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Abstract

We study the heat transfer between two finite quantum systems initially at dif-
ferent temperatures. We find that a recently proposed fluctuation theorem for heat
exchange, namely the exchange fluctuation theorem [C. Jarzynski and D. K. Wójcik,
Phys. Rev. Lett. 92, 230602 (2004)], does not hold in the presence of a finite heat
transfer. The deviation from the exchange fluctuation theorem is explicitly calcu-
lated for simple models. We confirm that the deviation has a finite value as far as the
coupling between the two systems is finite. We discover a condition for the exchange
fluctuation theorem to hold in the presence of a finite heat transfer. We check the
condition analytically and numerically.
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1 Introduction

In the present thesis, we study the heat transfer between two finite quantum systems
initially at different temperatures. Our main interest is to understand statistical-physical
properties of the heat transfer between finite systems out of equilibrium. In this situation,
Jarzynski and Wójcik [1] have presented a symmetry relation about the heat transfer.
They referred to the relation as the exchange fluctuation theorem (XFT). We show that
the exchange fluctuation theorem does not hold generally in the presence of a finite heat
transfer for quantum systems. We also find a specific condition with which the exchange
fluctuation theorem holds rigorously in the presence of a finite heat transfer.

The development of the modern techniques of microscopic manipulation enables us
to treat small systems, for example, nano-devices and molecular motors. In such small
systems, classical thermodynamics is not well applicable to quantification of the heat flow
or the work. At the nano- and micro-scales, the available thermal energy per degree of
freedom is comparable to the energy of the small systems. This thermal energy enhances
fluctuations, whose effects measurably appear in such small systems. Thus, we cannot
apply classical thermodynamics to these small systems. We need a substitute framework if
we try to design or control nano-devices and molecular motors as macroscopic heat engines.

Becayse of this motivation, we will analyze thermal fluctuations in small quantum-
mechanical systems in the present thesis, but we first briefly review facts that have been
discovered for fluctuations in small classical-mechanical systems. In 1993, the first quanti-
tative description of the entropy production in finite systems was provided by the discovery
of a fluctuation theorem [2]. In its most general form, the theorem gives an analytical ex-
pression of the probability that a dissipative heat flux flows in the direction opposite to the
one required by the second law of thermodynamics. For thermostated dissipative systems,
the theorem relates the probability pτ (Ω) of observing over the time duration τ the en-
tropy increase Ω, to the probability pτ (−Ω) of observing the entropy decrease of the same
magnitude:

pτ (Ω)

pτ (−Ω)
= eΩ. (1)

Since the entropy production is an extensive quantity and the total entropy production
increases in time, the fluctuation theorem shows that a positive entropy production is
overwhelmingly likely as either the system size or the observation time increases. In this
sense, we can view the fluctuation theorem as a generalization of the second law of thermo-
dynamics. When the fluctuation theorem is applied to the transient response of a system,
the theorem is referred to as the transient fluctuation theorem [3].

Since the above works, many fluctuation theorems have been presented for a variety
of clasical-mechanical situations: thermostated systems [2, 3, 4], stochastic systems [5, 6],
and the externally driven systems [7, 8, 9]. These classical fluctuation theorem have been
reviewed in Refs [10, 11]. Some of these theorems were verified experimentally [12, 13, 14].

When the system becomes further small, quantum effects may become significant. It
is, however, not straightforward to extend the afore-mentioned fluctuation theorems to
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quantum-mechanical systems. The crucial difference of the quantum systems from the
classical systems is an essential role of measurements. In order to generalize the fluctuation
theorems to quantum systems, we need to identify the entropy, the work, and the heat that
are measured in the quantum-mechanical context. There have been two attempts to do this:
first, defining operators to represent the heat and the work; second, measuring the system
and using the measurement outcomes to represent the heat and the work. In general, the
former attempt has led to quantum corrections to the classical results [15, 16, 17, 18].
In the latter attempt, on the other hand, several fluctuation theorems have been shown
without quantum corrections [19, 20, 21, 22, 23]. Both the heat and the work are defined
as the difference between the results of two measurements, a two-point quantity. We refer
to this attempt as a two-time measurement scheme. The exchange fluctuation theorem
(XFT) [1] was presented with this scheme.

The situation in which the exchange fluctuation theorem was proved [1] is quite simple;
the two finite quantum systems are prepared in equilibrium at different temperatures then
placed in thermal contact with one another. There is no work resource such as an external
field nor an external force. In this situation, we simply identify the energy increase of each
system as a heat flowing into the system.

To summarize the present thesis, we find the following:

(i) The exchange fluctuation theorem does not hold in the presence of a finite heat
transfer.

(ii) If the Hamiltonian that couples the two systems commutes with the total Hamilto-
nian, the exchange fluctuation theorem becomes an exact relation.

The present thesis is organized as follows. In Chapter 2, we review previous results of quan-
tum fluctuation theorems. In Chapter 3, we explain in details the measurement procedure
referred to as the two-time measurement and show a general expression for the probability
at which we observe a measurement outcome. In Chapter 4, we first follows the original
derivation of the exchange fluctuation theorem [1], and then show the deviation from the
theorem. We also show an explicit form of the deviation for two simple models. After
that, we introduce a condition on the coupling Hamiltonian for the exchange fluctuation
theorem to hold exactly and demonstrate that the deviation from the theorem vanishes.
This is also confirmed in two specific models. Conclusions will be presented in Chapter 5.
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2 Fluctuation theorems and Jarzynski’s equality

In this section, we briefly review the transient fluctuation theorem, the steady-state fluc-
tuation theorem and Jarzynski’s equality. These relations hold in finite and far-from-
equilibrium systems. They have been experimentally confirmed and have provided us an
insight into statistical-physical characteristics of non-equilibrium systems.

2.1 Transient fluctuation theorem

The transient fluctuation theorem describes how irreversibility emerges from a completely
time-reversible dynamics in the time-evolution. Here, we explain the Crooks fluctuation
theorem [9, 20] as an example.

We use an externally driven system [20] initially prepared in the Gibbs state at an
inverse temperature β. We first consider a time-dependent non-equilibrium “forward”
process for which the system Hamiltonian changes from H(0) to H(τ) over the finite time
duration 0 ≤ t ≤ τ and denote the forward process by xF(t). The forward process starts
from the equilibrium state of H(0) and ends at a non-equilibrium state of H(τ). In the
“reverse” process, an initial equilibrium state of H(τ) evolves to a non-equilibrium state
of H(0). The non-equilibrium protocol for the reverse process, denoted by xR(t), is a
time-reversed process of the forward one: xR(t) = xF (τ − t). Let p′τ (Ω) and p′Rτ (Ω) denote
the probability distribution of the entropy production Ω in the forward and the reverse
processes, respectively. Then the Crooks fluctuation theorem is expressed as

p′τ (Ω)

p′Rτ (−Ω)
= eΩ. (2)

To identify the entropy production Ω, we consider an isolated quantum system as an
example. Let H(t) and |mt〉 denote the Hamiltonian of the system and an instantaneous
eigenstate of the Hamiltonian H(t), respectively. The joint probabilities P (m0, nτ |τ) for
the forward process and PR(nτ ,m0|τ) for the reverse process (defined in Appendix A) are

P (m0, nτ |τ) =
e−βEm0

Z0

|〈nτ |U |m0〉|2 , (3)

PR(nτ ,m0|τ) =
e−βEnτ

Zτ

∣∣〈m0|U †|nτ 〉
∣∣2 , (4)

where U is the unitary time-evolution operator and Z0 and Zτ are the partition function
of the equilibrium states at t = 0 and t = τ , respectively. Using the joint probabilities, we
define the probability distribution of the work W performed on the system as

pτ (W ) =
∑

m0,nτ

P (m0, nτ |τ)δ(W − (Enτ − Em0)), (5)

pR
τ (W ) =

∑
m0,nτ

PR(nτ ,m0|τ)δ(W − (Em0 − Enτ )), (6)
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where δ(W ) is the delta function. Substituting Eq. (3) into Eq. (5), we have

pτ (W ) =
∑

m0,nτ

e−βEm0

Z0

|〈nτ |U |m0〉|2 δ(W − (Enτ − Em0))

=
∑

m0,nτ

e−β(Enτ −W )

Z0

|〈nτ |U |m0〉|2 δ(W − (Enτ − Em0))

= eβW Zτ

Z0

∑
m0,nτ

e−βEnτ

Zτ

∣∣〈m0|U †|nτ 〉
∣∣2 δ(−W − (Em0 − Enτ ))

= eβ[W−(Fτ−F0)]
∑

m0,nτ

e−βEnτ

Zτ

∣∣〈m0|U †|nτ 〉
∣∣2 δ(−W − (Em0 − Enτ ))

= eβ(W−∆F )pR
τ (−W ), (7)

where Ft is the free energy of the equilibrium state at time t and we used Zt = e−βFt . The
free energy difference between the equilibrium state at t = 0 and t = τ is ∆F = Fτ − F0.
Regarding pτ (W ) and pR

τ (−W ) in Eqs. (5) and (6) as p′τ (Ω) and p′Rτ (−Ω) in Eq. (7), we
identify the entropy production Ω as the irreversible work Wirr = W − ∆F :

p′τ (Ω) = eβWirrp′
R
τ (−Ω). (8)

This type of fluctuation theorem was proved by Crooks [9] in the classical context, and its
quantum version was proved by Tasaki [20].

