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Abstract

We study the entanglement of the XY spin chain in a random magnetic field. We are
interested in the effect of randomness on the entanglement. We use the concurrence to
quantify the entanglement between two spins. We find that: (i) In general, the entangle-
ment is decreased by randomness; (ii) In some regions, the entanglement is restored by a
random magnetic field. In particular, we find that the next-nearest-neighbor concurrence
in the region h < J/2 is restored by a random magnetic field as well as in the region h > J ,
whereas that in the uniform magnetic field at finite temperatures vanishes in the region
h < J/2; (iii) The qualitative behavior of the concurrence depends on whether the variance
of the distribution function is finite or not; the maximum point of the concurrence shifts
to the right when the variance of the distribution function is finite, whereas it shifts to the
left when the variance of the distribution function is infinite.
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Chapter 1

Introduction

1.1 Entanglement

In the present thesis, we study the entanglement of the XY spin chain in a random mag-
netic field. We are interested in the effects of the randomness on the entanglement. The
entanglement is a crucial resource for the quantum information processing such as quantum
teleportation [1, 2] and superdense coding [3]. In reality, however, the entanglement can
be easily destroyed by some decoherence. It is important to know how the entanglement
is affected by impurities.

The entanglement is a non-local quantity. This non-locality is a feature of quantum
mechanics. Suppose that Alice and Bob share a singlet |0A1B〉−|1A0B〉, where the subscript
A indicates that the first particle belongs to Alice and the subscript B indicates that the
second particle belongs to Bob. The singlet cannot be expressed as a direct product of the
particle A’s state and the particle B’s state. The situation is said that the particles A and
B are entangled. If Alice carries out a measurement, Bob’s particle becomes either the state
|0B〉 or |1B〉 immediately. The property that Alice’s measurement affects Bob’s particle is
called non-locality. The non-locality appears because the two particles are entangled.

When the quantum mechanics was born, Einstein, Podolsky, Rosen [4] and Bhom
pointed out its non-locality and thought that the quantum mechanics was an incomplete
theory because the system A’s measurement affects the system B which can be far away
from the system A. Moreover, this effect travels faster than the light. Violation of the
Bell inequality (CHSH inequality) [5, 6] proved that there exists the non-locality in the
actual world. Now, the quantum mechanics is widely accepted, having explained a lot of
phenomena which were not explained by classical mechanics. In recent years, the quantum
information processing such as quantum teleportation [1, 2], superdense coding [3] and
quantum computation [2] were discovered. The entanglement plays a key role in these
studies.

In the field of condensed matter physics, many authors have studied the relation be-
tween the entanglement and the quantum phase transition [7–11]. Osterloh et al. [7] showed
that in the transverse Ising model, the entanglement obeys scaling behavior in the vicin-
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ity of the phase transition point. Similar work has been done by Osborne and Nielsen [8].
Yano and Nishimori [9,10] showed that the entanglement tells us the phase transition point
on the anisotropic anti-ferro-magnetic XY model. Similar work has been done by many
authors e.g on the extended Hubbard model [11].

Our interest here is the behavior of the entanglement in a noisy environment rather
than the relation between the quantum phase transition and the entanglement. The effects
of the temperature on the entanglement has been studied [8–10,12]. The entanglement can
increase as the temperature is increased. We investigate the entanglement of the XY
spin-1/2 chain in a random magnetic field and XY spin-1/2 chain in the uniform field at
finite temperature. We focus our interest on the entanglement between two spins.

To summarize the present thesis, we find the following:

i) In general, the entanglement decreases as the randomness is increased.

ii) The entanglement in a region of the uniform magnetic field h is enhanced by the
random magnetic field, whereas it is not enhanced in the same region by thermal
fluctuation.

iii) Qualitative behavior of the entanglement depends on the randomness, in particular,
whether the variance of the distribution function is finite or not; see Fig. 1.1. In the
case where the variance of the distribution function is finite, the maximum point of
the entanglement shifts in the direction of greater uniform magnetic field h as the
variance of the distribution function is increased. In the case where the variance is
infinite, in contrast, the maximum point first shifts in the direction of less uniform
magnetic field.

The present thesis is organized as follows: In Chapter 1, we explain the entangled state,
both pure and mixed. Quantum teleportation, which is an application of the entangled
state, is also mentioned. In Chapter 2, we review the entanglement measures known as the
von Neumann entropy and the concurrence. In the present thesis, we use the concurrence
as a measure of the entanglement. In Chapter 3, we numerically study the entanglement of
the XY spin chain in a random magnetic field as well as the XY spin chain in the uniform
field at finite temperatures.

1.2 The density matrix

In this section, we first define the density matrix. The density matrix can describe a
general state of any quantum systems. Next, we consider how to construct one-qubit and
two-qubit density matrices, which are necessary to use entanglement measures such as the
von Neumann entropy and the entanglement of formation in Chapter 2.
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1.2.1 The density matrix

Here, we explain how to describe a quantum state whose state is not completely known, by
using the density matrix. Suppose that the state in question is given by an ensemble of the
set {pi, |ψi〉}; the state in question is one of the states |ψi〉 with the probability pi (> 0).
Here the probability pi satisfies

∑
i pi = 1 and each state |ψi〉 is not necessarily orthogonal

to each other but is normalized to one. Then we can describe the state in question by
using the density matrix

ρ =
∑
i

pi|ψi〉〈ψi|. (1.2.1)

Hereafter, the word “state” refers to a state described by a density matrix unless specified
explicitly. When the density matrix of a state has only the probability for an index, that is
pj = 1 and pi = 0 (i 6= j), we call the state a pure state. We often refer to a pure state as
a wave vector |ψi〉 rather than a density matrix. When more than an index have non-zero
probabilities, we call the state a mixed state. We note that a mixed state does not have a
corresponding wave vector.
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Figure 1.1: (a) The next-nearest-neighbor concurrence of the XY spin chain in the random
magnetic field obeying the Gaussian distribution is plotted as a function of the uniform
magnetic field. The parameter a denotes the standard deviation of the Gaussian distribu-
tion. The red line is the next-nearest-neighbor concurrence in the uniform magnetic field.
(b) The next-nearest-neighbor concurrence of the XY spin chain in the random magnetic
field obeying the Lorentzian distribution is plotted as a function of a uniform magnetic
field. The parameter a denotes the half width at half maximum of the Lorentzian dis-
tribution. The red line is the next-nearest-neighbor concurrence in the uniform magnetic
field.
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To confirm the validity of describing a quantum state with the density matrix, we look
into the expectation value of an observable O of the state ρ. We define the expectation
value, or the ensemble average of the observable O of ρ as follows:

〈O〉 =
∑
i

pi〈ψi|O|ψi〉. (1.2.2)

We can obtain the ensemble average (1.2.2) by using the density matrix in the form

Tr(ρO) =
∑
i,j

pi〈j|ψi〉〈ψi|O|j〉 =
∑
i

pi〈ψi|O|ψi〉, (1.2.3)

where {|j〉} is an orthonormal basis.
We next introduce the density matrix whose system is in equilibrium with a heat bath.

Suppose that the state of the system given by the Hamiltonian H is in the ensemble
{pi, |ϕi〉, (i = 1, 2, · · · , n)} and is in equilibrium with the heat bath of the temperature T ,
where n is the dimension of the system and |ϕi〉 satisfies the eigenequation

H|ϕi〉 = Ei|ϕi〉, (i = 1, 2, · · · , n) (1.2.4)

with Ei the eigenvalue of the eigenstate |ϕi〉. We obtain the density matrix ρ of the
equilibrium state of the system by using Eq. (1.2.1) as

ρ =
n∑
i=1

e−βEi

Z
|ϕi〉〈ϕi|, (1.2.5)

where we assume that the system obeys the canonical distribution and Z is the partition
function of the system,

Z = Tre−βH (1.2.6)

with β = (kBT )−1. Equation (1.2.4) with the completeness relation is followed by

ρ =
n∑
i=1

e−βEi

Z
|ϕi〉〈ϕi|

=
n∑
i=1

e−βH

Z
|ϕi〉〈ϕi| = e−βH

Z
. (1.2.7)

We thus obtain the density matrix which often appears in statistical mechanics. The
thermal average of an observable O is given by

〈O〉T = TrρO =
TrOe−βH

Tre−βH
(1.2.8)
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Next, we see that the density matrix ρ at zero temperature T = 0 is reduced to
ρ0 = |ϕ0〉〈ϕ0|, where |ϕ0〉 is the ground state. The limit β →∞ leads to

ρ0 = lim
β→∞

e−βH

Z
= lim

β→∞
e−βE0 |ϕ0〉〈ϕ0|+ e−βE1 |ϕ1〉〈ϕ1|+ · · · e−βEn|ϕn〉〈φn|

e−βE0 + e−βE1 + · · ·+ e−βEN

= lim
β→∞

|ϕ0〉〈ϕ0|+ e−β(E1−E0)|ϕ1〉〈ϕ1|+ · · ·+ e−β(En−E0)|ϕn〉〈ϕn|
1 + e−β(E1−E0) + · · ·+ e−β(En−E0)

= |ϕ0〉〈ϕ0|, (1.2.9)

where we assume E0 < E1 ≤ · · · ≤ En. In the present thesis, the ground-state degeneracy
occurs only at limited points with zero measure, and hence we ignore the ground-state
degeneracy.

1.2.2 The reduced density matrix

Next, we introduce the reduced density matrix. The reduced density matrix is needed to
measure the entanglement between two spins in an N -spin system.

Suppose that Alice and Bob have the physical systems A and B, whose state is described
by the density matrix ρAB. The reduced density matrix for the system A is given by

ρA = TrBρAB, (1.2.10)

where TrB denotes the trace operation over the degrees of freedom of the system B. The
reduced density matrix holds the information of the system A in the sense that it gives us
the expectation value of an observable OA for the system A. We can easily confirm the
fact as follows:

Tr (ρABOA ⊗ IB) = TrA [TrB(ρABOA ⊗ IB)] = TrA(OAρA). (1.2.11)

We show an example of the reduced density matrix for a two-qubit system. The qubit
is a quantum system with two energy levels. We imagine that Alice and Bob share a pair
of qubits whose state is the singlet |ΨAB〉 = 1√

2
(|0A1B〉 − |1A0B〉), where the subscript

A indicates that the first system belongs to Alice and the subscript B indicates that the
second system belongs to Bob. When Alice makes a measurement, the expectation values
of the observable OA = a|0A〉〈0A|+ b|1A〉〈1A| with real numbers a and b is

Tr (|ΨAB〉〈ΨAB|OA ⊗ IB) =
a+ b

2
. (1.2.12)

We obtain the same result in terms of the reduced density matrix. We first calculate the
reduced density matrix:

ρA = TrB|ΨAB〉〈ΨAB|

= TrB

[
1

2
(|0A1B〉 − |1A0B〉)(〈0A1B| − 〈1A0B|)

]

=
1

2
(|0A〉〈0A|+ |1A〉〈1A|) . (1.2.13)
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The density matrix ρA describes that the state is the equal mixture of the levels |0A〉 and
|1A〉. By using Eq. (1.2.3), we have the expectation value of the observable OA as

TrA (ρAOA) =
a+ b

2
. (1.2.14)

We thus demonstrated that the reduced density matrix ρA holds the information of the
system A.

