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Exceptional points: definition 

An exceptional point (EP) is a branch point in parameter 
space at which two or more eigenstates coalesce 

!   Hamiltonian cannot be diagonalized at the EP 
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Exceptional points: definition 

An exceptional point (EP) is a branch point in parameter 
space at which two or more eigenstates coalesce 

!   Hamiltonian cannot be diagonalized at the EP 

!   This is distinct from the usual concept of 
     degeneracy in quantum systems 

!   Exceptional points can only appear in 
     non-Hermitian systems 



Exceptional points: Puiseux expansion 

Eigenvalues in the vicinity of the exceptional points can be  
expanded in characteristic Puiseux expansion: 
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+ O(ε −ε EP )

coalesced eigenvalue



Exceptional points: order mismatch 

Usually, the Jordan block dimension and the root in the Puiseux 
expansion will match; but not always. 

Third order (EP3) :

G. Demange and E.-M. Graefe, J. Phys. A: Math. Theor. 45, 025303 (2012). 
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expectation:



instead, we may have
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1/2

+ O(ε −ε EP )

Exceptional points: order mismatch 

Usually, the Jordan block dimension and the root in the Puiseux 
expansion will match; but not always. 

Third order (EP3) :

G. Demange and E.-M. Graefe, J. Phys. A: Math. Theor. 45, 025303 (2012). 
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EP2-like expansion + Taylor series



Exceptional points: non-Hermitian systems 

Exceptional points can only occur in non-Hermitian 
systems 

!   Open quantum systems (implicit non-Hermiticity) 

Non-Hermiticity is associated with the energy continuum 
that describes the environment         (structured reservoir) 

!   Explicitly non-Hermitian systems 

Example: PT-symmetric, pseudo-Hermitian systems 

Coupled mode theory: assumes relevant physics can be 
described in terms of a few key modes 



PT-symmetric systems 

C. M. Bender, D. C. Brody and H. F. Jones,  
Phys. Rev. Lett. 89, 270401 (2002). 

Parity-time (PT) symmetry: studied as a potential replacement 
for Hermitian symmetry in quantum mechanics. 

Simple PT-symmetric system: 
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z = ± 2g2 − γ 2

Energy eigenvalues: 
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γ < 2g all real 

(2) complex     
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γ > 2g
[PT-symmetry broken] 
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Open quantum systems 

Open quantum systems: microscopic description of the 
environment in terms of an energy continuum 
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Ek ∈ [Eth ,∞]Well defined range 

and density of states 
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ρ(E) =
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dE

“structured reservoir” 

P.	Lambropoulos,	G.	M.	Nikolopoulos,	T.	R.	Nielsen,		
and	S.	Bay,	Rep.	Prog.	Phys.	63,	455	(2000).	



Open quantum systems 

Open quantum systems: microscopic description of the 
environment in terms of an energy continuum 
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Energy continuum   
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Interaction between discrete system and continuum 
gives rise to resonance states with complex eigenvalues 
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2



Origin of resonance in open quantum systems 

The resonance appears in quantum systems due to the 
interaction of discrete states with the continuum 
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P(t) = P0e−  Γt

Examples: nuclear decay, atomic relaxation 

resonance eigenvalue: 
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ER − i  Γ
2

continuum threshold introduces 
deviations from exponential decay 

However: 
L. A. Khalfin, Sov. Phys. 
-JETP, 6, 1053 (1958). 



However, first I will need to introduce an additional concept: 
Protected edge states of a topological insulator 

So far, I have introduced two types of non-Hermitian systems 

•  PT-symmetric systems (explicit non-Hermiticity) 

•  open quantum systems (implicit non-Hermiticity) 

In the next step, I will combine these two in order to observe a 
qualitatively distinct type of PT-symmetry breaking 

Su-Schrieffer-Heeger (SSH) model 



J. K. Asbóth, L. Oroszlány, and A. Pályi, 
Lecture Notes in Physics 919 (Springer 
International Publishing, Switzerland 2016). 

