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（論文題目）

　　メゾスコピック系における相互作用のある共鳴伝導

（内容の要旨）

　メゾスコピックな素子のコンダクタンスには、共鳴散乱現象が大きく関わっている。本研究の目的

は、共鳴散乱状態の固有値と固有関数を数値計算することにより、多体問題を考慮した量子効果のあ

るコンダクタンスを算出することである。

共鳴状態は、素子に導線を接続した開いた系に特徴的に現れる。このとき系Ωの内部にある伝導電

子の固有値の期待値の虚部は、恒等式

Ω∂Ω
ℜ−=ℑ ψψψψ p

m
H ˆ

2

h

を満たす。この恒等式は、固有値の期待値の虚部が閉曲面 Ω∂ から流出する流束に等しいことを示して

いる。そのため、粒子の出入りのある系は、極限Ω→∞で一般的に複素固有値 ir iEEE −≡ を持つ。

同時に、共鳴散乱の固有関数は、ポテンシャルより十分遠方で複素波数 κikk r −= を持つ平面波で

ある。つまりこの固有関数は、指数関数的に発散する外向波
xikxxik reeex κϕ =∝)( である。そのため、

有限系でしか扱うことのできない数値計算では、共鳴状態の固有値を算出することは困難である。ま

た、素子内にある局在電子との相互作用を考慮した多体問題を扱うためには、転送行列法等を用いる

ことができないために、更なる困難が伴う。

　そこで、本研究では、この開いた系と多体問題を同時に解決する新しい方法として、グリーン関数

)(EG の最小特異値による擬スペクトルから共鳴状態の固有値分布を算出する方法を提案する：

( ) 1)()( −−= EHEEG eff .

このとき、導線の効果を表す自己エネルギー )(EΣ が複素数であるために、有効ハミルトニアン

dsceff −+Σ+= HEHEH )()(

が非エルミート行列になるので、この新しい計算方法が必要となる。なお、上式の ds−H は、局在スピ

ンと伝導電子のあいだの s-d 交換相互作用の項である。

　相互作用の無い場合の一電子共鳴状態の複素固有値 ir iEEE −= は、この手法による数値解が厳密

解と一致することが確かめられたことを報告する。さらに s-d 交換相互作用を考慮することで、局在

スピンが共鳴状態に与える効果を議論する。
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The resonant scattering greatly affects the conductance of mesoscopic systems [1]. The resonant states

characteristically appear in open quantum systems such as devices connected to leads. Since the resonant states

have only outgoing waves which diverge exponentially away from the potential, it is difficult to calculate the

resonant states by numerical computations for finite systems [2]. It is also difficult to treat many-body problems

with electron interactions in the device, because we cannot use the transfer-matrix method.

In the present thesis we propose a method of solving both the problems of open systems and many-body

interactions. The method is to compute the distribution of resonant eigrnvalues from the “pseudospectrum,” or the

minimum singular value of the retarded Green’s function 

€ 

Gc
R(E) [3];

                                

€ 

Gc
R(E) = E −Heff (E)( )−1 .

We need the pseudospectrum because the effective Hamiltonian 

€ 

Heff (E) includes a non-Hermitain self-energy

€ 

Σ(E) expressing the effect of the leads:

                                

€ 

Heff (E) = Hc + Hsd + Σ(E) ,
where 

€ 

Hsd  is the s-d exchange interaction between localized spins and conduction electrons.

We first demonstrate that the complex eigenvalues 

€ 

E = Er − iE i  of resonant states obtained by the

present method agree with the exact solutions. We further discuss the effects of the s-d exchange interaction on the

conductance.
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Abstract

The resonant scattering greatly affects the conductance of meso-
scopic systems. The resonant states characteristically appear in open
quantum systems such as devices connected to leads. Since the res-
onant states have only outgoing waves which diverge exponentially
away from the potential, it is difficult to obtain the resonant states by
numerical computations for finite systems. It is also difficult to treat
many-body problems with electron interactions in the device, because
we cannot use the transfer-matrix method.

In the present thesis we propose a method of solving both the
problems of open systems and many-body interactions. The method
is to compute the distribution of resonant eigenvalues from “the pseu-
dospectrum,” or the minimum singular value of the retarded Green
function GR(E);

||GR(E)|| = ||(E −Heff(E))−1||.

We need the pseudospectrum because the effective HamiltonianHeff(E)
includes a non-Hermitian self-energy Σ(E) expressing the effect of the
leads:

Heff(E) = Hc +Hsd + Σ(E),

where Hsd is the s-d exchange interaction between localized spins and
conduction electrons.

We first demonstrate that the complex eigenvalues E = Er− iEi of
resonant states obtained by the present method agree with the exact
solution. We further discuss the effects of the s-d exchange interaction
on the conduction electrons.
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1 Introduction

The conductance of mesoscopic systems has been studied in recent years
both theoretically and experimentally [1]. The resonant transport is one
of the most interesting phenomena in mesoscopic systems. The resonant
state affects the conductance of a mesoscopic device in its ballistic transport
regime. This phenomenon is an intrinsic feature of open systems. The quan-
tum mechanics of open systems, however, has not been developed so much
as applicable to the computation of the conductance of mesoscopic systems.

Effects of many-body interactions are also of great interest. For example,
the Kondo interaction between conduction electrons and an impurity spin
affects the conductance significantly. It is, however, quite difficult to analyze
such a many-body problem theoretically and numerically.

