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Abstract

We study fluctuation theorems for open quantum systems using the approach of quantum
master equations, and examine the thermodynamic quantities that appear in those fluctu-
ation theorems. The approach of Markovian quantum master equations to the fluctuation
theorems was developed by Esposito and Mukamel [Phys. Rev. E 73, 046129 (2006)]. We
show that their discussion can be formally generalized to the case of a non-Markovian
heat bath in the case where the local system is linearly connected to the Gaussian heat
bath with the spectrum distribution of the Drude form. However, we found that the
thermodynamic quantities that appear in those fluctuation theorems can be ill-defined or
inconsistent with each other by numerically simulating the spin-boson model.
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Chapter 1

Introduction

The research of non-equilibrium statistical physics has been energetically developed for
the last decade in the context of fluctuation theorems and the Jarzynski equality. The
fluctuation theorem is a symmetry relation with respect to the time reversal of a process
and is characterized in terms of the entropy production. The Jarzynski equality is a rela-
tion that connects a non-equilibrium quantity and an equilibrium quantity; it relates the
average of the non-equilibrium work between two states and their free energy difference.
The Jarzynski equality can be derived from the fluctuation theorem and we will briefly
explain the derivation below.

The fluctuation theorem was originally found in classical systems and studied both
in stochastic [8, 9] and deterministic approaches [20, 25]. The fluctuation theorem for a
quantum system was first discussed for an essentially isolated system [21,33]; the case of
open quantum systems is of great interest in recent years [6,10–12,23,27,29]. Kurchan [21]
considered the scheme called the two-measurement scheme and it has become a standard
approach to the fluctuation theorem of quantum systems.

The two-measurement scheme in an isolated quantum system is as follows:

1. Prepare the system in the canonical equilibrium state;

2. Measure the energy of the system by projecting the system to the nth energy eigen-
state |n〉;

3. Let the system evolve for the time interval τ ∈ (0, T ] under some external fields
manipulated according to the control parameter λ(τ);

4. Measure the energy of the system again and project the state to the mth energy
eigenstate |m〉 at the end of the process.

Let us show the quantum fluctuation theorem for an isolated system by the two-measurement
scheme, following Talkner et al. [28, 29]. Even though the system is isolated, because of
the control parameter λ(τ) and the fact that the measurement is dissipative, the energy
change occurs. Since no heat is produced in an isolated system, the difference of the mea-
sured energy is regarded as the work done on the system: W = Em−En. The probability
to obtain the work W during the interval (0, T ] is given by

pF
T,0(W ) =

∑

n,m

δ(W − (Em − En))〈m|ÛF(T, 0)|n〉e
−βEn

Z(0)
〈n|Û †

F(T, 0)|m〉 (1.1)
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and its characteristic function reads

GF
T,0(u) ≡

∫
dW eiuW pF

T,0(W )

=

∫
dW eiuW

∑

n,m

δ(W − (Em − En))〈m|ÛF(T, 0)|n〉e
−βEn

Z(0)
〈n|Û †

F(T, 0)|m〉

=
∑

n,m

eiu(Em−En)〈m|ÛF(T, 0)|n〉e
−βEn

Z(0)
〈n|Û †

F(T, 0)|m〉

=
1

Z(0)
Tr eiuĤ(T )ÛF(T, 0)e−(iu+β)Ĥ(0)Û †

F(T, 0), (1.2)

where Ĥ(τ) is the Hamiltonian in the Schrödinger picture with explicit time dependence
because of the control parameter λ(τ), ÛF(T, 0) is the time evolution operator from τ = 0
to τ = T , and Z(τ) is the partition function at time τ with the inverse temperature β, i.e.
Z(τ) = Tr exp[−βĤ(τ)]. The subscript and superscript F stands for the forward process
under the forward protocol.

Next we set v := −u + iβ. Since GF
T,0(u) is analytic in the region S = {u|0 ≤ Im u ≤

β,−∞ < Re u < ∞}, GF
T,0(v) is also analytic. Using v, we have

Z(0)GF
T,0(u) = Tr e−(iv+β)Ĥ(T )ÛF(T, 0)eivĤ(0)Û †

F(T, 0)

= Tr eivĤ(0)Û †
F(T, 0)e−(iv+β)Ĥ(T )ÛF(T, 0). (1.3)

Let us now consider the reversed process Θ̂|m〉 → Θ̂|n〉 with the backward protocol,
where Θ̂ is a time-reversal operator. We denote the quantities for the reversed process un-
der the backward protocol with the subscript and superscript R. The Schrödinger equation
for the time evolution operator ÛR(τ, 0) with the backward protocol reads

i! d

dτ
ÛR(τ, 0) = Ĥ(T − τ)ÛR(τ, 0), (1.4)

and the solution ÛR(T, 0) can be written in terms of the forward evolution operator
ÛF(T, 0) as [2, 3]

ÛR(T, 0) = Θ̂Û †
F(T, 0)Θ̂. (1.5)

The probability to obtain the work W along the reversed processes under the backward
protocol during the interval (0, T ] is given by

pR
T,0(W ) =

∑

Θ̂n,Θ̂m

δ(W − (En − Em))〈Θ̂n|ÛR(T, 0)|Θ̂m〉e
−βEm

Z(T )
〈Θ̂m|Û †

R(T, 0)|Θ̂n〉

=
∑

n,m

δ(W − (En − Em))〈n|Û †
F(T, 0)|m〉e

−βEm

Z(T )
〈m|ÛF(T, 0)|n〉. (1.6)

Then, the characteristic function of pR
T,0(W ) reads

GR
T,0(u) ≡

∫
dW eiuW pR

T,0(W ) =
1

Z(T )
Tr eiuĤ(0)Û †

F(T, 0)e−(iu+β)Ĥ(T )ÛF(T, 0). (1.7)
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Comparing (1.7) with (1.3), we have

Z(0)GF
T,0(u) = Z(T )GR

T,0(v) = Z(T )GR
T,0(−u + iβ), (1.8)

or applying the inverse Fourier transform,

pF
T,0(W ) =

Z(T )

Z(0)
eβW pR

T,0(−W ) = e−β(∆F−W )pR
T,0(−W ). (1.9)

This is called the Tasaki-Crooks fluctuation theorem. Taking the sum over all the possible
values of W , we have

eβ∆F
∑

W

pF
T,0(W )e−βW =

∑

W

pR
T,0(−W ) = 1, (1.10)

〈e−βW 〉 = e−β∆F . (1.11)

The angular bracket is the average over W of the forward process. This relation is called
the quantum Jarzynski equality. It states that the free energy difference can be obtained
by calculating the non-equilibrium average 〈e−βW 〉.

The reason why we can formulate such a beautiful relation, written in terms of the
thermodynamic quantities, is due to the fact that the initial state is prepared as the
canonical equilibrium state and due to the unitary time evolution.

When we discuss the fluctuation theorem in open quantum systems, these nice prop-
erties are lost in general unless we directly solve the total isolated system of a local system
and its environment. First, we cannot calculate the heat that flows out of the local system
under the two-measurement scheme, unless we explicitly measure the energy change of the
environment. Second, a local system is not precisely in the canonical equilibrium state in
an environment, because it is the total system that is in the canonical equilibrium state.
Third, the evolution of the system in an environment is not unitary. The total system
evolves unitarily, but the reduced system effectively obeys non-unitary evolution due to
dissipation.

In order to overcome the first problem, the approach of the quantum master equation
was developed by Esposito and Mukamel instead of the two-measurement scheme. The
present Thesis is based on this approach, which we will explain in detail below. One
usually assumes a weak coupling between the system and the environment, and then the
second problem resolves. For the third problem, approximations such as the Born-Markov
approximation and the rotating-wave approximation give a simple equation of motion for
the reduced density matrix, and hence they are widely used in order to treat the non-
unitary evolution of the open quantum system. The discussion by Esposito and Mukamel
is based on these assumption and approximations.

The basic strategy of the approach of the quantum master equation is to write down
the dynamics of the density matrix of the system in the reservoir in a form of a birth-
death master equation. Then we define the thermodynamic quantities and derive the
fluctuation theorems by the analogy with the classical stochastic processes; see Appendix
A for the detail. The definitions (2.53) and (2.57) of the heat q̃m′,m(τ) and the work
w̃m′,m(τ) in the discussion by Esposito and Mukamel are analogous to the ones of the
heat in (A.2) and the work (A.3) for the classical stochastic process. Note, however, that
the definitions of q̃m′,m(τ) and w̃m′,m(τ) are only hypothetical and their validity should be
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examined (Sections 2.3 and 3.1.4). The same goes for the “transition rate” Wτ (m′, m) or
Wτj(nj, nj−1; {σ̂(τj)}) that appears in the birth-death master equation (2.16) or (3.16).
What truly exists is the evolution of the density matrix ρ̂(τ) in quantum systems; it is by
no mean obvious whether the complete analogy with the classical Markovian stochastic
process exists.

The aim of the present Thesis is to answer the following question: Is the approach
by Esposito and Mukamel valid in general, including the region where none of the above
assumption or approximations are inappropriate?

The plan of the present Thesis is as follows. We first review the fluctuation theorem
for Markovian quantum master equations developed by Esposito and Mukamel in 2006
in Chapter 2. In Chapter 3, we show that the discussion by Esposito and Mukamel can
be formally generalized to the fluctuation theorem without approximations for a system
linearly connected to a Gaussian heat bath. We then examine whether the thermodynamic
quantities that we defined there have the correct properties. We numerically examined
the behavior of the dynamics of the spin-boson model, and found that some of those
thermodynamic quantities can be ill-defined or inconsistent with each other if we do not
use the approximations.
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Chapter 2

Fluctuation theorems for Markovian
quantum master equations

In the present chapter, we review the fluctuation theorem for Markovian master equations
given by Esposito and Mukamel [12].

We consider a system in an environment, and possibly some external fields are applied
on the system. Hence, the Hamiltonian of the total system consists of the following:

Ĥtot(t) = ĤS(t) + Ĥenv + Ĥint, (2.1)

ĤS(t) := ĤS + Ĥext(t). (2.2)

We then trace out the environmental degrees of freedom and consider the time evolution
of the system. In paper by Esposito and Mukamel, the dynamics is not specified for the
quantum master equation.

2.1 Quantum trajectory and the birth-death master
equation

2.1.1 Quantum trajectory

They assume the situation where the Markovian approximation is good, so that the evo-
lution of the reduced density matrix |ρ̂(τ)〉〉 of the system is described by a Lindblad-type
quantum master equation,

d

dτ
|ρ̂(τ)〉〉 = ˆ̂K(τ)|ρ̂(τ)〉〉, (2.3)

where we used the following notation:

|a, b〉〉 ≡ |a〉〈b|, (2.4)

〈〈a, b|c, d〉〉 ≡ 〈a|c〉〈d|b〉. (2.5)

In (2.3), ˆ̂K is a dynamical semi-group acting on the Liouville space.
The evolution of the density matrix does not directly lead to the fluctuation theo-

rem. In order to investigate the fluctuation theorem analogously to classical stochastic
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processes, they constructed the “quantum trajectory” for the dynamics and discussed the
forward and backward probabilities on the trajectory.

Let us consider the event that the jumps between states occur N times during the
interval [0, t], and refer to those times as τ1, . . . , τN . We denote τ0 = 0 and τN+1 = t.
Note that we are not discretizing the dynamics. The original dynamics is continuous
in time and we are merely labeling the transitions. For the set of times {τj} when the
transitions take place, we obtain a set of N + 2 reduced density matrices by solving the
quantum master equation:

{ρ̂(0), ρ̂(τ1), ..., ρ̂(τN), ρ̂(t)}. (2.6)

The crucial point of the discussion by Esposito and Mukamel is to introduce the time-
dependent basis which diagonalizes the reduced density matrix at each time (i.e. eigenvectors),
and represent the reduced density matrices as

〈m′
τ |ρ̂(τ)|mτ 〉 = 〈〈m′

τmτ |ρ̂(τ)〉〉 = Pτ (m)δm′m,

|ρ̂(τ)〉〉 =
∑

m

|mτ 〉Pτ (m)〈mτ |, (2.7)

where we suppressed the subscript τ for mτ and m′
τ on the right-hand side. Then we

can regard the basis {|mτ 〉} as a set of states with probability {Pτ (m)} at time τ . We
label the elements of the basis |mτ 〉 in the non-decreasing order of eigenvalues of ρ̂(τ). By
connecting these states, we are now able to construct a quantum trajectory (Fig. 2.1):

n(τ) = n0 → n1 → n2 · · · → nN , (2.8)

where nj represents the state after the jth transition at time τj. Hence, n(τ) = nj for
τj ≤ τ < τj+1 when j < N , and n(τ) = nN for τN ≤ τ ≤ t.

2.1.2 Equation of motion in the mapped space

The evolution in the Liouville space is thereby mapped to the evolution in the discretized
space. The master equation for the distribution Pτ (m) on the mapped space can be
obtained from (2.3) as follows:

〈〈mτmτ |
d

dτ
ρ̂(τ)〉〉 =

∑

m′

〈〈mτmτ | ˆ̂K(τ)|m′
τm

′
τ 〉〉〈〈m′

τm
′
τ |ρ̂(τ)〉〉, (2.9)

where we used the completeness relation on the diagonalizing basis,

∑

m′

|m′
τm

′
τ 〉〉〈〈m′

τm
′
τ |ρ̂(τ)〉〉 =

∑

m′

|m′
τ 〉〈m′

τ |ρ̂(τ)|m′
τ 〉〈m′

τ |

=
∑

m′

|m′
τ 〉Pτ (m

′)〈m′
τ |

= |ρ̂(τ)〉〉. (2.10)
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Figure 2.1: A quantum trajectory n(τ) for N = 3 in the case of a two-level system.
Precisely speaking, the state m0 and m1 are time-dependent, and hence the axis must
be dynamically modified, but it is suppressed here for simplicity. The labels with tilder
represent the backward process.