Su-Schrieffer-Heeger (SSH) model 

Two topological edge states can appear with E ≈ 0 

t2t2 t1 t2t1
t1 < t2 dimers (trivial) 

t1 > t2
(topological) 

t2t2 t1 t2t1
edge states 

Left-hand 
state 

Right-hand 
state 



Edge states in the SSH model: spectrum 
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edge states with 
E ≈ 0 split off from 
SSH bands for t1 > t2 

Most SSH energy levels are 
organized into two bands 
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2 + 2t1t2 cosk



An open PT-symmetric SSH model 

In this work we incorporate a PT-symmetric potential into an 
SSH model to study resonance and topological properties. 

g g t2t2 t1 t2 t1t1 t2 t1
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+iγ   
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−iγ

PT-symmetric 
trimer 

{ SSH reservoir SSH reservoir 

… … 

S. Garmon and K. Noba, Phys. Rev A 104, 062215 (2021) 



An open PT-symmetric SSH model 
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Sublattice projectors: 
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An open PT-symmetric SSH model 
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Sublattice operator: 
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Σz = Pa − Pb
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ΣzHΣz = −H †

Pseudo-anti-Hermitian symmetry: 



An open PT-symmetric SSH model 
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Outgoing waves (Siegert) 
boundary condition: 
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An open PT-symmetric SSH model 

… … 

Four ordinary discrete solutions: 
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Spectrum consists of three types of solutions 

(double quadratic) 

two SSH energy bands     
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Ek = ± t1
2 + t2

2 + 2t1t2 cosk

Two zero-energy modes: 
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ψ za ,   
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ψ zb
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za = zb = 0
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Zero-energy states 

For any choice of the parameter values, there exist two  
(edge-like) zero-energy states.  

But instead of right and left-handed modes, here we have 
localized and anti-localized edge-like modes 
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eik = −t2 /t1

Localized condition: 

(assumption:  t1 > t2)



Zero-energy states 

For any choice of the parameter values, there exist two  
(edge-like) zero-energy states.  

But instead of right and left-handed modes, here we have 
localized and anti-localized edge-like modes 
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eik = −t2 /t1

Localized condition: 

Anti-localized: 
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(assumption:  t1 > t2)
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Zero-energy states 

For any choice of the parameter values, there exist two  
(edge-like) zero-energy states.  

But instead of right and left-handed modes, here we have 
localized and anti-localized edge-like modes 
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eik = −t2 /t1

Localized condition: 

localized state has been observed in experiment… 



Observation of localized zero-energy state 
ARTICLES

PUBLISHED ONLINE: 5 DECEMBER 2016 | DOI: 10.1038/NMAT4811

Topologically protected bound states in photonic
parity–time-symmetric crystals
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S. Weimann, et al, Nat. Mat. 16, 433 (2016). 
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Observation of localized zero-energy state 
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Spectral phase diagram 
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(Original SSH model) 
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The four polynomial solutions from               can be categorized 
by the phase diagram: 

    

€ 
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Spectral phase diagram 

t1 = t2
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The four polynomial solutions from               can be categorized 
by the phase diagram: 
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Ps(z) = 0

In the gapped region, we find 
an example of re-entrant 
PT-symmetry 

Y. N. Joglekar and B. Bachi,  
J. Phys. A: Math. Theor. 45,  
402001 (2012). 

(Trimer + SSH chains) 



1 2 3 4 5 6

-8
-6
-4
-2
0
2

1 2 3 4 5 6

-2

-1

0

1

2

1 2 3 4 5 6

-5

0

5

1 2 3 4 5 6

-4
-3
-2
-1
0
1
2

1 2 3 4 5 6

-2

-1

0

1

2

1 2 3 4 5 6

-6
-4
-2
0
2
4
6

1 2 3 4 5 6

-8
-6
-4
-2
0
2

1 2 3 4 5 6

-2

-1

0

1

2

1 2 3 4 5 6

-6
-4
-2
0
2
4
6

Reservoir-assisted PT-symmetry breaking 
We find there are two regions of broken PT-symmetry. 
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t1 = 3,  t2 = 1

Region I – PT-symmetry is broken mainly due to the resonance interaction 
with the continuum. 