In the present thesis, we propose a new method of treating open quan-
tum systems with interactions. The method is free from approximations
and applicable to general many-body problems. In Sec. 2, we review the
conductance of mesoscopic systems. In Sec. 3, we explain characteristics of
both eigenvalues and eigenfunctions of the resonant scattering phenomenon.
We show that the resonant state generally has a complex eigenvalue. Be-
cause of it, the self-energy, which are introduce in Sec. 4 by reducing the
infinite-dimensional lead Hamiltonians, is non-Hermitian. We calculate the
self-energy for one-dimension tight binding model. In Sec. 5, we show how
to analyze the Hamiltonian with the non-Hermitian self-energy numerically.
The new method utilizes “the pseudospectrum.” In Sec. 6, we show the re-
sults of resonant states for various potentials. These results agree with the
exact solutions. In Sec. 7, we show the results of the conductance of the po-
tentials by using the retarded Green’s function and the self-energy of leads.
We note that the peaks of the nonlinear conductance are caused by the reso-
nant states of a conduction electron. In Sec. 8, we try to discuss many-body
problems by using the present new method. In particular, we focus on the
s-d exchange interaction. In Sec. 9, concluding remarks are given.
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2 The conductance of mesoscopic systems

In the present section, we review the difference in the conductance of macro-
scopic systems and mesoscopic systems. The mesoscopic system is a system
of size much smaller than the mean free path lm of the electron. Its typi-
cal size is several nanometers, containing thousands of atoms or hundreds of
molecules. Many phenomena occurring in the mesoscopic system have been
applied to the nanotechnology, which has rapidly developed in recent years.

The mesoscopic system behaves very differently from the macroscopic
system. One of the most interesting behaviors is the fluctuating dependence
of the conductance on the energy of the conduction electrons (Fig. 1). The
conductance G of the macroscopic system follows Ohm’s law:

G = σW/L, (1)

where σ is the conductivity, L is the length of the system, and W is the width
of the system. The conductance of the mesoscopic system, on the other hand,
is given by the Landauer formula:

G =
2e2

h
MT (E), (2)

where h is the Planck constant, e is the electron charge, M is the number of
transverse modes, and T (E) is the energy-dependent transmission function.
We see in the above formula that the conductance of the mesoscopic system
is proportional to the transmission function. In other words, the conductance
is determined purely from the quantum mechanics of conduction electrons.

We present an experimental result of measuring the conductance of a
mesoscopic system, the two-dimensional electron gas (2EDG) in GaAs-AlGaAs
heterostructures [2]. As the width W of the constriction is reduced, the con-
ductance decreases in discrete steps of height 2e2/h (Fig. 2). This is consis-
tent with what we showed in Eq. (2); M is an integer denoting the number of
transverse modes at the Fermi energy. Although the width of the conductor
changes continuously, the number of the modes changes discretely. Such a
phenomenon happens only in mesoscopic systems, where the system size is
less than the mean free path lm.
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Figure 1: (a) A conductor of length L and width W . (b) The conductance
G is inversely proportional to the length of the conductor for LÀ lm. In the
region L¿ lm, however, the conductance reaches a limit, namely the contact
conductance Gcontact, and is independent of L. (c) In the latter region, the
conductance shows an fluctuating dependence on the electron energy.
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Figure 2: A quantized conductance of the ballistic region (from Ref. [2]). The
transverse axis denotes the gate voltage and the perpendicular axis denotes
the measured conductance.

3 The phenomenon of resonant scattering

In the present section, we explain the phenomenon of resonant scattering.
Let us consider conduction electrons travelling in a mesoscopic device with
two leads (Fig. 3). We put a conduction electron into the device through
one lead. The incident electron is reflected again and again by the confining
potential of the mesoscopic device, and thus stays in the conductor for a
while. After some time, the electron may go out through the other lead. This
is the classical picture of resonant transport. This transport differs greatly
from the normal transport, because the transport has a characteristic time
(namely the lifetime) of the electron’s stay in the device.

The device itself is an open system, because the electrons get in and out of
it. We show below that the open system generally has complex eigenvalues.

3.1 The origin of complex eigenvalues

In the present section, we show that the resonant state generally has a com-
plex eigenvalue [3]. First, consider the Schrödinger equation

Hψ(~x) = Eψ(~x), (3)
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Conductor

Lead Lead

Figure 3: A piece of conductor with two leads attached. In a classical picture,
the conduction electron is transported along the arrow.

where the Hamiltonian is given by

H = K + V , (4)

with

K ≡ ~p2

2m
= − h̄2

2m
~∇2, (5)

V ≡ V (~x). (6)

The potential energy here is a Hermitian operator: V (~x)∗ = V (~x).
We show below that the kinetic energy, on the other hand, is not neces-

sarily a Hermitian operator. For the purpose, we define the expectation value
of the Hamiltonian by the integration limited to a volume Ω in the form

〈ψ|H|ψ〉Ω ≡
∫∫∫

Ω
ψ(~x)∗Hψ(~x)dV. (7)

The reason for introducing the integration volume Ω will be evident below.
The expectation value of the kinetic term is transformed owing to Gauss’s
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theorem as

〈ψ|K|ψ〉Ω = − h̄2

2m

∫∫∫

Ω
ψ(~x)∗~∇2ψ(x)dV

=
h̄2

2m

∫∫∫

Ω

(
~∇ψ(~x)∗

)
·
(
~∇ψ(~x)