2.2 Steady-state fluctuation theorem

The steady-state fluctuation theorem is considered in externally driven systems. The
external driving force can be made by applying an external field or boundary conditions.
The steady state fluctuation theorem is written in the form

lim
τ→∞

1

τ
ln

p̄τ (Ω̄)

p̄τ (−Ω̄)
= Ω̄, (9)

where Ω̄ is the time average of the entropy production Ω, Ω̄ = Ω/τ , and p̄τ (Ω̄) is the
probability at which we observe the time-averaged value Ω̄. This expression was first
established by Gallabotti and Cohen [4]. Equation (9) indicates that a steady-state system
is more likely to produce the entropy rather than to consume the entropy. The steady-state
fluctuation theorem has been proved recently in quantum systems [24, 25, 26].

2.3 Jarzynski’s equality

Jarzynski’s equality [7] relates the work W done on a system to the free-energy difference of
the system ∆F between the initial and final equilibrium states. This equality is expressed
as

〈e−βW 〉τ = e−β∆F , (10)
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where β is the inverse temperature of the initial state and the brackets 〈 · 〉τ denote the
ensemble average to be defined in Sec. 3.2. The remarkable point of Jarzynski’s equality
is that we can determine the free-energy difference from a non-equilibrium irreversible
process. Jarzynski’s equality is easily obtained from the Crooks-Tasaki fluctuation theorem
(7) as follows:

〈e−βW 〉τ =

∫
dW e−βW pτ (W )

=

∫
dW e−βW eβ(W−∆F )pR

τ (−W )

=

∫
dWpR

τ (−W )e−β∆F

= e−β∆F , (11)

where we used the normalization of pR
τ (W ),

∫
dWpR

τ (W ) = 1. Note that Jarzynski [7] first
presented this expression in 1997, before the Crooks fluctuation theorem [9] was derived.
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3 Two-time measurement scheme

In quantum systems, measurement affects the dynamics of the system, and thus we
need to consider the effect of the measurement in general. However, modeling the effect of
the system-detector interaction or the detector itself is complicated. Here, we consider a
projection measurement which can be viewed as a fundamental way of modeling quantum
measurements.

In this section, we explain a procedure of the two-time measurement which we will
consider hereafter. The measurements in this procedure are modeled by the projection
measurement. Then we introduce the corresponding joint probability and define an en-
semble average in the two-time measurement procedure. In order to discuss a quantity
related to the change of the system, we measure the system twice at least.

3.1 Procedure of a two-time measurement

We consider two quantum systems A and B with their respective Hilbert spaces H(A)

and H(B). The state space H of the combined system A + B is given by the tensor product
of the Hilbert spaces pertaining to the subsystems H(A) and H(B),

H = H(A) ⊗H(B). (12)

The system A is described by the Hamiltonian HA on H(A) and the system B is described
by HB on H(B). The connection between the two systems is described by the coupling
Hamiltonian Hc on H. The total Hamiltonian is

H = H0 + γHc, (13)

H0 = HA ⊗ 1B + 1A ⊗ HB, (14)

where 1A and 1B are the identity operators on H(A) and H(B), respectively, and γ is a pa-
rameter controlling the coupling strength between the two systems. Under the assumption
that the total system A + B is isolated, the density operator of the total system evolves in
time according to the von Neumann equation:

d

dt
ρ(t) =

1

i~
[H, ρ(t)] . (15)

The density operator at time t is written as

ρ(t) = U(t)ρ0U
†(t), (16)

where ρ0 is the density operator at t = 0 and U(t) is the solution of the Schrödinger
equation

i~
d

dt
U(t) = HU(t) (17)
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with the initial condition U(0) = 1.
Let X denote an observable, a Hermitian operator on H, whose eigenvalues and eigen-

states are {x} and {|x, λx〉}, respectively. We distinguish the degenerate eigenstates of an
eigenvalue x with a quantum number λx. Using the eigenstates {|x, λx〉}, we can write the
projection operator onto the eigenspace of X with the eigenvalue x as

Πx =
∑
λx

|x, λx〉〈x, λx|. (18)

In the rest of the present thesis, we consider projective measurements (ideal measure-
ments) only. Therefore, the measurement of X is expressed by a set of the projection
operators {Πx}. The state space on which the projection operators are defined depends
on what we measure. If we measure the particle number of the system B, for example, the
corresponding projection operator is defined as

ΠnB
= 1A ⊗

∑
λnB

|nB, λnB
〉〈nB, λnB

|, (19)

where |nB, λnB
〉 is an eigenstate of the number operator of the system B and λnB

is a
quantum number which labels states with a particle number nB.

We can divide the measuring procedure of X in the two-time measurement into the
following four stages:

• Stage 1
For time t < 0, we prepare the system in the state described by ρinit:

ρ(t < 0) = ρinit . (20)

The coupling between the two systems is off in this stage, and thus the two systems
are initially decoupled.

• Stage 2
At t = 0, we perform the first measurement of the observable X and obtain an out-
come x1. The state of the system is projected onto the eigenspace of X with the
eigenvalue x1. The density operator after the first measurement with the measure-
ment outcome is given by

ρ(t = 0) = ρx1

:=
Πx1ρinitΠx1

Tr (Πx1ρinit)
, (21)

where the denominator in the right-hand of the second line guarantees the normal-
ization of the density operator after the measurement.
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• Stage 3
After the first measurement, we turn on the coupling between the systems. Then the
total system evolves from t = 0 to t = τ according to the von Neumann equation:

i~
d

dt
ρ(t) = [H, ρ(t)] . (22)

Therefore, the density operator at time t (0 < t < τ) is given by

ρ(t) = U(t)ρx1U
†(t). (23)

• Stage 4
At t = τ , we separate the two systems and perform the second measurement of X.
The state of the system is projected onto the corresponding eigenspace of X. The
density operator after the measurement with an outcome x2 is given by

ρ(τ) =
Πx2U(τ)ρx1U

†(τ)Πx2

Tr (Πx2U(τ)ρx1U
†(τ))

=
Πx2U(τ)Πx1ρinitΠx1U

†(τ)Πx2

Tr (Πx2U(τ)Πx1ρinitΠx1U
†(τ))

, (24)

where the denominator in the second line guarantees the normalization of the density
operator ρ(τ).

In the two-time measurement procedure, we can discuss quantities indicating the state
change: for example, the heat flow, the particle flow, and the work done in the intervals of
the two measurements.

3.2 Joint probability of the measurement

Here, we introduce the joint probability that the result of the measurement is x1 at time
t = 0 and x2 at time t = τ as

P (x1, x2|τ) = Tr
(
Πx2U(τ)Πx1ρinitΠx1U

†(τ)
)
. (25)

We can calculate the ensemble average in the two-time measurement with the joint prob-
ability. Summing over all possible measurement results, we can confirm the normalization
of the joint probability P (x1, x2|τ) as∑

x1,x2

P (x1, x2|τ) =
∑
x1,x2

Tr
(
Πx2U(τ)Πx1ρinitΠx1U

†(τ)
)

=
∑
x1

Tr
(
U(τ)Πx1ρinitΠx1U

†(τ)
)

=
∑
x1

Tr (Πx1ρinitΠx1)

=
∑
x1

Tr (ρinitΠx1)

= Tr (ρinit) = 1, (26)
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where we used the properties of projection operators,

Π2
x = Πx,∑

x

Πx = 1.

