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（論文題目）

カーボン系物質の電気伝導度の転送行列計算

（内容の要旨）

本論文では、カーボン系物質の電気伝導度を計算する。カーボン系物質は、ナノエレク

トロニクスにおいてシリコン系物質が迎える限界を超えると期待されている。現在のナノ

デバイスの主流であるシリコン系物質では材料を削る製法（トップダウン）がとられてい

る。半導体や電気回路の更なる集積化が必要な今、ナノ材料を積み上げていく製法（ボト

ムアップ）のとれる物質が求められている。その点で、カーボン系物質が注目されている

のである。１９８５年にフラーレン、１９９１年にナノチューブが発見されて以来、ナノ

スケールでのカーボン系物質が多く存在する事がわかっている。

　カーボン系物質の最も注目されている性質として、電気特性が挙げられる。その中でも

ナノチューブは、半径やカイラリティによって、金属的であったり半導体的であったりす

る事がわかっている。これらのナノ物質を電気回路に応用できれば、分子サイズの回路が

出現する期待も持てる。そこで、様々な形状のカーボン系物質の電気伝導度を数値計算す

る必要性がある。

　本研究では、太さが一定でないカーボンナノチューブ様の物質の電気伝導度を転送行列

を用いて数値計算する。太さが一定でないと、場所によってチャンネル数が変化する。そ

こで、仮想サイトという概念を導入するのが本研究の新しい点である。チャンネル数が変

化する場合は、チャンネル数が一定の場合（左図）の計算方法は使えず、田村-塚田らが
特殊な条件付き転送行列法を提案していた[1]。我々は、仮想サイトを導入して仮想的に

太さを一定にする事によって、チャンネル数が変化す

る場合も従来と同じ方法で扱う方法を提案する（右図）。

仮想サイトを用いて、１次元鎖と梯子格子を接合した

場合の数値計算の結果を紹介する。

　　　　左図：梯子格子に一つの不純物がある場合の透過確率。

右図：仮想サイ

トを用いた１次

元鎖と梯子格子

の接合格子。こ

れにより、梯子

格子と同様に扱

える。

[1] R. Tamura and M. Tsukada, Phys. Rev. B 61, 8548 (2000)
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　 We propose a new method of calculating the conductance of carbon-based
materials from the transfer matrix with virtual sites. The electronics on a nanometer
scale, so called the nanoelectronics, is now one of the most important and anticipated
technologies along with the information technology and biotechnology. One of the
most hopeful materials for the nanoelectronicsis is carbon-based materials. It is
silicon that has played the most important role through the history of the electronics
in the twentieth century. However, the techniques of forming electronic devices on a
nanometer scale of silicon have almost reached the limit. Carbon-based materials are
expected to break the limit, because carbon generally forms crystals of smaller size
than silicon does.

In the present thesis, we use the transfer matrix method with virtual sites in
order to calculate the conductance of deformed carbon-based materials, where the
channel number changes from place to place. Our new point is to introduce virtual
sites. The case where the channel number changes was conventionally analyzed by a
special method called the constrained transfer-matrix method. By introducing the
virtual sites, we treat the cases of the uniform channel number and the non-uniform
channel number in the same way. We show, as tutorial examples, the results for the
chain lattice and the ladder lattice with uniform channel numbers as well as a chain
connected a ladder with a non-uniform channel number. Finally, we discuss an
application to carbon-based materials.
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Abstract

We propose a new method of calculating the conductance of carbon-
based materials with non-uniform channel numbers. Carbon-based
materials is one of the most hopeful materials for the nanoelectronics.
By the present method, we can calculate the conductance in the same
way no matter the channel number changes or not. We demonstrate
the method in several examples.
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1 Introduction

The electronics on a nanometer scale, so called the nanoelectronics, is now
one of the most important and anticipated technologies along with the in-
formation technology and biotechnology. The development of the electronics
has been the development of techniques of making electronic devices smaller
and smaller. For example, the most important requirement for LSI (Large
Scale Integration), which is essential in our life, is to make its size much
smaller to the range of nanometers.

One of the most hopeful materials for the nanoelectronics is carbon-based
materials [1, 2]. It is silicon that has played the most important role through
the history of the electronics in the twentieth century. However, the tech-
niques of forming electronic devices on a nanometer scale of silicon have
almost reached the limit. Carbon-based materials are expected to break the
limit, because carbon generally forms crystals of smaller size than silicon
does.

The carbon-based materials have several advantages over silicon. One of
the advantages is that carbon has a much wider variety of network struc-
ture; carbon can form not only the sp3-hybridized orbital but also the sp2-
hybridized orbital. Carbon atoms of sp3-hybridized orbitals form the dia-
mond crystal as well as molecules of saturated hydrocarbons, such as methane,
ethane, and so on. On the other hand, carbon atoms of sp2-hybridized or-
bitals form the graphite crystal as well as molecules of aromatic hydrocar-
bons, such as benzene, naphthalene, and so on. Another advantage of carbon
is a possibility of electronic conduction by π electrons in the case of carbon
materials with sp2-hybridized atoms.

The discoveries of fullerene (C60) in 1985 and of nanotube in 1991 caused
a breakthrough in the work of a series of materials made of sp2-hybridized
carbon atoms; a number of materials of sp2-hybridized carbon atoms with
interesting forms were formed, such as cages and tubes. The most hopeful
material as an electronic device is carbon nanotube. The carbon nanotube
is intrinsically a quantum wire, whereas lithography is necessary to from a
quantum wire of silicon. In addition, the nanotubes show metallic or semi-
conducting properties depending on the radius and the chirality.