1.2.3 The one-qubit and two-qubit density matrices

Now, we explain a procedure of obtaining a reduced density matrix for a general Hamil-
tonian. In the present thesis, we need two-qubit density matrices in order to use the
concurrence as a measure of the entanglement. We show that one-qubit and two-qubit
density matrices can be constructed from one-point and two-point correlation functions.

The one-qubit density matrix is a reduced density matrix given by

ρi = Tr̂iρ, (1.2.15)

where Trî denotes the partial trace over all degrees of freedom except for the ith qubit.
The two-qubit density matrix is a reduced density matrix given by

ρij = Trîjρ, (1.2.16)

where trîj denotes the partial trace over all degrees of freedom except for the ith and jth
qubits.

Since the one-qubit density matrix is Hermitian, it can be expanded by the Pauli
matrices and the identity matrix in the form

ρi = Tr̂iρ =
1

2

3∑
α=0

qασ
α
i , (1.2.17)

where σ0
i denotes the identity matrix acting on the ith qubit, σ1

i , σ
2
i , σ

3
i are the Pauli

matrices σxi , σ
y
i , σ

z
i acting on the ith qubit, and {qα} are real numbers. To construct the

density matrix, we evaluate the coefficients qα. First, as the trace of the density matrix is
unity, the coefficient q0 must be equal to 1. The other coefficients qα are determined by
the relations

qα = tri(σ
α
i ρi) = tri(σ

α
i trîρ) = tr(σαi ρ) = 〈σαi 〉 (1.2.18)

for α = 1, 2, 3. We can thus obtain the one-qubit density matrix by calculating the one-
point functions.

Similarly, the two-qubit density matrix can be expanded by the tensor product of the
Pauli matrices and the identity matrix in the form

ρij = trîj(ρ) =
1

4

3∑

α,β=0

pαβσ
α
i ⊗ σβj , (1.2.19)
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where pαβ are real numbers because ρij is an Hermite matrix. The coefficients pαβ are
determined by the relations

pαβ = trij(σ
α
i σ

β
j ρij) = tr(σαi σ

β
j ρ) = 〈σαi σβj 〉. (1.2.20)

Since the trace of the density matrix is unity, the coefficient p00 must be equal to 1.
Calculating the two-point functions (1.2.20), we can construct the two-qubit density matrix.

When we construct the density matrix of a particular model (e.g. XYmodel), the
symmetry of the model often reduces the number of the independent coefficients that we
have to calculate. This will be shown in §3.2.

1.3 Definition of an entangled state

1.3.1 Definition of a pure entangled state

In this section, we define an entangled state mathematically. First, we define a pure
entangled state. Consider a composite system of the subsystemsA andB. A pure entangled
state is a state that cannot be written by the tensor product of a pure state |ψA〉 of the
subsystem A and a pure state |ψB〉 of the subsystem B:

|ΨAB〉 6= |ψA〉 ⊗ |ψB〉. (1.3.1)

Conversely, if a state of the composite system of A and B can be written by the tensor
product of a pure state |ψA〉 of the subsystem A and a pure state |ψB〉 of the subsystem
B, the state is called a separable state. A separable state does not have entanglement.

Typical examples of the pure entangled state are the following states:

|Ψ+
AB〉 =

1√
2
(|0A1B〉+ |1A0B〉), (1.3.2)

|Ψ−
AB〉 =

1√
2
(|0A1B〉 − |1A0B〉), (1.3.3)

|Φ+
AB〉 =

1√
2
(|0A0B〉+ |1A1B〉), (1.3.4)

and

|Φ−
AB〉 =

1√
2
(|0A0B〉 − |1A1B〉). (1.3.5)

These states are known as the Bell states or the EPR states. The states (1.3.2)–(1.3.5)
are the orthonormal bases of the system consisting of two qubits. Each Bell state is the
superposition of two states having the same amplitude 1/

√
2. We refer to such a state as a

maximally entangled state. On the other hand, a partially entangled state is a state which
cannot be written by the tensor product of a pure state and is the superposition of two
states not having the same amplitude.
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1.3.2 Definition of a mixed entangled state

Here we define a mixed entangled state mathematically. For this purpose, we first mention
ambiguity of the expansion of a mixed state. A mixed state is an ensemble of pure states
and is represented only in terms of the density matrix (1.2.1). Suppose that the mixed
state ρ is given in the form

ρ =
1

2
|Φ+

AB〉〈Φ+
AB|+

1

2
|Φ−

AB〉〈Φ−
AB|, (1.3.6)

where |Φ±
AB〉 = 1√

2
(|0A0B〉 ± |1A1B〉). The state ρ seems to be an equal mixture of the

maximally entangled states |Φ+
AB〉 and |Φ−

AB〉. The state ρ, however, can also be written
in the form

ρ =
1

2
|0A0B〉〈0A0B|+ 1

2
|1A1B〉〈1A1B|. (1.3.7)

The state ρ now seems to be an equal mixture of the separable states |0A0B〉 and |1A1B〉.
Any measurements on ρ can be explained in terms of the separable states.

Thus we define the mixed entangled state of a composite system of A and B in the
following way: A mixed state ρAB is entangled if and only if for any representations of
ρAB, it cannot be written as

ρAB 6=
∑
i

piρ
A
i ⊗ ρBi , (1.3.8)

where ρAi is a pure state of the subsystem A, ρBi is a pure state of the subsystem B and∑
i pi = 1. This is the definition of a mixed entangled state.

1.4 Quantum teleportation

In this section, we review an application of entangled states, namely the quantum telepor-
tation [1], where the entanglement plays a key role. We imagine the situation that Alice
wants to deliver the state |ψA〉 = α|0A〉 + β|1A〉 to Bob, or to have Bob make a copy of
the state, |ψB〉 = α|0B〉 + β|1B〉, but Alice does not know the values α and β. Moreover,
Alice is allowed to use only classical communications (e.g. a telephone) and to operate
only on her system. This situation is often referred to as the local operation and classical
communication, or LOCC. Alice, however, can deliver the state |ψA〉 to Bob by using an
entangled state shared by Alice and Bob as follows. Suppose that Alice and Bob share the
entangled state

|Ψ+
A′B〉 =

1√
2
(|0A′0B〉+ |1A′1B〉), (1.4.1)
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where |0A′〉 and |1A′〉 are the states of another qubit belonging to Alice. First, Alice makes
the tensor product

|ψ0〉 = |ψA〉 ⊗ |Ψ+
A′B〉 =

1√
2
(α|0A〉+ β|1A〉)⊗ (|0A′0B〉+ |1A′1B〉)

=
1√
2

[α|0A〉(|0A′0B〉+ |1A′1B〉) + β|1A〉(|0A′0B〉+ |1A′1B〉)] ,
(1.4.2)

where the first two qubits A and A′ belong to Alice and the third qubit B belongs to Bob.
Next, Alice operates on the first two qubits of the state |ψ0〉 a unitary operator called the
controlled-NOT gate

Uc-NOT = |0A0A′〉〈0A′0A|+ |0A1A′〉〈1A′0A|+ |1A0A′〉〈1A′1A|+ |1A1A′〉〈0A′1A|. (1.4.3)

Then she has the state

|ψ1〉 = Uc-NOT|ψ0〉 =
1√
2

[α|0A〉(|0A′0B〉+ |1A′1B〉) + β|1A〉(|1A′0B〉+ |0A′1B〉)] . (1.4.4)

Next, she operates on the first qubit A of the state |ψ1〉 another unitary operator called
the Hadamard gate

UH =
1√
2

(|0A〉〈0A|+ |0A〉〈1A|+ |1A〉〈0A| − |1A〉〈1A|) . (1.4.5)

Then she obtains the state

|ψ2〉 = UH|ψ1〉
=

1

2
[α(|0A〉+ |1A〉)(|0A′0B〉+ |1A′1B〉) + β(|0A〉 − |1A〉)(|1A′0B〉+ |0A′1B〉)]

=
1

2

[|0A0A′〉(α|0B〉+ β|1B〉) + |1A0A′〉(α|0B〉+ β|1B〉)
+ |1A0A′〉(α|0B〉 − β|1B〉) + |1A1A′〉(α|0B〉 − β|1B〉)]. (1.4.6)

If Alice performs a measurement on the first two qubits A and A′, the possible outcomes
of Alice’s measurement are

|0A0A′〉 7→ α|0B〉+ β|1B〉, (1.4.7)

|0A1A′〉 7→ α|1B〉+ β|0B〉, (1.4.8)

|1A0A′〉 7→ α|0B〉 − β|1B〉, (1.4.9)

|1A1A′〉 7→ α|1B〉+ β|0B〉, (1.4.10)

where the left-hand sides denote the outcome of Alice’s measurement and the right-hand
sides denote Bob’s state after Alice’s measurement. Depending on the outcome of Alice’s

9



measurement, Bob’s qubit becomes one of these four states. If Alice’s outcome is |0A0A′〉,
she tells Bob by using classical communication not to do any operation. If Alice’s outcome
is |0A1A′〉, she tells Bob to apply the unitary transformation |0B〉〈0B| − |1B〉〈01| so that
he can get the state |ψB〉 = α|0B〉 + β|1B〉. If Alice measures the other outcomes, Bob’s
appropriate unitary transformation again leads Bob to get the state |ψB〉. This procedure
is called the quantum teleportation. The quantum teleportation has been experimentally
realized in various forms [13–16].

We note that when the quantum teleportation is completed, Alice loses the state |ψA〉.
Note also that the quantum teleportation cannot deliver information faster than the light
because Alice and Bob use classical communications.
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Chapter 2

The von Neumann entropy and the
entanglement of formation

In this chapter, we review how the entanglement is quantified [17–21]. Here, LOCC, where
only use of local operation and classical communication are allowed, is a key concept to
quantify it. Suppose that in a bipartite system with the subsystems A and B, Alice
can only operate on the subsystem A, Bob can only operate on the subsystem B, and
they can communicate the results of their measurements only through classical ways of
communication (e.g. Alice telephones Bob). This is an example of LOCC.

If we were allowed to use quantum operations on the subsystems A and B, we could
always create a maximally entangled state, namely one of the Bell states (1.3.2)–(1.3.5),
from a completely disentangled state. To quantify the entanglement, we hence are allowed
to use LOCC only; LOCC is also used in quantum information processing, such as quantum
teleportation as seen in §1.4.

The von Neumann entropy is a measure of the entanglement of a pure state of a bipartite
system. It cannot be used for measuring entanglement of a mixed state. We therefore use
the entanglement of formation as a measure of entanglement of a mixed state.

In the following sections, we review the von Neumann entropy for a pure state and the
entanglement of formation for a mixed state; we quantify entanglement by measuring the
efficiency with which we can convert a Bell state into the state in question.