The joint probability can be reduced to a product form by taking the trace in Eq. (25):

P (x1, x2|τ) = Tr
(
Πx2U(τ)Πx1ρinitΠx1U

†(τ)
)

=
∑

λx1 ,λx2

〈x2, λx2|U(τ)|x1, λx1〉〈x1, λx1 |ρinit|x1, λx1〉〈x1, λx1 |U †(τ)|x2, λx2〉

=
∑

λx1 ,λx2

〈x1, λx1|ρinit|x1, λx1〉 |〈x2, λx2 |U(τ)|x1, λx1〉|
2

=
∑

λx1 ,λx2

pinit(x1, λx1)T(x1,λx1 )→(x2,λx2 )(τ), (27)

where pinit(x1, λx1) denotes the probability of sampling the state |x1, λx1〉 from the initial
state ρinit:

pinit(x1, λx1) = 〈x1, λx1 |ρinit|x1, λx1〉 (28)

and T(x1,λx1 )→(x2,λx2 )(τ) denotes the transition probability from |x1, λx1〉 to |x2, λx2〉:

T(x1,λx1 )→(x2,λx2 )(τ) = |〈x2, λx2 |U(τ)|x1, λx1〉|2. (29)

If the observable X has no degeneracy, the joint probability is simply written as

P (x1, x2|τ) = 〈x1|ρinit|x1〉|〈x2|U(τ)|x1〉|2

= pinit(x1)Tx1→x2(τ). (30)

We will use the two expressions of the joint probability, Eqs. (25) and (27), in the present
thesis.

In order to discuss a quantity concerning the change of the measurement outcome
between the two measurements, we introduce the probability distribution defined as

pτ (∆x) =
∑
x1,x2

P (x1, x2|τ)δ(∆x − (x2 − x1)), (31)

where x1 and x2 are the results at the first and the second measurements, respectively, and
∆x = x2 − x1 is the difference of the outcome between the two measurements. Here δ(·) is
the delta function. We can easily check the normalization of pτ (∆x) by integrating it over
all possible values of ∆x and using Eq. (26):∫

d(∆x)pτ (∆x) =
∑
x1,x2

P (x1, x2|τ)

∫
d(∆x)δ(∆x − (x2 − x1))

=
∑
x1,x2

P (x1, x2|τ)

= 1. (32)
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We can calculate the ensemble average of the measurement difference ∆x by either of
pτ (∆x) and P (x1, x2|τ). Using the probability distribution pτ (∆x), we define the ensemble
average in the two-time measurement as follows:

〈f(∆x)〉τ :=

∫
d(∆x)pτ (∆x)f(∆x), (33)

where f(·) is an arbitrary function. Integrating over all possible values, we can represent
the ensemble average with the joint probability P (x1, x2|τ) as

〈f(∆x)〉τ =
∑
x1,x2

P (x1, x2|τ)f(x2 − x1). (34)

In the following discussions, we will use the brackets 〈 · 〉τ to denote the ensemble average
defined above.

3.3 Time-evolution operator

In this subsection, we represent the time-evolution operator with the commutation rela-
tion between the Hamiltonian of the decoupled system H0 = HA ⊗ 1B + 1A ⊗ HB and the
Hamiltonian connecting the two systems Hc. For convenience, we introduce an operator
C(t) which is of the first order of the coupling Hamiltonian and contains all the commu-
tation relations of H0 and Hc. The coupling Hamiltonian Hc appears mainly through the
operator C(t) in the following discussions.

In the Schrödinger picture, the unitary time-evolution operator U(t) is expressed for
the static Hamiltonian as

U(t) = e−i
H0+γHc

~ t, (35)

In the interaction picture, the unitary time-evolution operator Ũ(t) is expressed as follows:

Ũ(t) = T exp

[
−γ

i

~

∫ t

0

H̃c(s)ds

]
(36)

= 1 +
∞∑

k=1

( γ

i~

)k
∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsn

× H̃c(s1)H̃c(s2) · · · H̃c(sn), (37)

where

H̃c(t) = ei
H0
~ tHce

−i
H0
~ t (38)

is the coupling Hamiltonian in the interaction picture and T is an anti-chronological time
ordering from left to right. The operator Ũ(t) is the solution of the Schödinger equation
in the interaction picture

i~
∂

∂t
Ũ(t) = γH̃c(t)Ũ(t) (39)
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with the initial condition Ũ(0) = 1. The relation between the two pictures of the time-
evolution operators is

U(t) = e−
i
~ H0tŨ(t). (40)

We can confirm Eq. (40) by differentiating the right-hand side with respect to t and seeing
that it obeys the Schrödinger equation and fulfills the same initial condition as U(t),
U(t) = 1:

i~
∂

∂t

(
e−

i
~ H0tŨ(t)

)
= H0e

− iγ
~ H0tŨ(t) + γ e−

iγ
~ H0tH̃cŨ(t)

= H0e
− iγ

~ H0tŨ(t) + γHce
− iγ

~ H0tŨ(t)

= (H0 + γHc)
(
e−

iγ
~ H0tŨ(t)

)
= H

(
e−

iγ
~ H0tŨ(t)

)
, (41)

e−
iγ
~ H0tŨ(t)

∣∣∣
t=0

= Ũ(0) = 1.

Defining δA as the inner-derivation operator

δA = [A, ] , (42)

and using the following relation

eABe−A = B + δAB +
1

2!
δAδAB +

1

3!
δAδAδAB + · · ·

=
∞∑

n=0

1

n!
(δA)n B, (43)

we can represent the coupling Hamiltonian in the interaction picture as follows:

H̃c(t) = ei
H0
~ tHce

−i
H0
~ t =

∞∑
n=0

1

n!

(
it

~

)n

(δH0)
n Hc. (44)

Since the Hamiltonian H0 and Hc are independent of time, the time dependence of H̃c(t)
appears only in the form tn, and hence we can easily integrate it as

iC(t) :=
i

~

∫ t

0

H̃c(s)ds =
∞∑

n=0

1

(n + 1)!

(
it

~

)n+1

(δH0)
n Hc, (45)

where C(t) defined above is a Hermitian operator. We mainly use C(t) instead of Hc in
the following discussions. Note that if the coupling Hamiltonian commutes with the total
Hamiltonian, [H,Hc] = 0, only the term n = 0 remains in the summation in Eq. (45), and
thus we have C(t) = Hct/~. We will consider this situation in Sec. 4.3.
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The time-evolution operator in the interaction picture Ũ(t) is expressed with C(t) as

Ũ(t) = 1 − γ
i

~

∫ t

0

H̃c(s1)ds1 + γ2

(
i

~

)2 ∫ t

0

H̃c(s1)ds1

∫ s1

0

H̃c(s2)ds2

− γ3

(
i

~

)3 ∫ t

0

H̃c(s1)ds1

∫ s1

0

H̃c(s2)ds2

∫ s2

0

H̃c(s3)ds3 + · · ·

= 1 − iγC(t) + (iγ)2

∫ t

0

ds1Ċ(s1)C(s1)

− (iγ)3

∫ t

0

ds1Ċ(s1)

∫ s1

0

ds2Ċ(s2)C(s2) + · · ·

= 1 − iγC(t) +
1

2!
(iγC(t))2 − 1

3!
(iγC(t))3 + · · ·

= e−iγC(t). (46)

From the above discussion, the time-evolution operator in the Schrödinger picture is written
as

U(t) = e−i
H0
~ te−iγC(t). (47)

Using this representation of the time-evolution operator, we can represent the transition
probability (29) and the corresponding joint probability (25) in the following forms

Tm→n(τ) =
∑

λm,λn

|〈n, λn|U(τ)|m,λm〉|2

=
∑

λm,λn

|e−i En
~ t〈n, λn|e−iγC(τ)|m,λm〉|2,

=
∑

λm,λn

|〈n, λn|e−iγC(τ)|m,λm〉|2, (48)

P (m,n|τ) = pinit(m)
∑

λm,λn

|〈n, λn|e−iγC(τ)|m,λm〉|2, (49)

where Em and |m,λm〉 are an eigenvalue and eigenstate of the Hamiltonian H0, respectively,
H0|m,λm〉 = Em|m,λm〉, and λm is a quantum number labeling the eigenstates with the
same eigenvalue. In these expressions, we can easily see the dependence of the coupling
strength γ on the transition probability and the joint probability, and thus these expressions
suit the perturbative expansion with respect to γ.

Before going to the next section, we represent the joint probability in the trace form:

P (m,n|τ) = Tr
(
Πne−iγC(τ)ΠmρinitΠmeiγC(τ)

)
.