The left-hand side of (2.9) can be written as

〈〈mτmτ |
d

dτ
ρ̂(τ)〉〉 = 〈mτ |

d

dτ
ρ̂(τ)|mτ 〉 =

d

dτ
Pτ (m) − 〈 d

dτ
mτ |mτ 〉Pτ (m) − 〈mτ |

d

dτ
mτ 〉Pτ (m)

=
d

dτ
Pτ (m) −

(
d

dτ
〈mτ |mτ 〉

)
Pτ (m) =

d

dτ
Pτ (m), (2.11)

and thus (2.9) reads

d

dτ
Pτ (m) =

∑

m′

Wτ (m,m′)Pτ (m
′), (2.12)

where

Wτ (m,m′) ≡ 〈〈mτmτ | ˆ̂K(τ)|m′
τm

′
τ 〉〉. (2.13)

The notation of the arguments m and m′ in Wτ (m,m′) is opposite to Esposito and
Mukamel. We put the state before the transition on the right (m′), and the state af-
ter the transition on the left (m). Since the probability is conserved during the evolution
as

0 =
d

dτ
Tr ρ(τ) =

d

dτ

∑

m

Pτ (m) =
∑

m′

(
∑

m

Wτ (m,m′)

)
Pτ (m

′), (2.14)

we have
∑

m

Wτ (m,m′) = 0, i.e. Wτ (m
′,m′) = −

∑

m#=m′

Wτ (m,m′). (2.15)
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As a result, we can recast the master equation in the form of a birth-death master equation:

d

dτ
Pτ (m) =

∑

m′( #=m)

(
Wτ (m,m′)Pτ (m

′) − Wτ (m
′,m)Pτ (m)

)
. (2.16)

Notice, however, that this is constructed from the solution of the original Liouville equa-
tion for the density matrix, since the time-dependent basis can be obtained only after we
compute the set of density matrices at all times.

2.1.3 Probability of a quantum trajectory

Let us denote the probability that a state never hops from nj during an interval (τj, τ) as
Pnot(τ |τj, nj). We have Pnot(τj|τj, nj) = 1 and the equation for Pnot(τ |τj, nj) is

d

dτ
Pnot(τ |τj, nj) = −




∑

m#=nj

Wτ (m,nj)



 Pnot(τ |τj, nj). (2.17)

Hence we obtain

Pnot(τ |τj, nj) = exp



−
∑

m#=nj

∫ τ

τj

dτ ′ Wτ ′(m,nj)



 . (2.18)

Then the probability µF[n(τ)] for a given trajectory n(τ) can be calculated as

µF[n(τ)] = P0(n0)

(
N∏

j=1

Pnot(τj|τj−1, nj−1)Wτj(nj, nj−1)

)
Pnot(t|τN , nN) (2.19)

= P0(n0)




N∏

j=1

exp



−
∑

m#=nj−1

∫ τj

τj−1

dτ ′ Wτ ′(m,nj−1)



Wτj(nj, nj−1)





× exp

(
−

∑

m#=nN

∫ t

τN

dτ ′ Wτ ′(m,nN)

)
, (2.20)

where the subscript F stands for the forward process. Note again that the state nj−1 is a
function of time: nj−1 = nj−1(τ ′).

2.1.4 Backward process on a quantum trajectory

Whenever we discuss fluctuation theorems, we must be careful what is meant by “time
reversal,” because there are basically two kinds of reversal. One of them is the back-
ward protocol, which simply reverts the protocol λ̃(τ) = λ(t − τ). The other one is the
time-reversed process, which reverts the protocol and the underlying dynamics (adjoint
dynamics). Their difference is discussed in Refs. [7, 18]. In both cases, we compare
the forward trajectory and its reversed trajectory. We do not need to choose the initial
probability distribution of the backward protocol process equal to the final probability dis-
tribution of the forward process. When we derive the Crooks-type fluctuation theorem,
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we set both of the initial probability distributions of the forward and backward protocol
processes as the canonical equilibrium state. In the case of the time-reversed process, the
initial probability distribution of the reversed dynamics is the same as the final probability
distribution of the forward dynamics.

In order to compare the forward quantum trajectory and the backward quantum tra-
jectory, we need to have the same time-dependent basis on both trajectories. However, it
is not possible to obtain such an evolution neither by the backward protocol nor the time-
reversed process. For instance, if we consider the time-reversed process corresponding to
the forward process of the quantum master equation, we have τ̃ = t − τ and

d

dτ̃
|ρ̃(τ̃)〉〉 =

˜̂̂
K(τ̃)|ρ̃(τ̃)〉〉. (2.21)

In a Markovian quantum master equation, a dissipation term inevitably appears because
of the Markov approximation and breaks the time-reversal symmetry:

˜̂̂
K(τ̃) *= ˆ̂K(t − τ̃). (2.22)

It means that the density matrix does not evolve in the reversed way.

Therefore, let us consider the (hypothetical) backward process of the birth-death mas-
ter equation on the mapped space,

d

dτ̃
P̃eτ (m̃) =

∑

m′

W̃eτ (m̃, m̃′)P̃eτ (m̃
′), (2.23)

with a property

W̃eτ (m,m′) = Wt−eτ (m,m′). (2.24)

Note that the initial probability of the backward process P̃ eτ0(m) and the final probability of
the forward process Pt(m) are not necessarily related. The label of time for the backward
trajectory is related to the forward one as τ̃j ↔ τN−j+1 and the value (duration) of the
time is related as τ̃j = t − τN−j+1. The label of the state is related as ñj−1 = nN−j+1, so
that the trajectory corresponding to n(τ) is

ñ(τ̃) = ñ0 → ñ1 → ñ2 · · · → ñN

= nN → nN−1 → nN−2 · · · → n0. (2.25)

The probability of the backward trajectory can be obtained in the same way as the
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forward one. We have

µB[ñ(τ̃)]

= P̃0(n0)

[
N∏

j=1

exp

(
−

∑

m

∫ eτj

eτj−1

dτ̃ ′ W̃τ̃ ′(m̃, ñj−1)

)
W̃eτj(ñj, ñj−1)

]

× exp

(
−

∑

m

∫ eτN+1

eτN

dτ̃ ′ W̃τ̃ ′(m, ñN)

)

= P̃0(n0)

[
N∏

j=1

exp

(
−

∑

m

∫ t−τN−j+1

t−τN−j+2

dτ̃ ′ Wt−τ̃ ′(m,nN−j+1)

)
WτN−j+1(nN−j, nN−j+1)

]

× exp

(
−

∑

m

∫ t

t−τ1

dτ̃ ′ Wt−τ̃ ′(m,n0)

)

= P̃0(n0)

[
N∏

j=1

exp

(
−

∑

m

∫ τN−j+2

τN−j+1

dτ ′′ Wτ ′′(m,nN−j+1)

)
WτN−j+1(nN−j, nN−j+1)

]

× exp

(
−

∑

m

∫ τ1

0

dτ ′′ Wτ ′′(m,n0)

)

= P̃0(n0)

[
N∏

j=1

exp

(
−

∑

m

∫ τj+1

τj

dτ ′′ Wτ ′′(m,nj)

)
Wτj(nj−1, nj)

]

× exp

(
−

∑

m

∫ τ1

0

dτ ′′ Wτ ′′(m,n0)

)

= P̃0(n0)

[
N∏

j=1

exp

(
−

∑

m

∫ τj

τj−1

dτ ′′ Wτ ′′(m,nj−1)

)
Wτj(nj−1, nj)

]

× exp

(
−

∑

m

∫ t

τN

dτ ′′ Wτ ′′(m,n0)

)
. (2.26)

The subscript B stands for the backward process. In the second last line, we relabeled
the index as N − j + 1 → j.

2.2 The fluctuation theorems

2.2.1 Entropy flow and entropy production

Let us now discuss fluctuation theorems using the probabilities of the forward and back-
ward trajectories. Fluctuation theorems are symmetry relations with respect to the en-
tropy production. Before going to the derivation of the fluctuation theorems, we define
the entropy flow and the entropy production in a quantum system.

The entropy of an open system is generally given by the von Neumann entropy

S(τ) ≡ −Tr ρ̂(τ)lnρ̂(τ) = −
∑

m

Pτ (m)lnPτ (m). (2.27)
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Using the birth-death master equation (2.16), the time derivative of the entropy reads

Ṡ(τ) = −
∑

m

Ṗτ (m)lnPτ (m)

= −
∑

m

∑

m′(#=m)

[Wτ (m,m′)Pτ (m
′) − Wτ (m

′, m)Pτ (m)] lnPτ (m)

= −
∑

m,m′(m #=m′)

[Wτ (m
′,m)Pτ (m)lnPτ (m

′) − Wτ (m
′,m)Pτ (m)lnPτ (m)]

= −
∑

m,m′(m #=m′)

Pτ (m)Wτ (m
′,m)ln

Pτ (m′)

Pτ (m)
. (2.28)

From the second line to the third line, we switched the index m and m′ of the first term.
In analogy with the classical stochastic process [15,22,24], we partition this to the entropy
flow Ṡe(τ) and the entropy production Ṡi(τ):

Ṡ(τ) = Ṡe(τ) + Ṡi(τ), (2.29)

Ṡe(τ) ≡ −
∑

m,m′(m#=m′)

Pτ (m)Wτ (m
′,m)ln

Wτ (m′, m)

Wτ (m,m′)
, (2.30)

Ṡi(τ) ≡
∑

m,m′(m#=m′)

Pτ (m)Wτ (m
′,m)ln

Wτ (m′,m)Pτ (m)

Wτ (m,m′)Pτ (m′)
. (2.31)

From the inequality (C1 − C2) ln(C1/C2) ≥ 0 (C1 ≥ 0, C2 > 0), the second law of
thermodynamics

Ṡi(τ) ≥ 0 (2.32)

is confirmed.
Following the discussion of classical master equations by Seifert [24], we further parti-

tion the entropy flow and the entropy production into quantities on a trajectory so that
the expectation values over the trajectories may give the above entropies. The entropy
along the trajectory n(τ) is

s(τ ; n(τ)) ≡ − ln Pτ (n(τ)), (2.33)

and the derivative reads

ṡ(τ ; n(τ)) = − Ṗτ (n)

Pτ (n)

∣∣∣∣∣
n=n(τ)

−
N∑

j=1

δ(τ − τj) ln
Pτ (nj)

Pτ (nj−1)
. (2.34)

The first term gives the contribution from the evolution without jumping to the other
states. The second term arises from the jumping process at τj. This is partitioned as

ṡ(τ ; n(τ)) = ṡe(τ ; n(τ)) + ṡi(τ ; n(τ)), (2.35)

ṡe(τ ; n(τ)) ≡ −
N∑

j=1

δ(τ − τj) ln
Wτ (nj, nj−1)

Wτ (nj−1, nj)
, (2.36)

ṡi(τ ; n(τ)) ≡ − Ṗτ (n)

Pτ (n)

∣∣∣∣∣
n=n(τ)

−
N∑

j=1

δ(τ − τj) ln
Pτ (nj)Wτ (nj−1, nj)

Pτ (nj−1)Wτ (nj, nj−1)
. (2.37)
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Hence, taking the average over the trajectories at time τ , we have

〈ṡ(τ ; n(τ))〉 = Ṡ(τ), 〈ṡe(τ ; n(τ))〉 = Ṡe(τ), 〈ṡi(τ ; n(τ))〉 = Ṡi(τ), (2.38)

where the average of a quantity A(τ ; n(τ)) over the trajectories is calculated as follows:

〈A(τ ; n(τ))〉 =
∑

n(τ)

Pτ (n(τ))Acont(τ ; n(τ))

+
1

N

N∑

j=1

∫ t

0

dτ ′j
∑

n′
j ,n′

j−1(n′
j #=n′

j−1)

Pτ ′j
(n′

j−1)Wτ ′j
(n′

j, n
′
j−1)A

(τ ′j)

jump(τ ; n(τ ′)). (2.39)

Here Acont(τ ; n(τ ′)) is the term for the process without jumping and A
(τj)
jump(τ ; n(τ ′)) is the

term for the jumping process at time τj, e.g. in the case of the derivative of the entropy
ṡ(τ ; n(τ)),

ṡcont(τ ; n(τ)) = − Ṗτ (n)

Pτ (n)

∣∣∣∣∣
n=n(τ)

, (2.40)

ṡ
(τj)
jump(τ ; n(τ)) = −δ(τ − τj) ln

Pτ (nj)

Pτ (nj−1)
. (2.41)

In the second term of (2.39), we need the factor 1/N , because we are over-counting the
N identical transitions. Hereafter, we suppress the label n(τ) for quantities on a single
trajectory.

We denote the change of the entropy, the entropy flow, and the entropy production
over the interval [0, t] as

∆S(t) :=

∫ t

0

dτ Ṡ(τ), ∆Se(t) :=

∫ t

0

dτ Ṡe(τ), ∆Si(t) :=

∫ t

0

dτ Ṡi(τ), (2.42)

respectively, and those on a trajectory as

∆s(t) :=

∫ t

0

dτ



− Ṗτ (n)

Pτ (n)

∣∣∣∣∣
n(τ)

−
N∑

j=1

δ(τ − τj) ln
Pτ (nj)

Pτ (nj−1)





= −[ln Pτ1(n0) − ln P0(n0)] − [ln Pτ1(n1) − ln Pτ1(n0)]

· · · − [ln PτN (nN−1) − ln PτN−1(nN−1)] − [ln PτN (nN) − ln PτN (nN−1)]

− [ln Pt(nN) − ln PτN (nN)]

= ln P0(n0) − ln Pt(nN), (2.43)

∆se(t) := −
∫ t

0

dτ
N∑

j=1

δ(τ − τj) ln
Wτ (nj, nj−1)

Wτ (nj−1, nj)
= −

N∑

j=1

ln
Wτj(nj, nj−1)

Wτj(nj−1, nj)
, (2.44)

∆si(t) :=

∫ t

0

dτ



− Ṗτ (n)

Pτ (n)

∣∣∣∣∣
n(τ)

−
N∑

j=1

δ(τ − τj) ln
Pτ (nj)Wτ (nj−1, nj)

Pτ (nj−1)Wτ (nj, nj−1)





= ∆s(t) − ∆se(t). (2.45)
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2.2.2 Derivation of the fluctuation theorems

We can now derive the fluctuation theorem in terms of the quantum master equation,
using the quantum trajectory and the entropies introduced above.

We set the initial probability of the backward process and the final probability of the
forward process are equal, i.e.