2.1 The von Neumann entropy

In this section, we introduce the von Neumann entropy and explain why it can measure
the entanglement of a pure state of a bipartite system. For a pure state of any bipartite
systems with the subsystems A and B, the von Neumann entropy is given by

S(ρ) = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB), (2.1.1)

where ρA and ρB are reduced density matrices. Note that unlike the von Neumann entropy
in statistical mechanics, the logarithms are taken in base two. It is easy to confirm the
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equality
−Tr(ρA log2 ρA) = −Tr(ρB log2 ρB) (2.1.2)

by the Schmidt decomposition (see Appendix A). From now on, S(|ψ〉) denotes S(|ψ〉〈ψ|)
for a pure state |ψ〉. (Note that for a mixed state ρ, we cannot write S(ρ) as S(|ψ〉), since
the mixed state ρ does not have a corresponding wave vector |ψ〉.) When the system of
the Hamiltonian is given by a tensor product CN ⊗ CN , for example, the von Neumann
entropy takes the value from 0 for a separable state to log2N for a maximally entangled
state.

Now, we explain why the von Neumann entropy can measure entanglement of a pure
state. It is based on the efficiency of converting a Bell state into another state [17].

Suppose that Alice and Bob have a certain number of copies of the singlet |Φ〉 =
1√
2
(|0A1B〉− |1A0B〉) and then from them create n copies of a pure state |φ〉 =

√
p|0A0B〉+√

1− p|1A1B〉 by using LOCC only. Here we note that thanks to the Schmidt decomposi-
tion, any two-qubit states can be written in the form |φ〉 =

√
p|0A0B〉+

√
1− p|1A1B〉 (see

Appendix A).
It is known that nS(|φ〉) copies of the singlet |Φ〉 are needed to produce n copies of the

state |φ〉 for large n, where S(|φ〉) is the von Neumann entropy

S(|φ〉) = −TrρA log2 ρA = −p log2 p− (1− p) log2(1− p) (2.1.3)

with ρA the reduced density matrix

ρA = p|0A〉〈0A|+ (1− p)|1A〉〈1A|; (2.1.4)

see Fig. 2.1.
The procedure of creating |φ〉⊗n from a certain number of copies of the singlet |Φ〉

by LOCC is called the entanglement dilution. Conversely, they need n copies of |φ〉 in
order to obtain nS(|φ〉) copies of the singlet |Φ〉 by LOCC. This procedure of creating
|Φ〉⊗nS(|φ〉) from |φ〉⊗n is called the entanglement concentration. For any pure state |φ〉, the
entanglement dilution and concentration are reversible processes:

|Φ〉⊗nS(|φ〉) À |φ〉⊗n (2.1.5)

The von Neumann entropy S tells us with what efficiency they can make a pure state
|φ〉 from a Bell state and conversely, with what efficiency they can make a Bell state
from a state |φ〉. We may then interpret the efficiency as how close the state |φ〉 is to a
maximally entangled Bell state. We hence regard the von Neumann entropy as a measure
of entanglement of the pure state |φ〉.

2.2 The entanglement of formation

In this section, we introduce the entanglement of formation and why it can measure the
entanglement of a mixed state of a bipartite system. For a mixed state ρ of the bipartite

12
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Figure 2.1: The von Neumann entropy of the state |φ〉 =
√
p|0A0B〉+

√
1− p|1A1B〉.

system, the entanglement of formation [19] is given by

E(ρ) = inf
{pi,|ψi〉}

∑
i

piS(|ψi〉), (2.2.1)

where S(|ψi〉) is the von Neumann entropy and the infimum is taken over all the ways of
the decomposition ρ =

∑
i pi|ψi〉〈ψi|; note that there can be many ways of expression of

a mixed state in the form ρ =
∑

i pi|ψi〉〈ψi|. We immediately confirm that if a density
matrix ρ represents a pure state |ψi〉, the entanglement of formation E(ρ) is reduced to
the von Neumann entropy S(|ψi〉).

We cannot use the von Neumann entropy to measure the entanglement of a mixed
state, because a mixed state can have a finite von Neumann entropy even if there is no
entanglement. Consider the mixed state

σ =
1

2
|Φ+〉〈Φ+|+ 1

2
|Φ−〉〈Φ−| (2.2.2)

with |Φ±〉 = 1√
2
(|0A0B〉 ± |1A1B〉). This state is an ensemble of equal mixture of the

maximally entangled states |Φ+〉 and |Φ−〉. The state (2.2.2) is in fact not entangled
because it can be rewritten as a separable state of the form

σ =
1

2
|0A0B〉〈0A0B|+ 1

2
|1A1B〉〈1A1B|. (2.2.3)
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However, the von Neumann entropy of the state σ gives S(σA) = S(σB) = 1. Hence, the
entanglement of a mixed state cannot be quantified by the von Neumann entropy.

The entanglement of formation (2.2.1) is a generalization of the von Neumann entropy.
Suppose that Alice and Bob have a certain number of copies of the singlet and create n
copies of a mixed state ρ for large n from them by LOCC only. We consider how many
singlets they need to make ρ⊗n. Suppose that a representation of the mixed state ρ is given
in the form

ρ =
M∑
i=1

pi|ψi〉〈ψi|, (2.2.4)

where |ψi〉 is a pure state and not necessarily orthogonal to each other. The n copies of the
state ρmay be considered to contain npi copies of the pure state |ψi〉. To produce np1 copies
of |ψ1〉 through the entanglement dilution, they need np1S(|ψ1〉) copies of the singlet for
large n as before (see the previous section). Similarly, the other states |ψi〉 (i = 2, · · · ,M)
are also created out of npiS(|ψi)〉) copies of the singlet for large n, respectively. They
collect all the copies into a large ensemble. Finally, they discard any records indicating
which singlets generate each |ψi〉; if they did not discard the records, the assembled states
would not be mixed stochastically and hence would not be described in the form Eq. (2.2.4).

The total number of the singlets they used is

n
M∑
i=1

piS(|φi〉). (2.2.5)

Equation (2.2.5) divided by n may be an entanglement measure. The mixed state ρ,
however, has many representations of the form (2.2.4). We adopt the minimum number
and hence define the entanglement of formation as in Eq. (2.2.1). We thus have

|Φ〉⊗nE(ρ) −→ ρ⊗n, (2.2.6)

for large n. (There is actually a more efficient procedure of the entanglement dilution of a
mixed state, but we do not go into it in the present thesis.)

Unlike for the pure states, the entanglement dilution and the entanglement concentra-
tion are not reversible for mixed states. Suppose that Alice and Bob manage to concentrate
n copies of a mixed state ρ with large n into nED(ρ) copies of the Bell state |Φ〉 as in

ρ⊗n −→ |Φ〉⊗nED(ρ),

where ED is called the distillable entanglement. It has been proved [18, 19] that the
entanglement of formation E(ρ) is greater than the distillable entanglement ED(ρ) for any
mixed states:

E(ρ) > ED(ρ). (2.2.7)

Thus the procedures of the entanglement dilution and concentration for a mixed state are
irreversible:

|Φ〉⊗nE −→ ρ⊗n −→ |Φ〉⊗nED , (nED < nE). (2.2.8)
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We could regard both E and ED as measures of the entanglement. However, the
distillable entanglement can be zero even if the state is nonseparable. In contrast, the
entanglement of formation of a state ρ is zero if and only if ρ is separable. We thus use
the entanglement of formation as a measure of entanglement in the present thesis.

Finally, we introduce Wootters’ formula [22], which enables us to calculate the entan-
glement of formation of a two-qubit system. Wootters’ formula tells us that for a density
matrix ρ of a two-qubit system, the entanglement of formation is given by the formula

E(ρ) = h


1 +

√
1− C(ρ)2

2


 , (2.2.9)

where
h(x) = −x log2 x− (1− x) log2(1− x) (2.2.10)

and C(ρ) is called the concurrence given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}. (2.2.11)

Here, {λi} are the square roots of the eigenvalues of the matrix R = ρρ̃ in the descending
order, λ1 ≥ λ2 ≥ λ3 ≥ λ4, where ρ̃ = (σy⊗σy)ρ∗(σy⊗σy). Note that the complex conjugate
ρ∗ is taken in the σz bases, | ↑〉 and | ↓〉. Even though the matrix R = ρρ̃ is not necessarily
a Hermite matrix, all the eigenvalues of R are non-negative, because ρ and ρ̃ are positive
definite matrices. We can regard the concurrence (2.2.11) as an entanglement measure,
because the entanglement of formation (2.2.9) is a monotonically increasing function of the
concurrence; see Fig. 2.2.
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Figure 2.2: The entanglement of formation as a function of the concurrence. It is a
monotonically increasing function of the concurrence as in Eq. (2.2.9).
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Chapter 3

The entanglement of the XY spin
chain in a random magnetic field

In this chapter, we numerically measure the entanglement of the XY spin chain in a
random magnetic field using the concurrence and study how the randomness influences the
entanglement.

This chapter is arranged as follows. We first introduce the model. Next, we show
how to construct the two-qubit density matrix. Next, we calculate the one-point and two-
point correlations in order to construct the reduced density matrix. Finally, we study the
behavior of the concurrence.

3.1 XY model in a random magnetic field

The model that we consider here is given by the Hamiltonian

H = −J
N∑
j=1

(Sxj S
x
j+1 + Syj S

y
j+1)−

N∑
j=1

(h+ hj)S
z
j , (3.1.1)

where Sα = 1
2
σα (α = x, y, z) with σα being the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

N is the number of the spins, J (> 0) is the exchange coupling constant, h is a uniform
magnetic field and hj is a random magnetic field. We here impose the periodic boundary
conditions

SαN+j = Sαj (α = x, y, z). (3.1.2)

The probability distribution of the random magnetic field hj is given by

Pq(hj) = Aq,a[a
2 − (1− q)hj

2]
1

1−q , (3.1.3)
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Figure 3.1: The probability distribution (3.1.3) gives a Gaussian distribution function for
q = 1 with a equal to its standard deviation σ, while it gives a Lorentzian distribution
function for q = 2 with a equal to its half width at half maximum. The figure is drawn for
a = 1 for all cases.

where a is a scale parameter, Aq,a is the normalization constant and q is a real number
that determines the type of the distribution. Each hj is independent of the other sites.
Equation (3.1.3) is reduced to a Gaussian distribution for q = 1 and to a Lorentzian
distribution for q = 2; see Fig. 3.1. In the case of q = 1 (a Gaussian distribution), the scale
parameter a gives its standard deviation. In the case of q = 2 (a Lorentzian distribution),
the scale parameter a gives its half width at half maximum.