)
dV

− h̄2

2m

∫∫

∂Ω
ψ(~x)∗~∇ψ(~x) · d~S. (8)

The complex conjugate of Eq. (8) gives

(〈ψ|K|ψ〉Ω)∗ =
h̄2

2m

∫∫∫

Ω

(
~∇ψ(~x)

)
·
(
~∇ψ(~x)∗

)
dV

− h̄2

2m

∫∫

∂Ω
ψ(~x)~∇ψ(~x)∗ · d~S. (9)

Using Eqs. (8) and (9), we have the imaginary part of the expectation value
of the Hamiltonian as follows:

2i=〈ψ|H|ψ〉Ω = 2i=〈ψ|K|ψ〉Ω
= − h̄2

2m

∫∫

∂Ω

(
ψ(~x)∗~∇ψ(~x)− ψ(~x)~∇ψ(~x)∗

)
· d~S

= − ih̄

2m

∫∫

∂Ω

(
ψ(~x)∗

(
h̄

i
~∇
)
ψ(~x) + ψ(~x)

(
− h̄
i
~∇
)
ψ(~x)∗

)
· d~S

= − ih̄

2m

∫∫

∂Ω
(ψ(~x)∗~pψ(~x) + ψ(~x) (~pψ(~x))∗) · d~S

= −ih̄
m
<
∫∫

∂Ω
ψ(~x)∗~pψ(~x) · d~S. (10)

Thus we arrive at the formula

=〈ψ|H|ψ〉Ω = − h̄

2m
<〈ψ|pn|ψ〉∂Ω, (11)

where pn is the normal component of the momentum on the surface ∂Ω.
The left-hand side of Eq. (11) denotes the imaginary part of the expectation
value of the Hamiltonian limited to a volume Ω, while the right-hand side of
Eq. (11) denotes the expectation of a momentum flux going out of the volume
Ω. In other words, the imaginary part of the expectation of the Hamiltonian
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indicates a momentum flux out of the volume. By taking the limit Ω →∞,
we define a complex eigenvalue as

E = Er − iEi ≡ lim
Ω→∞

〈ψ|H|ψ〉Ω (12)

with Ei > 0. Thus we conclude that a state of an open system generally has
a complex eigenvalue. We refer to the complex states as the resonant states.

€ 

€ 

Ω

∂Ω
Figure 4: An arbitrary volume Ω and its closed surface ∂Ω.

3.2 Decay of the particle density and the imaginary
part of an eigenvalue

In the present subsection, we derive a relation between the imaginary part
Ei of a resonant eigenvalue and the decay rate of the resonant state. We now
consider the time-dependent Schrödinger equation

ih̄
∂

∂t
Ψ(~x, t) = HΨ(~x, t). (13)

We assume a solution of the form of the variable separation:

Ψ(~x, t) = ψ(~x)φ(t). (14)

This gives us a set of equations:

ih̄
d

dt
φ(t) = Eφ(t), (15)

Hψ(~x) = Eψ(~x). (16)
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Equation (15) yields a solution of the form

φ(t) = e
E
ih̄

t = e
Er
ih̄

te−
Ei
h̄

t. (17)

Using Eqs. (14) and (17), we obtain the electron density of the form

∫∫∫

Ω
|Ψ(~x, t)|2dV = e−

2Ei
h̄

t〈ψ|ψ〉Ω. (18)

Equation (18) indicates that the electron density in the volume Ω decays
exponentially. Thus the quantity h̄/2Ei yields the lifetime τ of the resonant
state as follows:

τ ≡ h̄

2Ei

. (19)

The lifetime is infinite if the eigenvalue is real, i.e. if Ei = 0.
We see that the imaginary part of the eigenvalue of the resonant state

relates the decay rate of the density in a volume to the momentum flux out
of the volume. The relation between the two quantities is a very plausible
consequence.

Ψ 2

τ t

Figure 5: Decay of the particle density in the volume Ω, where τ is the
lifetime.
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3.3 The diverging eigenfunction

The dispersion relation is given by E = h̄2k2/2m far away from the scattering
potential. Hence the resonant state must have a complex wave number

k = kr − iκ, (20)

where Er, Ei, kr, and κ are related to each other as follows:





Er =
h̄2 (k2

r − κ2)

2m

Ei =
h̄2krκ

m
.

(21)

Here the wave function is, away from the scattering potential, a plane wave
with the complex wave number,

ψ(~x) ∝ eikr|~x|+κ|~x|, (22)

which is diverging as |~x| → ∞. Equation (22) indicates that a resonant state
has an eigenfunction diverging exponentially away from the potential.

3.4 Problems of calculating the resonant states

We summarize the characteristics of the resonant state in open systems as
follows:

• The eigenvalue of the resonant state generally has a complex value;

• The eigenfunction of the resonant state diverges exponentially away
from the potential.

Because of these features, it has been difficult to compute the eigenvalue of
the resonant state.
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4 Non-Hermitian Hamiltonian with the self-

energy

In the previous section, we demonstrated that it is difficult to analyze the
eigenvalue of the resonant state. We propose a method of solving the problem
in the present section.

4.1 What is the self-energy?

The self-energy describes the effect of the leads attached the conductor. This
is an important conceptual step; it allows us to replace an infinite open
system with a finite system (Fig. 6), thereby to compute the resonant state
numerically.