P̃0(nN) = Pt(nN). (2.46)

If we define the following function of a trajectory rF(t), we find that rF(t) is equal to the
entropy production ∆si(t):

rF(t) ≡ ln
µF[n(τ)]

µB[ñ(τ̃)]
= ln

P0(n0)

Pt(nN)
+

N∑

j=1

ln
Wτj(nj, nj−1)

Wτj(nj−1, nj)

= ∆s(t) − ∆se(t) = ∆si(t), (2.47)

where F stands for the forward process. For the backward process rB(t), we define

rB(t) ≡ ln
µB[ñ(τ̃)]

µF[n(τ)]
. (2.48)

Using the fact that the summation over all trajectories of the forward paths is equal to
the summation over all trajectories of the backward paths,

∑
en(eτ) =

∑
n(τ), we can recast

the relation (2.47) in the form of the integrated fluctuation theorem,

1 =
∑

en(eτ)

µB[ñ(τ̃)] =
∑

n(τ)

µB[ñ(τ̃)] =
∑

n(τ)

µF[n(τ)]e−∆si(t) =:
〈
e−∆si(t)

〉
F

. (2.49)

Note that in the case of the integrated fluctuation theorem, it does not matter whether
the backward process is hypothetical or not, because we do not refer to the backward
trajectories. By Jensen’s inequality 〈ex〉 ≥ e〈x〉, we confirm 〈∆si(t)〉 = ∆Si(t) ≥ 0
analogously to (2.32).

The detailed fluctuation theorem can also be obtained. The probability that rF(t)
becomes equal to ∆Si(t) is

pF(∆Si(t)) = 〈δ(∆Si(t) − rF(t))〉F
=

∑

n(τ)

µF[n(τ)]δ(∆Si(t) − rF(t)); (2.50)

then (2.47) leads to

pF(∆Si(t)) =
∑

n(τ)

µB[ñ(τ̃)]erF(t)δ(∆Si(t) − rF(t))

= e∆Si(t)
∑

en(eτ)

µB[ñ(τ̃)]δ(∆Si(t) − rF(t))

=: e∆Si(t)〈δ(∆Si(t) + rB(t))〉B
= e∆Si(t)pB(−∆Si(t)), (2.51)

where we used
∑

en(eτ) =
∑

n(τ) and rB(t) = −rF(t) by definition. This is the most familiar
form of fluctuation theorems which relates the probability of the entropy production of
the forward process to the probability of the entropy production of the backward process.
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2.3 Work and heat in open quantum systems

We define the work and the heat for quantum systems that are consistent with the def-
inition of the entropy flow on a quantum trajectory, (2.30), and derive the quantum
Jarzynski relation using those thermodynamic quantities. We assume that the micro-
scopic reversibility holds in terms of the heat which we define below (see Appendix A).
Because we chose the time-dependent basis to give the entropies on a quantum trajectory,
the work and the heat should also be defined in the same manner.

The change of the energy along a trajectory should be the quantity that depends on
the initial and the final states only, and thus we define it as

∆eS(t) ≡ 〈nN |ĤS(t)|nN〉 − 〈n0|ĤS(0)|n0〉

=
N∑

j=1

(
〈nj|ĤS(τj)|nj〉 − 〈nj−1|ĤS(τj−1)|nj−1〉

)
. (2.52)

The heat escaped from the system to the heat bath along a trajectory should be
defined as

q̃S(t) ≡
N∑

j=1

(
〈nj|ĤS(τj)|nj〉 − 〈nj−1|ĤS(τj)|nj−1〉

)
=:

N∑

j=1

q̃nj ,nj−1(τj), (2.53)

analogously to the heat defined for classical stochastic processes by Crooks [8]. We defined
the heat as above because it should be related to the entropy flow along a trajectory ∆se(t)
as ∆se(t) = −βq̃S(t). If we assume that the microscopic reversibility (which Esposito and
Mukamel refers to as the detailed balance) holds in terms of the heat q̃m,m′(τ), i.e.,

Wτ (m′,m)

Wτ (m,m′)
= exp [β q̃m,m′(τ)] = exp

[
β

(
〈mτ |ĤS(τ)|mτ 〉 − 〈m′

τ |ĤS(τ)|m′
τ 〉

)]
, (2.54)

then, using the birth-death master equation (2.16), we obtain

∆se(t) ≡ −
N∑

j=1

ln
Wτj(nj, nj−1)

Wτj(nj−1, nj)

= −β
N∑

j=1

(
〈nj|ĤS(τj)|nj〉 − 〈nj−1|ĤS(τj)|nj−1〉

)
(2.55)

= −β q̃S(t). (2.56)

From the first law of thermodynamics, ∆eS(t) = w̃S(t) + q̃S(t), the work done on the
system along a trajectory should be given as

w̃S(t) =
N∑

j=1

(
〈nj−1|ĤS(τj)|nj−1〉 − 〈nj−1|ĤS(τj−1)|nj−1〉

)
=:

N∑

j=1

w̃nj ,nj−1(τj). (2.57)

Let us consider the expectation values of these thermodynamic quantities. In the
following, the way that we introduce the expectation values differs from the original
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paper by Esposito and Mukamel, though the final expressions are the same. We define
the expectation value of the heat as the average over the trajectories. Using the birth-
death master equation (2.16), we have

Q̃S(t) ≡ 〈q̃S(t)〉

=
1

N

N∑

j=1

∫ t

0

dτ ′j
∑

n′
j ,n′

j−1(n′
j #=n′

j−1)

Pτ ′j
(n′

j−1)Wτ ′j
(n′

j, n
′
j−1)

×
(
〈n′

j|ĤS(τ
′
j)|n′

j〉 − 〈n′
j−1|ĤS(τ

′
j)|n′

j−1〉
)

=
1

N

N∑

j=1

∫ t

0

dτ ′j
∑

n′
j

Ṗτ (n
′
j)〈n′

j|ĤS(τ
′
j)|n′

j〉

=

∫ t

0

dτ
∑

m

Ṗτ (m)〈mτ |ĤS(τ)|mτ 〉. (2.58)

For the expectation value of the change of the energy, we simply take the statistical
average over the initial and the final states:

∆ES(t) = 〈∆eS(t)〉 =
∑

nN

Pt(nN)〈nN |ĤS(t)|nN〉 −
∑

n0

P0(n0)〈n0|ĤS(0)|n0〉

= 〈HS(t)〉 − 〈HS(0)〉. (2.59)

This calculation corresponds to the average over the trajectories without any jumps.
By the first law of thermodynamics, the expectation value of the work should be given

as

W̃S(t) = ∆ES(t) − Q̃S(t)

=

∫ t

0

dτ
∑

m

d

dτ

[
Pτ (m)〈mτ |ĤS(τ)|mτ 〉

]
−

∫ t

0

dτ
∑

m

Ṗτ (m)〈mτ |ĤS(τ)|mτ 〉

=

∫ t

0

dτ
∑

m

Pτ (m)
d

dτ
〈mτ |ĤS(τ)|mτ 〉. (2.60)

Note that 〈w̃S(t)〉 *= W̃S(t):

〈w̃S(t)〉 =
1

N

N∑

j=1

∫ t

0

dτ ′j
∑

n′
j ,n′

j−1(n′
j #=n′

j−1)

Pτ ′j
(n′

j−1)Wτ ′j
(n′

j, n
′
j−1)

×
(
〈n′

j−1|ĤS(τ
′
j)|n′

j−1〉 − 〈n′
j−1|ĤS(τ

′
j−1)|n′

j−1〉
)

*= 1

N

N∑

j=1

∫ t

0

dτ ′j
∑

n′
j−1

Pτ ′j
(n′

j−1)
d

dτ ′j
〈n′

j−1|ĤS(n
′
j−1)|n′

j−1〉 = W̃S(t). (2.61)

This comes from the fact that the change of the energy is not a trajectory-dependent
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quantity:

∆ES(t) *=
1

N

N∑

j=1

∫ t

0

dτ ′j
∑

n′
j ,n′

j−1(n′
j #=n′

j−1)

Pτ ′j
(n′

j−1)Wτ ′j
(n′

j, n
′
j−1)

×
(
〈n′

j|ĤS(τ
′
j)|n′

j〉 − 〈n′
j−1|ĤS(τ

′
j−1)|n′

j−1〉
)

. (2.62)

Note that these thermodynamic quantities that we defined here are only quantum
analogues of the discussion for the stochastic processes, and thus they are hypothetical
quantities. We should examine whether they have the correct properties.

2.3.1 Quantum Jarzynski equality

Finally, we derive the Jarzynski equality in open quantum systems. We set the initial
states of the forward and backward evolutions as the equilibrium state. If we assume that
the coupling between the system and the bath, Ĥint, is weak, we have

P0(n0) =
e−β〈n0|HS(0)|n0〉

Z(0)
, Z(0) =

∑

m

e−β〈m|HS(0)|m〉, (2.63)

Pt(nN) =
e−β〈nN |HS(t)|nN 〉

Z(t)
, Z(t) =

∑

m

e−β〈m|HS(t)|m〉. (2.64)

Therefore, the entropy change of the system on a trajectory reads

∆s(t) = ln
P0(n0)

Pt(nN)
= β

(
〈nN |HS(t)|nN〉 − 〈n0|HS(0)|n0〉

)
+ ln

Z(t)

Z(0)

= β(∆eS(t) − ∆F (t)), (2.65)

where ∆F (t) ≡ −(ln Z(t)− ln Z(0))/β is the free energy difference. The entropy produc-
tion is expressed as

∆si(t) = ∆s(t) − ∆se(t) = β
(
∆eS(t) − ∆F (t) − q̃S(t)

)

= β
(
w̃S(t) − ∆F (t)

)
. (2.66)

Substitution of (2.66) in the integrated fluctuation theorem (2.49) leads to the quantum
Jarzynski equality,

〈exp [−β(w̃S(t) − ∆F (t))]〉 = 1, (2.67)

or

〈e−β ewS(t)〉 = e−β∆F (t). (2.68)
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Chapter 3

Fluctuation theorems, detailed
balance, and microscopic
reversibility
in a non-Markovian quantum heat
bath

The method of the birth-death master equation and the quantum trajectory in Chapter 2
gives a novel way to explore the dynamics of open quantum systems. In the present Chap-
ter, we first generalize the discussion for the Markovian dynamics in the previous Chapter
to a dynamics in a non-Markovian heat bath and derive the fluctuation theorem for it
(Section 3.1). Then, we numerically investigate the properties of the birth-death master
equation in the case of the spin-boson model (Section 3.2) and examine the microscopic
reversibility (Section 3.3).

3.1 Generalization to the dynamics in a non-Markovian
heat bath

3.1.1 Markovian and non-Markovian heat baths

We use the formalism of the hierarchy equations of motion [19, 30–32], which deals with
the case of the dynamics of the system in a non-Markovian heat bath.

We refer to it as a Markovian heat bath if its time-scale is much less than the time-
scale of the system τS = 1/ω0. In this case, we obtain a time-local equation of motion
for the reduced density matrix. There are two kinds of parameters that determine the
time-scale of the heat bath. One is the decay rate γ of the time-correlation function of the
heat bath and the other is the Matsubara frequency νk = 2πk/β! (k = 1, 2, · · · ). Hence
we have min(γ, ν1) - ω0 for a Markovian heat bath. In the case where the temperature
of the heat bath is low, i.e. ν1 - ω0 is not satisfied, we refer to it as a non-Markovian heat
bath. In this case, we cannot obtain a time-local equation of motion of the system solely
in terms of the reduced density matrix even in the limit γ = ∞, unless we can apply other
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kinds of approximations, e.g. the rotating-wave approximation; see the description below
(B.31) in Appendix B. In this sense, using a Markovian heat bath as in Chapter 2 is not
valid at low temperatures and the treatment in the present Chapter is crucial.

In the formalism of the hierarchy equations of motion, a state of the system is expressed
with a set of infinite matrices in an extended space instead of a reduced density matrix.
Thereby we can obtain a time-local equation of motion by taking account of the time-
correlation of the heat bath as the correlations among the matrices. Then, we can readily
extend the discussion in Chapter 2 to the case of a general system as long as the coupling of
the system and the bath is linear, and the bath is Gaussian with the spectrum distribution
of the Drude form; see Appendix B for the detail.

3.1.2 Notation and the equation of motion for the reduced den-
sity matrix

In the formalism of the hierarchy equations of motion, a state is expressed as a set of an
infinite number of matrices:

{
ρ̂(n)

j1,...,jk,...(τ)
}

= ρ̂(0)
0,0,...(τ), ρ̂(1)

0,0,...(τ), ρ̂(1)
1,0,...(τ), · · · , (3.1)

ρ̂(0)
0,0,...(τ) = ρ̂(τ), ρ̂(1)

0,0,...(τ), ρ̂(1)
1,0,...(τ), · · · =: {σ̂k(τ)}, (3.2)

where ρ̂(0)
0,0...(τ) is the reduced density matrix in the usual sense and {σ̂k(τ)} are the

set of matrices which possess the information of non-Markovian effects. These matrices
follow the equation of motion (B.44) – (B.47). The matrices {σ̂k(τ)} are introduced for
computational purposes only and possess no physical meaning themselves. The original
time correlation of the heat bath is expressed by correlations among the auxiliary matrices.
The label n indicates the nth correction with respect to the decay rate of the heat bath γ
and the label {jk|k = 1, 2, . . . } indicates the corrections with respect to the temperature,
i.e. the Matsubara frequencies νk. For simplicity, we denote the set of matrices as

{
ρ̂(n)

j1,...,jk,...(τ)
}

=: |ρ̂(0)
0,0,...(τ), ρ̂(1)

0,0...(τ), ρ̂(1)
1,0...(τ), · · ·〉〉 =: |ρ̂(τ); {σ̂k(τ)}〉〉. (3.3)

We define its inner product as

〈〈ρ̂(τ); {σ̂k(τ)}|ρ̂′(τ); {σ̂′
k(τ)}〉〉 ≡ Tr

(
ρ̂†(τ)ρ̂′(τ)

)
+

∞∑

k=1

Tr
(
σ̂†

k(τ)σ̂′
k(τ)

)
. (3.4)

The following discussion of the quantum trajectory for the hierarchy equations of
motion is almost parallel to the one in Chapter 2 except that it is the dynamics with the
auxiliary matrices {σ̂k(τ)}.