In the present thesis, we study the cases q = 1, 1.35, 5/3, 1.85 and 2. The former two
cases have finite variance and the latter three cases have infinite variance. The variance
of the distribution diverges for q ≥ 5/3, whereas it is finite for q < 5/3. The probability

distribution (3.1.3) behaves as h
2/(1−q)
j for large hj and thus we have

〈h2
j〉 ∼

∫
dhj h

2
jh

2
1−q

j ∼ h
5−3q
1−q

j . (3.1.4)

We conclude that the variance diverges for

5− 3q

1− q
≥ 0, (3.1.5)
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or q ≥ 5/3.
We rewrite Eq. (3.1.1) by using the Jordan-Wigner transformation [27] for later conve-

nience. The Jordan-Wigner transformation maps the spin space into the fermionic space
in the form

S+
j =

j−1∏

l=1

exp(−iπa†lal)a†j,

S−j =

j−1∏

l=1

exp(iπa†lal)aj,

Szj = S+
j S

−
j −

1

2
= a†jaj −

1

2
,

(3.1.6)

where a†i and ai are the creation and annihilation operators satisfying the anti-commutation
relations {a†i , aj} = δij and {ai, aj} = 0. Using the Jordan-Wigner transformation (3.1.6),
we have

H = −J
2

N∑
j=1

(a†jaj+1 + a†j+1aj)−
N∑
j=1

(h+ hj)

(
a†jaj −

1

2

)
. (3.1.7)

The periodic boundary conditions Eq. (3.1.2) in the spin space is transformed to

aN+1 = −a1, a
†
N+1 = −a†1 for even NF ,

aN+1 = a1, a
†
N+1 = a†1 for odd NF ,

(3.1.8)

where NF is the number of the fermions.

3.2 The density matrix of the XY model in a random

magnetic field

In this section, we consider what quantities are needed to construct the density matrix
of the model (3.1.1). We here use the results in §1.2.3. We focus our interest on the
entanglement between two spins.

3.2.1 The density matrix

We first remind readers that the two-qubit density matrix can be expanded by the tensor
product of the Pauli matrices and the identity matrix as in Eq. (1.2.19):

ρij = trîj(ρ) =
1

4

3∑

α,β=0

pαβσ
α
i ⊗ σβj , (3.2.1)
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where σ0
i is the identity operator Ii on the site i, σαi (α = 1, 2, 3) are the Pauli matrices on

the site i,

σ1
i =

(
0 1
1 0

)
, σ2

i =

(
0 −i
i 0

)
, σ3

i =

(
1 0
0 −1

)
,

and the coefficients {pαβ} are determined by the relation (1.2.20):

pαβ = trij(σ
α
i σ

β
j ρij) = tr(σαi σ

β
j ρ) = 〈σαi σβj 〉. (3.2.2)

Noting that p00 = 1, we have to calculate 4×4−1 = 15 coefficients to construct a two-qubit
density matrix.

The number of the independent coefficients is reduced to four thanks to the symmetry
of the Hamiltonian. First, the XY Hamiltonian possesses the rotational symmetry about
the z-axis; namely the unitary matrix

Uπ
2

=
N∏
j=1

exp(−iπ
4
σzj ) (3.2.3)

satisfies
[H,Uπ

2
] = 0. (3.2.4)

We hence have [Uπ
2
, ρ] = 0 and, therefore, 〈σxi σxj 〉 = 〈σyi σyj 〉:

〈σxi σxj 〉 = Tr(σxi σ
x
j ρ) = Tr(U−1

π
2
σxi Uπ

2
U−1

π
2
σxj ρUπ

2
)

= Tr(U−1
π
2
σxi Uπ

2
U−1

π
2
σxjUπ

2
ρ) = 〈σyi σyj 〉. (3.2.5)

Next, the Hamiltonian also possesses the global phase-flip symmetry:

Uflip =
N∏
j=1

σzj . (3.2.6)

Therefore, two-point correlation functions containing an odd number of σx or σy vanish;
for example,

〈σzi σxj 〉 = Tr(σzi σ
x
j ρ) = Tr(U−1

flipσ
z
i σ

x
j ρUflip)

= Tr(σziU
−1
flipσ

x
jUflipρ) = Tr(σzi (−σxj )ρ) = −〈σzi σxj 〉 = 0, (3.2.7)

and

〈σxi 〉 = Tr(σxi ρ) = Tr(U−1
flipσ

x
i ρUflip)

= Tr(U−1
flipσ

x
i ρUflip) = −Tr(σxi ρ) = −〈σxi 〉 = 0. (3.2.8)

Second, the Hamiltonian is a real matrix in the σz bases, so that ρ∗ij = ρij. Noting that
only the elements in σyj are imaginary, we find 〈σxi σyj 〉 = 〈σyi σxj 〉 = 0.
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Hence, the two-qubit density matrices take the form

ρij =
1

4

(
Iij + 〈σzi 〉σzi ⊗ Ij + 〈σzj 〉Ii ⊗ σzj +

∑
α=x,y,z

〈σαi σαj 〉σαi ⊗ σαj

)
, (3.2.9)

where we note Eq. (3.2.5). Therefore, 〈σzi 〉, 〈σzj 〉 and 〈σαi σαj 〉 (α = x, z) are required to
determine the density matrices of the model; the number of the independent coefficients
are thus reduced to four.

3.2.2 Exact solution of the XY model in uniform field

We first briefly review the solution in a uniform field; that is, hi = 0 for all i [23–25]. Here
we only outline the procedure and write down the results. See Appendix B for details.

The Hamiltonian with a uniform magnetic field is given by

H = −J
2

N∑
j=1

(a†jaj+1 + a†j+1aj)− h

N∑
j=1

(
a†jaj −

1

2

)
. (3.2.10)

Because of the translational invariance, we use the Fourier transform to diagonalize the
Hamiltonian (3.2.10):

aj =
1√
N

∑

k

eikjck,

a†j =
1√
N

∑

k

e−ikjc†k,
(3.2.11)

where the wave number k takes the values in Eq. (B.1.22) (see Appendix B). The Hamil-
tonian (3.2.10) is transformed to

H = −
∑

k

(Jcosk + h)c†kck +
Nh

2
, (3.2.12)

where c†k and ck are the creation and annihilation operators satisfying the anti-commutation

relations {c†k, ck′} = δkk′ and {ck, ck′} = 0.
Now that the Hamiltonian has been diagonalized, we are in the position of calculating

the one-point and two-point correlation functions. We summarize the results here. In the
thermodynamic limit N → ∞, the wave number k becomes continuous. The one-point
function 〈σz〉T at a temperature T is given by

〈σz〉T = −1 +
2

π

∫ π

0

dφ

1 + exp [β(Jcosφ+ h)]
, (3.2.13)

where β = 1/kBT . The magnetization in the z direction as a function of a uniform magnetic
field is plotted in Fig. 3.2. Hereafter the coupling constant J is set to one in all figures
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Figure 3.2: The magnetization in the z direction at zero temperature T = 0 as a function
of the uniform field h, where the coupling constant J is set to one. The quantum phase
transition occurs at the point h = 1, where the derivative of the 〈σz〉 diverges.

in the present thesis. The two-point correlation functions 〈σαi σαj 〉, (i < j, α = x, y, z) are
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given in the form

〈σxi σxj 〉T =

∣∣∣∣∣∣∣∣∣

Gi,i+1 Gi,i+2 · · · Gi,j

Gi+1,i+1 Gi+1,i+2 · · · Gi+1,j
...

...
. . .

...
Gj−1,i+1 Gj−1,i+2 · · · Gj−1,j

∣∣∣∣∣∣∣∣∣
, (3.2.14)

〈σyi σyj 〉T =

∣∣∣∣∣∣∣∣∣

Gi+1,i Gi+2,i · · · Gj,i

Gi+1,i+1 Gi+2,i+1 · · · Gj,i+1
...

...
. . .

...
Gi+1,j−1 Gi+2,j−1 · · · Gj,j−1

∣∣∣∣∣∣∣∣∣
, (3.2.15)

〈σzi σzj 〉T =

∣∣∣∣
Gi,i Gi,j

Gj,i Gj,j

∣∣∣∣ , (3.2.16)

where Gl,l is

Gl,l = −1 +
2

π

∫ π

0

dφ

1 + exp(−β(Jcosφ+ h))
, (3.2.17)

and Gl,m (l 6= m) is

Gl,m =
2

π

∫ π

0

dφ
cos(l −m)φ

1 + exp(−β(J cosφ+ h))
. (3.2.18)

Next, we take the limit T → 0, or β →∞. The one-point function 〈σz〉 is reduced to

〈σz〉 =

{
1 for h > J,
−1 + 2

π
arccos(−h

J
) for h < J ;

(3.2.19)

see Fig. 3.3. Equations (3.2.17) and (3.2.18) behave differently in the two phases h > J
and h < J :

Gl,l =

{
1 for h > J,
−1 + 2

π
arccos(−h

J
) for h < J,

(3.2.20)

Gl,m =

{
0 for h > J,
2
π

1
l−m sin[(l −m) arccos(−h

J
)] for h < J.

(3.2.21)

We thus have all the necessary correlation functions.
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Figure 3.3: The magnetization in the z direction at temperature T as a function of the
uniform field for β−1 = 0.1 where the coupling constant J is set to one.

3.2.3 Numerical solution of the XY model in a random magnetic
field

Now we consider the case of a random magnetic field at zero temperature T = 0, which
is the main theme of this thesis. We only outline the procedure. See also Appendix C for
details.

The Hamiltonian is given by Eq. (3.1.7), or

H = −J
2

N∑
j=1

(a†jaj+1 + a†j+1aj)−
N∑
j=1

(h+ hj)

(
a†jaj −

1

2

)
, (3.2.22)

where {hi} are random magnetic fields obeying the probability distribution (3.1.3). The
boundary conditions are given by Eq. (3.1.8). Since there is no interaction between the
fermions, the problem is reduced to a one-particle problem.

The Hamiltonian (3.2.22) without the constant term is expressed in the form

H ′ =
∑

j,k

a†jAj,kak = a†Aa (3.2.23)

24



with

A =




−h− h1 −J
2

0 · · · 0 ±J
2

−J
2

−h− h2 −J
2

0
... 0

0 −J
2

. . . . . . 0
...

... 0
. . . . . . −J

2
0

0
...

. . . −J
2
−h− hN−1 −J

2

±J
2

0 · · · 0 −J
2

−h− hN




, (3.2.24)

where the signs of the (1, N) and (N, 1) elements depend on the boundary conditions (3.1.8);
the sign is negative for even NF and positive for odd NF . The vectors a and a† denote

a =




a1

a2
...

aN−1

aN



, a† =

(
a†1 a†2 · · · a†N−1 a†N

)
. (3.2.25)

As Eq. (3.2.24) is Hermitian, there exists a unitary matrix V such that V †AV = Λ is a
diagonal matrix. We thus have

H ′ = a†Aa = c†Λc (3.2.26)

with

c†m =
∑
j

a†jVjm,

cm =
∑
j

V †
mjaj,

(3.2.27)

where c†m and cm satisfy the anti-commutation relations {c†n, cm} = δnm and {cn, cm} = 0.
We here write the inverse transformation of Eq. (3.2.27) as

a†j =
∑
m

c†mV
†
mj,

aj =
∑
m

Vjmcm.
(3.2.28)

Once we diagonalize the matrix (3.2.24), we can construct the ground state of the many-
body Hamiltonian (3.2.22). Let ε1, ε2, · · · εNG

, εNG+1, · · · εN−1, εN denote the eigenvalues of
the matrix (3.2.24) in the ascending order. If εNG

< 0 and εNG+1 > 0, the ground state of
the Hamiltonian (3.2.22) is given by

|Gs〉 = c†NG
c†NG−1 · · · c†2c†1|0〉. (3.2.29)
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Now we are in the position of calculating the one-point and two-point correlation func-
tions. We here merely summarize the results:

〈σzi 〉 = Gi,i, (3.2.30)

〈σxi σxj 〉 =

∣∣∣∣∣∣∣∣∣

Gi,i+1 Gi,i+2 · · · Gi,j

Gi+1,i+1 Gi+1,i+2 · · · Gi+1,j
...