Lead

Conductor
Self-energy term

Figure 6: We can reduce a conductor with leads to a conductor with self-
energy terms.
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4.2 Calculation of non-Hermitian self-energy

In the present section, we show how to calculate the self-energy Σ(E). Let
us consider the one-dimensional tight-binding model on an infinite lattice as
shown in Fig. 7.

−n0 n0

€ 

0

0

€ 

x

Tlead1

Tlead1 € 

Tlead2

Tlead2

Lead 1

€ 

Lead 2
€ 

Conductor

+ € 

+

a

Figure 7: A lattice for the whole system.

The Hamiltonian of the whole system is given by

H = −t
∞∑

i=−∞

(
c†i+1ci + c†ici+1 − 2c†ici

)
+

n0∑

i=−n0

Vic
†
ici

= Hc +Hlead1 +Hlead2 + Tlead1 + T †lead + Tlead2 + T †lead2, (23)

where

Hc = −t
n0−1∑

i=−n0

(
c†i+1ci + c†ici+1

)
+

n0−1∑

i=−n0

(Vi + 2t) c†ici, (24)
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Hlead1 = −t
−n0−2∑

i=−∞

(
c†i+1ci + c†ici+1

)
+
−n0−2∑

i=−∞
2tc†ici, (25)

Hlead2 = −t
∞∑

i=n0+1

(
c†i+1ci + c†ici+1

)
+

∞∑

i=n0+1

2tc†ici. (26)

Tlead1 = −tc†−n0
c−n0−1, (27)

T †lead1 = −tc†−n0−1c−n0 , (28)

Tlead2 = −tc†n0
cn0+1, (29)

T †lead2 = −tc†n0+1cn0 . (30)

The term Hc is the Hamiltonian of the conductor, Hlead1 is the Hamiltonian
of the lead 1, Hlead2 is the Hamiltonian of the lead 2, Tlead1 is the hopping
energy from the lead 1 to the conductor, T †lead1 is the hopping energy from
the conductor to the lead 1, Tlead2 is the hopping energy from the lead 2 to
the conductor, and T †lead2 is the hopping energy from the conductor to the
lead 2, whereas t is the hopping energy and Vi is the potential energy on site
i. A matrix representation of Eq. (23) is given by

H =




. . . . . . . . . . . .

. . . 2t −t 0

. . . −t 2t −t 0

. . . 0 −t V−n0 + 2t −t
0 −t . . . −t 0

−t Vn0 + 2t −t 0
. . .

0 −t 2t −t . . .

0 −t 2t
. . .

. . . . . . . . . . . .




≡


Hlead1 Tlead1 0

T †lead1 Hc Tlead2

0 T †lead2 Hlead2


 . (31)

Note that the above Hamiltonian has infinite dimensions. Here we consider
the retarded Green’s function defined by

GR =
1

(E + iη) I −H (32)

15



=




(E + iη) I −Hlead1 −Tlead1 0

−T †lead1 (E + iη) I −Hc −Tlead2

0 −T †lead2 (E + iη) I −Hlead2




−1

(33)

≡


Glead1 Glead1,c 0
Gc,lead1 Gc Gc,lead2

0 Glead2,c Glead2


 (34)

Hence we have



(E + iη) I −Hlead1 −Tlead1 0

−T †lead1 (E + iη) I −Hc −Tlead2

0 −T †lead2 (E + iη) I −Hlead2






Glead1 Glead1,c 0
Gc,lead1 Gc Gc,lead2

0 Glead2,c Glead2


 = I. (35)

We obtain from Eq. (35) simultaneous equations as follows:




[(E + iη) I −Hlead1]Glead1,c − Tlead1Gc = 0,

−T †lead1,cGlead1,c + [(E + iη) I −Hc]Gc − Tlead2Glead2,c = I,

−T †lead2Gc + [(E + iη) I −Hlead2]Glead2,c = 0,

(36)

which is followed by
{
Glead1,c = [(E + iη) I −Hlead1]

−1Tlead1Gc,

Glead2,c = [(E + iη) I −Hlead2]
−1T †lead2Gc.

(37)

Substituting Eq. (37) for the second line of Eq. (36), we can write the retarded
Green’s function of the conductor in the form

(
[(E + iη) I −Hc]− T †lead1[(E + iη) I −Hlead1]

−1Tlead1

−Tlead2[(E + iη) I −Hlead2]
−1T †lead2

)
Gc = I, (38)

or

Gc(E) =
1

(E + iη) I −Heff(E)
, (39)

where the effective Hamiltonian Heff(E) is given by the self-energy of the
lead 1, Σlead1(E), and the self energy of the lead 2, Σlead2(E), as follows:





Heff(E) ≡ Hc + Σlead1(E) + Σlead2(E),

Σlead1(E) = T †lead1 [(E + iη) I −Hlead1]
−1 Tlead1,

Σlead2(E) = Tlead2 [(E + iη) I −Hlead2]
−1 T †lead2.

(40)
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Here Tlead1, T
†
lead1, Tlead2, and T †lead2 are all semi-infinite matrices.

Let us write down the self-energy of the lead 1, Σlead1(E):

Σlead1(E) =



· · · 0 −t

0 0

· · · ...



(
Glead1

)



... · · ·
0 0
−t 0 · · ·




= t2




Glead1(−n0,−n0) 0 · · · 0

0 0
...

...
. . .