Another carbon-based material of focused attention is carbon nanohorn.
The carbon nanohorn has been already in the stage of application as an elec-
trode of fuel cells for mobile computers. Thus we need to study the electronic
conductivity of the carbon-based materials for the further development of the
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nanoelectronics.
In the present thesis, we propose a new method of computing the conduc-

tance of carbon-based materials. In Sec. 2 we present the general method of
calculation used in this study. We introduce in Sec. 2.1 the Landauer formula,
which yields the conductance of mesoscopic materials from the transmission
coefficient. In Sec. 2.2 we present the transfer-matrix method of obtaining
the transmission coefficient. In Sec. 3 we show tutorial examples: a chain
lattice, a ladder lattice and a chain connected to ladder. The last example, in
particular, describes a case where the channel number is not uniform through
the material. This is relevant to various carbon-based materials. In order to
treat such a case, we introduce a new method using virtual sites. In Sec. 4
we show how to apply the virtual-site method to carbon-based materials.
Finally, in Sec. 5 we give the summary.

2 Calculation method

In this section, we introduce the Landauer formula and the transfer-matrix
method. We adopt the tight-binding model for numerical calculations.

2.1 Landauer formula

The Landauer formula has been used to calculate the conductance of meso-
scopic conductors [3]. The formula expresses a concept that has proved very
useful in understanding mesoscopic transport; the current flow through a
conductor is proportional to the transmission coefficient, which describes
the ease of transmit of electrons through the conductor.

It is well-known that the conductance G of a large conductor of width
Wand of length L obeys the ohmic scaling law:

G = σW/L, (1)

where the conductivity σ is a material constant independent of its dimensions.
Mesoscopic conductors, however, do not show the behavior of Eq. (1) because
its dimensions are much smaller than the mean free path and the phase-
relaxation length. The conductance of mesoscopic systems is given by

G =
2e

h

∑
i,j

|tij|2, (2)
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where tij denotes the transmission coefficient from the ith channel to the jth
channel. This is the Landauer formula.

We can derive the transmission coefficient tij from the scattering matrix
S. Consider a scattering problem in one dimension (Fig. 1(a)). The S-
matrix is the matrix that relates the amplitudes of the scattering waves b to
the incident wave amplitudes a:

(
bL
bR

)
= S

(
aR

aL

)
=

(
S11 S12

S21 S22

)(
aR

aL

)
, (3)

where the subscripts L and R denote the left-going and right-going waves,
respectively. The S matrix is a unitary matrix because of the flux conser-
vation. We use the transfer matrix to write down the S matrix in the next
subsection.

Meanwhile, the usual scattering problem has an incident wave, a reflection
wave and a transmission wave (Fig. 1(b) and (c)). They are related in the
following ways:

ΨR + rΨL = tΦR for an incident wave from the left,

ΦL + r′ΦR = t′ΨL for an incident wave from the right, (4)

where the factors t and t′ are the transmission coefficients and r and r′ are
the reflection coefficients, while Ψ(Φ) denotes the wave function on the left
(right) side. We rewrite Eq. (4) as follows:

ΨR = −rΨL + tΦR,

ΦL = t′ΨL − r′ΦR, (5)

from which we obtain
(

ΨR

ΦL

)
=

( −r t
t′ −r′

)(
ΨL

ΦR

)
≡ A

(
ΨL

ΦR

)
(6)

Comparing Fig. 1(a)–(c), we have

aR = ΨR,

aL = ΦL. (7)

We then notice in Eqs. (6) and (3) that the matrix A is, in fact, the inverse
of the S matrix:

A = S−1 = S† (8)
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(a)

(b)

(c)

Figure 1: (a) The definition of the S-matrix; a and b represent the amplitudes
of the incident waves and the scattering waves. (b) The incident wave ΨR

from the left is split into the transmission wave tΦR and the scattering wave
rΨL. (c) The incident wave ΦL from the right is split into the transmission
wave t′ΨL and the scattering wave r′ΦR.
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Thus we arrive at
( −r t

t′ −r′
)

= S† =

(
S∗11 S∗21
S∗12 S∗22

)
. (9)

2.2 Transfer matrix

Figure 2: A chain with a potential at x = 0. We obtain the states at x = −1
and x = 0 by transferring the states at x = 0 and x = 1.

Consider, for example, a scattering problem in one dimension with the
potential V0 at x = 0 (Fig. 2). The Hamiltonian is that of the tight-binding
model:

H =
∑
x

(|ψx+1〉〈ψx|+ |ψx〉〈ψx+1|) + V0|ψ0〉〈|ψ0| (10)

We define the transfer matrix in the form
(
ψ−1

ψ0

)
= T0

(
ψ0

ψ1

)
. (11)

Let us write down the transfer matrix T0. From the Schrödinger equation
H|ψ0〉 = E|ψ0〉, we obtain

|ψ1〉+ |ψ−1〉+ V0|ψ0〉 = E|ψ0〉, (12)

or
|ψ−1〉 = (E − V0) |ψ0〉 − |ψ1〉. (13)
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By adding a trivial condition

|ψ0〉 = |ψ0〉, (14)

we have (
ψ−1

ψ0

)
=

(
E − V0 −1

1 0

)(
ψ0

ψ1

)
≡ T0

(
ψ0

ψ1

)
. (15)

Thus we obtain the transfer matrix T0. We can also write the transfer matrix
for x 6= 0 in the same way:(

ψx−1

ψx

)
=

(
E −1
1 0

)(
ψx
ψx+1

)
≡ T

(
ψx
ψx+1

)
(16)