Reservoir-assisted PT-symmetry breaking 
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Reservoir-assisted PT-symmetry breaking 
We find there are two regions of broken PT-symmetry. 
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t1 = 3,  t2 = 1

Region II – similar to broken symmetry of the decoupled PT trimer 

Central PT-symmetric system  
approximately de-couples due 
to localization effect 
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Gapped case: exceptional points 
Two broken PT-symmetry regions are delineated by exceptional points  
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Coalesced zero-energy mode: Region II EP 
Superficially, the Region II EP appears to be second-order.  But it is 
actually third order (EP3). 

Puiseux expansion is typical of EP2 
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But the coalescence occurs at 
with the condition: 
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eik = −t2 /t1

Two states are coalescing with 
the localized zero-energy mode     
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t1 = 3,  t2 = 1



0.0001

0.01

1

100

10000

1x106

1x108

0 10 20 30 40 50
0.0001

0.01

1

100

10000

1x106

1x108

0 10 20 30 40 50

0.0001

0.01

1

100

10000

1x106

1x108

0 10 20 30 40 50

0.0001

0.01

1

100

10000

1x106

1x108

0 10 20 30 40 50
0.0001

0.01

1

100

10000

1x106

1x108

0 10 20 30 40 50

0.0001

0.01

1

100

10000

1x106

1x108

0 10 20 30 40 50

Region IA evolution: localized zero-energy state 
Fractional decay occurs due to localized zero-energy state 
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Region IA evolution: localized zero-energy state 
Fractional decay occurs due to localized zero-energy state 

zero-energy pole:     
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Resonance poles: 
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Zero-energy state EP3 dynamics 
Influence of the EP3 involving the localized zero-energy state can be felt  
in the survival probability 

nth order pole:     
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A(t) ~ tn−1e−izt
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Conclusions 

!   Reservoir-assisted PT-symmetry breaking 

!   Localized zero-energy mode 
!  comparable to the topological interface mode 
    observed in a photonic lattice experiment 

!   Higher-order EPNs formed with localized zero-energy 
     mode 

!   Characteristic non-Markovian power law growth 

We considered a PT-symmetric system with SSH reservoirs 
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P(t) ~ t2N−2

S. Garmon and K. Noba, Phys. Rev A 104, 062215 (2021) 
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P(t) = A(t) 2 ~ (1+ C1t + C2t
2 )e−γ t

Modification of exponential decay near EPs 

Exponential decay can be modified in the vicinity of 
exceptional points 

Consider two coalescing resonance states 
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E −H
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degenerate eigenvalues 
gives a double pole     
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A(t) ~ (1 + Ct)e−iE Bt−γ t/2

M. L. Goldberger and K. M Watson, Phys. Rev. 136, B1472 (1964). 

J. S. Bell and C. J. Goebel, Phys. Rev. 138, B1198 (1965). 



Experiment: EP2B power law-exponential decay  

The power-law exponential  
decay has been verified in a 
microwave cavity experiment 

Rabi oscillations at exceptional points in microwave billiards

B. Dietz,1 T. Friedrich,1 J. Metz,1 M. Miski-Oglu,1 A. Richter,1,* F. Schäfer,1 and C. A. Stafford2

1Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
2Physics Department, University of Arizona, 1118 East 4th Street, Tucson, Arizona 85721, USA

!Received 3 August 2006; published 2 February 2007"

We experimentally investigated the decay behavior with time t of resonances near and at exceptional
points, where two complex eigenvalues and also the associated eigenfunctions coalesce. The measurements
were performed with a dissipative microwave billiard, whose shape depends on two parameters. The t2

dependence predicted at the exceptional point on the basis of a two-state matrix model could be verified.
Outside the exceptional point the predicted Rabi oscillations, also called quantum echoes in this context,
were detected.