...
0 · · · · · · 0



, (41)

where Glead1(−n0,−n0) is the element on the bottom-right corner of the ma-
trix

Glead1 ≡ [(E + iη)−Hlead1]
−1. (42)

The self-energy Σlead1(E) here is a (2n0 + 1)× (2n0 + 1) matrix. Let us now
calculate Glead1, which is the inverse matrix of

M(0) ≡ G−1
lead1 = (E + iη) I −Hlead1

=




. . . t 0
...

t E − 2t+ iη t 0
0 t E − 2t+ iη t
· · · 0 t E − 2t+ iη



. (43)

This is a semi-infinite matrix. In order to invert the matrix, we need to
calculate the determinant of M(0),

detM(0) ≡

∣∣∣∣∣∣∣∣∣∣

. . . t 0
...

t E − 2t+ iη t 0
0 t E − 2t+ iη t
· · · 0 t E − 2t+ iη

∣∣∣∣∣∣∣∣∣∣
. (44)

The element on the bottom-right corner of Glead1 is given by

Glead1(−n0,−n0) =
detM(1)

detM(0)
≡ X, (45)
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where the matrix M(1) is given by removing the bottom row and the right-
most column of the matrix M(0):

M(1) ≡




. . . t 0
t E − 2t+ iη t
0 t E − 2t+ iη



. (46)

We now note that the cofactor expansion of Eq. (44) with respect to the
bottom row yields

detM(0) = (E − 2t+ iη) detM(1) − t2 detM(2), (47)

where the matrix M(n) is given by removing the bottom n rows and the
rightmost n columns of the matrix M(0). Assuming that the ratio of the
determinants must be equal to each other,

X ≡ detM(1)

detM(0)
=

detM(2)

detM(1)
=

detM(3)

detM(2)
= · · · , (48)

we have from Eq. (47) the following equation for X:

1

X
= (E − 2t+ iη)− t2X. (49)

The solutions of Eq. (49) are

Glead1(−n0,−n0) ≡ X =
E − 2t+ iη ± i

√
4t2 − (E − 2t+ iη)2

2t2
. (50)

The “retarded” Green’s function must satisfy the condition

=Glead1 < 0; (51)

thus we choose the minus sign in Eq. (50). Taking the limit η → 0 in Eq. (50),
we arrive at the self-energy term of the lead 1:

Σlead1(E) =




E−2t−i
√

4t2−(E−2t)2

2
0 · · · 0

0 0
...

...
. . .

...
0 · · · · · · 0



. (52)
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In the same way, the self-energy of the lead 2 is given by

Σlead2(E) =




0 · · · · · · 0
...

. . .
...

... 0 0

0 · · · 0
E−2t−i

√
4t2−(E−2t)2

2



. (53)

Thus the effective Hamiltonian of the conductor is given by

Heff(E) = Hc + Σ(E), (54)

with




Hc = −t
n0∑

i=−n0

(
c†i+1ci + c†ici+1

)
+

n0∑

i=−n0

(Vi + 2t) c†ici,

Σ(E) =
E − 2t− i

√
E (4t− E)

2

∑

edge

c†edgecedge.

The matrix representation of Eq. (54) is

Heff(E) =




V−n0 + 2t+
E−2t−i

√
E(4t−E)

2
−t · · · 0

−t . . . . . . 0
...

. . . . . . −t
0 0 −t Vn0 + 2t+

E−2t−i
√

E(4t−E)

2



.(55)

This effective Hamiltonian has two characteristics as follows:

• Non-Hermitian;

• E-dependent.

We cannot easily diagonalize this effective Hamiltonian due to the above
features.
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5 The pseudospectrum

To compute the eigenvalue distribution of the effective Hamiltonian Eq. (54),
we introduce the pseudospectrum in the present section. Trefethen recently
pointed out that the so-called pseudospectrum of non-symmetric matrices
is suitable for calculating eigenvalues of the matrices [4]. There are several
definitions of the pseudospectrum. Throughout the thesis, A is an N × N
matrix, and Λ(A) denotes its spectrum, i.e., its eigenvalues, a subset of the
complex plane C. The pseudospectrum of A is a nested subset of C that
expands to fill the complex plane as ε→∞.

Definition. For each ε ≥ 0, the ε-pseudospectrum Λε(A) of
A is the set of numbers z ∈ C satisfying any of the following
equivalent conditions:
(i) || (z − A)−1 || ≥ ε−1;
(ii) σmin(z − A) ≤ ε;
(iii) ||Au− zu|| ≤ ε for some vector u with ||u|| = 1;
(iv) z is an eigenvalue of A+E for some matrix E with ||E|| ≤ ε.

Here σmin denotes the minimum singular value, and we employ the convention
that || (z − A)−1 || = ∞ for z ∈ Λ(A).

We obtain the resonant eigenvalues from the minimum singular value as
follows. We calculate the norm of the retarded Green’s function:

||GR(E)|| = || (E −Heff(E))−1 || = σmin (E −Heff(E))−1 . (56)

A complex value E for which Eq. (56) diverges indicates a resonant eigen-
value. In other words, we seek a region where the minimum singular value
of the inverse matrix of the retarded Green’s function GR(E) satisfies

σmin (E −Heff(E)) ≤ ε, (57)

where ε is a small positive number.
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6 Calculation of the spectrum

In the present section, we calculate the resonant eigenvalues and their eigen-
functions for several types of the potential.