3.1.3 The birth-death master equation for the hierarchy equa-
tions of motion

The hierarchy equations of motion can be formally expressed as

d

dτ
|ρ̂(τ); {σ̂k(τ)}〉〉 = ˆ̂Lhier(τ)|ρ̂(τ); {σ̂k(τ)}〉〉. (3.5)
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Let {|mτ 〉} be a basis that diagonalizes ρ̂(τ). Our purpose is to extract out the equation
of motion for the probability Pτ (m). Taking the inner product with 〈〈mτmτ ; {0̂}| in (3.5),
we have

〈〈mτmτ ; {0̂}|
d

dτ
|ρ̂(τ); {σ̂k(τ)}〉〉 = 〈〈mτmτ ; {0̂}| ˆ̂Lhier(τ)|ρ̂(τ); {σ̂k(τ)}〉〉, (3.6)

Next, we decompose |ρ̂(τ); {σ̂k(τ)}〉〉 into the following form:

∑

m

|mτmτ ; {σ̂k(τ)}〉〉〈〈mτmτ ; {0̂}|ρ̂(τ); {σ̂k(τ)}〉〉

=
∑

m

[
(〈mτ |ρ̂(τ)|mτ 〉) |mτ 〉〈mτ | ⊗

∞∏

k=1

σ̂k(τ)

]

= |ρ̂(τ); {σ̂k(τ)}〉〉, (3.7)

where {0̂} = {0̂, 0̂, . . . } are an infinite set of zero matrices in the space of the auxiliary
matrices. In the first equality of (3.7), we used the relation

〈〈mτmτ ; {0̂}|ρ̂(τ); {σ̂k(τ)}〉〉 = Tr (|mτ 〉〈mτ |ρ̂(τ)) +
∞∑

k=1

Tr
[
0̂ σ̂k(τ)

]
= 〈mτ |ρ̂(τ)|mτ 〉,

(3.8)

according to the definition of the inner product (3.4) and in the second equality of (3.7),
we used the completeness relation for the reduced density matrix ((2.10) in Chapter 2).
Applying (3.7) to the right-hand side of (3.6), we have

〈〈mτmτ ; {0̂}|
d

dτ
|ρ̂(τ); {σ̂k(τ)}〉〉

=
∑

m′

〈〈mτmτ ; {0̂}| ˆ̂Lhier(τ)|m′
τm

′
τ ; {σ̂k(τ)}〉〉〈〈m′

τm
′
τ ; {0̂}|ρ̂(τ); {σ̂k(τ)}〉〉. (3.9)

The left-hand side of (3.9) can be also recast as

〈〈mτmτ ; {0̂}|
d

dτ
|ρ̂(τ); {σ̂k(τ)}〉〉

= Tr

(
|mτ 〉〈mτ |

d

dτ
ρ̂(τ)

)
+

∞∑

k=1

Tr

(
0̂

d

dτ
σ̂k(τ)

)
=

d

dτ
〈mτ |ρ̂(τ)|mτ 〉

=
d

dτ
〈〈mτmτ ; {0̂}|ρ̂(τ); {σ̂k(τ)}〉〉. (3.10)

Then we have

d

dτ
〈〈mτmτ ; {0̂}|ρ̂(τ); {σ̂k(τ)}〉〉

=
∑

m′

〈〈mτmτ ; {0̂}| ˆ̂Lhier(τ)|m′
τm

′
τ ; {σ̂k(τ)}〉〉〈〈m′

τm
′
τ ; {0̂}|ρ̂(τ); {σ̂k(τ)}〉〉. (3.11)
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Defining

Pτ (m) ≡ 〈〈mτmτ ; {0̂}|ρ̂(τ); {σ̂k(τ)}〉〉, (3.12)

Wτ (m,m′; {σ̂k(τ)}) ≡ 〈〈mτmτ ; {0̂}| ˆ̂Lhier(τ)|m′
τm

′
τ ; {σ̂k(τ)}〉〉, (3.13)

we can rewrite (3.11) as

d

dτ
Pτ (m) =

∑

m′

Wτ (m,m′; {σ̂k(τ)}) Pτ (m
′). (3.14)

Analogously to the discussion in (2.14) in Chapter 2, by the conservation of the probability,
we have
∑

m

Wτ (m,m′; {σ̂k(τ)}) = 0, i.e. Wτ (m
′,m′; {σ̂k(τ)}) = −

∑

m#=m′

Wτ (m,m′; {σ̂k(τ)}).

(3.15)

We then obtain the birth-death master equation for the hierarchy equations of motion:

d

dτ
Pτ (m) =

∑

m′(#=m)

[Wτ (m, m′; {σ̂k(τ)})Pτ (m
′) − Wτ (m

′,m; {σ̂k(τ)})Pτ (m)] . (3.16)

3.1.4 The fluctuation theorem

The probabilities for the forward and backward quantum trajectories are obtained just by
replacing Wτj(nj, nj−1) with Wτj(nj, nj−1; {σ̂(τj)}) in the calculation (2.20) and (2.26):

µF[n(τ)] = P0(n0)

[
N∏

i=1

exp

(
−

∑

m

∫ τi

τi−1

dτ ′ Wτ ′(m,ni−1; {σ̂(τ ′)})
)

Wτj(nj, nj−1; {σ̂(τj)})
]

× exp

(
−

∑

m

∫ t

τN

dτ ′ Wτ ′(m,nN ; {σ̂(τ ′)})
)

, (3.17)

µB[ñ(eτ)] = P̃0(ñ0)

[
N∏

i=1

exp

(
−

∑

em

∫ eτi

eτi−1

dτ ′ W̃τ ′(m̃, ñi−1; {˜̂σ(τ ′)})
)

W̃eτj(ñj, ñj−1; {˜̂σ(τ̃j)})
]

× exp

(
−

∑

em

∫ 0

eτN

dτ ′ W̃τ ′(m̃, ñN ; {˜̂σ(τ ′)})
)

. (3.18)

It is important that the “transition rate” Wτ contains the auxiliary matrices {σ̂k(τ)}.
We can find an analogy in stochastic processes. In classical non-Markovian stochastic
processes, the evolution of a probability distribution without its memory is called the
“substitute dynamics” [17,26]. In the present case, it corresponds to setting the matrices
{σ̂k(t)} = {0̂, 0̂, · · · }. It is known that the substitute dynamics gives the correct evolution
of the probability, but not the correct transition rate.

In the argument in Chapter 2, the dynamics that gives the backward process was a hy-
pothetical one; the real time-reversed dynamics does not satisfy the relation W̃eτ (m̃, m̃′) =
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Wt−eτ (m̃, m̃′) because the quantum master equation with the Markov approximation breaks
the time reversal symmetry. In contrast, the backward process that we consider in (3.18)
is truly the process of the time-reversed dynamics because the hierarchy equations of
motion formally solve the total system, and does not break the time reversal symmetry.
Then we have

W̃eτ (m̃, m̃′; {˜̂σ(τ̃)}) = Wt−eτ (m̃, m̃′; {σ̂(t − τ̃)}). (3.19)

Note that this condition states that the auxiliary matrices {σ̂(τ)} also evolve backward
because the dynamics of the heat bath must be also reversed. Therefore, the backward
process which satisfies (3.19) also becomes a hypothetical one if we truncate the hierarchy,
although it would be effectively a real time-reversed process if the the conditions (B.36)
and (B.50) are satisfied.

By repeating the same argument as in Chapter 2, we can show the fluctuation theorem
for the dynamics in a non-Markovian heat bath. We set the probability of the final state
of the forward trajectory equal to the probability of the initial state of the backward
trajectory, i.e. P̃0(ñ0) = Pt(nN), and define the entropy change ∆š(t), the entropy flow
∆še(t), and the entropy production ∆ši(t) as

∆š(t) ≡ ln
P0(n0)

Pt(nN)
, (3.20)

∆še(t) ≡ −
N∑

j=1

ln
Wτj(nj, nj−1; {σ̂(τj)})
Wτj(nj−1, nj; {σ̂(τj)})

, (3.21)

∆ši(t) ≡ ∆š(t) − ∆še(t) =
N∑

j=1

ln
Pτj(nj)Wτj(nj−1, nj; {σ̂(τj)})

Pτj−1(nj−1)Wτj(nj, nj−1; {σ̂(τj)})
. (3.22)

Then rF(t), the ratio of the probabilities for a forward trajectory and a backward trajec-
tory reads

rF(t) ≡ ln
µF [n(τ)]

µB[ñ(τ̃)]
= ln

P0(n0)

Pt(nN)
−

N∑

j=1

ln
Wτj(nj−1, nj; {σ̂(τj)})
Wτj(nj, nj−1; {σ̂(τj)})

= ∆š(t) − ∆še(t) = ∆ši(t). (3.23)

This relation leads to the integrated fluctuation theorem and the detailed fluctuation
theorem:

∑

n(τ)

µF[n(τ)]e−∆ši(t) =:
〈
e−∆ši(t)

〉
F

= 1, (3.24)

pF(∆Ši(t)) = e∆Ši(t)pB(−∆Ši(t)), (3.25)

where ∆Ši(t) ≡ 〈∆ši(t)〉. The average 〈· · ·〉F is the average with respect to each of the
forward trajectories, whereas the average 〈· · ·〉 stands for the trajectory average (2.39)
with the “transition rate” Wτj(nj, nj−1; {σ̂(τj)}). Even though it is formally the same as
the fluctuation theorem for the case in a Markovian heat bath, the “transition rate” Wτj

contains the effect of non-Markovian properties in the auxiliary matrices {σ̂(τj)}.
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Unlike other studies of the quantum master equations, our calculation starts from the
exact Liouville-von Neumann dynamics of the total system and uses no approximation
in principle. Therefore the theorem holds in any parameter region and the simulations
that we show below are numerically exact. Our fluctuation theorem is restricted to the
system linearly coupled to the Gaussian heat bath with the spectrum distribution of the
Drude form. This setting is often assumed when we derive a Markovian quantum master
equation microscopically.

It is crucial for a fluctuation theorem whether the quantities ∆ši(t) and ∆še(t) that we
defined above are appropriate as the entropy production and the entropy flow, respectively.
As a property of the entropy production, we expect it to be zero at equilibrium, i.e.

Pτj(nj)Wτj(nj−1, nj; {σ̂(τj)})
Pτj−1(nj−1)Wτj(nj, nj−1; {σ̂(τj)})

= 1, (3.26)

which is nothing but a detailed balance condition. Another requirement of the entropy
production is that it is always non-negative. We will show below, however, that there exist
some situations where we cannot define the entropy production with (3.22) because the
left-hand side of (3.26) becomes negative. As a property of the entropy flow, we expect
that it satisfies the following equality:

∆še(t) = −βq̃S(t), (3.27)

or

Wτj(nj−1, nj; {σ̂(τj)})
Wτj(nj, nj−1; {σ̂(τj)})

= exp [βq̃(nj, nj−1, τj)] , (3.28)

where q̃S(t) :=
∑N

j=1 q̃(nj, nj−1, τj) is the heat that flows out of the system along a tra-
jectory as in the case of the evolution in a Markovian heat bath that is defined in (2.53).
The equality (3.28) is what is called the microscopic reversibility, or the local detailed
balance.

Note, however, that we can only check the consistency of the entropy flow ∆še(t) and
the heat q̃(nj, nj−1, τj); while the left-hand side of (3.28) is what we need to examine from
the behavior of the birth-death master equation, the heat q̃(nj, nj−1, τj) on the right-hand
side is also a hypothetical quantity as we mentioned in Section 2.3.

3.2 Properties of the birth-death master equation

In the present Section, we numerically investigate the properties of the birth-death master
equation by simulating the transient dynamics after the system is brought out of the
equilibrium state by energy measurement. Specifically, we investigate the deviation from
the detailed balance after the energy measurement. It is essential to consider an open
system, since we can easily show that the “transition rate” Wτ (m,m′) becomes zero for
an isolated system; see Appendix C.
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3.2.1 The model for an open quantum system: the spin-boson
model

The system that we will consider is the spin-boson model given by the following Hamil-
tonian:

Ĥ = ĤS(ψ̂, ψ̂†) + ĤB(b̂α, b̂
†
α) + Ĥint(ψ̂, ψ̂†, b̂α, b̂

†
α) + Ĥcounter(ψ̂, ψ̂†), (3.29)

HS(ψ̂, ψ̂†) =
!ω0

2
σ̂z =

!ω0

2
(ψ̂†ψ̂ − ψ̂ψ̂†), (3.30)

ĤB(b̂α, b̂
†
α) =

∑

α

!ωαb̂
†
α b̂α, (3.31)

Ĥint(ψ̂, ψ̂†, b̂α, b̂
†
α) = V (ψ̂, ψ̂†)

∑

α

c̃αx̂α =: V (ψ̂, ψ̂†)
∑

α

cα(b̂α + b̂†α), (3.32)

V (ψ̂, ψ̂†) = V1σ̂x + V2σ̂z = V1(ψ̂
† + ψ̂) + V2(ψ̂

†ψ̂ − ψ̂ψ̂†), (3.33)

Ĥcounter(ψ̂, ψ̂†) =
∑

α

c2
αV (ψ̂, ψ̂†)2

2mαω2
α

. (3.34)

The operators σ̂x and σ̂z are the Pauli matrices. The system Hamiltonian ĤS(ψ̂, ψ̂†) is the
two-level system with its energy difference !ω0. The heat-bath Hamiltonian ĤB(b̂α, b̂†α)
consists of the harmonic oscillators of many modes. Each mode is labeled by α, and its
distribution is of the Drude form; see (B.26) in Appendix B. We omitted the ground-state
energy of the harmonic oscillators. The interaction between the system and the heat
bath, Ĥint(ψ̂, ψ̂†, b̂α, b̂†α), is linear in x̂α, and c̃α = cα

√
2mαωα/! represents the coupling

strength. We added a counter term Ĥcounter(ψ̂, ψ̂†) to the system Hamiltonian in order to
maintain the translation invariance of the system with respect to the heat bath [4, 34].
The total Hamiltonian can be recast as

Ĥ =
!ω0

2
(ψ̂†ψ̂ − ψ̂ψ̂†) +

∑

α



 p̂2
α

2mα
+

1

2
mαω

2
α

(
x̂ − cαV (ψ̂, ψ̂†)

mαω2
α

)2


 . (3.35)

3.2.2 Thermalization after the energy measurement

General procedure and definitions

We prepare the initial state of the reduced density matrix as

ρ̂pre =

(
e−

1
2β!ω0 0
0 e

1
2β!ω0

)
. (3.36)

We let the total system evolve to thermalize without any external fields applied to the
system. As long as the coupling between the system and the bath contains a non-vanishing
term of V1, the two-level system exchanges the energy with the bath and relax to a
stationary state. Since we are not perturbing the total system with any external fields,
we take this stationary state as the equilibrium state. Note that the equilibrium state of
the two-level system differs from the canonical state in general; the total system should
be in the canonical state at thermal equilibrium, the reduced system is not. After the
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thermalization, we measure the energy of the two-level system by projection at time τ = 0
and consider the case where the two-level system is at the ground state. Then we observe
the dynamics of the two-level system until it thermalizes again.