We now relate the transfer matrix to the S matrix. Consider the situa-
tions shown in Fig. 3(a) and (b). It is quite difficult to transfer the incident
wave plus the reflection wave to the transmission wave, because we do not
know the coefficients r and r′apriori. Instead, we transfer in the opposite
direction. Now consider the situations in Fig. 3(c) and (d). We transfer the
transmission wave ΦR(ΨL) to the left (right) to obtain the incident wave and
the reflection wave. The three waves in Fig. 3(c) and (d) are related in the
following ways:

ΦR = xRΨR + yLΨL for an incident wave from the eft,

ΨL = xLΦL + yRΦR for an incident wave from the right, (17)

where the factor x is the incident coefficient and y is the reflection coefficient.
We rewrite Eq. (17) as follows:

(
ΨL

ΦR

)
=

(
0 yR

yL 0

)(
ΨL

ΦR

)
+

(
0 xL

xR 0

)(
ΨR

ΦL

)
, (18)

from which we obtain(
1 −yR

−yL 1

)(
ΨL

ΦR

)
=

(
0 xL

xR 0

)(
ΨR

ΦL

)
, (19)

followed by
(

ΨR

ΦL

)
=

(
0 xL

xR 0

)−1(
1 −yR

−yL 1

)(
ΨL

ΦR

)

=

(
0 xR

−1

xL
−1 0

)(
1 −yR

−yL 1

)(
ΨL

ΦR

)

=

( −xR
−1yL xR

−1

xL
−1 −xL

−1yR

)(
ΨL

ΦR

)
. (20)
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(a) (b)

(c) (d)

Figure 3: (a) The same as Fig. 1(b). (b) The same as Fig. 1(c). (c) The
transmission wave ΦR is transferred to the left side, yielding the incident
wave xRΨR and the reflection wave yLΨL. (d)The transmission wave ΨL

is transferred to the right side, yielding the incident wave xLΦL and the
reflection wave yRΦR.
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x x + 2x − 2 x −1 x +1

Figure 4: By transferring the states at x and x + 1, we obtain the states at
x− 1 and x, where x 6= 0.

Comparing Eq. (20) with Eq. (6), we arrive at

A =

( −r t
t′ −r′

)
=

( −xR
−1yL xR

−1

xL
−1 −xL

−1yR

)
(21)

Thus we obtain the transmission coefficients t and t′ as the reciprocal of the
xR and xL.

3 Tutorial examples

We show here several examples of deriving the conductance by the method
introduced in the previous section. In Sec. 3.1 we solve the scattering problem
on a chain. Next, we treat a ladder in Sec. 3.2. Finally in Sec. 3.3, we show
how to treat a system where the width changes.

3.1 Chain

Consider the scattering problem in one dimension once more. Before cal-
culating the transmission coefficient, we first need to obtain the dispersion
relation for x 6= 0 by diagonalizing the transfer matrix in Eq. (16). Next,
we write down the equation for x = 0 with the three waves, the incident,
reflection and transmission waves.

3.1.1 Dispersion relation for x 6= 0

We consider the situation for x 6= 0 (Fig. 4). The transfer matrix is given by
Eq. (16), that is,

(
ψx−1

ψx

)
= T

(
ψx
ψx+1

)
=

(
E −1
1 0

)(
ψx
ψx+1

)
. (22)
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We here note the identity

(
ψx−1

† ψx
† )
(
ψx−1

ψx

)
=
(
ψx

† ψx+1
† )
(

ψx
ψx+1

)
, (23)

which follows from the flux conservation

|ψx−1|2 = |ψx+1|2. (24)

Substituting Eq. (22) for Eq. (23), we have

T †T = I, (25)

where I is the identity matrix. Equation (25) means that the transfer matrix
T is a unitary matrix. The absolute values of the eigenvalues of a unitary
matrix is unity. We also note that the elements of the transfer matrix are all
real. This means the following; when we have an eigenvalue λ as in Tv = λv,
we have

λ∗v∗ = T ∗v∗ = Tv∗, (26)

that is, λ∗ is another eigenvalue. In other words, the eigenvalues of the
transfer matrix T appears as a complex-conjugate pair. Therefore we can
express the eigenvalues in the form

λ± = e∓ik, (27)

where λ± are the eigenvalues and k is a real number, which below turns out
to be the wave number. Defining the respective eigenvector as

(
ψ

(±)
x

ψ
(±)
x+1

)
, (28)

we have
(

ψ
(±)
x

ψ
(±)
x+1

)
= T

(
ψ

(±)
x

ψ
(±)
x+1

)
= λ±

(
ψ

(±)
x

ψ
(±)
x+1

)

= e∓ik
(

ψ
(±)
x

ψ
(±)
x+1

)

= e∓2ik

(
ψ

(±)
x+1

ψ
(±)
x+2

)
= · · · . (29)
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Thus we obtain
(

ψ
(±)
x

ψ
(±)
x+1

)
∝
(

e±ikx

e±ik(x+1)

)
. (30)

By substituting Eq. (30), or ψ±x ∝ e±ikx for the Schrödinger equation

ψ±x+1 + ψ±x−1 = Eψ±x , (31)

we arrive at

e±ik + e∓ik = E, (32)

namely,

E = 2 cos k. (33)

Thus we obtain the dispersion relation for x 6= 0 as shown in Fig. 5(a). We
notice that this system has only one channel.

3.1.2 Scattering at x = 0

Next, we rewrite the equation at x = 0, Eq. (15), with the three waves, which
are the transmission wave, the incident wave and the reflection wave. As was
shown in Sec. 2.2, the transmission coefficient t is derived from the coefficient
xR in Fig. 3(c) as t = x−1

R .
Consider the situation where the transmission wave ΦR is on the right

side (Fig. 3(c)). The wave function ψx on both sides can be written in the

form of superposition of the wave functions ψ
(±)
x :

|ψx〉 =

{ |eikx〉
xR|eikx〉+ yL|e−ikx〉

on the right (x ≥ 0),
on the left (x ≤ 0).