6.1 The double delta potential

We consider a finite potential well shown in Fig. 8,

V (x) = V0 (δ(x+ d) + δ(x− d)) (58)

where V0 > 0.
We use the pseudospectrum to obtain the eigenvalues for the double delta

potential. Choosing the unit of h̄2/2m = 1, we calculated the minimum
singular value (57) in the case V0 = 1 and d = 10. The distribution of
σmin(E) is shown in Fig. 9. The estimates of ten resonant eigenvalues are
shown in Fig. 10. The corresponding ten resonant eigenfunctions are shown
in Fig. 11.

Both eigenvalues and eigenfunctions of the resonant states obtained by
the present new method agree with the exact solutions described in Appendix
A. Thus we confirm that the present method yields the exact solution.

 

V (x)

V0

€ 

−d d

€ 

x

Figure 8: The double delta potential.
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Figure 9: The distribution of the minimum singular value for the double
delta potential (58).
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Figure 10: The pseudospectrum for the double delta potential (58).
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Figure 11: The resonant outgoing waves for the double delta potential (58).
The solid lines indicate the real part of the resonant waves <φ(x), and the
dotted lines indicate the imaginary part =φ(x). We can see that these waves
diverge exponentially away from the potential. (a) The first resonant state
E = 0.020473 − 0.000515i. (b) The second resonant state E = 0.082756 −
0.003827i. (c) The third resonant state E = 0.188836 − 0.011573i. (d) The
forth resonant state E = 0.340713 − 0.024093i. (e) The fifth resonant state
E = 0.539820 − 0.040984i. (f) The sixth resonant state E = 0.787001 −
0.061622i. (g) The seventh resonant state E = 1.082703 − 0.085415i. (h)
The eighth resonant state E = 1.427135− 0.111870i. (i) The ninth resonant
state E = 1.820373−0.140594i. (j) The tenth resonant state E = 2.262408−
0.171275i.
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6.2 The rectangular potential

Next, we consider a finite potential barrier shown in Fig. 12,

V (x) =

{
0 (|x| > d)
V0 (|x| ≤ d)

(59)

where V0 > 0.
We use the pseudospectrum to obtain the eigenvalues for the rectangu-

lar potential. Choosing the unit of h̄2/2m = 1, we calculated the minimum
singular value (57) in the case V0 = 1 and d = 1. Its distribution is show
in Fig. 13. The estimates of the first two eigenvalues are shown in Fig. 14.
The corresponding two eigenfunctions and their squared moduli are shown
in Fig. 15. Both eigenvalues and eigenfunctions of the resonant state ob-
tained by the present new method agree with the exact solutions described
in Appendix B.

V (x)

V0

d −d
x

Figure 12: The rectangular potential.
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Figure 13: The distribution of the minimum singular value for the rectangular
potential (59).
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Figure 14: The pseudospectrum for the rectangular potential (59).
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Figure 15: The resonant outgoing waves for the rectangular potential (59).
In (a) and (b), the solid lines indicate the real part of resonant waves,
<φ(x) and the dotted lines indicate the imaginary part, =φ(x). (a) The
first resonant state E = 0.821201−1.688081i. (b) The second resonant state
E = 4.030598 − 9.245670i. (c) The squared modulus for the first resonant
state. (d) The squared modulus for the second resonant state.
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6.3 A double Gaussian potential

Finally, we consider a finite potential shown in Fig. 16,

V (x) = 2e−(x/3)2 − 3e−x2

. (60)

Choosing the unit of h̄2/2m = 1, we calculated the minimum singular value
(57) for this potential. Its distribution is shown in Fig. 17. The estimates
of the first two eigenvalues are shown in Fig. 18. The corresponding two
eigenfunctions and their squared moduli are shown in Fig. 19.
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Figure 16: The double gaussian potential.
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Figure 17: The distribution of the minimum singular value for the double
Gaussian potential (60).
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Figure 18: The pseudospectrum for the double Gaussian potential (60).
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Figure 19: The resonant outgoing waves for the double gaussian potential
(60). In (a) and (b), the solid lines indicate the real part of resonant waves,
<φ(x), and the dotted lines indicate the imaginary part, =φ(x). We can
see that these waves diverge exponentially away from the potential. (a) The
first resonant state E = 0.233484−0.003228i. (b) The second resonant state
E = 1.620332 − 0.561901i. (c) The squared modulus of the first resonant
state. (d) The squared modulus of the second resonant state.
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7 Calculation of the conductance

In the present section, we calculate the conductance from the retarded Green’s
function of a conductor with the self-energy of both the lead 1 and the lead
2. We can write a transmission function from the lead 1 to the lead 2 as
follow [1]:

Tlead1→lead2(Er) = lim
Ei→0

Tr
[
Γlead2(E)Gc(E)Γlead1(E) (Gc(E))†

]
, (61)

where

Gc(E) =
1

E −Heff(E)

≡



Gc(−n0,−n0) · · · Gc(−n0, n0)

...
. . .

...
Gc(n0,−n0) · · · Gc(n0, n0)


 , (62)

Γlead1(E) ≡ i
[
Σlead1(E)− (Σlead1(E))†

]

=


Ei +

√
E(E − 4t) +

√
E∗(E∗ − 4t)

2







1 0 · · · 0
0 0
...

. . .
...