...
. . .

...
Gj−1,i+1 Gj−1,i+2 · · · Gj−1,j

∣∣∣∣∣∣∣∣∣
, (3.2.31)

〈σyi σyj 〉 =

∣∣∣∣∣∣∣∣∣

Gi+1,i Gi+2,i · · · Gj,i

Gi+1,i+1 Gi+2,i+1 · · · Gj,i+1
...

...
. . .

...
Gi+1,j−1 Gi+2,j−1 · · · Gj,j−1

∣∣∣∣∣∣∣∣∣
, (3.2.32)

〈σzi σzj 〉 =

∣∣∣∣
Gi,i Gi,j

Gj,i Gj,j

∣∣∣∣ , (3.2.33)

with

Gi,j = 2

NG∑
m=1

VimVjm − δij. (3.2.34)

The magnetization in the z direction (3.2.30) is plotted as a function of the uniform field
in Fig. 3.4. The singularity of the derivative of the magnetization vanishes. The reduction
of the magnetization for q = 2 is greater than that of the magnetization for q = 1.

In the case q = 2, Nishimori [28] analytically calculated one-point functions and ob-
tained lower bounds of the two-point functions. The results in the paper [28], however,
are not used in the present thesis, since we take the random average of the concurrence, a
non-linear function of the one-point and two-point functions, as we show in the next few
sections.

3.3 The concurrence

3.3.1 Formula for the isotropic XY model

We now measure the entanglement between the spins using the concurrence (2.2.11). We
first remind readers of how to calculate the concurrence. The concurrence of the spins
between the sites i and j is given by

C(ρij) = max{0, λ1 − λ2 − λ3 − λ4}, (3.3.1)
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Figure 3.4: The average magnetization [〈σz〉]av in the z direction at zero temperature
T = 0 in a random magnetic field as a function of the uniform field, where [· · · ]av denotes
the random average. The red line indicates the case q = 1 (a Gaussian distribution) with
a = 0.1 and the green line indicates the case q = 2 (a Lorentzian distribution) with a = 0.1.

where {λi} are the square roots of the eigenvalues of the matrix Rij = ρij ρ̃ij in the de-
scending order, λ1 ≥ λ2 ≥ λ3 ≥ λ4, with ρ̃ij = (σyi ⊗ σyj )ρ

∗
ij(σ

y
i ⊗ σyj ), and ρij is the 4 × 4

reduced density matrix given by
ρij = Trîjρ (3.3.2)

with Trîj denoting the trace over the degrees of freedom except for the sites i and j (see
Eq. (1.2.16)).

Thus we first calculate the square roots of the eigenvalues of the matrix Rij = ρij ρ̃ij.
We write down the 4× 4 matrix Rij as

Rij =
1

16

(
Iij + 〈σzi 〉σzi ⊗ Ij + 〈σzj 〉Ii ⊗ σzj +

∑
α=x,y,z

〈σαi σαj 〉σαi ⊗ σαj

)

×
(
Iij − 〈σzi 〉σzi ⊗ Ij − 〈σzj 〉Ii ⊗ σzj +

∑
α=x,y,z

〈σαi σαj 〉σαi ⊗ σαj

)
, (3.3.3)
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where we note 〈σxi σxj 〉 = 〈σyi σyj 〉. We then introduce the 4× 4 matrices T and S:

T =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


 , S =




1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1


 . (3.3.4)

The matrices T and S block-diagonalize the matrix Rij as

(TS)R(TS)−1 =
1

16




a− b+ 0 0
b− a+ 0 0
0 0 c 0
0 0 0 c


 , (3.3.5)

where a+, a−, b+, b− and c are given by

a± = 4〈σxi σxj 〉2 ± 4〈σxi σxj 〉
(−1 + 〈σzi σzj 〉

)
+

(〈σzi σzj 〉 − 1
)2 − (〈σzi 〉 − 〈σzi 〉)2 , (3.3.6)

b± = ±4〈σxi σxj 〉2 (〈σzi 〉 − 〈σzi 〉) , (3.3.7)

and

c =
(
1 + 〈σxi σxj 〉 − 〈σzi 〉 − 〈σzj 〉

) (
1 + 〈σxi σxj 〉+ 〈σzi 〉+ 〈σzj 〉

)
. (3.3.8)

Thus the characteristic equation can be reduced to be quadratic. After some algebra, we
arrive at the square roots of the eigenvalues of the matrix Rij in the forms

1

4

√(
1 + 〈σxi σxj 〉 − 〈σzi 〉 − 〈σzj 〉

) (
1 + 〈σxi σxj 〉+ 〈σzi 〉+ 〈σzj 〉

)
, (3.3.9)

and

1

4

√
4〈σxi σxj 〉+ (〈σzi σzj 〉 − 1)2 − (〈σzi 〉+ 〈σzj 〉)2 ± 4

√
〈σxi σxj 〉2

[
(〈σzi σzj 〉 − 1)2 − (〈σzi 〉+ 〈σzj 〉)2

]
,

(3.3.10)
where the eigenvalue (3.3.9) is two-fold degenerate.

3.3.2 The concurrence of the XY model in a uniform field at T

First, we study the entanglement between two spins in a uniform field at zero temperature
so that we can compare it to the concurrence in a random magnetic field.

We immediately obtain the concurrence by using Eqs. (3.2.14)–(3.2.16), (3.2.19)–(3.2.21),
(3.3.1), (3.3.9) and (3.3.10). Figure 3.5 shows the nearest-neighbor concurrence C(1), the
next-nearest-neighbor concurrence C(2), the third-neighbor concurrence C(3), the fourth-
neighbor concurrence C(4), and the fifth-neighbor concurrence C(5). We note that the
concurrences of the model depend only on the distance r = |i− j|, because the model in a
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Figure 3.5: The concurrence of the XY model in a uniform field.
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uniform field (3.2.10) possesses the translational invariance. The one-point and two-point
correlation functions are functions of the distance r; see §3.2.2.

The concurrences rapidly decrease near h = 1 and vanish in the region h > 1. In the
region h > 1, the ground state is given by the tensor product of the one-spin state as | ↑〉

| ↑1〉| ↑2〉| ↑3〉 · · · , (3.3.11)

where | ↑〉 denotes the eigenstate of the operator σz satisfying the eigenequation σz| ↑〉 =
| ↑〉. Thus there is no entanglement.

3.3.3 The entanglement of the XY model in a random magnetic
field

We here numerically study the entanglement of the XY model in a random magnetic field
at zero temperature which is the main theme of the present thesis. The model that we
consider is given by Eq. (3.1.1). The probability distribution of the random magnetic
field hj is given by Eq. (3.1.3). We here study the cases q = 1 (a Gaussian distribution),
q = 1.35, q = 5/3, q = 1.85 and q = 2 (a Lorentzian distribution). To generate the
random numbers, we used the transformation method for q = 1 and for q = 2, and used
the rejection method for q = 1.35, q = 5/3 and q = 1.85.

We take the random average and the spatial average to evaluate the concurrence. We
define the average concurrence as

C(r) =
1

N

N∑
i=1

[Ci,i+r]av , (3.3.12)

where [· · · ]av denotes the random average, Ci,j denotes the concurrence between the sites
i and j, and N is the number of the sites.

The random average of the entanglement of formation is always greater than that
obtained by substitution of the random average of concurrence into Eq. (2.2.9). This is
shown by the fact that E(ρ) in Eq. (2.2.9) is a concave function of the concurrence as seen
in Fig. 2.2. Any concave function f(x) with a real number x satisfies the relation

∑
i

pif(xi) ≥ f

(∑
i

pixi

)
, (3.3.13)

where pi (> 0) satisfies
∑

i pi = 1. We thus have

[E(C)]av ≥ E ([C]av) , (3.3.14)

where

E(C) = −1 +
√

1− C2

2
log2

(
1 +

√
1− C2

2

)
− 1−√1− C2

2
log2

(
1−√1− C2

2

)
;

(3.3.15)
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Figure 3.6: (a) The next-nearest-neighbor concurrences for q = 2 (Lorentz) with the scale
parameter a = 0.3, 0.7, 1. All the lines are plotted as a function of the uniform field h and
are taken the random average 10000 times. (b) The next-nearest-neighbor concurrences
for q = 2 (Lorentz). The lines are plotted with the scale parameter a = 0.3 and for the
system size N = 10, 100, 250, 500.

see Eqs. (2.2.9) and (2.2.10). Therefore, if the random average of the concurrence does not
vanish, the random average of the entanglement of formation does not vanish either.

We evaluated the concurrences numerically by using Eqs. (3.2.30)–(3.2.34), (3.3.9),
(3.3.10) and (3.3.1), having Figs. 3.8–3.12. For all the results, the number of the sites N
is 500 and the number of the samples is 10000. In Fig. 3.6(a), the next-nearest-neighbor
concurrences are plotted for q = 2 with error bars at h = 0, 0.5, 1, 1.5, 2, 2.5 and 3, but
the errors are negligible. In Fig. 3.6(b), the next-nearest-neighbor concurrence is plotted
for q = 2 and for the system size N = 10, 100, 250 and 500 with the random average over
10000 samples. The finite-size effect is invisible for N ≥ 100. Hence, we conclude that
10000 samples and the system size N = 500 are substantial.

The nearest-neighbor concurrence for all cases in Fig. 3.8 behaves similarly. In the
region h < 1, the nearest-neighbor concurrence in the random magnetic field for each q
decreases as the distribution width a is increased. The reduction of the nearest-neighbor
concurrence is greater as the scale parameter a is increased. In the region h > 1, the
nearest-neighbor concurrence for all q is restored by the random magnetic field. That is,
the random magnetic field restores the quantum correlation. We use the term “restore” in
the following sense: Though the quantum XY spin chain is reduced to the classical Ising
model by increasing the uniform field (h > 1), the model restores the quantum property
after introducing the random magnetic field in the region of h > 1. The reason why
the nearest-neighbor concurrence is restored in the h > 1 may be as follows; the random
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magnetic field flips some spins and flipped spins and their neighboring spins restore the
quantum interaction.