(34)

Substituting Eq. (34) for Eq. (15), we have
(
xRe

−ik + yLe
ik

xR + yL

)
=

(
E − V0 −1

1 0

)(
1
eik

)
. (35)

Equation (35) is a simultaneous equation of xR and yL. Solving it, we obtain

xR =
2eik − E + V0

2i sin k
, (36)
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which yields

t = xR
−1 =

2i sin k

2eik − E + V0

. (37)

In the same way, we can obtain the transmission coefficient t′ from xL. In-
stead of Eq. (34), we have

|ψx〉 =

{
xL|e−ikx〉+ yL|eikx〉
|e−ikx〉

on the right (x ≥ 0),
on the left (x ≤ 0),

(38)

from which we obtain

xL =
2eik − E + V0

2i sin k
(39)

and hence

t′ = xL
−1 =

2i sin k

2eik − E + V0

. (40)

Finally, the transmission probability is given by

T = |t|2 = |t′|2 =
4sin2k

4 + (E − V0)(E − V0 − 4 cos k)
. (41)

This is shown in Fig. 5(b) for V0 = 0.0, 1.0, 2.0 and 3.0. The transmission
probability is, of course, T ≡ 1 for V0 = 0.

3.2 Ladder lattice

Next, we calculate the transmission coefficient on a ladder lattice shown in
Fig. 6. The Hamiltonian is defined by

H =
∑
x

∑
y=A,B

(|ψx+1,y〉〈ψx,y|+ |ψx,y〉〈ψx+1,y|)

+
∑
x

(|ψx,B〉〈ψx,A|+ |ψx,A〉〈ψx,B|)

+ VA|ψ0,A〉〈|ψ0,A|+ VB|ψ0,B〉〈|ψ0,B|. (42)

From the Schrödinger equation
{ H|ψ0,A〉 = E|ψ0,A〉,
H|ψ0,B〉 = E|ψ0,B〉, (43)

14



(a)

(b)

Figure 5: (a) The dispersion relation for x 6= 0. (b) The energy dependence
of the transmission probability T for V0 = 0.0, 1.0, 2.0 and 3.0.
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A

B

1 2-1-

Figure 6: A ladder lattice with the potential at (x, y) = (0, A) and (0, B).

we obtain the following relations:

|ψ1,A〉+ |ψ−1,A〉+ |ψ0,B〉+ V0|ψ0,A〉 = E|ψ0,A〉,
|ψ1,B〉+ |ψ−1,B〉+ |ψ0,A〉+ V0|ψ0,B〉 = E|ψ0,B〉. (44)

By adding two trivial conditions

|ψ0,A〉 = |ψ0,A〉,
|ψ0,B〉 = |ψ0,B〉, (45)

we write down the transfer matrix as



ψ−1,A

ψ0,A

ψ−1,B

ψ0,B


 =




E − VA −1 −1 0
1 0 0 0
−1 0 E − VB −1
0 0 1 0







ψ0,A

ψ1,A

ψ0,B

ψ1,B


 ≡ T0




ψ0,A

ψ1,A

ψ0,B

ψ1,B


 .(46)

The transfer matrix for x 6= 0 is given as




ψx−1,A

ψx,A
ψx−1,B

ψx,B


 =




E −1 −1 0
1 0 0 0
−1 0 E −1
0 0 1 0







ψx,A
ψx+1,A

ψx,B
ψx+1,B


 ≡ T




ψx,A
ψx+1,A

ψx,B
ψx+1,B


 . (47)

3.2.1 Dispersion relation for x 6= 0

In order to obtain the dispersion relation, we diagonalize the transfer matrix
T in Eq. (47). From the argument in Eqs. (23)–(26), the eigenvalues of the
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transfer matrix T appears as complex-conjugate pairs. Hence we can express
the eigenvalues λ as

λ =

{
e±ik1 ,
e±ik2 .

(48)

In a way similar to the argument in Eqs. (28)–(30) we obtain



ψ
(±)
x,A

ψ
(±)
x+1,A

ψ
(±)
x,B

ψ
(±)
x+1,B


 ∝




e±ik1x

e±ik1(x+1)

e±ik1x

e±ik1(x+1)


 ,




e±ik2x

e±ik2(x+1)

−e±ik2x
−e±ik2(x+1)


 . (49)

By substituting Eq. (49) for the Schrödinger equation

|ψ(±)
x+1,A〉+ |ψ(±)

x−1,A〉+ |ψ(±)
x,B〉 = E|ψ(±)

x,A〉,
|ψ(±)
x+1,B〉+ |ψ(±)

x−1,B〉+ |ψ(±)
x,A〉 = E|ψ(±)

x,B〉, (50)

we arrive at

E =

{
2 cos k1 + 1,
2 cos k2 − 1.

(51)

We show the dispersion relation in Fig. 7(a). We notice that the ladder
lattice has two channels. We define the state of the wave number k1 as the
channel 1 and that of the number k2 as the channel 2.