The quantity that we observe is the detailed balance condition:

Wτ (a, b; {σ̂τ})
Wτ (b, a; {σ̂τ})

=
〈a|ρ̂(τ)|a〉
〈b|ρ̂(τ)|b〉 , (3.37)

where {|a〉, |b〉} is the basis that diagonalizes the reduced density matrix at time τ . We
denote the ratio of the “transition rate” between the states a and b (the left-hand side of
(3.37)) as

DBL(τ) :=
Wτ (a, b; {σ̂τ})
Wτ (b, a; {σ̂τ})

(3.38)

and the ratio of the probability of the state at time τ (the right-hand side of (3.37)) as

DBR(τ) :=
〈a|ρ̂(τ)|a〉
〈b|ρ̂(τ)|b〉 =

Pτ (a)

Pτ (b)
. (3.39)

We simulate the time evolution of the ratio DBL(τ)/DBR(τ).
In numerical simulation of the hierarchy equations of motion, the set of parameters

(N,K) in (B.50) and (B.36) determines the accuracy of the calculation; see Appendix B
for the detail. As we take the values of (N,K) larger, the physical quantities converge to
a certain value which is numerically exact. We set ! = 1 below.

Types of the system-bath coupling

We examine the case of σx-coupling (i.e.V1 = 1 and V2 = 0) as well as the case of
(σx + σz)-coupling (i.e.V1 = V2 = 1) to the bath. Figures 3.1a and 3.2a show the time
evolution of the ratio DBL(τ)/DBR(τ) for the parameter region where the the Born-
Markov approximation and the rotating-wave approximation are relatively appropriate in
the case of σx-coupling and (σx + σz)-coupling, respectively.

For the case of σx-coupling, the bases are time-independent because no off-diagonal
element comes out if the prepared state before the thermalization is diagonal. We can
understand this by (B.10) and (B.41) or (B.20) in the Feynman-Vernon theory. Because
the coupling is linear in the bath coordinate and the bath is Gaussian, the transition always
occurs in even orders of σx, and thus it causes no off-diagonal elements. In contrast, the
case of the (σx + σz)-coupling is the one where the basis can be time-dependent. The
non-monotonic evolution of DBL(τ)/DBR(τ) in Fig. 3.2a is due to the time evolution of
the basis.

We would expect that the Born-Markov approximation and the rotating-wave approx-
imation are appropriate in this region. The deviation from the detailed balance, however,
changes drastically as we include more temperature corrections of the hierarchy equations
of motion, and thus we conclude that they are still in the non-Markovian region.
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(a) (b)

Figure 3.1: (a) The evolutions of the ratio DBL(τ)/DBR(τ) in the case of σx-coupling
after the energy measurement. The parameter values are ζ = 0.005ω0, γ = 100ω0, β =
0.05ω0, the case where we expect the Born-Markov approximation and the rotating-wave
approximation to be relatively appropriate. The time step is 10−4 in the simulation time.
The line (N,K) = (1, 0) corresponds to the case where the heat bath is approximated
as Markovian, i.e. γ → ∞ and β → 0, as assumed in Ref. [5]. The line (N,K) = (3, 0)
indicates the case where no corrections with respect to temperature are taken into account.
The line converges to the case where an infinite number of auxiliary matrices are taken into
account, i.e. the complete correction. (b) The relaxation of the excited-state probability
of the system (red line), DBR(τ) (green line), the relaxation of the “transition rates”
Wτ (0, 1)[1/τ ] (blue line) and Wτ (1, 0)[1/τ ] (pink line) in the case of σx-coupling. The
parameter values are the same as in Fig. 3.1a.

Positivity of the “transition rate”

In the case of the Markovian quantum master equation such as the quantum optical master
equation, we can prove that the “transition rate” Wτ (m,m′) is always positive (Appendix
D). If we apply the high-temperature approximation to the hierarchy equations of motion,
i.e. neglect all the auxiliary matrices with respect to the temperature correction, by putting
K = 0 in (B.36), we obtain the positive values for Wτ (m,m′) in the region of Fig. 3.2a
(the red line). As we can see, however, from the result of the simulation, Wτ (m,m′) can
be negative (i.e. DBL(τ)/DBR(τ) < 0) if we include the temperature corrections. Figures
3.3 and 3.4 show the results for the regions where the applicability of the rotating-wave
approximation is doubtful. In the case of Fig. 3.3, Wτ (m,m′) gets negative even when we
do not include the temperature corrections. Hence we cannot always regard Wτ (m,m′)
as the transition rate of the classical birth-death master equation. More importantly, it
implies that the entropy production (3.22) can be ill-defined because the argument of the
logarithm becomes negative.

Relaxation time of the “transition rate”

We would naively expect that the time for the relaxation of the detailed balance is the
same as the relaxation time of the reduced density matrix and the relaxation time of
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(a) (b)

Figure 3.2: (a) The evolutions of the ratio DBL(τ)/DBR(τ) in the case of (σx + σz)-
coupling after the energy measurement. The parameter values are ζ = 0.001ω0, γ =
100ω0, β = 0.05ω0, the case where we expect the Born-Markov approximation and the
rotating-wave approximation to be relatively appropriate. The time step is 10−4 in the
simulation time. The line (N,K) = (1, 0) corresponds to the case where the heat bath
is approximated as Markovian [5]. The line (N,K) = (3, 0) indicates the case where no
corrections with respect to temperature are taken into account. The line converges to the
case where infinite number of auxiliary matrices are taken into account, i.e. the complete
correction. (b) The relaxation of the excited-state probability of the system (red line),
DBR(τ) (green line), the relaxation of the “transition rates” Wτ (0, 1)[1/τ ] (blue line) and
Wτ (1, 0)[1/τ ] (pink line) in the case of σx-coupling. The parameter values are the same
as in Fig. 3.2a.

the “transition rates.” It is indeed true for the regions of Figs. 3.1 and 3.2. They do
not, however, coincide in other parameter regions. Figures 3.3a and 3.3b show that the
relaxation of the “transition rates” take shorter time than the relaxation of the detailed
balance. Figures 3.4a and 3.4b show that the relaxation of the “transition rates” take
longer time than the relaxation of the detailed balance.

Detailed balance in equilibrium

All the results of the simulations show that (3.37) holds whenever the system is in the
equilibrium state. The detailed balance is a sufficient condition, but not a necessary
condition for the equilibrium state, and is usually discussed in the Markovian region.
Therefore, this is a highly nontrivial result; it means that the entropy production that we
defined in (3.22) vanishes for infinitely slow processes.
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(a) (b)

Figure 3.3: The same plots as in Fig. 3.1, but with the parameters ζ = 0.05ω0, γ = 10ω0,
β = 0.05ω0, the case where the rotating-wave approximation is doubtful.

(a) (b)

Figure 3.4: The same plots as in Fig. 3.2, but with the parameters ζ = 0.1ω0, γ = 100ω0,
β = 0.05ω0, the case where the rotating-wave approximation is doubtful.

3.3 Microscopic reversibility:
Numerically exact study with the hierarchy equa-
tions of motion

The energy measurement of the previous Section was suitable to see the non-equilibrium
behavior, but it is difficult to investigate the non-Markovian behavior numerically because
the convergence of the hierarchy equations of motion gets extremely slow.

We then consider the following procedure; we prepare the total system in the thermal
equilibrium state at time τ = 0, as we did for the transient dynamics, and drive the
two-level system by a sinusoidal external field for τ ≥ 0. In other words, we add to the
Hamiltonian of the total system (3.29), the Hamiltonian of the external field Ĥext(ψ̂, ψ̂†, t)

Ĥext(ψ̂, ψ̂†, τ) = h(τ)σ̂z = h(τ)(ψ̂†ψ̂ − ψ̂ψ̂†) (3.40)
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with

h(τ) = A sin(ωext τ). (3.41)

Therefore, the system does not go to equilibrium but to a stationary state at best.
In the present Section, we compare the ratio of the “transition rates” DBL(τ) in (3.38)

with the following three quantities. First, we compare it with

DB(eq)
R (h(τ)) :=

〈a′|ρ̂eq(h(τ))|a′〉
〈b′|ρ̂eq(h(τ))|b′〉 , (3.42)

where {|a′〉, |b′〉} is the basis that diagonalizes the equilibrium reduced density matrix

ρ̂eq(h(τ)). Although DB(eq)
R (h(τ)) looks similar to DBR(τ) in the previous Section, we cal-

culate the ratio of the equilibrium probability with the parameter h(τ), the fixed value of
the external parameter at time τ . When the system is at a quasi-equilibrium state during
the evolution, it should satisfy the detailed balance DBL(τ) = DB(eq)

R (h(τ)) according to
the result in Section 3.2.2. Therefore, we can regard that the difference between DBL(τ)

and DB(eq)
R (h(τ)) as an indicator of how close the system is to the thermal equilibrium.

The second quantity that we compare with DBL(τ) is exp[−βq̃(b, a, τ)]. The equality
DBL(τ) = exp[−βq̃(b, a, τ)] means the microscopic reversibility, from which we can con-
clude that the definition of ∆še(t) in (3.21) is correct as the entropy flow, and the definition
of q̃(b, a, τ) is also correct as the heat that flows out of the system along a trajectory. If the
quantum master equation is expressed as an equation of a quantum dynamical semi-group,
and the basis that maps the evolution of the reduced density matrix to the quantum tra-

jectory is time independent, then the “transition rate” Wτ (m,m′) = 〈〈m, m| ˆ̂K(τ)|m′,m′〉〉
and the heat q̃(b, a, τ) are completely determined by the control parameter of the Hamil-
tonian of the system, i.e., independent of the state itself. Therefore, under the above
assumptions, the microscopic reversibility is always satisfied as long as it is satisfied at
equilibrium no matter what protocol we choose. (See Appendix D for the case of the
quantum optical master equation.)

The third quantity that we compare with DBL(τ) is DBR(τ), the right-hand side of
the detailed balance as we defined in (3.39). The equality DBL(τ) = DBR(τ) means that
the detailed balance is satisfied in the non-equilibrium state. Note that one cannot expect
the detailed balance to hold out of equilibrium in general.

Among these four quantities that we compare, DBL(τ), DB(eq)
R (h(τ)), and DBR(τ) are

the quantities of the birth-death master equation and exp[−βq̃(b, a, τ)] is the thermody-
namic quantity which is suggested by Esposito and Mukamel.

3.3.1 Numerical results

We first consider the case of the (σx + σz)-coupling to the bath and the parameter region
where the Born-Markov approximation and the rotating-wave approximation do not work
at all. Although the order of the relaxation time of the reduced density matrix is τR ∼
O(1) (see Figs. 3.5a and 3.5b), because of the difficulty of the numerical simulation of
the states that are far from equilibrium, we set the frequency of the external field ωext ∼
O(10−3). Thus, we expect that the system might be in a quasi-equilibrium state all the

time. Nevertheless, Fig. 3.6 indicates that the deviation of DB(eq)
R (h(τ)) and DBL(τ) is
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the same order as the amplitude of DB(eq)
R (h(τ)) and thus the system is out of equilibrium

significantly. In the present case, exp[−βq̃(b, a, τ)] largely differs from DBL(τ), and thus
the microscopic reversibility does not hold in our sense.

In the case of energy measurements, the detailed balance was largely broken while the
system is transient. It is interesting that the deviation of DBR(τ) from DBL(τ) is much

smaller than that of DB(eq)
R (h(τ)); even though the system is not in the quasi-equilibrium

state, the detailed balance is almost satisfied.
Let us next consider the same driving protocol as the above case in Fig. 3.6 un-

der the parameter region where the Born-Markov approximation and the rotating-wave
approximation are relatively appropriate. The result (Fig. 3.7) shows that DBL(τ) 0
DB(eq)

R (h(τ)), so that the system is in a quasi-equilibrium state. Figure 3.7 indicates that
the break of the microscopic reversibility gets smaller than the case of Fig. 3.6, and thus
the definitions of the heat q̃(b, a, τ) and the entropy flow ∆še(t) become more appropriate.
The state almost satisfies the detailed balance as well as in Fig. 3.6.

(a) (b)

Figure 3.5: (a) The relaxation of the element of the density matrix 〈1|ρ̂(τ)|1〉 to the
thermal equilibrium state from the prepared state ρ̂pre when no external field is applied,
where |1〉 = (1, 0)T and |0〉 = (0, 1)T . It shows that the relaxation time τR is O(1) in
the simulation time. The time step is 10−4 in the simulation time. (b) The relaxation of

the element of the density matrix 〈0|ρ̂(τ)|1〉 and 〈0|ρ̂(1)
0,...,0(τ)|1〉 to the thermal equilibrium

state from the prepared state ρ̂pre when no external field is applied. Their relaxation time
are also O(1) in the simulation time.

3.4 Protocols and the non-Markovianity

The dynamics of the local system presumably becomes more non-Markovian for the heat
bath with a lower temperature and a longer correlation time. Then, how does the protocol
of the dynamics affect its non-Markovianity? In order to discuss the effect, let us consider
the following three situations of the energy measurement:

(i) The two-level system is in the isolated equilibrium state when it is measured at τ = 0,
and is then dumped into the heat bath which is in equilibirum.

33



Figure 3.6: The time evolution of exp[−βq̃(b, a, τ)] (red line), DBL(τ) (green line),

DB(eq)
R (h(τ)) (blue line), DBR(τ) (pink points) for A = 0.25ω0 and ωext = 10−3. The

time step is 10−4 in the simulation time. The horizontal axis is scaled as ωextτ . The
parameter values are ζ = ω0, γ = 5ω0, and β = 0.5ω0, the case where the Born-Markov
approximation and the rotating-wave approximation are inappropriate.

(ii) The two-level system is in the equilibrium state with the heat bath when it is
measured at τ = 0, and is then thermalized. (The same procedure as in Section
3.2.2)

(iii) The two-level system is driven by the sinusoidal external field in the heat bath for
t = 2π/ωext as in Section 3.3. Then we measure the two-level system at τ = 0, and
let it thermalize.