DOI: 10.1103/PhysRevE.75.027201 PACS number!s": 05.45.Mt, 41.20.Jb, 03.65.Nk, 03.65.Vf

In quantum mechanics many dynamical processes are
dominated by !avoided" level crossings. A crossing of two
eigenvalues requires the variation of at least two parameters.
It has been known for many years that near a crossing the
two energy surfaces form two sheets of a double cone #1,2$.
The apex of the double cone is associated with a singularity
and called a diabolic point !DP" #3,4$. A DP occurs in Her-
mitian Hamiltonians. Phenomena related to a DP, as, e.g.,
geometric phases, have been studied theoretically in various
generalizations of Berry’s original paper !see, e.g., #5,6$ and
references therein" and experimentally, e.g., in #7$ with a
microwave billiard. For non-Hermitian Hamiltonians, as
those used for the theoretical description of dissipative sys-
tems, a topologically different singularity may appear: an
exceptional point !EP" #8$—there not only the eigenvalues
but also the associated eigenstates coalesce #9$. Thus EPs are
not only singularities of the spectrum but also of the eigen-
states. They have been observed in laser induced ionizations
of atoms #10$, crystals of light #11$, electronic circuits #12$,
the propagation of light in dissipative media #13,14$, and in
microwave billiards #15–17$ and also appear in many
theoretical models: e.g., in that used for the decay of
superdeformed nuclei #18$, phase transitions and avoided
level crossings #19,20$, geomagnetic polarity reversal
#21$, tunneling between quantum dots #22$, and in the
context with the crossing of two Coulomb blockade
resonances #23$.

Exceptional points give rise to interesting phenomena
such as level crossings and geometric phases #4,17,24$. In
this Brief Report we present interesting experimental results
on the time decay of resonances in the vicinity of and at
an EP. Close to an EP, the time spectrum exhibits—besides
the decay of the isolated resonances—oscillations with a
fixed frequency; these are called quantum echoes #25$. Quan-
tum echoes occur due to the transfer of energy between the
two nearly degenerate resonances. At the EP their vanishing
and a quadratic time dependence of the resonance amplitude
was predicted. This time dependence is a characteristic prop-
erty of EPs with exactly two coinciding eigenvalues. In gen-
eral more than two eigenvalues may coincide at an EP, how-

ever, the coincidence of two eigenvalues is the most
probable.

For wavelengths longer than twice the height of the
microwave billiard the scalar Helmholtz equation of the elec-
tric field strength in a cylindric microwave billiard is equiva-
lent to the Schrödinger equation for the wave functions in a
quantum billiard of corresponding shape !see, e.g., #26,27$".
Thus aside from their intrinsic interest, flat microwave bil-
liards yield a possibility to gain experimental insight into
properties of the eigenvalues and eigenfunctions of two-
dimensional quantum billiards. We used a coupled pair
of dissipative, cylindric, and flat microwave billiards manu-
factured of copper to mimic the two-level system required
for an EP to occur #15–17$; a sketch is shown in Fig. 1. It is
obtained by dividing a circular microwave billiard with a
barrier made from copper into two approximately equal
parts differing in their areas by about 5%. Due to this
slight difference in size the twofold degeneracy of the
eigenfrequencies of the circular billiard is lifted, that is the

*richter@ikp.tu-darmstadt.de

FIG. 1. Sketch of the experimental setup: In the microwave
billiard !right part" the parameter s refers to the length of the slit
and ! to the position of the semicircular Teflon® disc, measured
from the billiard center c. The antenna positions are shown as
crosses. The vectorial network analyzer !left part" measures the ra-
tio of the power of the signals received at the left antenna 1 and
emitted at the right antenna 2, %S12%2, and their relative phase.
Shown is a part of a typical transmission spectrum measured in dB.
The arrow points at two nearly degenerate resonances which for a
certain choice of the parameters s and ! coalesce at the exceptional
point at 2.757±0.001 GHz.
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Hence G̃12" t# decays exponentially with a decay constant of
$̄ /2 and oscillates with a high, not resolvable angular fre-
quency "̄. The physical value # /2% denotes the much lower
" R& "̄# echo frequency. It corresponds to the Rabi frequency
first observed in NMR and optical pumping )32* and also
well known in quantum optics )33* , nuclear physics )18* , and
quantum computing )34* .

As was pointed out already in )18,22* the imaginary part
of the echo frequency # /2% adds to the decay, while the real
part describes the oscillation between the two resonances. As
a consequence, the quantum echoes vanish if # is purely
imaginary. This happens for all subcritical couplings, that is
for slit openings s' sEP at the critical Teflon® disc position
(=(EP. For overcritical couplings, i.e., for s) sEP, the quan-
tum echoes persist for all Teflon® disc positions, while ex-
actly at an EP both the real and imaginary part of the echo
frequency # /2% vanish. Then, with Eq. "3b# a quadratic
time dependency of the echo amplitude

lim
" s,(#→EP

!G̃12" t#!2 $
!2

E+E−
t2e−$̄t " 4#

is obtained. This dependency can also be verified by an
exact calculation based on Eq. "2# evaluated at the EP. It is
consistent with the result given in )35* .