3.2.2 Scattering at x = 0

In the scattering problem in this case, each of the incident, reflection and
transmission waves consists of the two channels. Consequently, we must
consider the following situation (Fig. 8). When the wave Ψ1R of the channel
1 incidents from the left, we have

Ψ1R + r11Ψ1L + r12Ψ2L = t11Φ1R + t12Φ2R, (52)

where the factor t(r) is the transmission (reflection) coefficient and the index
(ij) represents the scattering from the ith channel to the jth channel. In the
same way we obtain the other three relations as follows:

Ψ2R + r21Ψ1L + r22Ψ2L = t21Φ1R + t22Φ2R,

Φ1L + r′11Φ1R + r′12Φ2R = t′11Ψ1L + t′12Ψ2L,

Φ2L + r′21Φ1R + r′22Φ2R = t′21Ψ1L + t′22Ψ2L, (53)

17



Figure 7: The dispersion relation for x 6= 0. The upper line is the channel 1
and the lower line is the channel 2.
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Figure 8: We represent the state for x ≤ 0 with four waves; the right and
left-going waves of the channel 1 and the channel 2, Ψ1R,Ψ1L,Ψ2R,Ψ2L, re-
spectively. In the same way, we represent the state for x ≥ 0 with four waves
Φ1R,Φ1L,Φ2R,Φ2L.
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where

Ψ1R ≡
(
ψx,A
ψx,B

)
∝
(
eik1x

eik1x

)
, Ψ1L ∝

(
e−ik1x

e−ik1x

)
,

Ψ2R ∝
(

eik2x

−eik2x
)
, Ψ2L ∝

(
e−ik2x

−e−ik2x
)
, (x ≤ 0), (54)

Φ1R ≡
(
ψx,A
ψx,B

)
∝
(
eik1x

eik1x

)
, Φ1L ∝

(
e−ik1x

e−ik1x

)
,

Φ2R ∝
(

eik2x

−eik2x
)
, Φ2L ∝

(
e−ik2x

−e−ik2x
)
, (x ≥ 0). (55)

We summarize Eqs. (52) and (53) to obtain

( −r t
t′ −r′

)



Ψ1L

Ψ2L

Φ1R

Φ2R


 =




Ψ1R

Ψ2R

Φ1L

Φ2L


 , (56)

where

t ≡
(
t11 t12

t21 t22

)
, r ≡

(
r11 r12
r21 r22

)
,

t′ ≡
(
t′11 t′12

t′21 t′22

)
, r′ ≡

(
r′11 r′12
r′21 r′22

)
. (57)

In order to calculate the transmission and reflection coefficients correctly,
we normalize the flux of each wave function to unity. Let us first define the
flux in the present case. Consider the waves ψx,A = eikx and ψx,B = eikx. We
define the flux operator in the form

P̂ψx ≡ ~
i

ψx+1 − ψx−1

2
, (58)

which is a discretized version of the momentum operator ~
i
∂
∂x

. The expecta-
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tion value of the flux is given by

(
ψ∗x,AP̂ψx,A
ψ∗x,BP̂ψx,B

)
=

(
e−ikx e−ikx

) ~
i

(
ψx+1,A−ψx−1,A

2
ψx+1,B−ψx−1,B

2

)

= ~e−ikx
(

1 1
)



eikx(eik−e−ik)
2i

eikx(eik−e−ik)
2i




= ~
(

1 1
)
sin k

(
1
1

)
= 2~ sin k. (59)

We put ~ = 1 hereafter. Thus we can normalize the wave function as

ψx =
1√

2 sin k
eikx, (60)

so that the flux is unity. We hence re-define the waves in Eqs. (54) and (55)
as

Ψ1R =
1√

2 sin k1

(
eik1x

eik1x

)
, Ψ1L =

1√
2 sin k1

(
e−ik1x

e−ik1x

)
,

Ψ2R =
1√

2 sin k2

(
eik2x

−eik2x
)
,

Ψ2L =
1√

2 sin k2

(
e−ik2x

−e−ik2x
)
, (x ≤ 0), (61)

Φ1R =
1√

2 sin k1

(
eik1x

eik1x

)
, Φ1L =

1√
2 sin k1

(
e−ik1x

e−ik1x

)
,

Φ2R =
1√

2 sin k2

(
eik2x

−eik2x
)
,

Φ2L =
1√

2 sin k2

(
e−ik2x

−e−ik2x
)
, (x ≥ 0). (62)

Let us make a comment here. We notice in Eqs. (61) and (62) the relations

〈Ψ1R|Ψ2R〉 = 〈Ψ1L|Ψ2L〉 = 0, (63)

〈Φ1R|Φ2R〉 = 〈Φ1L|Φ2L〉 = 0. (64)
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In other words, the channels are orthogonal to each other.
To relate the transfer matrix in Eq. (46) to Eq. (56), we transfer the

transmission wave Φ1R on the right to the waves on the left. Thus we have

Φ1R = x11RΨ1R + x12RΨ2R + y11LΨ1L + y12LΨ2L, (65)

where the factor x(y) is the incident (reflection) coefficient while the index
(ijK) represents that ij is the scattering from the ith channel to the jth
channel and K = L or R. In the same way we have the following relations:

Φ2R = x21RΨ1R + x22RΨ2R + y21LΨ1L + y22LΨ2L,

Ψ1L = x′11LΦ1L + x′12LΦ2L + y′11RΦ1R + y′12RΦ2R,

Ψ2L = x′21LΦ1L + x′22LΦ2L + y′21RΦ1R + y′22RΦ2R, (66)

To relate Eqs. (65) and (66) to Eq. (56), we rewrite them in the form:



Ψ1L

Ψ2L

Φ1R

Φ2R


 =

( ∅ y′

y ∅
)



Ψ1L

Ψ2L

Φ1R

Φ2R


+

( ∅ x′

x ∅
)



Ψ1R

Ψ2R

Φ1L

Φ2L


 , (67)

where

x =

(
x11R x12R

x21R x22R

)
, y =

(
y11L y12L

y21L y22L

)
,

x′ =

(
x11L x12L

x21L x22L

)
, y′ =

(
y11R y12R

y21L y22R

)
,

∅ =

(
0 0
0 0

)
. (68)

From Eq. (67), we obtain

(
I −y′

−y I

)