0 · · · 0



,(63)

Γlead2(E) ≡ i
[
Σlead2(E)− (Σlead2(E))†

]

=


Ei +

√
E(E − 4t) +

√
E∗(E∗ − 4t)

2







0 · · · 0
...

. . .
...

0 0
0 · · · 0 1



,(64)

with E∗ = Er + iEi being the complex conjugate of the energy E. The
matrices in Eqs. (62)−(64) are all (2n0+1)×(2n0+1) matrices. The matrices
(63) and (64) are necessary for the flux normalization. We thus obtain the
transmission function as

Tlead1→lead2(Er) =
∣∣∣∣
√
Er(Er − 4t)Gc(n0,−n0)(Er)

∣∣∣∣
2

. (65)

Using the Landauer formula Eq. (2) for the transverse mode M = 1,

G(Er) =
2e2

h
Tlead1→lead2(Er), (66)
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we obtain the conductance of the conductor caused by a conduction electron
flowing from lead 1 to lead 2.

We show in Fig. 20 the conductance for the three potentials in Sec. 6. We
note that the peaks of the nonlinear conductance are caused by the resonant
states.
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Figure 20: (a) The normalized conductance of the double delta potential in
Subsec. 6.1. (b) The normalized conductance of the rectangular potential in
Subsec. 6.2. (c) The normalized conductance of the double gaussian potential
in Subsec. 6.3.
.
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8 The case of many-body problem

In the present section, we try to treat a many-body problem by the present
new method.

8.1 s-d exchange interaction

We first consider the Anderson Hamiltonian with interactions between con-
duction electrons and localized spins:

H =
∑

kσ

εknkσ +
∑
σ

εdndσ + Und↑nd↓ +
∑

kσ

[Vkdc
†
kσcdσ + V ∗

kdc
†
dσckσ],

= H0 +H1, (67)

where 



H0 ≡ ∑

kσ

εknkσ +
∑
σ

εdndσ + Und↑nd↓

H1 ≡ ∑

kσ

[Vkdc
†
kσcdσ + V ∗

kdc
†
dσckσ].

(68)

The first term is the kinetic energy of the conduction electrons (the s-orbital
electrons), the second term is that of the localized electrons (the d-orbital
electrons), the third term is the Coulomb repulsive force between two elec-
trons in the d-orbital, and the forth term is the hopping between the s-orbital
and the d-orbital.

By using the Shcrieffer-Wolff transformation [5], we have

H =
∑

kσ

εknkσ − J

2N

∑

kk′σσ′
c†kσ~σσσ′ck′σ′ · ~Sd. (69)

The Fourier transformation yields

H = −t∑
iσ

(
c†i+1σciσ + c†iσci+1σ

)
− J ~σ0 · ~S0,

= Hc +Hsd (70)

where

~σ0 ≡ 1

2

∑

σσ′
c†0σ~σσσ′c0σ′ . (71)

Equation (70) is called the Kondo Hamiltonian (Fig. 21), where Hsd denotes
the exchange interaction between a localized spin at the origin and a conduc-
tion electron. We try to calculate resonant states of Eq. (70) by the present
new method.
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9 Conclusion

We propose a new method of treating open quantum systems with many-
body interactions. We numerically calculated resonant states of various po-
tentials. In Sec. 3, we showed that the resonant state generally has a diverging
eigenfunction and a complex eigenvalue. In Sec. 4, we reduced the Hamil-
tonian of an infinite system into the effective one of a finite system, using
the self-energy terms corresponding to the effects of the leads. The effective
Hamiltonian of the finite system is non-Hermitian and energy-dependent,
and hence it is hard to obtain its eigenvalue distribution by conventional
methods. In Sec. 5, we introduced a new method of calculating the eigen-
value distribution of the effective non-Hermitian Hamiltonian. In Sec. 6, we
demonstrated that eigenvalues of the resonant state obtained by the present
new method agree with the exact solution. Thus we confirmed that the
present method yields the exact eigenvalue and eigenfunction of one-electron
models. In Sec. 7, we calculated the conductance of the three potentials in
Sec. 6. We demonstrated that the resonant states largely affect the peaks of
the nonlinear conductance. In Sec. 8, we try to apply the present method to
a many-body problem (the s-d interaction).
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A The analysis of eigenvalues of Double delta

potential

In the present appendix, we analyze the complex eigenvalues in the case of
the double delta potential. We use the tight-binding model in order to obtain
the complex wave number k.

−n0 n0

V0

j
a

Figure 22: The double delta potential on a one-dimensional lattice model.

We can write down the solutions in each region of the potential immedi-
ately as follows:

φj =





Ae−ikaj (j < −n0),
Beikaj + Ce−ikaj (j < |n0|),
Deikaj (j > n0),

(72)

where A,B, C,D are generally complex coefficients. Here we choose only
outgoing waves in the regions away from the potential, which is a boundary
condition suitable for the resonant states [3]. Then we require the conditions
that the wave functions are continuous at j = ±n0. Because of the symmetry
Vj = V−j, we expect solutions of a definite parity. Therefore, it is sufficient
to apply the matching conditions to the solutions only at j = n0. Now let us
look for even solutions and odd solutions separately. For even solutions, we
can set

A = D, B = C. (73)
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Thus we rewrite Eq. (72) as follows:
{
φI

j = Deikja (j > n0),

φII
j = B

(
eikja + e−ikja

)
(0 ≤ j < n0).