The EPs were localized in the parameter plane + s ,(, by
varying the position of the Teflon® disc and the slit opening
and measuring crossings and avoided crossings of the fre-
quencies and widths of the resonances which coincide at the
EP )36* . In parallel we performed measurements of the nodal
domains of the eigenfunction. For a more detailed descrip-
tion see, for example, )17* . Since the time behavior is ex-
tremely sensitive in the vicinity of an EP, the Teflon®
disc position and the opening of the slit were changed in
steps of 0.5 mm. We were able to localize two EPs below
3 GHz, the first at 2.757±0.001 GHz and the second at
2.806±0.001 GHz. In this frequency range the pairs of reso-
nances which coalesce at the EP can be treated as isolated.
Hence the two-level model is applicable. Since both EPs
exhibit the same decay behavior with time, we only show the
results for the first.

The decay of the resonances with time was deduced
from the transmission spectra by a fast Fourier transforma-
tion. For its computation a narrow frequency range of
about 0.3 GHz was chosen around the doublet and a
Hamming window function was used. We checked that the
choice of the latter does not affect the results. The square
of this transformation and a fit of Eq. "3b# to these data
are shown in Fig. 2 for the critical coupling, that is for s
=sEP and a subcritical Teflon® disc position (' (EP.
The model )Eq. "3b#* describes the measured signal very
well starting from a time larger than 30±5 ns, where a peak
indicates the time the signal needs to travel through the co-
axial cables connecting the VNA with the antenna, up to
times, where the noise level is reached "at about −65 dB#.

The echo frequency equals # /2%=1.1±0.2 MHz, which
approximately corresponds to the spacing between the two
eigenfrequencies.

The time decay of the resonances for s=sEP and (=(EP is
shown in Fig. 3 together with the theoretical prediction
)Eq. "4#* . The quantum echoes disappear as they are an
interference effect of two eigenmodes. Moreover, the coales-
cence of the two eigenmodes has an influence on the
time decay behavior. An isolated resonance decays simply
exponentially, whereas at an EP the time dependence of the
echo amplitude is quadratic. Hence the time decay behavior
of the resonances provides information on the nature of a
degeneracy, and, consequently, the location of EPs in the
parameter plane. In order to check how close we are to the
EP we performed an additional fit of the function in Eq. "4#
to the experimental data, however, this time with a t* instead
of a t2 dependence of the echo amplitude, yielding *
=1.91±0.04. This small deviation from the t2 dependence
and that observed in Fig. 3 for times larger than t$2 +s are
due to the fact that the EP is not hit exactly. It expresses how
sensitive this experiment is to tiny changes in the parameters.
If the real parts of the two eigenvalues of the Hamiltonian
)Eq. "2#* coincide, R and therefore # are purely imaginary
for subcritical coupling, where s' sEP, and we expect for the
time dependence a sum of exponentials. Equation "3b# again
provides a very good description of the measured time de-
pendence. However, we were not able to verify that at the
critical Teflon position (=(EP the quantum echoes vanish for
subcritical couplings. It seems that the resonance frequencies
"1 and "2 of the two uncoupled resonators are only approxi-

FIG. 2. The model )Eq. "3b#* describes the time spectrum
very well. This is shown here for the exceptional point
at 2.757±0.001 GHz for the parameter setting s=sEP$48 mm,
(=(EP−2 mm$21.5 mm. The echo frequency is
# /2%$1.1±0.2 MHz.

FIG. 3. At the EP the quantum echoes disappear and the pre-
dicted quadratic time decay of the echo amplitude could be verified.
Shown is the result for the EP at 2.757±0.001 GHz together with
the theoretical prediction )Eq. "4#* .
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first observed in NMR and optical pumping )32* and also
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of the echo frequency # /2% adds to the decay, while the real
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a consequence, the quantum echoes vanish if # is purely
imaginary. This happens for all subcritical couplings, that is
for slit openings s' sEP at the critical Teflon® disc position
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tum echoes persist for all Teflon® disc positions, while ex-
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exact calculation based on Eq. "2# evaluated at the EP. It is
consistent with the result given in )35* .