Ψ1L

Ψ2L

Φ1R

Φ2R


 =

( ∅ x′

x ∅
)



Ψ1R

Ψ2R

Φ1L

Φ2L


 , (69)

where

I =

(
1 0
0 1

)
. (70)
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Equation (69) is followed by




Ψ1R

Ψ2R

Φ1L

Φ2L


 =

( ∅ x′

x ∅
)−1(

I −y′

−y I

)



Ψ1L

Ψ2L

Φ1R

Φ2R




=

( ∅ x−1

x′−1 ∅
)(

I −y′

−y I

)



Ψ1L

Ψ2L

Φ1R

Φ2R




=

( −x−1y x−1

x′−1 −x′−1y′

)



Ψ1L

Ψ2L

Φ1R

Φ2R


 . (71)

Comparing Eq. (71) to Eq. (56), we notice the following relation:

t = x−1

t′ = y−1 (72)

Thus we need to calculate the inverse of x and x′ in Eqs. (65) and (66) to
obtain t and t′.

3.2.3 Solution for E = 0

We now compute the coefficients in Eqs. (65) and (66). We here solve the
problem for E = 0, VA 6= 0 and VB = 0, for example. From Eq. (51), we
obtain

k1 =
2π

3
, k2 =

π

3
for E = 0. (73)

Thus the normalization constants in Eqs. (61) and (62) are

1√
2 sin k1

=
1√

2 · √3/2
= 3

1
4 ,

1√
2 sin k2

=
1√

2 · √3/2
= 3

1
4 for E = 0. (74)
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We first consider the situation that the transmission wave Φ1R, which is the
channel 1, is on the right. From Eqs. (61) and (62) we obtain the wave
function on the both sides by the superposition of the wave function:

3
1
4




x11Re
− 2π

3
i + y11Le

2π
3
i + x12Re

−π
3
i + y12Le

π
3
i

x11R + y11L + x12R + y12L

x11Re
− 2π

3
i + y11Le

2π
3
i − x12Re

− 2π
3
i − y12Le

2π
3
i

x11R + y11L − x12R − y12L


 = 3

1
4T0




1

e
2π
3
i

1

e
2π
3
i




= 3
1
4




−VA −1 −1 0
1 0 0 0
−1 0 0 −1
0 0 1 0







1

e
2π
3
i

1

e
2π
3
i


 (75)

We now use the relations (63) and (64) to calculate the coefficients. By taking
the inner product of Eq. (75) and the complex conjugate of the channel 1,




ψ−1,A

ψ0,A

ψ−1,B

ψ0,B




†

= 3
1
4




e∓
2π
3
i

1

e∓
2π
3
i

1




†

= 3
1
4

(
e±

2π
3
i 1 e±

2π
3
i 1

)
, (76)

we can cancel out the components of the channel 2 and obtain the coefficients
of the channel 1, x11R and y11L. In fact, by calculating the inner products of
Eqs. (75) and (76), we obtain

x11R +
e−

π
3
i

2
y11L = 1− e

2π
3
i

4
VA,

x11R +
e

π
3
i

2
y11L =

e
π
3
i

2
− e−

2π
3
i

4
VA, (77)

or (
1 e−

π
3 i

2
e

π
3 i

2
1

)(
x11R

y11L

)
=

(
1
e

π
3 i

2

)
− VA

4

(
e

2π
3
i

e−
2π
3
i

)
. (78)

We thus arrive at
(
x11R

y11L

)
=

(
1 e−

π
3 i

2
e

π
3 i

2
1

)−1 [(
1
e

π
3 i

2

)
− VA

4

(
e

2π
3
i

e−
2π
3
i

)]

=

(
1
0

)
−
√

3

6
VA

(
1
−1

)
. (79)
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In the same way, by calculating the inner product of Eq. (75) and the complex
conjugate of the channel 2 (k2 = π/3),




ψ−1,A

ψ0,A

ψ−1,B

ψ0,B




†

= 3
1
4




e∓
π
3
i

1
−e∓π

3
i

−1




†

= 3
1
4

(
e±

π
3
i 1 −e±π

3
i −1

)
, (80)

we obtain
(

1 e
π
3 i

2
e−

π
3 i

2
1

)(
x12R

y12L

)
= −VA

4

(
e

π
3
i

e−
π
3
i

)
. (81)

We arrive at

(
x12R

y12L

)
=

(
1 e

π
3 i

2
e−

π
3 i

2
1

)−1 [
−VA

4

(
e

π
3
i

e−
π
3
i

)]

= −
√

3

6
iVA

(
1
−1

)
. (82)

We next consider the situation where the transmission wave Φ2R, which
is the channel 2, is on the right. From Eqs. (61) and (62) we obtain the wave
function on the both sides by the superposition of the wave function:

3
1
4




x21Re
− 2π

3
i + y21Le

2π
3
i + x22Re

−π
3
i + y22Le

π
3
i

x21R + y21L + x22R + y22L

x21Re
− 2π

3
i + y21Le

2π
3
i − x22Re

−π
3
i − y22Le

π
3
i

x21R + y21L − x22R − y22L


 = 3

1
4T0




1
e

π
3
i

−1
−eπ

3
i


 . (83)

We obtain the following relations by calculating the inner products of Eq. (83)
and Eqs. (76) and (80):

(
1 e−

π
3 i

2
e

π
3 i

2
1

)(
x21R

y21L

)
= −VA

4

(
e

2π
3
i

e−
2π
3
i

)
,

(
1 e

π
3 i
2

e−
π
3 i

2
1

)(
x22R

y22L

)
=

(
1

e−
π
3 i

2

)
− VA

4

(
e

π
3 i
2

e−
π
3 i

2

)
. (84)
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We arrive at

(
x21R

y21L

)
= −

√
3

6
iVA

(
1
−1

)
,

(
x22R

y22L

)
=

(
1
0

)
−
√

3

6
iVA

(
1
−1

)
. (85)