Note that the projection by the measurement acts only on the reduced density matrix;
the auxiliary matrices are not affected. If the dynamics is Markovian, these three would
behave exactly the same. In the representation of the density matrix of the total system,
the difference of the auxiliary matrices would appear as a slight deviation of the state of
the heat bath from the equilibrium state. However, this slight deviation for the heat bath
could be significant for the two-level system. Therefore, these three can behave differently
depending on the history before the measurement.

Since we set the initial state of the total system to be a direct product of the canonical
states of the local system and the heat bath in the Feynman-Vernon theory, the situation
of (i) can be achieved by setting zero matrices for the auxiliary matrices at τ = 0. For
(ii) and (iii), we have nonzero matrices for the auxiliary matrices.
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Figure 3.7: The time evolution of exp[−βq̃(b, a, τ)] (red line), DBL(τ) (green line),

DB(eq)
R (h(τ)) (blue points), DBR(τ) (pink points) for A = 0.25ω0 and ωext = 10−3. The

time step is 10−3 in the simulation time. The horizontal axis is scaled as ωextτ . The param-
eter values are ζ = 0.01ω0, γ = 100ω0, and β = 0.05ω0, the case where the Born-Markov
approximation and the rotating-wave approximation are appropriate.

The result of the simulation for the evolution of the ratio DBL(τ)/DBR(τ) is Fig. E.1(a),
and that of an element of the reduced density matrix is Fig. E.1(b). They show that the
three situations do not cause a drastic difference in spite of the global change of the sys-
tem and the correction of the hierarchy equations of motion. The difference between (i)
and (ii) is even negligible, and thus we can regard that the memory of the equilibrium
state is wiped out by the measurement. We obtained the result of (ii) very close to (i)
not because the auxiliary matrices are extremely small. Some elements of the auxiliary
matrices of (ii) can be larger than (iii).

3.5 Conclusion

We found that the fluctuation theorems for the Markovian quantum master equation can
be formally generalized to the case of the master equation in a non-Markovian heat bath.
Since these fluctuation theorems are based on the analogy with the classical stochastic
processes, we numerically investigated the properties of the dynamics on the quantum
trajectory in the case of a system linearly coupled to a Gaussian heat bath with the
spectrum distribution of the Drude form.

As the most fundamental property, we found that the detailed balance holds in equilib-
rium even in the case where the dynamics of the system cannot be regarded as Markovian.
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(a) (b)

Figure 3.8: (a) The evolutions of the ratio DBL(τ)/DBR(τ) in the case of (σx+σz)-coupling
after the energy measurement with the procedures (i), (ii), and (iii). The parameter
values are the same as in Fig. 3.4. We set (N,K) = (10, 7). The time step is 10−4 in the
simulation time. (b) The evolutions of 〈1|ρ̂(τ)|1〉 after the measurement with the same
setting as (a).

From the transient dynamics after the energy measurement, we found the following:

• The “transition rate” on the quantum trajectory can be negative, and thus we cannot
regard it as the transition rate in the sense of the classical stochastic processes. In
this case, the entropy production (3.22) becomes ill-defined.

• The relaxation time of the “transition rates” does not always coincide with the
relaxation time of the detailed balance or of the reduced density matrix.

• The memory that the two-level system has been in equilibrium state before the
measurement is wiped off when we follow the thermalization after the measurement.

From the dynamics of the system that is driven by a sinusoidal external field in the
parameter region which is out of the Markovian limit, we found a case where the mi-
croscopic reversibility does not hold. Assuming that the definition of the entropy flow
∆še(t) is correct, we can interpret this result as follows; the microscopic reversibility may
or may not be satisfied, but the definition of the heat q̃(b, a, τ) is inappropriate in the
region where the Born-Markov approximation and the rotating-wave approximation do
not work at all. Other possibilities are readily denied. For instance, we cannot imagine
the situation where the definition of the heat q̃(b, a, τ) and the entropy flow ∆še(t) are
both correct, but the microscopic reversibility is simply broken, since the microscopic re-
versibility directly means the relation ˙̌se(t) = −βq̃(b, a, τ) under the present definitions. If
the definition of the entropy flow ∆še(t) is inappropriate, there is no point to investigate
the microscopic reversibility, and the fluctuation theorems that we considered here lose
the physical meaning. Therefore we conclude that the heat q̃(b, a, τ) that we defined above
do not have the properties that they suppose to have in general. Only in the Markovian
limit, they might be the correct definitions as the thermodynamic quantities.

It is difficult to investigate a state very far from equilibrium numerically, because we
require a large set of (N,K) in order to make the result converge. Hence, we need a
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more efficient methodology to explore the properties of the dynamics on the quantum
trajectory beyond the parameter region that we computed here.
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Appendix A

Microscopic reversibility

Let us consider a classical system in a reservoir and suppose that the dynamics of the
system is given as a Markovian stochastic process, so that the system possesses no memory
of its past. The system is driven by an external field according to a certain protocol with
the control parameter λ(τ). We refer to the transition rate of a physical state jumping
from m to m′ during [τ, τ + δτ ] as Wτ (m,m′; δτ).

The microscopic reversibility states that the transition rates Wτ (m,m′; δτ) and Wτ (m′,m; δτ)
are related by

Wτ (m,m′; δτ)

Wτ (m′,m; δτ)
= e−βq(m′,m,τ ;δτ), (A.1)

where q(m′,m, τ ; δτ) is the heat that flows out of the system to the reservoir during the
transition from m to m′ during [τ, τ + δτ ]. In terms of the quantities of the system, the
heat is given as the change of the energy of the system when the transition has occurred
while the control parameter λ(τ) is fixed. If we denote the energy of the state m with the
control parameter λ(τ) as Em(λ(τ)), the heat q(m′,m, τ ; δτ) should be given as

q(m′,m, τ ; δτ) ≡ Em′(λ(τ)) − Em(λ(τ)). (A.2)

On the other hand, if we define the work done on the system as the change of the energy
of the system when the control parameter has developed from λ(τ) to λ(τ + δτ) while the
state is fixed at m′, i.e.

w(m′,m, τ ; δτ) ≡ Em′(λ(τ + δτ)) − Em′(λ(τ)), (A.3)

then the first law of thermodynamics is satisfied for an interval δτ :

∆e(m′,m, τ ; δτ) ≡ Em′(λ(τ + δτ)) − Em(λ(τ)) = w(m′,m, τ ; δτ) + q(m′, m, τ ; δτ).
(A.4)

The relation (A.1) is called by different names; some people call it the microscopic re-
versibility and others call it the detailed balance. We use the name the microscopic
reversibility throughout the present Thesis. The relation (A.1) is anyway often assumed,
or given as the rule of a toy model of a stochastic process.
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Appendix B

Hierarchy equations of motion

In this Appendix, we review the formulation of the hierarchy equations of motion. We first
review the Feynman-Vernon theory, on which the method of the hierarchy equations of
motion is based. We describe the formulation in the case of the spin-boson model, which
we explained in Section 3.2.1, though it is essentially the same for the Caldeira-Leggett
model.

B.1 The Feynman-Vernon theory

In this Section, we review the Feynman-Vernon theory [14], following Ref. [34]. The aim
of the Feynman-Vernon theory is to express the time evolution of the density matrix of
the system in a heat bath.

B.1.1 Path-integral representation

We will formally express the reduced density matrix (the system density matrix) in the
path-integral representation by integrating out the degrees of freedom of the bath from
the total density matrix. For this purpose, we first express the element of the density
matrix of the total system in terms of path integral. The density matrix of the total
system reads, in the Heisenberg representation,

ρ̂tot(t) = e−
i
! Ĥtρ̂tot(0)e

i
! Ĥt, (B.1)

where Ĥ is the Hamiltonian of the total system in (3.29) or (3.35). We express the system
that we are interested in, i.e. a two-level system, with the basis of coherent states |ψ(t)〉;
we denote the initial state as |ψi〉, and the final state as |ψf〉. We express the degrees
of freedom of the bath, i.e. the harmonic oscillators with many modes, with the bases of
coordinates; |.xi〉 := |xα1,i , xα2,i , . . .〉 for the initial state and |.xf〉 := |xα1,f

, xα2,f
, . . .〉 for the

final state, where αj are the labels of the modes. Under these notation, the element of
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the density matrix of the total system at time t reads

〈ψf , .xf |ρ̂tot(t)|ψ′
f , .x

′
f〉

=

∫
dψidψid.xi

∫
dψ′

idψ
′
id.x

′
i

〈ψf , .xf |e−
i
! Ĥt|ψi, .xi〉e−ψiψi〈ψi, .xi|ρ̂tot(0)|ψ′

i, .x
′
i〉e−ψ′

iψ
′
i〈ψ′

i, .x
′
i|e

i
! Ĥt|ψ′

f , .x
′
f〉

=:

∫ ψ(t)=ψf ,ψ(t)=ψf ,'x(t)='xf

ψ(0)=ψi,ψ(0)=ψi,'x(0)='xi

DψDψD.x

∫ ψ′(t)=ψ′
f ,ψ

′(t)=ψ′
f ,'x

′(t)='x′
f

ψ′(0)=ψ′
i,ψ

′(0)=ψ′
i ,'x

′(0)='x′
i

Dψ′ Dψ′ D.x′

e
i
! S[ψ,ψ,'x]ρtot(ψi, .xi;ψ

′
i, .x

′
i) e−

i
! S[ψ′,ψ′, 'x′], (B.2)

where S is the action of the total system,

S = SS + SB + SI =

∫ t

0

ds
(
LS(s) + LB(s) + Lint+counter(s)

)
, (B.3)

with

LS(t) =: iψ(t)∂tψ(t) − !ω0

2

(
ψ(t)ψ(t) − ψ(t)ψ(t)

)
:, (B.4)

LB(t) =
1

2

∑

α

mα

[
ẋ2
α(t) − ω2

αx
2
α(t)

]
, (B.5)

Lint+counter(t) ≡ LI(t) =
∑

α

(
cαxα(t)V [ψ(t)] − 1

2

c2
α

mαω2
α

V [ψ(t)]2
)

. (B.6)

The symbol : : in (B.4) stands for the normal ordering.

B.1.2 Product initial state

For simplicity, we assume that the system and the bath are decoupled at t = 0, i.e. the
total state is written as the direct product. We consider the situation where the heat bath
is in equilibrium at t = 0, and thus the heat bath is initially in the canonical state:

ρ̂tot(0) = ρ̂(0) ⊗ 1

ZB
e−βĤB , (B.7)

ρ̂B =
1

ZB
e−βĤB , ZB = TrB e−βĤB , (B.8)

ρtot(ψi, .xi, ψ
′
i, .x

′
i, 0) = 〈ψi, .xi|ρ̂tot(0)|ψ′

i, .x
′
i〉

= 〈ψi|ρ̂(0)|ψ′
i〉

1

ZB
〈.xi|e−βĤB|.x′

i〉

=: ρ(ψi, ψ
′
i, 0) ⊗ ρB(.xi, .x

′
i, 0). (B.9)

B.1.3 Time evolution of the reduced density matrix

What we are interested in is the evolution of the system, i.e. the reduced density matrix.
It can be obtained by tracing out the degrees of freedom of the bath from the density
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matrix of the total system. Under the assumption of the product initial state, we have

ρ(ψf , ψ
′
f , t) =

∫
d.xf〈ψf , .xf |ρ̂tot(t)|ψ′

f , .xf〉

=

∫ ψ(t)=ψf ,ψ(t)=ψf ,'x(t)='xf

ψ(0)=ψi,ψ(0)=ψi,'x(0)='xi

DψDψD.x

∫ ψ′(t)=ψ′
f ,ψ

′(t)=ψ′
f ,'x

′(t)='x′
f

ψ′(0)=ψ′
i,ψ

′(0)=ψ′
i ,'x

′(0)='x′
i

Dψ′Dψ′D.x′

e
i
! (SS+SB+SI)

(
ρ(ψi, ψ

′
i, 0) ⊗ ρB(.xi, .x

′
i; 0)

)
e−

i
! (S′

S+S′
B+S′

I)

=:

∫
DψDψDψ′Dψ′ e

i
! (SS[ψ,ψ]−SS[ψ′,ψ′]) FFV[ψ, ψ, ψ′, ψ′]ρ(ψi, ψ

′
i, 0). (B.10)

This functional FFV[ψ, ψ, ψ′, ψ′] is what is called the Feynman-Vernon influence func-
tional; all the effect of the bath is packed in here:

FFV[ψ, ψ, ψ′, ψ′] =

∫
d.xfd.xid.x

′
i ρB(.xi, .x

′
i)

∫ 'x(t)='xf

'x(0)='xi

Dx

∫ 'x′(t)='xf

'x′(0)='x′
i

D.x′

× exp

[
i

!
(
SB[.x] + SI[.x, ψ, ψ] − SB[.x′] − SI[.x

′, ψ′, ψ′]
)]

=:

∫
d.xfd.xid.x

′
i ρB(.xi, .x

′
i)F (ψ, ψ; .xf , .xi)F

∗(ψ′, ψ′; .xf , .x
′
i), (B.11)

where

F (ψ, ψ; .xf , .x
′
i) =

∫ 'x(t)='xf

'x(0)='xi

Dx exp

[
i

!
(
SB[.x] + SI[.x, ψ, ψ]

)]
. (B.12)

The influence functional can be calculated explicitly thanks to the fact that the bath is
Gaussian (i.e. the ensemble of harmonic oscillators) and that the coupling of the system
and the bath is linear.

