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Exceptional points: definition

An exceptional point (EP) is a branch point in parameter
space at which two or more eigenstates coalesce

» Hamiltonian cannot be diagonalized at the EP
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Exceptional points: definition

An exceptional point (EP) is a branch point in parameter
space at which two or more eigenstates coalesce

» Hamiltonian cannot be diagonalized at the EP

> This is distinct from the usual concept of
degeneracy in quantum syst

> Exceptional points can onl
non-Hermitian systems



Exceptional points: Puiseux expansion

Eigenvalues in the vicinity of the exceptional points can be
expanded in characteristic Puiseux expansion:
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Exceptional points: order mismatch

Usually, the Jordan block dimension and the root in the Puiseux
expansion will match; but not always.

Third order (EP3) : /EEP _Cl 0 \
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expectation:
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Exceptional points: order mismatch

Usually, the Jordan block dimension and the root in the Puiseux
expansion will match; but not always.

Third order (EP3) : /EEP _Cl 0 \
R'HR~| 0 E—

instead, we may have
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EP2-like expansion + Taylor series

G. Demange and E.-M. Graefe, J. Phys. A:



Exceptional points: non-Hermitian systems

Exceptional points can only occur in non-Hermitian
systems

» Open quantum systems (implicit non-Hermiticity)

Non-Hermiticity 1s associated with the energy continuum
that describes the environment (structured reservoir)

> Explicitly non-Hermitian syste

Example: PT-symmetric, pseudo-Hermit

Coupled mode theory: assumes relev
described in terms of a few key mod




PT-symmetric systems

Parity-time (PT) symmetry: studied as a potential replacement
for Hermitian symmetry in quantum mechanics.

C. M. Bender, D. C. Brody and H. F. Jones,
Phys. Rev. Lett. 89, 270401 (2002).

Simple PT-symmetric system:
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Open quantum systems

Open quantum systems: microscopic description of the
environment in terms of an energy continuum

H=Yed'd + [  dkEcic, + Y [" dkV (cld +d’c,)
j=1

.

Energy continuum E ’

“structured reservoir”

P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen,
and S. Bay, Rep. Prog. Phys. 63, 455 (2000). |




Open quantum systems

Open quantum systems: microscopic description of the
environment in terms of an energy continuum

H=Yed'd + [  dkEcic, + Y [" dkV (cld +d’c,)
j=1 j=1
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Energy continuum E ’

Interaction between discrete syst
gives rise to resonance states witr
Y4
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Origin of resonance 1n open quantum systems

The resonance appears in quantum systems due to the
interaction of discrete states with the continuum

: - r
resonance elgenvalue. e 1 7

P(t)=Pe ™ -

Examples: nuclear decay, atomic relaxati

However:
continuum threshold introduces
deviations from exponential de




So far, I have introduced two types of non-Hermitian systems
* PT-symmetric systems (explicit non-Hermiticity)
* open quantum systems (1implicit non-Hermiticity)

In the next step, I will combine these two 1n order to observe a
qualitatively distinct type of PT-symmetry breaking

However, first I will need to introduce a _
Protected edge states of a topological ins

Su-Schrieffer-Heeger (SSH)



Su-Schrieffer-Heeger (SSH) model

Two topological edge states can appear with £~ 0

t <t
(trivial)

dimers

t, > 1,
(topological) T tz 1

Left-hand
state




Edge states in the SSH model: spectrum
E

Most SSH energy levels are =

organized into two bands

2 2
Ek = w_u\/i?1 + i 2t1t2 cosk




An open PT-symmetric SSH model

In this work we incorporate a PT-symmetric potential into an
SSH model to study resonance and topological properties.

SSH reservoir

PT-symm
trimer

S. Garmon and K. Noba, Phys.




An open PT-symmetric SSH model
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Sublattice operator:

Sublattice projectors:




An open PT-symmetric SSH model
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Sublattice operator:

Pseudo-anti-Hermitian symmetry:
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An open PT-symmetric SSH model
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Outgoing waves (Siegert)
boundary condition:

n,x)

y, =y




An open PT-symmetric SSH model
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Spectrum consists of three types of solutions

two SSH energy bands E

Four ordinary discrete solutions: ,
P(z)=y°z" + [y4 - 2y

(double quadratic) a (tlz 3 t; -28

Two zero-energy modes: ‘1,1}2” >,



/ero-energy states

For any choice of the parameter values, there exist two
(edge-like) zero-energy states.

But instead of right and left-handed modes, here we have
localized and anti-localized edge-like modes

Localized condition:
ik
e =—g/ﬁ

(assumption: ¢, >t,)




/ero-energy states

For any choice of the parameter values, there exist two
(edge-like) zero-energy states.

But instead of right and left-handed modes, here we have
localized and anti-localized edge-like modes

Zh
n,x

Localized condition:
ik
e =—g/ﬁ

Anti-localized:
ik
e" =t /t‘2

(assumption: ¢, >t,)




/ero-energy states

For any choice of the parameter values, there exist two
(edge-like) zero-energy states.

But instead of right and left-handed modes, here we have
localized and anti-localized edge-like modes

Localized condition:
ik
e =—g/ﬁ

localized state has been observed in experiment...



Observation of localized zero-energy state
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Observation of localized zero-energy state
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Spectral phase diagram

The four polynomial solutions from P (z) =0 can be categorized
by the phase diagram:

(Original SSH model)
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Spectral phase diagram

The four polynomial solutions from P (z) =0 can be categorized
by the phase diagram:

f g (Trimer + SSH chains)
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Reservoir-assisted PT-symmetry breaking

We find there are two regions of broken PT-symmetry.

Region I — PT-symmetry is broken mainly due to

with the continuum.
Reservoir-assi



Reservoir-assisted PT-symmetry breaking

We find there are two regions of broken PT-symmetry.
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Central PT-symmetric system
approximately de-couples due
to localization effect

Region II — similar to broken symmetry of the d .



Gapped case: exceptional points

Two broken PT-symmetry regions are delineated by exceptional points
g=3.8




Coalesced zero-energy mode: Region II EP

Superficially, the Region Il EP appears to be second-order. But it is

actually third order (EP3).
g=2.2

Puiseux expansion is typical of EP2
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Region IA evolution: localized zero-energy state

Fractional decay occurs due to localized zero-energy state
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Region IA evolution: localized zero-energy state

Fractional decay occurs due to localized zero-energy state
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Zero-energy state EP3 dynamics

Influence of the EP3 involving the localized zero-energy state can be felt

in the survival probability |
nth order pole:  A(t) ~ gl izt
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Conclusions

We considered a PT-symmetric system with SSH reservoirs
> Reservoir-assisted PT-symmetry breaking

> Localized zero-energy mode
» comparable to the topological interface mode
observed in a photonic lattice experiment

» Higher-order EPNs formed wi
mode |
» Characteristic non-Marko

P(#) ~ $2N-2

S. Garmon and K. Noba, Phys. Rev







Modification of exponential decay near EPs

Exponential decay can be modified in the vicinity of
exceptional points

Consider two coalescing resonance states

A(t)=(qle™|q) = %m,fclsdz e'iit U=

Alt)~ (1+Cre B2 p(g)= |2

M. L. Goldberger and K. M Watson, Phys. Rev. 136,
J.S. Bell and C. J. Goebel, Phys. Rev. 138, B1198 (19



Experiment: EP2B power law-exponential decay

125 ¢

|

The power-law exponential
decay has been verified in a
microwave cavity experiment
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