Equations (79), (83) and (85) yield

x =

(
x11R x12R

x21R x22R

)
=

(
1−

√
3

6
iVA −

√
3

6
iVA

−
√

3
6
iVA 1−

√
3

6
iVA

)
, (86)

from which we finally obtain

t =

(
t11 t12

t21 t22

)
= x−1

=
1

1−
√

3
3

iVA

(
1−

√
3

6
iVA

√
3

6
iVA√

3
6
iVA 1−

√
3

6
iVA

)
. (87)

In the same way, we obtain the transmission coefficient t′ from the right side
to the left side by assuming the transmission wave on the left. We show∑

i,j |tij|2 in Fig. 9 for VA = 0.0, 1.0, 2.0, 3.0 with VB = 0.0.

3.3 Chain connected to ladder

3.3.1 Virtual-site method

Now we consider a problem where the channel numbers are different on the
left and on the right. We should now pay attention to two points. One is
the normalization of the flux. The eigenstates on the both sides differ when
the channel number of the right side is one and the left are two. We need to
normalize the flux to calculate the transmission coefficient correctly. We use
the procedure similar to the one in Sec. 3.2. The other point is the difference
of the matrix dimension. The transfer matrix T is not a square matrix when
the channel number of the right side is one and the left are two. We cannot
obtain the coefficients in the same way as above.

We here propose the virtual-site method, by which we can compute the
coefficients in a much similar way. Tamura and Tsukada previously proposed
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Figure 9: The energy dependence of the transmission probability T for VA =
0.0, 1.0, 2.0, 3.0 with VB = 0.0.

the conditioned transfer-matrix method [4]. An advantage of our new method
is that we can use the same transfer matrix as before.

We consider the situation that the channel number of the right side is one
and the left are two (Fig. 10(a)). We can write down the following transfer
matrix T0 at x = 0 for the tight-binding model:




ψ−1,A

ψ0,A

ψ−1,B

ψ0,B


 =




E −1 −1
1 0 0
−1 0 E
0 0 1







ψ0,A

ψ1,A

ψ0,B


 = T0




ψ0,A

ψ1,A

ψ0,B


 (88)

We notice that the transfer matrix T0 is not a square matrix. We hence
introduce virtual sites (Fig. 10(b)). That is, we temporarily add sites (x,B)
for x ≥ 1, and later make the wave amplitudes on these sites zero. Taking
account of the virtual sites, we write the transfer matrix similar to Eq. (46)
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Figure 10: (a) The lattice where a chain is connected to a ladder. (b) The
channel number of the right side is one and the left are two. (c) The open
circles indicate the virtual sites at (x,B) for x > 0.

as



ψ−1,A

ψ0,A

ψ−1,B

ψ0,B


 =




E − VA −1 −1 0
1 0 0 0
−1 0 E − VB −1
0 0 1 0







ψ0,A

ψ1,A

ψ0,B

ψ1,B




≡ T0




ψ0,A

ψ1,A

ψ0,B

0


 . (89)

Thus we obtain a square transfer matrix T0. We calculate the coefficients in
the same way as in Sec. 3.2.

3.3.2 Comparison with a previous method

We here show that our new method is mathematically equivalent to a pre-
vious method by Tamura and Tsukada [4], called the conditioned transfer-
matrix method. We emphasize that their method is numerically less accurate
and time-consuming since it involves the numerical matrix inversion.
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Let us first briefly review the conditioned transfer-matrix method. Tamura
and Tsukada used the generalized inverse matrix of the rectangular trans-
fer matrix T0 in Eq. (88). The generalized inverse (or “pseudo-inverse” as
Tamura and Tsukada called it) of the rectangular matrix T0 is defined by

T−1
0 =

(
T †0T0

)−1

T †0 , (90)

which satisfies

T−1
0 T0 ≡ I but T0T

−1
0 6= I. (91)

We can hence rewrite Eq. (88) as follows:




ψ0,A

ψ1,A

ψ0,B


 = T−1

0




ψ−1,A

ψ0,A

ψ−1,B

ψ0,B


 . (92)

We then need the condition that Eq. (88) is derived from Eq. (92) again by
multiplying T0 on the both sides. The condition reads



ψ−1,A

ψ0,A

ψ−1,B

ψ0,B


 = T0T

−1
0




ψ−1,A

ψ0,A

ψ−1,B

ψ0,B


 . (93)

Note that this not an identity. On the contrary, this gives an equation
involving ψ−1,A, ψ0,A, ψ−1,B and ψ0,B.

Tamura and Tsukada obtain an expanded square transfer matrix T̃0 by
adding a condition in Eq. (93) to Eq. (92). The condition from our method,
on the other hand, is to substitue zero for the virtual site. We show that
these two conditions are equivalent for VA = VB = 0, for example. The
generalized inverse of T0 is given by

T−1
0 =

(
T †0T0

)−1

T †0

=








E 1 −1 0
−1 0 0 0
−1 0 E 1







E −1 −1
1 0 0
−1 0 E
0 0 1








−1


E 1 −1 0
−1 0 0 0
−1 0 E 1




=
1

E2 + 2




0 E2 + 1 −1 E
−E2 − 2 E3 −2E E2 − 2

0 E E 2


 . (94)
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Equation (94) satisfies the relation (91). We obtain from Eq. (93) the fol-
lowing condition:

∅ =
(
T0T

−1
0 − I

)



ψ−1,A

ψ0,A

ψ−1,B

ψ0,B


 =

1

E2 + 2




0 0 2E 0
0 −1 −1 E
0 −1 −1 E
0 E E −E2







ψ−1,A

ψ0,A

ψ−1,B

ψ0,B


 .(95)

One of the equations give

ψ0,A + ψ−1,B − Eψ0,B = 0. (96)

This is the condition for the wave function on the ladder to survive on the
chain. The wave function that does not satisfy this condition cannot transmit
into the chain.