If we choose the initial state as a stationary state in the decoupled system [H0, ρinit] = 0,
the initial state ρinit can be diagonalized with the eigenstates of H0 and, we have

P (m,n|τ) = Tr
(
Πne−iγC(τ)ρinitΠmeiγC(τ)

)
. (50)
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In the next section, we chose the initial state as a product state of the Gibbs state [Eq. (62)]
and this initial state is commutable with the Hamiltonian of the decoupled system H0.
Thus, we use Eq. (50) when we represent the joint probabilities in the trace form.
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4 Examination of the Exchange Fluctuation Theorem

C. Jarzynski and D. K. Wójcik [1] derived a fascinating symmetry relation regarding
the statistics of heat exchange between two finite systems initially prepared at different
temperatures in Hamiltonian dynamics. Let βA and βB denote the inverse temperatures at
which the system A and the system B are prepared, respectively. The symmetry relation
is expressed with the probability distribution pτ (Q) of the net heat transfer Q as follows:

pτ (Q) = e∆βQpR
τ (−Q), (51)

where ∆β = βB − βA is the difference between the inverse temperatures and τ is the
time duration between the two measurements as in the previous section. They referred to
this symmetry relation as the exchange fluctuation theorem (XFT) because the exchanged
energy Q between the two systems is regarded as a heat transfer. They derived the exchange
fluctuation theorem in both classical and quantum systems. We will discuss the exchange
fluctuation theorem only for quantum systems in the present thesis.

To derive the exchange fluctuation theorem, Jarzynski and Wójcik assumed the fol-
lowing three conditions. First, the Hamiltonian of the system is time-reversal invariant.
Second, both of the two systems are initially in the Gibbs state described as follows:

ρinit = ρA ⊗ ρB

ρA =
e−βAHA

ZA

, ZA = Tr e−βAHA ,

ρB =
e−βBHB

ZB

, ZB = Tr e−βBHB ,

where Hα and Zα are the Hamiltonians and the partition function of the system α (α =
A,B), respectively. Finally, the interaction is weak enough for the total energy to be
preserved:

EA
mA

+ EB
mB

' EA
nA

+ EB
nB

, (52)

where (EA
mA

, EB
mB

) and (EA
nA

, EB
nB

) are the measurement outcomes in the first and second
measurements, respectively, and here we regard the sum EA

mA
+ EB

mB
and EA

nA
+ EB

nB
as

the total energy of the systems since the coupling between the systems is off at t ≤ 0 and
t ≥ τ .

We inspect the exchange fluctuation theorem under these three conditions analytically
and numerically in Sec. 4. 2. To make the point clear, we review the original derivation of
the exchange fluctuation theorem [1] in Sec. 4. 1.

4.1 Original Derivation of the XFT

In this section, we further assume the eigenvalues of HA and HB to be nondegenerate for
simplicity. Jarzynski and Wójcik did not mention the degeneracy of the Hamiltonians in
their original paper [1]. The degeneracy indeed causes no corrections to their discussions.
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4.1.1 Time-reversal operator in quantum mechanics

Before following the original derivation of the exchange fluctuation theorem, we note some
properties of the time-reversal operation in our setup. The time-reversal operation in
quantum mechanics is described by an antilinear operator Θ [27]. The antilinearity is
represented as

Θ (α1|Ψ〉 + α2|Φ〉) = α∗
1Θ|Ψ〉 + α∗

2Θ|Φ〉, (53)

where α∗ is complex conjugate of a scaler number α, and |Ψ〉 and |Φ〉 are arbitrary states.
The time-reversal invariance of the system is expressed for the Hamiltonian as

ΘH = HΘ. (54)

Under the time-reversal invariance, every eigenstate of H, |n〉, has the corresponding time-
reversed eigenstate Θ|n〉 with the same energy:

H (Θ|n〉) = ΘH|n〉
= ΘEn|n〉
= En (Θ|n〉) . (55)

These two states, |n〉 and Θ|n〉, are either linear independent or identical apart from an
overall phase. From Eqs. (53) and (54), we have the relation between Θ and U(t):

ΘU(t) = Θ

(
1 +

H

i~
t +

1

2!

(
H

i~
t

)2

+ · · ·

)

=

(
1 − H

i~
t +

1

2!

(
−H

i~
t

)2

+ · · ·

)
Θ

= U †(t)Θ. (56)

Finally, we introduce a notation of the inner product when we use the time-reversal
operator. The Dirac bra-ket notation may be confusing when we treat the time-reversal
operator; the expression 〈Ψ|Θ|Φ〉 is ambiguous as to whether Θ is acting on the right
state or on the left state. To avoid this confusion, let us denote the inner product as
(|Ψ〉, |Φ〉). (We use the Dirac bra-ket notation to represent the inner product whenever
the time-reversal operator Θ does not cause confusion.) Using this notation, the transition
probability from |Φ〉 to |Ψ〉 is written as follows:

| (|Ψ〉, U(τ)|Φ〉) |2. (57)

The inner product (Θ|Ψ〉, Θ|Φ〉) are related to the original inner product (|Ψ〉, |Φ〉) as

(Θ|Ψ〉, Θ|Φ〉) = (|Ψ〉, |Φ〉)∗
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because the time-reversal operator Θ preserves the wave function normalization. We can
confirm this relation using an orthogonal complete set {|α〉} as follows:

(Θ|Ψ〉, Θ|Φ〉) =

(
Θ

∑
α1

|α1〉〈α1|Ψ〉, Θ
∑
α2

|α2〉〈α2|Φ〉

)
=

∑
α1,α2

(〈α1|Ψ〉∗Θ|α1〉, 〈α2|Φ〉∗Θ|α2〉)

=
∑
α1,α2

〈α1|Ψ〉〈Φ|α2〉 (Θ|α1〉, Θ|α2〉)

=
∑
α1,α2

〈α1|Ψ〉〈Φ|α2〉δα1,α2

=
∑
α1

〈Φ|α1〉〈α1|Ψ〉

= 〈Φ|Ψ〉
= (|Ψ〉, |Φ〉)∗ . (58)

Thus, the time-reversal operator Θ is not only antilinear but also antiunitary. These
properties and notations were used in their original derivation [1].

4.1.2 Derivation of the XFT by Jarzynski and Wójcik

Jarzynski and Wójcik [1] considered two finite quantum systems given by the Hamiltonian

H = HA ⊗ 1B + 1A ⊗ HB + γHc, (59)

where HA and HB are the Hamiltonians of the systems A and B, respectively. The third
term of the right hand side of Eq. (59), Hc, is the coupling Hamiltonian which describes the
connection between the two systems and γ is a factor controlling the coupling strength be-
tween the two systems as mentioned before. The assumption of the time-reversal invariance
is described as follows:

ΘHA = HAΘ, ΘHB = HBΘ, ΘHc = HcΘ. (60)

Let |mα〉 and Eα
mα

denote an eigenstate of Hα and the corresponding eigenvalue (α = A,B),
respectively. We refer to the product states |mA〉 ⊗ |mB〉 as |mA,mB〉, or just as |m〉
for simplicity. Jarzynski and Wójcik considered energy measurement with the two-time
measurement procedure, and thus the energy measurement is described by the projection
operator

Πm = (|mA〉 ⊗ |mB〉) (〈mA| ⊗ 〈mB|)
= |m〉〈m|. (61)

For time t < 0, each of the systems A and B is separately connected to a heat reservoir
at the inverse temperatures, βA and βB, respectively, for sufficiently long time to reach its
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equilibrium state. The reservoirs are removed just before the first measurement, and the
initial state of the total system is given by the following product state:

ρinit = ρA ⊗ ρB (62)

ρA =
e−βAHA

ZA

, ZA = Tre−βAHA , (63)

ρB =
e−βBHB

ZB

, ZB = Tre−βBHB , (64)

where ZA and ZB are the partition function of each system, respectively. At t = 0, we
perform the first measurement of the energy of each system. Suppose that we obtained
the outcome (EA

mA
, EB

mB
). Then, the state of the systems is projected onto the eigenstate

of H0 = HA ⊗ 1B + 1A ⊗ HB: |m〉 = |mA,mB〉:

ρ(0) =
ΠmρinitΠm

Tr (Πmρinit)

=
(ΠmA

⊗ ΠmB
) ρinit (ΠmA

⊗ ΠmB
)

Tr [(ΠmA
⊗ ΠmB

) ρinit]

=
e−βAEA

mA e−βBEB
mB /ZA ZB

e−βAEA
mA e−βBEB

mB /ZA ZB

|mA,mB〉〈mA,mB|

= |m〉〈m|. (65)

From t = 0 to t = τ , the total system evolves according to the von Neumann equation,
and thus we have

ρ(t) = U(t)ρ(0)U †(t). (66)

The coupling between the two systems is turned on after the first measurement. The time
evolution is described by

U = e−i
H0+γHc

~ .

