys Rev Research 2, 013058 (2020)
H Ghaemi-Dizicheh & HS, PRA 104, 023515 (2021)

HS, in preparation

Summary: NH topology from gain & loss

quantum noise

mode selection

 \Rightarrow lasers, sensors ...

passive devices:

causality constraints ⇒
threshold losses
scattering theory ⇒
EP's & NHSE disguised,
edge states visible

 $\times K_{\overline{0}} \rightarrow \infty$