On the other hand, we obtain the following equation from the third row
of Eq. (89):

ψ−1,B = −ψ0,A + Eψ0,B − ψ1,B, (97)

or

ψ0,A + ψ−1,B − Eψ0,B = −ψ1,B. (98)

By substituting zero for the virtual site ψ1,B in Eq. (98), we notice that
the condition of the virtual-site method is equivalent to the condition (97)
of the conditioned transfer-matrix method. We expect that the numerical
calculation becomes extremely precise in the former method because the
matrix inversion in the latter method is not necessary.

3.3.3 Solution for E = 0

We here solve the problem for E = 0 and VA = VB = 0, for example. The
lattice is a chain for x > 0 and a ladder for x ≤ 0. The eigenvectors for x > 0
are given by Eq. (30) with k = π/2 because of Eq. (33). We normalize the
flux of the wave function in the same way as Eq. (60), obtaining

ΦR = ψx,A =
1√
sin k

eikx =
1√

sin π/2
e

π
2
ix = e

π
2
ix,

ΦL =
1√
sin k

e−ikx =
1√

sin π/2
e−

π
2
ix = e−

π
2
ix, (99)
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with

ψx,B ≡ 0. (x > 0) (100)

Next, the eigenvectors for x ≤ 0 are given by Eq. (61) with Eq. (74):

Ψ1R = 3
1
4

(
e

2π
3
ix

e
2π
3
ix

)
, Ψ1L = 3−

1
4

(
e

2π
3
ix

e
2π
3
ix

)
,

Ψ2R = 3
1
4

(
e

π
3
ix

−eπ
3
ix

)
, Ψ2L = 3

1
4

(
e−

2π
3
ix

−e− 2π
3
ix

)
(101)

We now consider the situation that the transmission wave ΦR is on the
right:

ΦR = x1Ψ1R + y1Ψ2L + x2Ψ2R + y2Ψ2L, (102)

from which we obtain

3
1
4




x1e
− 2π

3
i + y1e

2π
3
i + x2e

−π
3
i + y2e

π
3
i

x1 + y1 + x2 + y2

x1e
− 2π

3
i + y1e

2π
3
i − x2e

−π
3
i − y2e

π
3
i

x1 + y1 − x2 − y2


 =




0 −1 −1 0
1 0 0 0
−1 0 0 −1
0 0 1 0







1
e

π
2
i

1
0


 .(103)

By calculating the inner products of Eq. (103) and Eqs. (76) and (80), we
have

(
x1

y1

)
=

1

8 · 3 3
4

(
12 + 4

√
3− 4

√
3i

12− 4
√

3 + 4
√

3i

)
,

(
x2

y2

)
=

1

8 · 3 3
4

(
4
√

3

−4
√

3

)
. (104)

The factors x and y represent the incident and the reflection amplitudes.
Thus the flux amplitudes of the incident waves are

|x1|2 =
1

4
+

5

4
√

3
,

|x2|2 =
1

4
√

3
. (105)
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The transmission probability is given by

T =
1

|x1|2 + |x2|2

=
1

1
4

+ 6
4
√

3

=
4

6 +
√

3
= 0.517327 · · · (106)

We followed the same procedure as above for general E and obtain Fig. 11.
We notice that the wave function of the wave number k2 does not transmit
to the right side.

4 Application to carbon-based materials

We now show how we can apply the virtual-site method to carbon-based
materials. Carbon-based materials have the hexagonal lattice structure. We
here demonstrate the way of adding virtual sites to a graphite flake. Consider
the situation where there are seven hexagons (Fig. 12(a)). The figures 1, 2
and 3 represent the distance from the center. There are six sites of the
number 1 and the number 2, while twelve sites of the number 3. When we
transfer waves from inside to outside, the number of the channels increase
by six. Hence we add six virtual sites of the number 1 and six of the number
2, as is shown in Fig. 12(b). We thus obtain the situation where the channel
number is uniform by superimposing Fig. 12(b) over Fig. 12(a).

5 Summary

In the present thesis, we introduced a new method with virtual sites in order
to calculate the conductance of carbon-based materials numerically. In Sec. 2
we introduced the Landauer formula, the scattering matrix and the transfer
matrix, which are the basic concepts for obtaining the conductance. In Sec. 3
we show three tutorial examples: a chain lattice, a ladder lattice and a chain
connected to ladder. In Sec. 3.1 the channel number was one on the both
sides. The conductance decreases as we increase the impurity potential. In
Sec. 3.2, the sum of the transmission coefficients is greater than unity since
the channel number is two for −1 < E < 1. In Sec. 3.3, we use the virtual-
site method for the case where the channel number is not uniform. We stress
that we can obtain the transmission coefficients in the same way as Secs. 3.1
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T

Figure 11: The energy dependence of the transmission probability T of the
system in Fig. 10(a) with VA = VB = 0.0.
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Figure 12: (a) The graphite flake of seven hexagons. The figures 1, 2 and 3
represent the distance from the center. (b) Virtual sites added to the flake
in (a).

and 3.2. Finally in Sec. 4 we showed how to apply the virtual-site method to
carbon-based materials. The channel number of carbon-based materials can
be non-uniform. We can transform by the virtual-site method the problem
to the case of a uniform channel number.
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