At t = τ , we separate the two systems again and measure the energy of each system.
Suppose that we obtained the outcome (EA

nA
, EB

nB
). Then the density operator becomes

after the second measurement

ρ(τ) =
ΠnU(τ)ρ(0)U †(τ)Πn

Tr (ΠnU(τ)ρ(0)U †(τ))

=
(ΠnA

⊗ ΠnB
) U(τ)(|mA,mB〉〈mA,mB|)U †(τ) (ΠnA

⊗ ΠnB
)

Tr [(ΠnA
⊗ ΠnB

) U(τ)(|mA,mB〉〈mA, mB|)U †(τ)]

=
〈nA, nB|U(τ)|mA,mB〉〈mA,mB|U †(τ)|nA, nB〉
〈nA, nB|U(τ)|mA,mB〉〈mA,mB|U †(τ)|nA, nB〉

|nA, nB〉〈nA, nB|

= |n〉〈n|. (67)
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From Eq. (30), the joint probability in the forward process that we observe (EA
mA

, EB
mB

)
at time t = 0 and (EA

nA
, EB

nB
) at time t = τ is written as

P (m,n|τ) = pinit(m) Tm→n(τ). (68)

Here, we introduce the reverse process corresponding to the forward process. In the reverse
process, the time evolves inversely and observation outcomes are (EA

nA
, EB

nB
) at time t = 0

and (EA
mA

, EB
mB

) at time t = τ . The joint probability in the reverse process is given by

PR(n,m|τ) = Tr
(
ΠmU(τ)†ΠnρinitΠnU(τ)

)
. (69)

We give the verification of this definition for the reverse process in Appendix A. From
Eq. (69), we have

PR(n, m|τ) = Tr
(
ΠmU(τ)†ΠnρinitΠnU(τ)

)
= 〈m|ei H

~ τ |n〉〈n|ρinit|n〉〈n|e−i H
~ τ |m〉

= pinit(n)
∣∣∣(〈n|e−i H

~ τ |m〉
)∣∣∣2

= pinit(n) Tm→n(τ), (70)

and

PR(n,m|τ) = pinit(n)
∣∣∣(〈m|ei H

~ (−τ)|n〉
)∣∣∣2

= pinit(n) Tn→m(−τ)

= P (n,m| − τ). (71)

When the Hamiltonian is independent of time, the joint probability in the reverse process
PR(n,m|τ) is expressed by the joint probability in the forward process, P (n,m| − τ).

Using Eqs. (68) and (70), we obtain a symmetry relation between the joint probabilities
of the forward and reverse processes as

P (m,n|τ)

PR(n,m|τ)
=

pinit(m) Tm→n(τ)

pinit(n) Tm→n(τ)

=
pinit(m)

pinit(n)

= e−βAEA
mA

−βBEB
mB eβAEA

nA
+βBEB

nB

= e−βA(EA
mA

−EA
nA

)e−βB(EB
mB

−EB
nB

)

= e(βB−βA)(EA
mA

−EA
nA

)e−βB(EB
mB

−EB
nB

+EA
mA

−EA
nA

)

= e∆βQA
m→neβB∆Em→n , (72)

where

QA
m→n = EA

mA
− EA

nA
(73)
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is the energy decrease in the system A and

∆Em→n = EA
nA

+ EB
nB

− EA
mA

− EB
mB

(74)

is the energy change of the total system. We interpret QA
m→n as the heat draining from

the system A to the system B.
Jarzynski and Wójcik assumed that the total energy of the systems A and B is almost

preserved between the measurements if the coupling between the two systems is sufficiently
weak;

∆Em→n = EA
nA

+ EB
nB

− EA
mA

− EB
mB

' 0. (75)

It follows that the energy changes in the two systems are approximately equal:

EA
mA

− EA
nA

' EB
nB

− EB
mB

. (76)

Then we can remove the superscript A from QA
m→n in Eq. (73), because

Qm→n = QA
mA→nA

' EB
nB

− EB
mB

, (77)

where the right-hand side of Eq. (77) is the energy increase in the system B and we interpret
it as the heat flowing to the system B. Substituting Eqs. (75) and (77) into Eq. (72), they
obtained the following symmetry relation:

P (m,n|τ)

PR(n,m|τ)
' e∆βQm→n . (78)

Using this relation, we obtain the symmetry relation of the probability distribution of the
net heat transfer Q is obtained as follows:

pτ (Q) =
∑
n,m

P (m, n|τ)δ(Q − Qm→n) (79)

' e∆βQ
∑
n,m

PR(n,m|τ)δ(Q + Qn→m) (80)

= e∆βQ
∑
n,m

PR(n, m|τ)δ(−Q − Qn→m)

= e∆βQpR
τ (−Q). (81)

This is the exchange fluctuation theorem.
Equation (81) implies that the average of e−∆βQ over the ensemble of realizations for

any time interval τ is unity:

〈e−∆βQ〉τ =

∫ ∞

−∞
dQpτ (Q)e−∆βQ (82)

'
∫ ∞

−∞
dQpR

τ (−Q)

= 1. (83)
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This integral form of equality is a direct consequence of the exchange fluctuation theorem,
and thus we refer to this equality as the integral exchange fluctuation theorem (IXFT).

We note that the crucial assumption in the original derivation [1] is that the total
energy difference ∆Em→n becomes negligibly small in the weak coupling limit as stated
in Eq. (75). Since we are interested in non-equilibrium phenomena, we hope that the ex-
change fluctuation theorem holds in the presence of a finite heat transfer; a non-equilibrium
situation. However, the case γ = 0 means that the two systems are decoupled and that
the heat never transfers between the two systems. Indeed, we are interested in the case of
finite γ. In this respect, we examine whether the exchange fluctuation theorem holds or
not in the presence of a finite heat transfer in the present thesis. In the next section, we
derive deviation from the exchange fluctuation theorem and discuss whether the exchange
fluctuation holds or not in the presence of a finite heat transfer.

4.2 Deviation from the XFT and the IXFT

In this section, we examine both the exchange fluctuation theorem and the integral ex-
change fluctuation theorem and show deviation from these theorems in the same situation
as the original derivation [1]. The deviation in general has a finite value for a finite coupling
strength γ, which implies that the exchange fluctuation theorem does not hold for a finite
γ. In the limit γ → 0, the deviation term vanishes and the exchange fluctuation theorem
becomes an exact relation. In such limit, however, the kth moment of the probability
distribution of the heat transfer, pτ (Q), also vanishes:

lim
γ→0

〈Qk〉τ =

∫
dQpτ (Q)Qk = 0.

This implies that if the coupling between the two systems is weak enough for the exchange
fluctuation theorem to hold, no finite heat flows between the systems. This is not the case
we are interested in. If any kth moment of pτ (Q) vanishes in the weak coupling limit, the
exchange fluctuation theorem becomes just a trivial relation:

lim
γ→0

pτ (Q) = δ(Q),

lim
γ→0

(
pτ (Q) − e∆QpR

τ (−Q)
)

= δ(Q) − e0δ(−Q) = 0.

(84)

We derive the deviation from the integral fluctuation theorem as an explicit expression
for a specific model and seek a possibility that the exchange fluctuation theorem holds in
the presence of the finite heat transfer. In this model, the deviation 〈e−∆βQ〉τ − 1 and
the net heat transfer 〈Q〉τ have the same dependence on the coupling strength. Therefore,
if we take the limit γ → 0, both quantities go to 0 in the same manner. We show the
deviation from the exchange fluctuation theorem for another model numerically.
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4.2.1 Deviation from the XFT and the IXFT

First, we derive the deviation from the exchange fluctuation theorem. Substituting the
symmetry relation (72) into Eq. (79), we have

pτ (Q) =
∑
m,n

P (m,n|τ)δ (Q − Qm→n)

=
∑
m,n

e∆βQm→neβB∆Em→nPR(n,m|τ)δ (Q − Qm→n)

= e∆βQ
∑
m,n

eβB∆Em→nPR(n,m|τ)δ (−Q − Qn→m)

= e∆βQ
∑
m,n

PR(n,m|τ)δ (−Q − Qn→m)

+ e∆βQ
∑
m,n

PR(n,m|τ)
(
eβB∆Em→n − 1

)
δ (−Q − Qn→m)

= e∆βQpR
τ (−Q)

+ e∆βQ
∑
m,n

PR(n,m|τ)
(
eβB∆Em→n − 1

)
δ (Q − Qm→n) , (85)

and thus the deviation from the exchange fluctuation theorem is

pτ (Q) − e∆βQpR
τ (−Q) = e∆βQ

∑
m,n

PR(n,m|τ)
(
eβB∆Em→n − 1

)
δ (Q − Qm→n) . (86)