After some calculation, we find each element of the influence functional as follows
[13,16]:

ρB(.xi, .x
′
i) =

N∏

α=1

ρ(α)
B (xi,α, x

′
i,α), (B.13)

F (ψ, ψ; .xf , .x
′
i) =

N∏

α=1

F (α)(ψ, ψ; xf,α, x
′
i,α), (B.14)

where

ρ(α)
B (xi,α, x

′
i,α) =

1

ZB
〈xi,α|e−βĤB|x′

i,α〉

=

(
mαωα

2π! sinh(β!ωα)

) 1
2 1

Zα
R

× exp

{
− mαωα

2! sinh(β!ωα)
[(x2

i,α + x′2
i,α)cosh(β!ωα) − 2xi,α x′

i,α]

}
,

(B.15)
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Fα =

(
mαωα

2πi! sin(ωαt)

) 1
2

exp

(
i

!φα[ψ, ψ; xf,α, xi,α]

)
, (B.16)

with

φα[ψ, ψ; xf,α, xi,α] =
mαωα

2 sin(ωαt)
[(x2

i,α + x2
f,α)cos(ωαt) − 2xi,α xf,α]

+
xi,αcα

sin(ωαt)

∫ t

0

dt′sin [ωα(t − t′)] V (t′)

+
xf,αcα

sin(ωαt)

∫ t

0

dt′sin [ωαt
′] V (t′)

− c2
α

2 mαω2
α

∫ t

0

dt′ V 2(t′)

− c2
α

mαωαsin(ωαt)

∫ t

0

dt′
∫ t′

0

dt′′ sin[ωα(t − t′)] sin(ωαt
′′) V (t′) V (t′′).

(B.17)

Substituting these elements into the influence functional, we have

FFV[ψ, ψ, ψ′, ψ′]

=

∫
d.xfd.xid.x

′
i ρB(.xi, .x

′
i)F (ψ, ψ; .xf , .xi)F

∗(ψ′, ψ′; .xf , .x
′
i)

=
∏

α

(
mαωα

2π! sinh(β!ωα)

) 1
2 1

Zα
R

(
mαωα

2πi! sin(ωαt)

) 1
2

×
∫

d.xfd.xid.x
′
i ρ

(α)
B (.xi, .x

′
i)F

(α)(ψ, ψ; .xf , .xi)F
(α)∗(ψ′, ψ′; .xf , .x

′
i)

=
∏

α

(
mαωα

2π! sinh(β!ωα)

) 1
2 1

Zα
R

(
mαωα

2π! sin(ωαt)

) 1
2

×
∫

d.xfd.xid.x
′
i exp

{
− mαωα

2! sinh(β!ωα)
[(x2

i,α + x′2
i,α)cosh(β!ωα) − 2xi,α x′

i,α]

+

[
i

!

(
mαωα

2 sin(ωαt)
[(x2

i,α + x2
f,α)cos(ωαt) − 2xi,α xf,α]

+
xi,αcα

sin(ωαt)

∫ t

0

dt′sin [ωα(t − t′)] V [ψ(t′), ψ(t′)]

+
xf,αcα

sin(ωαt)

∫ t

0

dt′sin [ωαt
′] V [ψ(t′), ψ(t′)]

− c2
α

2 mαω2
α

∫ t

0

dt′ V 2[ψ(t′), ψ(t′)]

− c2
α

mαωαsin(ωαt)

∫ t

0

dt′
∫ t′

0

dt′′ sin[ωα(t − t′)] sin(ωαt
′′) V [ψ(t′), ψ(t′)] V [ψ(t′′), ψ(t′′)]

)

+ c.c.(ψ → ψ′, ψ → ψ′, xα → x′
α)

]}
.

(B.18)
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The term − ic2α
2 mαω2

α!
∫ t

0 dt′
(
V 2[ψ(t′), ψ(t′)] − V 2[ψ′(t′), ψ′(t′)]

)
is due to the counter term

(B.6) in the Lagrangian. After further calculation, we arrive at

FFV[ψ, ψ, ψ′, ψ′]

= exp

[(
− i

!

)2 ∫ t

0

dτ V ×(τ)

(
∂

∂τ

∫ τ

0

dτ ′ iL̄1(τ − τ ′)V ◦(τ ′) +

∫ τ

0

dτ ′L2(τ − τ ′)V ×(τ ′)

)]

× exp

(
− i

!2

∫ ∞

0

dω
J(ω)

ω

∫ t

0

dτ V ◦(τ)V ×(τ)

)
(B.19)

= exp

{
− 1

!2

∫ ∞

0

dω

∫ t

0

dτ V ×(τ)

[
−i

∫ τ

0

dτ ′J(ω) sin[ω(τ − τ ′)]V ◦(τ ′)

+

∫ τ

0

dτ ′J(ω) cos[ω(τ − τ ′)] coth

(
β!ω

2

)
V ×(τ ′)

]}

× exp

(
− i

!2

∫ ∞

0

dω
J(ω)

ω

∫ t

0

dτ V ◦(τ)V ×(τ)

)
, (B.20)

where

L̄1(t) =

∫ ∞

0

dω
J(ω)

ω
cos(ωt), (B.21)

L2(t) =

∫ ∞

0

dω J(ω) cos(ωt) coth

(
β!ω

2

)
, (B.22)

J(ω) =
∑

α

c2
α!

2mαωα
δ(ω − ωα), (B.23)

V ×(τ) := V ×(ψ, ψ, ψ′, ψ′; τ) ≡ V (ψ, ψ, τ) − V (ψ′, ψ′, τ), (B.24)

V ◦(τ) := V ◦(ψ, ψ, ψ′, ψ′; τ) ≡ V (ψ, ψ, τ) + V (ψ′, ψ′, τ). (B.25)

B.2 The hierarchy equations of motion

It was found by Tanimura et al. [19, 30–32] that the equation of motion for the reduced
density matrix can be obtained in non-perturbative manner. This is the method without
the Born-Markov approximation nor the rotating wave approximation.

B.2.1 Rewriting the influence functional

We rewrite the expression (B.20) of the Feynman-Vernon theory so that we can clarify the
hierarchy structure with respect to the time scale. Here we derive the hierarchy equations
of motion with the low-temperature correction, following Ref. [19].

We assume a nearly Gaussian-Markovian heat bath, i.e. the distribution of the har-
monic oscillators J(ω) is Ohmic, but with a Lorentzian cutoff (namely the Drude form):

J(ω) =
!2ζ

πω0

γ2ω

ω2 + γ2
. (B.26)
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The symbol ζ is the quantity related to the system-bath coupling strength and γ gives
the decay rate of the time correlation function of the heat bath. The spectrum becomes
Ohmic in the limit γ → ∞.

Substituting (B.26) into (B.21) and (B.22), we have

FFV[ψ, ψ, ψ′, ψ′] = exp

{
− ζγ2

πω0

∫ t

0

dτ V ×(τ)

∫ τ

0

dτ ′
[∫ ∞

0

dω
−iω

ω2 + γ2
sin[ω(τ − τ ′)]V ◦(τ ′)

+

∫ ∞

0

dω
ω

ω2 + γ2
cos[ω(τ − τ ′)] coth

(
β!ω

2

)
V ×(τ ′)

]}

× exp

(
− iζγ

2ω0

∫ t

0

dτ V ◦(τ)V ×(τ)

)
. (B.27)

For the first term in the rectangular parentheses

iζγ2

πω0

∫ ∞

0

dω
ω

ω2 + γ2
sin[ω(τ − τ ′)]

=
iζγ2

2πω0

∫ ∞

−∞
dω

ω

(ω + iγ)(ω − iγ)

eω(τ−τ ′) − e−ω(τ−τ ′)

2i

=
iζγ2

2ω0
e−γ(τ−τ ′)

= i
iζ

β!ω0

(
−i

β!γ
2

)
γe−γ(τ−τ ′), (B.28)

and for the second term in the rectangular parentheses

− ζγ2

πω0

∫ ∞

0

dω
ω

ω2 + γ2
coth

(
β!ω

2

)
cos[ω(τ − τ ′)]

= − ζγ2

2πω0

∫ ∞

−∞
dω

ω

ω2 + γ2

e
β!ω
2 + e−

β!ω
2

e
β!ω
2 − e−

β!ω
2

eω(τ−τ ′) + e−ω(τ−τ ′)

2

= −ζγ2

2ω0
cot

(
β!ω

2

)
e−γ(τ−τ ′) − ζγ2

β!ω0

∞∑

k=1

2νk

ν2
k − γ2

e−νk(τ−τ ′), (B.29)

where νk = 2πk/β! is the Matsubara frequency. We used the fact

Res{coth z} = lim
z→niπ

[
(z − niπ)

ez + e−z

ez − e−z

]
= 1. (B.30)
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Thus we have

FFV[ψ, ψ, ψ′, ψ′]

= exp

{∫ t

0

dτ

∫ τ

0

dτ ′V ×(τ)

[
iζγ2

2ω0
e−γ(τ−τ ′)

]
V ◦(τ ′)

}

× exp

{∫ t

0

dτ

∫ τ

0

dτ ′V ×(τ)

×
[
−ζγ2

2ω0
cot

(
β!ω

2

)
e−γ(τ−τ ′) − ζγ2

β!ω0

∞∑

k=1

2νk

ν2
k − γ2

e−νk(τ−τ ′)

]
V ×(τ ′)

}

× exp

(
− iζγ

2ω0

∫ t

0

dτ V ◦(τ)V ×(τ)

)
. (B.31)

For the first exponential (which is responsible for the fluctuation), the inside of the rect-
angular parentheses can be approximated as the δ-function when the time-scale of the
system τS = 1/ω0 is much less than γ. The inside of the rectangular parentheses of the
second exponential (which is responsible for the dissipation), however, cannot be approx-
imated as the δ-function no matter how large γ is as long as the Matsubara frequencies
νk = 2πk/β! are not large compared to ω0. In this case, the influence functional and
the reduced density matrix cannot be local in time. Therefore, we classify heat baths as
follows:

Markovian heat bath The temperature is high (ν1 - ω0) and the decay rate of its
time-correlation function is large (γ - ω0), so that we can obtain a time-local
equation of motion for the reduced density matrix.

non-Markovian heat bath The temperature is low (ν1 - ω0 is not satisfied), so that
we cannot obtain a time-local equation of motion solely in terms of the reduced
density matrix even when the decay rate of its time-correlation function is infinity
(γ = ∞) unless other kinds of approximations, e.g. the rotating-wave approximation,
are applicable.

Let us rewrite (B.31) in the following form:

FFV[ψ, ψ, ψ′, ψ′] = exp

[∫ t

0

dτ

∫ τ

0

dτ ′Φ(τ)Θ(τ ′)γ e−γ(τ−τ ′)

]

×
∞∏

k=1

exp

[∫ t

0

dτ

∫ τ

0

dτ ′Φ(τ)Ψk(τ
′)νk e−νk(τ−τ ′)

]

× exp

{
− iζγ

2ω0

∫ t

0

dτ V ◦(τ)V ×(τ)

}
, (B.32)

Φ(t) = iV ×(t), (B.33)

Θ(t) =
iζ

β!ω0

[
−i

β!γ
2

V ◦(t) +
β!γ
2

cot

(
β!γ
2

)
V ×(t)

]
, (B.34)

Ψk(t) =
iζ

β!ω0

2γ2

ν2
k − γ2

V ×(t). (B.35)
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In the form (B.32) of the influence functional, the time scale of each element is now
clear. Hence, for k (≥ K + 1) that satisfies νk - ω0, we may approximate

νk e−νk(τ−τ ′) 0 δ(τ − τ ′) (k ≥ K + 1). (B.36)

In other words, the Markovian approximation is valid in the levels k ≥ K + 1, but not in
the lower levels. Then (B.32) reads

FFV[ψ, ψ, ψ′, ψ′] 0 exp

[
−

∫ t

0

dτ Φ(τ)e−γτ

(
−

∫ τ

0

dτ ′ γΘ(τ ′)eγτ
′
)]

×
K∏

k=1

exp

[
−

∫ t

0

dτ Φ(τ)e−νkτ

(
−

∫ τ

0

dτ ′ νkΨk(τ
′)eνkτ ′

)]

×
∞∏

k=K+1

exp

(∫ t

0

dτ Φ(τ)Ψk(τ)

)

× exp

(
− iζγ

2ω0

∫ t

0

dτ V ◦(τ)V ×(τ)

)
(B.37)

= exp

[
−

∫ t

0

dτ Φ(τ)e−γτ

(
−

∫ τ

0

dτ ′ γΘ(τ ′)eγτ
′
)]

×
K∏

k=1

exp

{
−

∫ t

0

dτ

[
Φ(τ)e−νkτ

(
−

∫ τ

0

dτ ′ νkΨk(τ
′)eνkτ ′

)
+ Φ(τ)Ψk(τ)

]}

×
∞∏

k=1

exp

(∫ t

0

dτ Φ(τ)Ψk(τ)

)

× exp

(
− iζγ

2ω0

∫ t

0

dτ V ◦(τ)V ×(τ)

)
. (B.38)

Furthermore, using the formula

1 − x cot x =
∞∑

k=1

2x2

π2k2 − x2
, (0 < |x| < π), (B.39)

we rewrite the third line of (B.38) as follows:

∞∏

k=1

exp

(∫ t

0

dτ Φ(τ)Ψk(τ)

)
= exp

(
− ζ

β!ω0

∫ t

0

dτ
∞∑

k=1

2γ2

νk − γ2
V ×(τ)V ×(τ)

)

= exp

{
− ζ

β!ω0

∫ t

0

dτ

[
1 − β!γ

2
cot

(
β!γ
2

)]
V ×(τ)V ×(τ)

}
.