(74)

At j = n0, we obtain the relations between the wave functions as follows:
{
φI

n0
= φII

n0
,

−tφI
n0+1 − tφII

n0−1 + (V0 + 2t)φI
n0

= EφI
n0
.

(75)

Solving Eq. (75), we arrive at the conditional equation of even solutions:

1− 2i
t

V0

sin ka = −e2ikn0a. (76)

We can also obtain the odd wave functions in the same way. For odd solu-
tions, we can set

A = −D, B = −C. (77)

Thus we rewrite Eq. (72) as follows:
{
φI

j = Deikja (j > n0)

φII
j = B

(
eikja − e−ikja

)
(0 ≤ j < n0).

(78)

At j = n0, we obtain the relations between the wave functions as follows:
{
φI

n0
= φII

n0

−tφI
n0+1 − tφII

n0−1 + (V0 + 2t)φI
n0

= EφI
n0
.

(79)

Solving Eq. (79), we arrive at the conditional equation of odd solutions:

1− 2i
t

V0

sin ka = e2ikn0a. (80)

We put Eqs. (76) and (80) together as follows:

1− 2i
t

V0

sin ka = ±e2ikn0a. (81)

On the other hand, we obtain the dispersion relation by Eqs. (72) and (75)
as follows:

E = 2t− 2t cos ka. (82)

We show in Table 1 the eigenvalues of resonant states in the case V = 10,
n0 = 100, and a = 0.01, computed using Mathematica.
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n eigenvalue n eigenvalue

1st 0.0204727− 0.000515478i 6th 0.787001− 0.0616217i
2nd 0.0827563− 0.00382655i 7th 1.08270− 0.0854145i
3rd 0.188836− 0.0115729i 8th 1.42714− 0.111870i
4th 0.340714− 0.0240931i 9th 1.82037− 0.140594i
5th 0.539820− 0.0409837i 10th 2.26241− 0.171275i

Table 1: The eigenvalues of resonant states for the double delta potential.

B The analysis of eigenvalues of Rectangular

potential

In the present appendix, we analyze the complex eigenvalues in the case of
the rectangular potential. We use the tight-binding model in order to obtain
the relation equations for the complex wave numbers k and κ.

−n0 n0

V0

j
a

Figure 23: The rectangular potential on a one-dimensional lattice.

We can write down the solutions in each region of the potential immedi-
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ately as follows:

φj =





Ae−ikaj (j < −n0),
Beiκaj + Ce−iκaj (j < |n0|),
Deikaj (j > n0),

(83)

where A,B, C,D are generally complex coefficients. Here we choose only
outgoing waves in the regions away from the potential, which is a boundary
condition suitable for the resonant states [3].

Then we require the conditions that the wave functions are continuous
at j = ±n0. Because of the symmetry Vj = V−j, we expect solutions of a
definite parity. Therefore, it is sufficient to apply the matching conditions
to the solutions only at j = n0. Now let us look for even solutions and odd
solutions separately. For even solutions, we can set

A = D, B = C. (84)

Thus we rewrite Eq. (83) as follows:

{
φI

j = Deikja (j > n0),
φII

j = B (eiκja + e−iκja) (0 ≤ j < n0).
(85)

At j = n0, we obtain the relations between the wave functions as follows:

{
φI

n0
= φII

n0
,

−tφI
n0+1 − tφII

n0−1 + (V0 + 2t)φII
n0

= EφII
n0
.

(86)

Solving Eq. (86), we arrive at the conditional equation of even solutions:

1 +
V0

t
eika =

cosκ(n0 − 1)a

cosκn0a
eikn0a. (87)

We can also obtain the odd wave functions in the same way. For odd solu-
tions, we can set

A = −D, B = −C. (88)

Thus we rewrite Eq. (83) as follows:

{
φI

j = Deikja (j > n0)
φII

j = B (eiκja − e−iκja) (0 ≤ j < n0).
(89)
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At j = n0, we obtain the relations between the wave functions as follows:

{
φI

n0
= φII

n0

−tφI
n0+1 − tφII

n0−1 + (V0 + 2t)φII
n0

= EφII
n0
.

(90)

Solving Eq. (90), we arrive at the conditional equation of odd solutions:

1 +
V0

t
eika =

sinκ(n0 − 1)a

sinκn0a
eikn0a. (91)

We put Eqs. (87) and (91) together as follows:





1 +
V0

t
eika =

cosκ(n0 − 1)a

cosκn0a
eikn0a (even),

1 +
V0

t
eika =

sinκ(n0 − 1)a

sinκn0a
eikn0a (odd).

(92)

where wave numbers k and κ are the relation as follow :

cosκa− cos ka =
V0

2t
. (93)

On the other hand, we obtain the dispersion relation by Eqs. (83) and (86)
as follows:

E = 2t− 2t cos ka. (94)

We show in Table 2 the eigenvalues of resonant states in the case V = 1, n0 =
100, and a = 0.01, computed using Mathematica.

n eigenvalue n eigenvalue

1st 0.821201− 1.68808i 6th 74.6165− 53.1537i
2nd 4.03060− 9.24567i 7th 105.127− 65.6679i
3rd 13.6555− 18.9470i 8th 140.629− 78.5869i
4th 28.7846− 29.6646i 9th 181.088− 91.8534i
5th 49.1457− 41.1184i 10th 226.476− 105.422i

Table 2: Analysis of eigenvalues of the resonant state for the rectangular
potential.
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