In general, this deviation term (the right-hand side of Eq. (86)) has a finite value. We
can check this by examining the deviation from the integral exchange fluctuation theorem
since the integral exchange fluctuation theorem is a direct consequence of the exchange
fluctuation theorem. To see the deviation from the integral exchange fluctuation theorem,
we multiply Eq. (86) by e−∆βQ and integrate it over the heat transfer Q, having∫

dQ
(
pτ (Q)e−∆βQ − pR

τ (−Q)
)

= 〈e−∆βQ〉τ − 1

=
∑
m,n

PR(n, m|τ)
(
eβB∆Em→n − 1

)
. (87)
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Using Eq. (71) and the trace representation of the joint probability in Eq. (50), we have

〈e−∆βQ〉τ − 1 =
∑
m,n

Tr
(
ΠmeiγC(τ)ρinitΠne−iγC(τ)

) (
eβB(EA

nA
+EB

nB
−EA

mA
−EB

mB) − 1
)

=
∑
m,n

Tr
(
e−βBH0ΠmeiγC(τ)ρinite

βBH0Πne−iγC(τ)
)

−
∑
m,n

Tr
(
ΠmeiγC(τ)ρinitΠne−iγC(τ)

)
= Tr

(
e−βBH0eiγC(τ)ρinite

βBH0e−iγC(τ)
)
− Tr

(
eiγC(τ)ρinite

−iγC(τ)
)

= Tr
(
ρinite

βBH0e−iγC(τ)e−βBH0eiγC(τ)
)
− 1

and then using Eq. (43), we obtain

〈e−∆βQ〉τ − 1 =
∞∑

k=0

1

k!
(−iγ)kTr

[
ρinite

βBH0(δC(τ))
ke−βBH0

]
− 1

= −iγTr
{
ρinite

βBH0
[
C(τ), e−βBH0

]}
+

∞∑
k=2

1

k!
(−iγ)kTr

[
ρinite

βBH0(δC(τ))
ke−βBH0

]
= −iγTr

{[
e−βBH0 , ρinite

βBH0
]
C(τ)

}
+

∞∑
k=2

1

k!
(−iγ)kTr

[
ρinite

βBH0(δC(τ))
ke−βBH0

]
=

∞∑
k=2

1

k!
(−iγ)kTr

[
ρinite

βBH0(δC(τ))
ke−βBH0

]
, (88)

where we used
[
eβBH0 , ρinit

]
= 0 in the last line. This commutability is a consequence of

taking the initial state as a Gibbs state. We thus obtain the deviation, which does not
vanish for finite γ in general. In Sec. 4.2.2, the deviation is explicitly calculated for a simple
model and is shown to have a finite value for finite γ.

We can see that the deviation term (88) vanishes in the limit γ → 0, and the exchange
fluctuation theorem holds. This is consistent with the result obtained by taking the limit
γ → 0 in Eq. (86):

lim
γ→0

(
pτ (Q) − e∆βQpR

τ (−Q)
)

= e∆βQ
∑
m,n

lim
γ→0

P (n,m| − τ)
(
eβB∆Em→n − 1

)
δ (Q − Qm→n)

= e∆βQ
∑
m,n

lim
γ→0

pinit(n)δm,n

(
eβB∆Em→n − 1

)
δ (Q − Qm→n) .

= 0, (89)

where we used

lim
γ→0

P (m,n|τ) = pinit(m) lim
γ→0

∣∣〈n|e−iγC(τ)|m〉
∣∣2

= pinit(m)δm,n.
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Both exchange fluctuation theorem and the integral fluctuation theorem hold together in
the limit γ → 0.

However, we must pay attention to the behavior of the net heat transfer 〈Q〉τ in such a
limit because we are interested in a non-equilibrium system, or in the presence of a finite
heat flow. The net heat transfer is also represented in the power series of γ:

〈Q〉τ =

∫ ∞

∞
dQ pτ (Q) Q

=
∑
m,n

P (m,n|τ)

∫ ∞

∞
dQ Qδ(Q − Qm→n)

=
∑
m,n

P (m,n|τ)
(
EA

mA
− EA

nA

)
=

∑
m,n

Tr
(
Πne−iγC(τ)ρinitΠmeiγC(τ)

) (
EA

mA
− EA

nA

)
=

∑
m,n

Tr
(
Πne−iγC(τ)ρinitHAΠmeiγC(τ) − HAΠne−iγC(τ)ρinitΠmeiγC(τ)

)
= Tr

(
e−iγC(τ)ρinitHAeiγC(τ) − HAe−iγC(τ)ρinite

iγC(τ)
)

= Tr
(
ρinitHA − ρinite

iγC(τ)HAe−iγC(τ)
)

= TrρinitHA −
∞∑

k=0

1

k!
(iγ)kTr

[
ρinit(δC(τ))

kHA

]
= −iγTr {ρinit[C(τ), HA]} −

∞∑
k=2

1

k!
(iγ)kTr

[
ρinit(δC(τ))

kHA

]
= −iγTr {C(τ)[HA, ρinit]} −

∞∑
k=2

1

k!
(iγ)kTr

[
ρinit(δC(τ))

kHA

]
= −

∞∑
k=2

1

k!
(iγ)kTr

[
ρinit(δC(τ))

kHA

]
, (90)

where we used [ρinit, HA] = 0 in the last line. The lowest order of γ in 〈Q〉τ is the second
order, which is the same order as the deviation term in Eq. (88). We can show that the
higher moments of pτ (Q) has the same dependence of γ, and thus the exchange fluctuation
theorem becomes just a trivial relation in the limit γ → 0 as shown in Eq. (84).

4.2.2 Example: a two-spin 1/2 system

We consider a quantum system which consists of two spin 1/2s initially prepared at different
temperatures. The spins exchange the energy via s coupling between the two spins and this
coupling is given by the Heisenberg coupling. Thus, this system is given by the following
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Hamiltonian:

H = H0 + γHc,

H0 = HA ⊗ 1B + 1A ⊗ HB,

where HA, HB and Hc are

HA = −εA

2
σz

A (91)

HB = −εB

2
σz

B (92)

Hc = −J

4
~σA · ~σB (93)

with σx, σy and σz denoting the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (94)

This model is analytically solvable and the deviation from the exchange fluctuation theo-
rem, 〈e−∆βQ〉τ − 1, and the heat transfer 〈Q〉τ are calculated explicitly as follows:

〈e−∆βQ〉τ − 1 =
γ2J2

(εA − εB)2 + γ2J2
sech

[
βAεA

2

]
sech

[
βBεB

2

]
× sinh

[εA

2
(βB − βA)

]
sinh

[
βB

2
(εA − εB)

]
× sin2

( τ

2~
√

(εA − εB)2 + γ2J2
)

, (95)

〈Q〉τ =
εA

2

γ2J2

(εA − εB)2 + γ2J2
sech

[
βAεA

2

]
sech

[
βBεB

2

]
× sinh

[
1

2
(βBεB − βAεA)

]
× sin2

( τ

2~
√

(εA − εB)2 + γ2J2
)

. (96)

The time dependence of the deviation term 〈e−∆βQ〉τ − 1 and the heat transfer 〈Q〉τ are
shown in Fig. 1.

Note that 〈e−∆βQ〉τ − 1 and 〈Q〉τ have the same dependence on γ. Thus, the ratio of
these two quantities is independent of the coupling strength γ:

〈e−∆βQ〉τ − 1

〈Q〉τ/( εA

2
)

=
sinh

[
εA

2
(βB − βA)

]
sinh

[
βB

2
(εA − εB)

]
sinh

[
1
2
(βBεB − βAεA)

] . (97)

Figure 2 shows parameters’ dependence of the ratio that. The ratio has a finite value
for almost all range of energy level difference εB − εA. As a consequence, if the coupling
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Figure 1: The quantities 〈e−∆βQ〉τ − 1 (red line) and 〈Q〉τ (blue line) in the two-spin 1/2
system. We fixed βAεA = 2: for εB/εA = 0.8, βB/βA = 0.9 with (a) γJ/εA = 0.1 and (b)
γJ/εA = 0.01; for εB/εA = 0.8, βB/βA = 1.1 with (c) γJ/εA = 0.1 and (d) γJ/εA = 0.01; for
εB/εA = 1.25, βB/βA = 0.9 with (e) γJ/εA = 0.1 and (f) γJ/εA = 0.01; for εB/εA = 1.25,
βB/βA = 1.1 with (g) γJ/εA = 0.1 and (h) γJ/εA = 0.01.
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and (b) βB/βA = 1.1. The commutable-coupling condition is fulfilled at the point εB−εA =
0.
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strength γ is weak enough to neglect the deviation from the integral exchange fluctuation
theorem, Eq. (95), the net heat transfer 〈Q〉τ is also negligibly small. This result clearly
shows that the exchange fluctuation theorem does not generally hold in the presence of a
finite heat transfer.