As shown in Fig. 3.9, the next-nearest neighbor concurrence for each q is decreased
in the region 0.5 < h < 1 as the scale parameter a is increased. On the other hand, in
the regions h < 1/2 and h > 1 it is restored as the randomness a is increased. There
may be some situations that restores the next-nearest-neighbor concurrence in h < 1/2. If
the random magnetic field is almost constant as, say, hi ≈ 0.7 over a region with h = 0,
the next-nearest-neighbor concurrence can be finite; see Fig. 3.7(a). Another possibility is
following. Suppose that a strong magnetic field happens to occur at a site as in Fig. 3.7(b).
We can take the Zeeman energy of the site exposed to the strong magnetic field as the
non-perturbation term and calculate the second-order perturbation of the exchange energy.
We may end up with an effective interaction between the two neighboring spins of the
spin exposed to the strong magnetic field. In this situation, the next-nearest-neighbor
concurrence may be restored. We, however, have not been able to determine the reason of
the restoration in h < 1/2 decidedly.

We find that the qualitative behavior of the next-nearest neighbor concurrence is dif-
ferent depending on whether the variance of the distribution function is finite or not. The
maximum point of the next-nearest-neighbor concurrence for the cases q < 5/3, where the
variance of the distribution function is finite, shifts to the right as the randomness a is
increased as shown in Fig. 3.9(a) and Fig. 3.9(b). In contrast, the maximum point of the
next-nearest-neighbor concurrence for the cases q ≥ 5/3 in Fig. 3.9(c)–(e) shifts to the
left as the randomness a is increased. The third-neighbor concurrence and the rest be-
have similarly to the next-nearest-neighbor concurrence, but have a little differences from
the next-nearest-neighbor concurrences. The third-neighbor concurrences and the rest are
smaller than the nearest-neighbor concurrences. The maximum point of the third neighbor
concurrences and the rest for the cases q ≤ 5/3 first shift to the left and turn to the right
as shown in Figs. 3.10–3.12.

Figure 3.7: Block arrows indicate spins. Green arrows indicate random magnetic field
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Figure 3.8: (a) The nearest-neighbor concurrence for q = 1 (Gauss); (b) The nearest-
neighbor concurrence for q = 1.35; (c) The nearest-neighbor concurrence for q = 5/3; (d)
The nearest-neighbor concurrence for q = 1.85; (e) The nearest-neighbor concurrence for
q = 2 (Lorentz). All the data are plotted as functions of the uniform field for N = 500.
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Figure 3.9: (a) The next-neighbor concurrence for q = 1 (Gauss); (b) The next-neighbor
concurrence for q = 1.35; (c) The next-neighbor concurrence for q = 5/3; (d) The next-
neighbor concurrence for q = 1.85; (e) The next-neighbor concurrence for q = 2 (Lorentz).
All the data are plotted as functions of the uniform field for N = 500.
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Figure 3.10: (a) The third neighbor concurrence for q = 1 (Gauss); (b) The third neighbor
concurrence for q = 1.35; (c) The third neighbor concurrence for q = 5/3; (d) The third
neighbor concurrence for q = 1.85; (e) The third neighbor concurrence for q = 2 (Lorentz).
All the data are plotted as functions of the uniform field for N = 500.
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Figure 3.11: (a) The fourth neighbor concurrence for q = 1 (Gauss); (b) The fourth
neighbor concurrence for q = 1.35; (c) The fourth neighbor concurrence for q = 5/3; (d)
The fourth neighbor concurrence for q = 1.85; (e) The fourth neighbor concurrence for
q = 2 (Lorentz). All the data are plotted as functions of the uniform field for N = 500.
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Figure 3.12: (a) The fifth neighbor concurrence for q = 1 (Gauss); (b) The fifth neighbor
concurrence for q = 1.35; (c) The fifth neighbor concurrence for q = 5/3; (d) The fifth
neighbor concurrence for q = 1.85; (e) The fifth neighbor concurrence for q = 2 (Lorentz).
All the data are plotted as functions of the uniform field for N = 500.
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3.3.4 The entanglement of the XY model at finite temperature

We finally study the case at finite temperatures and see the difference between the effects of
the random magnetic field and the thermal fluctuation on the concurrence. We immediately
have Fig. 3.13 for the concurrence at finite T by using the results in §3.2.2, Eqs. (3.3.1),
(3.3.9) and (3.3.10).

We can hardly see the difference between the random magnetic field and the thermal
fluctuation on the nearest-neighbor concurrence, as shown in Fig. 3.13(a); in the region
h < 1, the concurrence is decreased by the thermal fluctuation, while in the region h > 1,
the entanglement is restored by the thermal fluctuation. The reason why the entanglement
is restored may be that in h > 1 the temperature allows the entangled energy state to
exist in some probability by thermal fluctuation. Thus, the concurrence can have non-
zero value. On the other hand, the next-nearest neighbor concurrence and the third-
neighbor concurrence behave differently depending on whether the disturbance is magnetic
or thermal; The restoration of the entanglement in the region h < 1 does not appear in
the case of the thermal fluctuation.

The maximum point of the next-nearest-neighbor concurrence and the third-neighbor
concurrence first shifts to the left and turns to the right; see Fig. 3.13(b) and (c). The
effect of the thermal fluctuation on the maximum point of the concurrence is similar to the
random magnetic field in the cases of q > 5/3.

In Fig. 3.13(c), the third-neighbor concurrence for β−1 = 0.8 and β−1 = 1.0 vanishes
in any magnetic field h. Any entanglements vanish in the high-temperature limit, because
all the density matrices are reduced to the identity matrix (see Eq. (1.2.5)) and the state
described by the identity operator is separable.

The reduction of the maximum point of the concurrences for the random magnetic field
or at finite temperatures as a function of the scale parameter or temperature β−1 is plotted
in Fig. 3.14. The nearest-neighbor concurrence decreases for the random magnetic field
more rapidly than at finite temperatures in the plotted ranges. In the same region, however,
the third-neighbor concurrence C(3) in the random magnetic field remains finite, whereas
the third-neighbor concurrence at finite temperatures almost vanishes for β−1 ≥ 0.07. As
the distance between the two spins increases, the concurrence becomes weak against the
temperature.
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Figure 3.13: (a) The nearest-neighbor concurrence at various temperatures; (b) The next-
nearest-neighbor concurrence at various temperatures; (c) The third-neighbor concurrence
at various temperature. All the data are plotted as functions of the uniform magnetic field
h.
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Figure 3.14: (a) The maximum point of the concurrences at finite temperature as a function
of the temperature β−1; (b) The maximum point of the concurrences for q = 1 as a function
of the scale parameter a; (c) The maximum point of the concurrences for q = 2 as a function
of the scale parameter a.
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Chapter 4

Conclusion

To summarize, we have studied the entanglement of the XY spin chain in a random
magnetic field. We found that: (i) In general, the entanglement is decreased by randomness;
(ii) The entanglement is restored by a random magnetic field in some regions. In particular,
we find that the next-nearest-neighbor concurrence in the region h < 1/2 is restored by the
random magnetic field as well as in the region h > 1. The restoration of the concurrence
in the region h < 1/2 does not occur for the thermal fluctuation. A notable difference
between the random magnetic field and the temperature appears in this point. (iii) The
qualitative behavior of the concurrence depends on whether the variance of the distribution
function is finite or not. In particular, the maximum point of the concurrence shifts to the
right when the variance of the distribution function is finite, whereas it shifts to the left
when the variance of the distribution function is infinite.

We need further studies to find why the concurrence is restored by random magnetic
field and thermal fluctuation, and why the qualitative behavior of the concurrence depends
on whether the variance of the random magnetic field is finite or not.
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Appendix A

The Schmidt decomposition

In this appendix, we explain the Schmidt decomposition. Suppose that |ψ〉 is a pure state
of a composite system of A and B. Then there exits an orthonormal set {|φiA〉} of the
subsystem A and an orthonormal set {|ϕiB〉} of the subsystem B such that

|ψ〉 =
∑
i

λi|φiA〉|ϕiB〉, (A.0.1)

where {λi} are non-negative real numbers satisfying
∑

i λ
2
i = 1. This is the Schmidt

decomposition.
For simplicity, we show the Schmidt decomposition in the case where the systems A

and B are of the same dimension. The Schmidt decomposition holds in the general case
where the dimension of the subsystem A is different from that of the subsystem B.

Let {|jA〉} and {|kB〉} be orthonormal bases of the subsystem A and the subsystem B,
respectively. Then |ψ〉 can be expanded as

|ψ〉 =
∑

j,k

ajk|jA〉|kB〉, (A.0.2)

where {ajk} are generally complex numbers. Next, we use the singular value decomposition.
Let A be a square matrix. Then there exist unitary matrices U and V and a diagonal matrix
D with non-negative elements such that

A = UDV. (A.0.3)

This is the singular value decomposition. By using the singular value decomposition, we
can write the coefficient matrix ajk as

ajk =
∑

l

ujldllvlk. (A.0.4)

Thus |ψ〉 is rewritten in the form

|ψ〉 =
∑

j,k,l

ujldllvlk|jA〉|kB〉. (A.0.5)
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Next, we define |φlA〉 =
∑

j ujl|jA〉, |ϕlB〉 =
∑

k vlk|kB〉 and λl ≡ dll. Thus, we have

|Ψ〉 =
∑

l

λl|φlA〉|ϕlB〉. (A.0.6)

Finally, we confirm that |φlA〉 and |ϕlB〉 form orthonormal sets. Taking the inner product
of |φlA〉 and |φmA 〉, we have

〈φlA|φmA 〉 =
∑
j,i

u∗jluim〈jA|iA〉 =
∑
j

u∗jlujm = δlm, (A.0.7)

which proves the orthonomality.
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Appendix B

Exact solution of the XY model in a
uniform field

In this appendix, we review the exact solution [23–26] of the isotropic XY model in a
uniform magnetic field and the calculation of the one-point and two-point correlation func-
tions, which are needed for the calculation of entanglement.