The EPs were localized in the parameter plane + s ,(, by
varying the position of the Teflon® disc and the slit opening
and measuring crossings and avoided crossings of the fre-
quencies and widths of the resonances which coincide at the
EP )36* . In parallel we performed measurements of the nodal
domains of the eigenfunction. For a more detailed descrip-
tion see, for example, )17* . Since the time behavior is ex-
tremely sensitive in the vicinity of an EP, the Teflon®
disc position and the opening of the slit were changed in
steps of 0.5 mm. We were able to localize two EPs below
3 GHz, the first at 2.757±0.001 GHz and the second at
2.806±0.001 GHz. In this frequency range the pairs of reso-
nances which coalesce at the EP can be treated as isolated.
Hence the two-level model is applicable. Since both EPs
exhibit the same decay behavior with time, we only show the
results for the first.

The decay of the resonances with time was deduced
from the transmission spectra by a fast Fourier transforma-
tion. For its computation a narrow frequency range of
about 0.3 GHz was chosen around the doublet and a
Hamming window function was used. We checked that the
choice of the latter does not affect the results. The square
of this transformation and a fit of Eq. "3b# to these data
are shown in Fig. 2 for the critical coupling, that is for s
=sEP and a subcritical Teflon® disc position (' (EP.
The model )Eq. "3b#* describes the measured signal very
well starting from a time larger than 30±5 ns, where a peak
indicates the time the signal needs to travel through the co-
axial cables connecting the VNA with the antenna, up to
times, where the noise level is reached "at about −65 dB#.

The echo frequency equals # /2%=1.1±0.2 MHz, which
approximately corresponds to the spacing between the two
eigenfrequencies.

The time decay of the resonances for s=sEP and (=(EP is
shown in Fig. 3 together with the theoretical prediction
)Eq. "4#* . The quantum echoes disappear as they are an
interference effect of two eigenmodes. Moreover, the coales-
cence of the two eigenmodes has an influence on the
time decay behavior. An isolated resonance decays simply
exponentially, whereas at an EP the time dependence of the
echo amplitude is quadratic. Hence the time decay behavior
of the resonances provides information on the nature of a
degeneracy, and, consequently, the location of EPs in the
parameter plane. In order to check how close we are to the
EP we performed an additional fit of the function in Eq. "4#
to the experimental data, however, this time with a t* instead
of a t2 dependence of the echo amplitude, yielding *
=1.91±0.04. This small deviation from the t2 dependence
and that observed in Fig. 3 for times larger than t$2 +s are
due to the fact that the EP is not hit exactly. It expresses how
sensitive this experiment is to tiny changes in the parameters.
If the real parts of the two eigenvalues of the Hamiltonian
)Eq. "2#* coincide, R and therefore # are purely imaginary
for subcritical coupling, where s' sEP, and we expect for the
time dependence a sum of exponentials. Equation "3b# again
provides a very good description of the measured time de-
pendence. However, we were not able to verify that at the
critical Teflon position (=(EP the quantum echoes vanish for
subcritical couplings. It seems that the resonance frequencies
"1 and "2 of the two uncoupled resonators are only approxi-

FIG. 2. The model )Eq. "3b#* describes the time spectrum
very well. This is shown here for the exceptional point
at 2.757±0.001 GHz for the parameter setting s=sEP$48 mm,
(=(EP−2 mm$21.5 mm. The echo frequency is
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FIG. 3. At the EP the quantum echoes disappear and the pre-
dicted quadratic time decay of the echo amplitude could be verified.
Shown is the result for the EP at 2.757±0.001 GHz together with
the theoretical prediction )Eq. "4#* .

BRIEF REPORTS PHYSICAL REVIEW E 75, 027201 "2007#

027201-3

B. Dietz, et al, Phys. Rev. E 75, 027201 (2007). 

S. Bittner, et al, Phys. Rev. E 89, 032909 (2014). 