(B.40)
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Then we arrive at

FFV[ψ, ψ, ψ′, ψ′]

= exp

{
−

∫ t

0

dτ

[
Φ(τ)e−γτ

(
−

∫ τ

0

dτ ′ γΘ(τ ′)eγτ
′
)

+ Ξ(τ)

]}

×
K∏

k=1

exp

{
−

∫ t

0

dτ

[
Φ(τ)e−νkτ

(
−

∫ τ

0

dτ ′ νkΨk(τ
′)eνkτ ′

)
+ Φ(τ)Ψk(τ)

]}
,

(B.41)

where we defined

Ξ(τ) ≡ ζ

β!ω0

[
1 − β!γ

2
cot

(
β!γ
2

)]
V ×(τ)V ×(τ) + i

ζ

β!ω0

β!γ
2

V ◦(τ)V ×(τ). (B.42)

B.2.2 Equation of motion for the reduced density matrix

If we take the time derivative of (B.10) with the influence functional (B.37), we can obtain
the equation of motion for the reduced density matrix. Nevertheless, before doing that,
let us introduce the following auxiliary matrices:

ρ̂(n)
j1,...,jK

(ψf , ψ
′
f , t) =

∫
DψDψ

∫
Dψ′Dψ′ ρ(ψi, ψ

′
i, 0)

×
[
e−γτ

(
−

∫ τ

0

dτ ′ γΘ(τ ′)eγτ
′
)]n

×
[
e−νkτ

(
−

∫ τ

0

dτ ′ νkΨk(τ
′)eνkτ ′

)]jk

× e
i
! SS[ψ,ψ] FFV[ψ, ψ, ψ′, ψ′]e−

i
! SS[ψ′,ψ′]. (B.43)

The element (n, j1, . . . , jK) = (0, 0, . . . , 0) represents the original reduced density matrix.
Hereafter, we omit the subscript f for the final state. We can express the derivative of
the influence functional in terms of these matrices, and thus we are able to clarify the
hierarchy structure of the equation:
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∂

∂t
ρ̂(0)

0,...,0(ψ, ψ′; t) = −
(

iL̂ +
K∑

k=1

Φ̂Ψ̂k + Ξ̂

)
ρ̂(0)

0,...,0(ψ, ψ′; t)

− Φ̂ρ̂(1)
0,...,0(ψ, ψ′; t) −

K∑

k=1

Φ̂ρ̂(0)
0,...,1,...,0(ψ, ψ′; t), (B.44)

∂

∂t
ρ̂(1)

0,...,0(ψ, ψ′; t) = −
(

iL̂ + γ +
K∑

k=1

Φ̂Ψ̂k + Ξ̂

)
ρ̂(1)

0,...,0(ψ, ψ′; t)

− Φ̂ρ̂(2)
0,...,0(ψ, ψ′; t) − γΘ̂ρ̂(0)

0,...,0(ψ, ψ′; t)

−
K∑

k=1

Φ̂ρ̂(1)
0,...,1,...,0(ψ, ψ′; t), (B.45)

∂

∂t
ρ̂(0)

1,0,...,0(ψ, ψ′; t) = −
(

iL̂ + ν1 +
K∑

k=1

Φ̂Ψ̂k + Ξ̂

)
ρ̂(0)

1,0...,0(ψ, ψ′; t)

− Φ̂ρ̂(1)
1,0,...,0(ψ, ψ′; t) −

K∑

k=1

Φ̂ρ̂(0)
1,0,...,1,...,0(ψ, ψ′; t)

− ν1Ψ̂1ρ̂
(0)
0,...,0(ψ, ψ′; t), (B.46)

...

∂

∂t
ρ̂(n)

j1,...,jK
(ψ, ψ′; t) = −

[
iL̂ + nγ +

K∑

k=1

(jkνk + Φ̂Ψ̂k) + Ξ̂

]
ρ̂(n)

j1,...,jK
(ψ, ψ′; t)

− Φ̂ρ̂(n+1)
j1,...,jK

(ψ, ψ′; t) − nγΘ̂ρ̂(n−1)
j1,...,jK

(ψ, ψ′; t)

−
K∑

k=1

Φ̂ρ̂(n)
j1,...,jk+1,...,jK

(ψ, ψ′; t)

−
K∑

k=1

jkνkΨ̂kρ̂
(n)
j1,...,jk−1,...,jK

(ψ, ψ′; t). (B.47)

In the above equations, Φ̂, Θ̂, Ψ̂k, and Ξ̂ are given in (B.33), (B.34), (B.35), and (B.42)
with the replacement V ×(t) → V̂ × and V ◦(t) → V̂ ◦, where V̂ ×f ≡ V f − fV and
V̂ ◦f ≡ V f + fV .

B.2.3 Terminators

In principle, the set of above equations contains the hierarchy that continues infinitely.
Nevertheless, as we will see, the hierarchy elements at a deep enough level can be safely
truncated because the Markovian approximation is appropriate for those elements as was
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shown in (B.36). Formally solving (B.47), we have

ρ̂(n)
j1,...,jK

(ψ, ψ′; t) =

∫ t

0

ds e−[iL̂+nγ+
PK

k=1(jkνk+ΦΨk)+Ξ](t−s)

×
(
−Φρ̂(n+1)

j1,...,jK
(ψ, ψ′; t) − nγΘρ̂(n−1)

j1,...,jK
(ψ, ψ′; t)

−
K∑

k=1

Φρ̂(n)
j1,...,jk+1,...,jK

(ψ, ψ′; t)

−
K∑

k=1

jkνkΨkρ̂
(n)
j1,...,jk−1,...,jK

(ψ, ψ′; t)

)
. (B.48)

For n, j1, j2, · · · jK that satisfy

nγ +
K∑

k=1

jkνk - ω0, (B.49)

we can approximate
(

nγ +
K∑

k=1

jkνk

)
e(nγ+

PK
k=1 jkνk)(t−s) 0 δ(t − s), (B.50)

and then

ρ̂(n)
j1,...,jK

(ψ, ψ′; t) 0
(

nγ +
K∑

k=1

jkνk

)−1 (
−Φρ̂(n+1)

j1,...,jK
(ψ, ψ′; t) − nγΘρ̂(n−1)

j1,...,jK
(ψ, ψ′; t)

−
K∑

k=1

Φρ̂(n)
j1,...,jk+1,...,jK

(ψ, ψ′; t)

−
K∑

k=1

jkνkΨkρ̂
(n)
j1,...,jk−1,...,jK

(ψ, ψ′; t)

)
. (B.51)

Hence the substitution of (B.51) back into (B.47) leads to

∂

∂t
ρ̂(n)

j1,...,jK
(ψ, ψ′; t) 0 −

(
iL̂ +

K∑

k=1

ΦΨk + Ξ

)
ρ̂(n)

j1,...,jK
(ψ, ψ′; t). (B.52)

This is written solely in terms of the matrix with (n, j1, . . . , jK), and thus the hierarchy
gets truncated here. The matrices which obey (B.52) are called the terminators.

For the numerical calculation, we set

N ≡ n +
K∑

k=1

jk - ω0

min(γ, ν1)
(B.53)

as a number that satisfies (B.50).
We obtained the set of closed equations for the matrices; the matrices which do not

satisfy (B.36) and (B.50) obey (B.47), and the rest obey (B.52).
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B.2.4 Numerical implementation

Analytical calculation of the hierarchy equations of motion turns out to be much difficult
in most cases, and thus it is usual to obtain the result with numerical simulations. In
the above formulation, we can obtain the exact result if we take N in (B.53) and K
in (B.36) infinite so that the approximations in (B.50) and (B.36) become exact. We
cannot, however, implement this because it requires an infinite set of equations to solve.
Hence we simulate with finite (N,K), which produces of course an approximate result.
Nevertheless, if we increase the numbers of N and K, the physical quantity that we are
calculating converges to a certain value. We can regard this value as the numerically
exact result since the simulations with the higher set of (N,K) would only give negligible
differences.

The numerical simulations in the present Thesis is based on the program nonMarko-
vian09 which is distributed on the website of Yoshitaka Tanimura [1]. We set ! = 1
there.
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Appendix C

Isolated system

In the case of an isolated quantum system, the system obeys the Liouville-von Neumann
equation

d

dt
|ρ(t)〉〉 = ˆ̂L|ρ(t)〉〉 = −i[H(t), ρ(t)], (C.1)

and the corresponding “transition rate” is

Wt(m,m′) ≡ 〈〈mt| ˆ̂L|m′
t〉〉

= −i

(
〈mt| [H, |m′

t〉〈m′
t|] |mt〉

)

= −i

(
〈mt|H|m′

t〉〈m′
t|mt〉 − (〈mt|H|m′

t〉〈m′
t|mt〉)∗

)

= 0. (C.2)

Thus, no transitions take place. The picture of the quantum trajectory appears obviously
due to the interaction with the reservoir.
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Appendix D

Microscopic reversibility of the
quantum optical master equation

We show an example where the microscopic reversibility holds when we applied the Born-
Markov approximation and the rotating-wave approximation. The equation of motion for
the reduced density matrix of the spin-boson model with these approximation is called
the quantum optical master equation. We consider the case of the external field which
alters the diagonal elements of the reduced system, e.g. the Zeeman magnetic field on a
spin:

ĤS(t) =

(
!ω(t) 0

0 −!ω(t)

)
, !ω(t) =

!ω0

2
+ h(t). (D.1)

As the region where the Born-Markov approximation and the rotating-wave approxima-
tion are appropriate, we consider the case where

min

[
γ,

2π

β

]
- ζ, ω0 - ζ, (D.2)

with γ the decay rate of the heat bath and ζ the quantity related to the system-bath
coupling strength; see (B.23) and (B.26). In this limit, the Lindblad-type quantum master
equation can be obtained. In the following calculation, we neglect the contribution of the
Lamb-Stark shift, but it does not affect the result.

Let us first solve the time evolution of the reduced density matrix ρ̂S(t). Expressing
operators in the interaction pictures with the superscript (I), we have [4]

d

dt
ρ̂(I)

S (t) = γ0(N + 1)

(
σ−ρ̂

(I)
S (t)σ+ − 1

2
σ+σ−ρ̂

(I)
S (t) − 1

2
ρ̂(I)

S (t)σ+σ−

)

+ γ0N

(
σ+ρ̂

(I)
S (t)σ− − 1

2
σ−σ+ρ̂

(I)
S (t) − 1

2
ρ̂(I)

S (t)σ−σ+

)
(D.3)

=: D(I) ρ̂(I)
S (t), (D.4)

where

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (D.5)
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and

γ0 =
4ω(t)3|.d|2

3!c3
, N := N(ω(t)) =

1

exp
(
β!ω(t)

)
− 1

. (D.6)

The vector .d is the off-diagonal element of the dipole operator,

.D(I)(t) = .dσ−e−iω0t + .d∗σ+eiω0t. (D.7)

The general solution of the density matrix is expressed as

ρ̂(I)
S (t) =

1

2
(1 + 〈.σ(t)〉 · .σ) =

(
1
2(1 + 〈σ3(t)〉) 〈σ−(t)〉

〈σ+(t)〉 1
2(1 − 〈σ3(t)〉)

)
, (D.8)

which evolves as

d

dt
〈σ1(t)〉 = −γ0(t)[2N + 1]

2
〈σ1(t)〉, (D.9)

d

dt
〈σ2(t)〉 = −γ0(t)[2N + 1]

2
〈σ2(t)〉, (D.10)

d

dt
〈σ3(t)〉 = −γ0(t)[2N + 1]〈σ3(t)〉 − γ0(t). (D.11)

However, since the coupling is weak, the initial equilibrium state is well approximated as

ρ̂(I)
S (0) =

(
e−

1
2βω0 0
0 e

1
2βω0

)
. (D.12)

Thus, the density matrix in the interaction picture is a diagonal matrix all the time.
In order to discuss the microscopic reversibility, we need to express the reduced density

matrix ρ̂(I)
S (t) and the dissipator D(I)(t) in the Schrödinger picture. The time evolution

operator of the total system reads

Û0(t) ≡ exp[− i

!

∫
dt ĤS(t)] ⊗ exp[− i

!ĤBt]

=

(
exp[− i

2!
∫

dt ω(t)] 0
0 exp[ i

2!
∫

dt ω(t)]

)
⊗ exp[− i

!ĤBt]. (D.13)

Since the density matrix has no off-diagonal elements, we have

ρ̂(S)
S (t) = Û0(t)ρ̂

(I)
S (t)Û †

0(t) = ρ̂(I)
S (t), (D.14)

where ρ̂(S)
S (t) is the reduced density matrix in the Schrödinger picture. Therefore, the

time-dependent basis {|at〉, |bt〉} is time independent in the current case:

|at〉 =

(
a1

a2

)
=

(
1
0

)
, |bt〉 =

(
b1

b2

)
=

(
0
1

)
. (D.15)
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For the dissipator, using the fact that σ+ and σ− translate as

Û0(t)σ+Û †
0(t) = σ+ exp[− i

2!

∫
dt ω(t)], (D.16)

Û0(t)σ−Û †
0(t) = σ− exp[

i

2!

∫
dt ω(t)], (D.17)

we have

ˆ̂D(S)(t) = ˆ̂U0(t)
ˆ̂D(I)(t) ˆ̂U †

0(t) = ˆ̂D(I)(t). (D.18)

We are now ready to calculate the ratio of the “transition rate” Wt(bt, at):

Wt(bt, at) ≡ 〈〈bt| ˆ̂D(S)|at〉〉 (D.19)

= γ0N
(
|a1|2|b2|2 + |a2|2|b1|2

)
+ γ0|a2|2|b1|2. (D.20)

The second term is the asymmetric part with respect to the process reversal at ↔ bt. We
also see that the “transition rate” Wt(bt, at) is real and positive. Substituting the specific
form N = (eβω0 − 1)−1, the left-hand side of the microscopic reversibility becomes

Wt(a, b)

Wt(b, a)
=

eβω0 |a2|2|b1|2 + |a1|2|b2|2

eβω0 |a1|2|b2|2 + |a2|2|b1|2
= e−β!ω(t). (D.21)

The right-hand side of the microscopic reversibility reads

〈bt|HS(t)|bt〉 = −!ω(t)

2
, 〈at|HS(t)|at〉 =

!ω(t)

2
, (D.22)

exp(β[〈b|HS(t)|b〉 − 〈a|HS(t)|a〉]) = e−β!ω(t), (D.23)

and thereby we see that the microscopic reversibility holds in the case where the system
is driven by the Zeeman magnetic field.
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Appendix E

Convergence of the Hierarchy
equation of motion

Although the numerical results of Figs. 3.1, 3.2, 3.3, and 3.4 are not fully converged, we
confirmed that those results would eventually converge to the numerically exact values
for the larger set of (N,K)’s.

ln
 ∆

D
B

L
(τ

)/
D

B
R

(τ
)

(
)

ln ∆ DBL (τ ) / DBR (τ )( )
linear approximation

∆(4,1)

∆(9,6)∆(8,5)∆(7,4)∆(6, 3)∆(5,2)

(a)

ln
 ∆

D
B

L
(τ

)/
D

B
R

(τ
)

(
)

ln ∆ DBL (τ ) / DBR (τ )( )
linear approximation∆(4,1)

∆(9,6)∆(8,5)∆(7,4)∆(6, 3)∆(5,2)

(b)

Figure E.1: (a) The evolutions of the ratio DBL(τ)/DBR(τ) in the case of (σx + σz)-
coupling after the energy measurement with the procedures (i), (ii), and (iii). The pa-
rameter values are the same as in Fig. 3.4. We set (N,K) = (10, 7). The time step is 10−4

in the simulation time. (b) The evolutions of 〈1|ρ̂(τ)|1〉 after the measurement with the
same setting as (a).
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