B.1 Diagonalizing Hamiltonian

The Hamiltonian is given by

H = −J
N∑
j=1

(Sxj S
x
j+1 + Syj S

y
j+1)− h

N∑
j=1

Szj , (B.1.1)

where Sα = 1
2
σα (α = x, y, z) with {σα} being the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

N is the number of the spins, J (> 0) is the exchange coupling constant, and h is the
uniform magnetic field. Here we impose the periodic boundary conditions

SαN+j = Sαj (α = x, y, z). (B.1.2)

With the ladder operators
S±j = Sxj ± iSyj , (B.1.3)

the Hamiltonian (B.1.1) is expressed in the form

H = −J
2

N∑
j=1

(S+
j S

−
j+1 + S−j S

+
j+1)− h

N∑
j=1

Szj , (B.1.4)
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because

S+
j S

−
j+1 = (Sxj + iSyj )(S

x
j+1 − iSyj+1)

= Sxj S
x
j+1 + Syj S

y
j+1 + i(Syj S

x
j+1 − Sxj S

y
j+1), (B.1.5)

S−j S
+
j+1 = (Sxj − iSyj )(S

x
j+1 + iSyj+1)

= Sxj S
x
j+1 + Syj S

y
j+1 − i(Syj S

x
j+1 − Sxj S

y
j+1), (B.1.6)

and hence

Sxj S
x
j+1 + Syj S

y
j+1 =

S+
j S

−
j+1 + S−j S

+
j+1

2
. (B.1.7)

Next, we use the Jordan-Wigner Transformation [27], which maps the spin space into
the fermionic space. The Jordan-Wigner transformation is given in the form

S+
j =

j−1∏

l=1

exp(−iπa†lal)a†j

S−j =

j−1∏

l=1

exp(iπa†lal)aj

Szj = S+
j S

−
j −

1

2
= a†jaj −

1

2
,

(B.1.8)

where a†j and aj are the creation and annihilation operators of a fermion at site j. We can

confirm that a†j and aj satisfy the anti-commutation relations {ai, aj} = 0 and {a†i , aj} = δij
as follows. The inverse transformation of Eq. (B.1.8) is given by

a†j = (−2)j−1

j−1∏
i=1

Szi S
+
j , (B.1.9)

aj = (−2)j−1

j−1∏
i=1

Szi S
−
j . (B.1.10)

Using the relations (Sz)2 = 1/4 and {S+
i , S

z
i } = 0, we obtain

aia
†
j = (−2)i+j−2S−i

i−1∏

l=1

Szl

j−1∏

l=1

Szl S
+
j

= (−2)i+j−2 1

4i−1
S−i

j−1∏

l=i

Szl S
+
j

= (−2)i+j−2 1

4i−1
S−i S

+
j

j−1∏

l=i

Szl , (B.1.11)
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where we assume i < j. Similarly, we have for i < j

a†jai = (−2)i+j−2S+
j

j−1∏

l=1

Szl

i−1∏

l=1

Szl S
−
i

= (−2)i+j−2 1

4i−1
S+
j

j−1∏

l=i

Szl S
−
i

= −(−2)i+j−2 1

4i−1
S+
j S

−
i

j−1∏

l=i

Szl

= −(−2)i+j−2 1

4i−1
S−i S

+
j

j−1∏

l=i

Szl . (B.1.12)

We thus arrive at the relation {a†i , aj} = 0 for i < j. Taking the Hermite conjugate of

the both sides leads us to {a†i , aj} = 0 for i > j. We can similarly show the relation

{ai, aj} = {a†i , a†j} = 0.
We now transform the terms S+

j S
−
j+1 and S−j S

+
j+1 with Eq. (B.1.8). Because of the

boundary conditions (B.1.2), however, there is a difference between the cases j 6= N and
j = N . For j 6= N , we have

S+
j S

−
j+1 = a†jexp(iπa†jaj)aj+1 = a†jaj+1, (B.1.13)

S−j S
+
j+1 = ajexp(−iπa+

j aj)a
†
j+1 = a†j+1aj, (B.1.14)

while for j = N , we have from Eq. (B.1.2),

S+
NS

−
1 =

N−1∏
i=1

exp(−iπa†iai)a†a1

= (1− 2n1)(1− 2n2) · · · (1− 2nN−1)a
†
Na1

= (1− 2n1)(1− 2n2) · · · (1− 2nN−1)(1− 2nN)2a†Na1

= −(−1)NF a†Na1, (B.1.15)

and similarly,
S−NS

†
1 = (−1)NF aNa

†
1, (B.1.16)

where NF is the number of the fermions,

NF =
N∑
j=1

nj, (B.1.17)

with nj being the number operator, nj = a†jaj. In other words, the boundary condi-
tions (B.1.2) is reduced to the signs in Eqs. (B.1.15) and (B.1.16). Thus the Hamilto-
nian (B.1.4) is transformed to the fermion Hamiltonian

H = −J
2

N∑
j=1

(a†jaj+1 + a†j+1aj)− h

N∑
j=1

(
a†jaj −

1

2

)
, (B.1.18)
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with

aN+1 = −a1, a
†
N+1 = −a†1 for even NF ,

aN+1 = a1, a
†
N+1 = a†1 for odd NF .

(B.1.19)

Thanks to its translational invariance, we can diagonalize the Hamiltonian (B.1.18)
with the Fourier transform

aj =
1√
N

∑

k

eikjck,

a†j =
1√
N

∑

k

e−ikjc†k,
(B.1.20)

where we assume that N is even for simplicity. The creation and annihilation operators c†k
and ck satisfy the anti-commutation relations

{ck, ck′} = 0, {c†k, ck} = δkk′ . (B.1.21)

Owing to the boundary conditions (B.1.19), the wave number k can take the values

k = ± π

N
, ±3π

N
, · · · , ±N − 1

N
π for odd NF ,

k = 0, ±2π

N
, ±4π

N
, · · · ,±N − 2

N
π, π for even NF .

(B.1.22)

Noting the fact that
N∑
j=1

ei(k−k
′)j = Nδkk′ , (B.1.23)

we can easily confirm the relations (B.1.21).
The hopping term of the Hamiltonian (B.1.18) is now diagonalized in the form

N∑
j=1

(a†jaj+1 + a†j+1aj) =
1

N

N∑
j=1

∑

k,k′
{c†kck′eik

′
e−i(k−k

′)j + c†kck′e
−ike−i(k−k

′)j}

=
∑

k,k′
(c†kck′e

−ik′δk,k′ + c†k′cke
ikδk,k′)

=
∑

k

2cosk c†kck. (B.1.24)

Similarly, we have

N∑
j=1

a†jaj =
1

N

N∑
j=1

∑

k,k′
c†kck′e

−i(k−k′)j

=
∑

k,k′
c†kck′δk,k′

=
∑

k

c†kck. (B.1.25)
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Therefore, the Hamiltonian (B.1.18) is diagonalized as

H = −J
2

∑

k

2cosk c†kck − h
∑

k

c†ck +
Nh

2

= −
∑

k

(Jcosk + h)c†kck +
Nh

2
. (B.1.26)

B.2 One-point and two-point correlation functions

Now that the Hamiltonian has been diagonalized, we are in the position of calculating the
one-point and two-point correlation functions. In the case of the isotropic XY spin chain,
we need only the functions 〈σxi σxj 〉 = 〈σyi σyj 〉, 〈σzi σzj 〉 and 〈σzi 〉 in order to construct the
density matrix.

Equations (B.1.8) and (B.1.3) give the expectation value 〈σxj σxj+1〉T in the form

〈σxj σxj+1〉T =

〈
(a†i + ai) exp

(
−iπ

j−1∑

l=i

)
(a†j + aj)

〉

T

, (B.2.1)

where 〈· · · 〉T denotes the thermal average

〈· · · 〉T =
Tr(· · · e−βH)

Tre−βH
. (B.2.2)

Noting that exp(−iπa†iai) = (a†i + ai)(a
†
i − ai) = AiBi and Ai

2 = 1, we have

〈σxi σxj 〉T = 〈AiAiBiAi+1Bi+1Ai+2 · · ·Aj−1Bj−1Aj〉T (B.2.3)

= 〈BiAi+1Bi+1Ai+2 · · ·Aj−1Bj−1Aj〉T (B.2.4)

where we define Aj and Bj as

Aj ≡ a†j + aj, Bj ≡ a†j − aj. (B.2.5)

Applying the above procedure, we also have

〈σyi σyj 〉T = 〈Bi+1AiBi+2Ai+1 · · ·BjAj−1〉T , (B.2.6)

〈σzi σzj 〉T = 〈(2a†iai − 1)(2a†jaj − 1)〉T
= 〈BiAiBjAj〉T , (B.2.7)

and

〈σzi 〉T = 〈(2a†iai − 1)〉T
= 〈BiAi〉T . (B.2.8)
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Next, we calculate the correlations (B.2.4), (B.2.6), (B.2.7) and (B.2.8) explicitly. Using
Wick’s theorem, we can reduce N -point functions into the product of two-point functions
〈AlAm〉T , 〈BlBm〉T and 〈BlAm〉T . We first compute the functions 〈c†kck′〉T , 〈ckck′〉T and

〈c†kc†k′〉T and obtain 〈AlAm〉T , 〈BlBm〉T and 〈BlAm〉T .
Since the Hamiltonian has been diagonalized as in Eq. (B.1.26), we immediately have

〈c†kc†k′〉T = 〈ckck′〉T = 0 for all k, k′,

〈c†kck′〉T =
1

1 + exp(βε(k))
δkk′ ,

(B.2.9)

where ε(k) = −Jcos k − h and β = (kBT )−1. Noting Eq. (B.1.20), we have

〈AlAm〉T = 〈(a†l + al)(a
†
m + am)〉T

=
1

N
〈
∑

k,k′
(e−iklc†k + eiklck)(e

−ik′mc†k′ + eik
′mck′)〉T

=
1

N

∑

k,k′

(
e−ikl+ik

′m〈c†kck′〉T + eikl−ik
′m〈ckc†k′〉T

)

=
1

N

∑

k

[
e−ik(l−m)

1 + exp(βε(k))
+ eik(l−m)

(
1− 1

1 + exp(βε(k))

)]

=
1

N

∑

k

[
2isink(l −m)

1 + exp(βε(k))
+Nδlm

]

= δlm, (B.2.10)

where we use the fact that ε(k) is an even function. Similarly, we have

〈BlBm〉T = δlm, (B.2.11)
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〈BlAm〉T = 〈(a†l − al)(a
†
m + am)〉T

=
1

N
〈
∑

k,k′
(e−iklc†k − eiklck)(e

−ik′mc†k′ + eik
′mck′)〉T

=
1

N

∑

k,k′

(
e−ikl+ik

′m〈c†kck′〉T − eikl−ik
′m〈ckc†k′〉T

)

=
1

N

∑

k

[
e−ik(l−m)

1 + exp(βε(k))
− eik(l−m)

(
1− 1

1 + exp(βε(k))

)]

=
1

N

∑

k

{
2cosk(l −m)

1 + exp(βε(k))
− (cosk(l −m) + isink(l −m))

}

= − 1

N

∑

k

cosk(l −m)
1− eβε(k)

1 + eβε(k)

= − 1

N

∑

k

cosk(l −m)tanhβ
ε(k)

2

= − 1

2π

2π

N

∑

k

cosk(l −m)tanhβ
ε(k)

2
. (B.2.12)

In the thermodynamic limit N →∞, the summation over k is replaced by the integral as
in

Gl,m ≡ 〈BlAm〉T = − 1

2π

∫ π

−π
dφ cosφ(l −m) tanh

βε(φ)

2

= − 1

π

∫ π

0

dφ cosφ(l −m) tanh
βε(φ)

2
. (B.2.13)

The function Gl,m is divided into two parts:

Gl,m = − 1

π

∫ π

0

dφ cos(l −m)φ+
2

π

∫ π

0

dφ

1 + eβε(φ)
. (B.2.14)

For l = m, we have

Gl,l = − 1

π

∫ π

0

dφ+
2

π

∫ π

0

dφ

1 + exp [β(Jcosφ+ h)]

= −1 +
2

π

∫ π

0

dφ

1 + exp [β(Jcosφ+ h)]
, (B.2.15)

while for l 6= m, we have

Gl,m = − 1

π

∫ π

0

dφ cos(l −m)φ+
2

π

∫ π

0

dφ
cos(l −m)φ

1 + exp [−β(J cosφ+ h)]

=
2

π

∫ π

0

dφ
cos(l −m)φ

1 + exp [−β(J cosφ+ h)]
. (B.2.16)
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Note that the boundary conditions (B.1.22) is irrelevant in the thermodynamic limit.
Now we are ready to calculate the functions 〈σxi σxj 〉, 〈σyi σyj 〉, 〈σzi σzj 〉 and 〈σzi 〉. Using

Eqs. (B.2.10), (B.2.11), (B.2.16) and Wick’s theorem, we can calculate them as follows:

〈σxi σxj 〉 =
∑
τ∈S

sgn τ Gi,τ(i+1)Gi+1,τ(i+2) · · ·Gj−1,τ(j)

=

∣∣∣∣∣∣∣∣∣

G−1 G−2 · · · G−r
G0 G−1 · · · G−r+1
...