Note, however, that the ratio in Fig. 2 vanishes for εA = εB; that is, the exchange
fluctuation theorem is recovered at this particular point with a finite heat transfer. This
is indeed the main target of Sec. 4.3.

4.2.3 Example: coupled harmonic oscillators

The second example is a system which consists of two harmonic oscillators. This system
is given by the following Hamiltonian:

H = H0 + γHc, (98)

H0 = HA ⊗ 1B + 1A ⊗ HB, (99)

where the Hamiltonian HA, HB and Hc are

HA = ~ωAa†a,

HB = ~ωBb†b,

Hc = ν
(
a†b + b†a

)
, (100)

where a and a† are the creation and annihilation operators of the oscillator A, b and b† are
those of B,

[
a, a†] = 1, [a, a] = 0 and

[
b, b†

]
= 1, [b, b] = 0, and ν is a real number. After

the transformation

X = a cos θ + b sin θ,

Y = −a sin θ + b cos θ, (101)

the total Hamiltonian (98) takes the diagonal form

H = ~ωXX†X + ~ωY Y †Y, (102)

with

ωX = ωA cos2 θ + ωB sin2 θ + 2γν sin θ cos θ (103)

ωY = ωA sin2 θ + ωB cos2 θ − 2γν sin θ cos θ, (104)

and

tan 2θ =
2γν

ωA − ωB

, (ωA 6= ωB), (105)

θ =
π

4
, (ωA = ωB). (106)
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Since the coupling Hamiltonian conserves the total boson number of the systems,
(na + nb), once the boson number is measured, the transition during time τ occurs only
between the states with the same boson number. However, if the frequencies of the both
systems are not equal, ωa 6= ωb, the total energy does not conserve in a transition between
different states. Therefore, the conservation of the total boson number does not mean the
conservation of the total energy, and the energy change of the total system results from
the coupling between the systems.

The time dependence of the deviation from the integral exchange fluctuation theorem
and the net heat transfer during τ are shown in Fig. 3. We calculated the results numerically
with the approimation that the boson number is seven at maximum. The probability to
have more than seven bosons is of the order of 10−12.

4.3 Commutable-coupling condition

We showed in the previous section that the exchange fluctuation theorem does not hold
for arbitrary strength of the coupling. However, we discover an additional condition for
which the exchange fluctuation theorem and the integral exchange fluctuation theorem
hold under a finite heat transfer. In this section, we show that these theorems become
exact relations when we impose an additional condition on the coupling Hamiltonian Hc.
Our additional condition is

[H0, Hc] = 0. (107)

We refer to this condition as the commutable-coupling condition since the coupling Hamil-
tonian in the Heisenberg picture is independent of time under this condition. Jarzynski’s
equality for open quantum systems was discussed under this condition [28]. As we show
in the following discussions, the exchange fluctuation theorem and the integral exchange
fluctuation theorem hold under the commutable-coupling condition for a finite heat trans-
fer and for a finite coupling strength γ. In Sec. 4.3.2, we confirm the presence of a finite
heat transfer under the commutable-coupling condition in specific models.

4.3.1 XFT and IXFT under the commutable-coupling condition

First of all, we prove the integral exchange fluctuation theorem under the commutable-
coupling condition. In this condition, the Hermitian operator C(t) is reduce to a simple
form

C(τ) = −i

∞∑
n=0

1

(n + 1)!

(
iτ

~

)n+1

(δH0)
n Hc

=
τ

~
Hc, (108)
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Figure 3: The quantities 〈e−∆βQ〉τ − 1 (red line) and 〈Q〉τ (blue line) in the coupled
harmonic oscillators. We fixed βA~ωA = 4: for ωB/ωA = 0.8, βB/βA = 0.9 with (a)
γν/~ωA = 0.1 and (b) γν/~ωA = 0.01; for ωB/ωA = 0.8, βB/βA = 1.1 with (c) γν/~ωA =
0.1 and (d) γν/~ωA = 0.01; for ωB/ωA = 1.25, βB/βA = 0.9 with (e) γν/~ωA = 0.1
and (f) γν/~ωA = 0.01; for ωB/ωA = 1.25, βB/βA = 1.1 with (g) γν/~ωA = 0.1 and (h)
γν/~ωA = 0.01.
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and we can immediately confirm that the integral exchange fluctuation theorem rigorously
holds by substituting Eq. (108) to Eq. (88) and using the commutable-coupling condition:

〈e−∆βQ〉τ − 1 =
∞∑

k=2

1

k!
(−iγ)kTr

[
ρinite

−βBH0(δC(τ))
keβBH0

]
=

∞∑
k=2

1

k!
(−i

γ

~
τ)kTr

[
ρinite

−βBH0(δHc)
keβBH0

]
= 0. (109)

Note that the derivation of Eq. (109) is independent of the coupling strength γ. This
suggests that this relation holds even if the system is in a strongly out-of-equilibrium
situation.

Next, we prove the exchange fluctuation theorem under the commutable-coupling con-
dition. From Eq. (47), the time-evolution operator in the Schrödinger picture is

U(t) = e−i
H0
~ te−iγ Hc

~ t = e−iγ Hc
~ te−i

H0
~ t, (110)

and we have

〈n|U(t)|m〉 = e−i En
~ t〈n|e−iγ Hc

~ t|m〉

= 〈n|e−iγ Hc
~ t|m〉e−i Em

~ t,

which is followed by (
e−i En

~ t − e−i Em
~ t

)
〈n|e−iγ Hc

~ t|m〉 = 0. (111)

If 〈n|e−i γ
~ Hc |m〉 has a finite value, Eq. (111) implies

e−i Em
~ τ − e−i En

~ τ = 0.

This equation relates the second measurement result En to the first measurement result
Em as follows:

En = Em +
2π~
τ

k, (112)

where k is an integer. We further assume that there exists more than two points of time
at which 〈n|e−iγ Hc

~ τ |m〉 is finite for fixed (m,n). For τ2 6= τ1, this assumption leads to

En = Em +
2π~
τ1

k

= Em +
2π~
τ2

k.
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Then we have (
1

τ1

− 1

τ2

)
k = 0. (113)

Therefore we arrive at k = 0 in Eq. (112) and obtain from Eq. (111)

〈n|e−iγ Hc
~ τ |m〉 = 〈n|e−iγ Hc

~ τ |m〉δEn,Em . (114)

From the above discussion, we see that the commutable-coupling condition restricts the
realized measurement outcomes because the quantity 〈n|e−iγ Hc

~ τ |m〉 is directly related to
the transition probability as follows:

Tm→n(τ) = |〈n|e−iγ Hc
~ τ |m〉|2

= |〈n|e−iγ Hc
~ τ |m〉|2δEn,Em (115)

with Em = EA
mA

+EB
mB

. Substituting this transition probability into Eq. (79), we conclude
that the exchange fluctuation theorem becomes an exact relation under the commutable-
coupling condition:

pτ (Q) =
∑
m,n

P (m,n|τ)δ [Q − Qm→n] × δEn,Em

= e∆βQ
∑
m,n

eβB(EA
mA

+EB
mB

−EA
nA

−EB
nB

)P (n,m| − τ)δ
[
Q + (EA

nA
− EA

mA
)
]
× δEn,Em

= e∆βQ
∑
m,n

P (n,m| − τ)δ [−Q − Qn→m)] × δEn,Em

= e∆βQpR
τ (−Q). (116)

We thus proved the both exchange fluctuation theorem and integral exchange fluctuation
theorem under the commutable-coupling condition.

Next, we show that a finite heat transfer between two systems does exist under the
commutable-coupling condition. The ensemble average of the heat transfer is written from
Eq. (90) as

〈Q〉τ = −
∞∑

k=2

1

k!

(
i
γτ

~

)k

Tr
[
ρinit (δHc)

k HA

]
.

Note that δHcHA is generally finite although we assume δHcH0 = δHc(HA + HB) = 0.
Therefore the heat can flow between the two systems and the exchange fluctuation theorem
is a nontrivial relation. In the next section, we show the presence of a finite heat transfer
for the specific models that we considered in Sec. 4.2.2.
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4.3.2 Example: a two-spin 1/2 system

We consider again the quantum system which consists of two spin 1/2s. In order to identify
the commutable-coupling condition in this model, we calculate the commutation relations

[HA, Hc] =
J

8
εA

∑
j=x,y,z

[
σz

A, σj
A

]
σj

B

= i
J

4
εA (σy

Aσx
B − σx

Aσy
B) , (117)

[HB, Hc] =
J

8
εB

∑
j=x,y,z

[
σz

B, σj
B

]
σj

A

= i
J

4
εB (σx

Aσy
B − σy

Aσx
B)

= −i
J

4
εB (σy

Aσx
B − σx

Aσy
B) . (118)

Then the commutable-coupling condition is written as

[H0, Hc] = i
J

4
(εA − εB) (σy

Aσx
B − σx

Aσy
B) = 0. (119)

From Eq. (119), we find that the relation εA = εB corresponds to the commutable-coupling
condition. Indeed, Fig. 2 shows that the exchange fluctuation theorem is recovered with a
finite heat transfer for εA = εB.