...
. . .

...
Gr−2 Gr−3 · · · G−1

∣∣∣∣∣∣∣∣∣
, (B.2.17)

〈σyi σyj 〉 =
∑
τ∈S

sgn τ Gi+1,τ(i)Gi+2,τ(i+1) · · ·Gj,τ(j−1)

=

∣∣∣∣∣∣∣∣∣

G1 G2 · · · Gr

G0 G1 · · · Gr−3
...

...
. . .

...
G−r+2 G−r+3 · · · G−1

∣∣∣∣∣∣∣∣∣
, (B.2.18)

〈σzi σzj 〉 = 〈BiAiBjAj〉
= 〈BiAi〉〈BjAj〉 − 〈BiAj〉〈BjAi〉
= G0G0 −GrG−r

=

∣∣∣∣
G0 Gr

G−r G0

∣∣∣∣ , (B.2.19)

〈σzi 〉 = 〈2a†iai − 1〉
= 〈BiAi〉
= G0, (B.2.20)

where
∑

τ∈S denotes the summation over all permutations τ and we use the fact that the
functions Gl,m only depend on the distance r = l −m between the spins. We thus write
Gl,m as Gl−m.

Finally, we investigate the property at zero temperature T = 0, or β = ∞. For l = m,
the second term of the right-hand side of Eq. (B.2.15) behaves differently, depending on J
and h. For h > J , we have J cosφ+ h > 0 for all φ and thus obtain

lim
β→∞

∫ π

0

dφ

1 + exp(−β [Jcosφ+ h)]
=

∫ π

0

dφ = π. (B.2.21)
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For h < J , we have




Jcosφ+ h < 0 for arccos(−h

J
) < φ,

Jcosφ+ h > 0 for 0 < φ < arccos(−h
J

),

(B.2.22)

and thus we obtain

lim
β→∞

∫ π

0

dφ

1 + exp(−β [Jcosφ+ h)]
=

∫ arccos(− h
J

)

0

dφ = arccos(−h
J

). (B.2.23)

Therefore, Gl,l behaves as

Gl,l =

{
1 for h > J,
−1 + 2

π
arccos(−h

J
) for h < J.

(B.2.24)

For l 6= m, the right-hand side of Eq. (B.2.16) also behaves differently, depending on J
and h. For h > J , we again have J cosφ+ h > 0 for all φ and thus obtain

lim
β→∞

2

π

∫ π

0

dφ
cos(l −m)φ

1 + exp [−β(J cosφ+ h)]
=

∫ π

0

cos(l −m)φdφ = 0 (B.2.25)

For h < J , we have Eq. (B.2.22) again and obtain

lim
β→∞

2

π

∫ π

0

dφ
cos(l −m)φ

1 + exp [−β(J cosφ+ h)]
=

∫ arccos(− h
J

)

0

cos(l −m)φdφ

=
1

l −m
sin

[
(l −m) arccos

(
−h
J

)]
.

Therefore, the function Gl,m takes the values

Gl,m =

{
0 for h > J,
2
π

1
l−m sin[(l −m) arccos(−h

J
)] for h < J.

(B.2.26)

59



Appendix C

Numerical solution of the XY model
in a random magnetic field at
temperature T = 0

In this appendix, we consider the XY model in a random magnetic field. We find formulas
to calculate the one-point and two-point correlation functions numerically.

C.1 Diagonalizing the Hamiltonian

The Hamiltonian that we consider is given in the form

H = −J
N∑
j=1

(Sxj S
x
j+1 + Syj S

y
j+1)−

N∑
j=1

(h+ hj)S
z
j , (C.1.1)

where h is a uniform field and each hj is a random magnetic field obeying the probability
distribution (3.1.3). As in the case of the previous appendix, we use the Jordan-Wigner
transformation (B.1.8) and transform the Hamiltonian (C.1.1) into

H = −J
2

N∑
j=1

(a†jaj+1 + a†j+1aj)−
N∑
j=1

(h+ hj)

(
a†jaj −

1

2

)
(C.1.2)

with
aN+1 = −a1, a†N+1 = −a†1 for even NF ,

aN+1 = a1, a†N+1 = a†1 for odd NF ,
(C.1.3)

where NF is the number of the fermions. The Hamiltonian without the constant term can
be written in the form

H ′ =
∑

j,k

a†jAj,kak (C.1.4)

= a†Aa, (C.1.5)
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with

A =




−h− h1 −J
2

0 · · · 0 ±J
2

−J
2

−h− h2 −J
2

0
... 0

0 −J
2

. . . . . . 0
...

... 0
. . . . . . −J

2
0

0
...

. . . −J
2
−h− hN−1 −J

2

±J
2

0 · · · 0 −J
2

−h− hN




, (C.1.6)

where the signs of the (1, N) and (N, 1) matrix elements depend on the boundary condi-
tions (C.1.3); the sign is negative for even NF and is positive for odd NF . The vectors a
and a† denote

a =




a1

a2
...

aN−1

aN



, a† =

(
a†1 a†2 · · · a†N−1 a†N

)
. (C.1.7)

As the matrix (C.1.6) is Hermitian, there exists a unitary matrix V such that V †AV = Λ
is a diagonal matrix. We thus have

H ′ = a†Aa = c†Λc (C.1.8)

with

c†i =
∑
j

a†jVji,

ci =
∑
j

V †
ijaj.

(C.1.9)

We here also write the inverse relations of Eq. (C.1.9):

a†j =
∑
m

c†mV
†
mj,

aj =
∑
m

Vjmcm.
(C.1.10)

It is easy to confirm that c†i and ci satisfy the anti-commutation relations {c†i , cj} = δij and

{ci, cj} = 0. We here show the former relation {c†i , cj} = δij for example. From Eq. (C.1.9),
we have

{c†i , cj} =
∑

l,m

a†lVliV
†
jmam +

∑

l,m

V †
jmama

†
lVli

=
∑

l,m

(δlm − ama
†
l )VliV

†
jm +

∑

l,m

V †
jmama

†
lVli = δij. (C.1.11)

The latter case {ci, cj} = 0 can be shown in a similar way.
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C.2 One-point and two-point correlation functions at

T = 0

Once we diagonalize the matrix (C.1.6), we can construct the many-body ground state of
the Hamiltonian (C.1.2). Let ε1, ε2, · · · εNG

, εNG
, · · · εN−1, εN denote the eigenvalues of the

matrix (C.1.6) in the ascending order. If εNG
< 0 and εNG+1

> 0, the ground state of the
Hamiltonian (C.1.2) is given by

|Gs〉 = c†NG
c†NG−1

· · · c†2c†1|0〉. (C.2.1)

We are now in the position of calculating the one-point and two-point correlation func-
tions. We apply the same procedure as in Appendix B to have 〈Gs|AmAl|Gs〉, 〈Gs|BmBl|Gs〉
and 〈Gs|BmAl|Gs〉.

From Eq. (C.1.10) and (C.2.1), we calculate them as follows;

〈Gs|AmAl|Gs〉 = 〈Gs|(a†m + am)(a†l + al)|Gs〉
= 〈Gs|

∑
i

(c†iV
†
im + Vmici)

∑
j

(c†jV
†
jl + Vljcj)|Gs〉

= 〈Gs|(
∑
i,j

c†icjV
†
imVlj +

∑
i,j

cic
†
jVmiV

†
jl|Gs〉

=

NG∑
i

V †
imVli +

∑
i,j

VmiV
†
jl〈Gs|(δij − c†jci)|Gs〉

= δml, (C.2.2)

〈Gs|BmBl|Gs〉 = 〈Gs|(a†m − am)(a†l − al)|Gs〉
= 〈Gs|

∑
i

(c†iV
†
im − Vmici)

∑
j

(c†jV
†
jl − Vljcj)|Gs〉

= −δml, (C.2.3)

and

〈Gs|BmAl|Gs〉 = 〈Gs|(a†m − am)(a†l + al)|Gs〉
= 〈Gs|

∑
i

(c†iV
†
im − Vmici)

∑
j

(c†jV
†
jl + Vljcj)|Gs〉

= 2

NG∑
i

VmiVli − δml. (C.2.4)

As in Eq. (B.2.4), we have

〈Gs|σxi σxj |Gs〉 = 〈Gs|σxi σxi+1σ
x
i+1 · · ·σxj−1σ

x
j−1σ

x
j |Gs〉

= 〈Gs|BiAi+1Bi+1Ai+2 · · ·Aj−1Bj−1Aj|Gs〉. (C.2.5)
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The other correlation functions are also written as in Eqs. (B.2.6), (B.2.7) and (B.2.8),
respectively. With the help of Wick’s theorem and Eqs. (C.2.2), (C.2.3) and (C.2.4), we
arrive at one-point and two-point correlation functions in the form

〈σxi σxj 〉 =

∣∣∣∣∣∣∣∣∣

Gi,i+1 Gi,i+2 · · · Gi,j

Gi+1,i+1 Gi+1,i+2 · · · Gi+1,j
...

...
. . .

...
Gj−1,i+1 Gj−1,i+2 · · · Gj−1,j

∣∣∣∣∣∣∣∣∣
, (C.2.6)

〈σyi σyj 〉 =

∣∣∣∣∣∣∣∣∣

Gi+1,i Gi+2,i · · · Gj,i

Gi+1,i+1 Gi+2,i+1 · · · Gj,i+1
...

...
. . .

...
Gi+1,j−1 Gi+2,j−1 · · · Gj,j−1

∣∣∣∣∣∣∣∣∣
, (C.2.7)

〈σzi σzj 〉 =

∣∣∣∣
Gi,i Gi,j

Gj,i Gj,j

∣∣∣∣ , (C.2.8)

〈σzi 〉 = Gi,i, (C.2.9)

where

Gi,j = 2

NG∑

l=1

VilVjl − δij. (C.2.10)
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