Under the commutable-coupling condition εA = εB, Eqs. (95) and (96) become

〈e−∆βQ〉τ − 1 = 0, (120)

〈Q〉τ =
ε

2
sech

[ ε

2
βA

]
sech

[ ε

2
βB

]
sinh

[ ε

2
(βB − βA)

]
sin2

[
γJ

2~
τ

]
. (121)

The time dependence of the net heat transfer 〈Q〉τ and the deviation from the integral
fluctuation theorem 〈e−∆βQ〉τ − 1 are shown in Fig. 4. The net heat transfer has finite
values, while the integral exchange fluctuation theorem holds.

4.3.3 Example: coupled harmonic oscillators

We show how the commutable-coupling condition is expressed in the model system which
consists of coupled harmonic oscillators. In order to identify the commutable-coupling
condition in this model, we calculate the commutation relations

[HA, Hc] = ~νωA[a†a, a†b + b†a]

= ~νωA(a†b − b†a), (122)

[HB, Hc] = ~νωB[b†b, a†b + b†a]

= −~νωB(a†b − b†a). (123)

37



0.005

0.010

0.015

20 40 60

 

ε
A
τ

h

0

e
−
Δ
β
Q

τ
−
1
,

Q
τ

1 ε
A

⎡ ⎣⎢
⎤ ⎦⎥

Figure 4: The quantities 〈e−∆βQ〉τ−1 (red line) and 〈Q〉τ (blue line) under the commutable-
coupling condition in two-spin 1/2 system for εB/εA = 1, βAεA = 2, βB/βA = 1.1, and
γJ/εA = 0.01.

Then the commutable-coupling condition is written as

[H0, Hc] = ~ν(ωA − ωB)(a†b − b†a) = 0. (124)

From Eq. (124), we find that the relation ωA = ωB corresponds to the commutable-coupling
condition. The time dependence of the net heat transfer 〈Q〉τ and the deviation from the
integral fluctuation theorem 〈e−∆βQ〉τ − 1 are shown in Fig. 5. We calculated the results
numerically with the approximation that the boson number is seven at maximum. The
probability to have more than seven bosons is of the order of 10−12.

38



-0.008

-0.006

-0.004

-0.002

 

e
−
Δ
β
Q

τ
−
1,

Q
τ

1

h
ω

A

⎡ ⎣⎢
⎤ ⎦⎥

10 20 30 40 50 60 70
0 ω

A
τ

(a)

0.001

0.002

0.003

0.004

0.005

0.006

 

e
−
Δ
β
Q

τ
−
1,

Q
τ

1

h
ω

A

⎡ ⎣⎢
⎤ ⎦⎥

10 20 30 40 50 60 70
0 ω

A
τ(b)

Figure 5: The quantities 〈e−∆βQ〉τ−1 (red line) and 〈Q〉τ (blue line) under the commutable-
coupling condition in coupled harmonic oscillators for ωB/ωA = 1, βA~ωA = 4 and
γν/~ωA = 0.1 with (a) βB/βA = 0.9 and (b) βB/βA = 1.1.
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5 Conclusions

To summarize, we showed that the exchange fluctuation theorem in its original form does
not generally hold in the presence of a finite heat transfer. In the limit γ → 0, the kth
moments of pτ (Q) also vanish. We also showed that the deviation from the exchange
fluctuation theorem has generally the same dependence on the coupling strength γ as
the ensemble average of the heat transfer between the systems and both analytically and
numerically confirmed this with specific models. This means that there is no heat transfer
when the coupling strength γ is small enough to neglect the deviation from the exchange
fluctuation theorem. In this case, the exchange fluctuation theorem reduces to a trivial
relation and has no information about the heat transfer.

However, we found a condition for the exchange fluctuation theorem to hold exactly and
we referred to it as the commutable-coupling condition. Under this condition, the exchange
fluctuation theorem becomes an exact relation independently of the coupling strength γ
under the existence of a finite heat transfer. We confirmed this in specific models.

The deviation from the exchange fluctuation theorem consists of the commutation rela-
tion between the Hamiltonian of the total system and the coupling Hamiltonian. Therefore,
the non-commutativity of the observable in quantum mechanics plays an important role in
the deviation.
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A Time-reversed evolution

We explain why the joint probability in the reverse process can be written as Eqs. (6)
and (69). As in Eq. (60), the time-reversal invariance for the time-dependent Hamiltonian
H(t), represented as

ΘH(t) = H(t)Θ, (125)

is equivalent to

ΘΠmt = ΠmtΘ, (126)

where Πmt is the projection operator onto an instantaneous eigenstate mt of the Hamilto-
nian at time t, H(t), with the eigenvalue Emt .

The density operator in the time-reversed dynamics evolves according to the von Neu-
mann equation

i~
d

dt
ρR(t) =

[
HR(t), ρR(t)

]
with the initial condition

ρR(0) = ρR
init. (127)

The Hamiltonian in the time-reversed dynamics is defined as

HR(t) = ΘH(τ − t)Θ−1, (128)

where τ is the time duration of the dynamics that we consider. The solution of the von
Neumann equation is given by

ρR(t) = UR(t, 0)ρR(0)UR(t, 0)†,

where UR(t, 0) is the time-evolution operator in the time-reversed dynamics and is a solution
of the Schrödinger equation,

i~
d

dt
UR(t, 0) = HR(t, 0)UR(t, 0) (129)

with the initial condition UR(0, 0) = 1. The solution UR(t, 0) is given by [29, 30]

UR(t, 0) = ΘU(τ − t, τ)Θ−1. (130)

We can confirm this by substituting Eq. (130) into the Schrödinger equation (129):

i~
d

dt

(
ΘU(τ − t, τ)Θ−1

)
= Θ

(
−i~

d

dt
U(τ − t, τ)Θ−1

)
= Θ

(
H(τ − t)U(τ − t, τ)Θ−1

)
= ΘH(τ − t)Θ−1ΘU(τ − t, τ)Θ−1

= HR(t)
(
ΘU(τ − t, τ)Θ−1

)
, (131)
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and

ΘU(τ − t, τ)Θ−1|t=0 = ΘU(τ, τ)Θ−1

= ΘΘ−1

= 1. (132)

We used the antilinearity of Θ in the first line in Eq. (131).
Using these quantities, we define the joint probability in the reverse process as follows:

PR(n,m|τ) = Tr
[
Πm0UR(τ, 0)Πnτ ρ

R
initΠnτ U

†
R(τ, 0)

]
(133)

with

ρR
init = ΘρτΘ

−1. (134)

If the initial state of the forward process is the Gibbs state ρinit = e−βH(0)/Z0 at an inverse
temperature β, for example, we choose ρτ as the Gibbs state of the system described by
the Hamiltonian H(τ) at the inverse temperature β:

ρτ =
e−βH(τ)

Zτ

, (135)

where Zτ = Tre−βH(τ) is the partition function.
If the system is time-reversal invariant, ΘH(t) = H(t)Θ, the Hamiltonian in the time-

reversed dynamics at time t coincides with the Hamiltonian in the forward dynamics at
time τ − t:

HR(t) = ΘH(τ − t)Θ−1

= H(τ − t)ΘΘ−1

= H(τ − t), (136)

where we used Eq. (125). In this case, we can represent the joint probability in the reverse
process with the quantities in the forward dynamics by substituting Eqs. (127) and (130)
into Eq. (133):

PR(n,m|τ) = Tr
[
Πm0

(
ΘU(0, τ)Θ−1

)
Πnτ

(
ΘρτΘ

−1
)
Πnτ

(
ΘU †(0, τ)Θ−1

)]
= Tr

[
ΘΠm0U

†(τ, 0)Θ−1ΘΠnτ ρτΘ
−1ΘΠnτ U(τ, 0)Θ−1

]
= Tr

[
Πm0U

†(τ, 0)Πnτ ρτΠnτ U(τ, 0)
]
, (137)

where we used Eq. (126).
We can generalize the representation of the joint probability in the time-reversed dy-

namics to the case where a static magnetic field is present.
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