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We propose a new method of calculating the conductance of carbon-based
materials from the transfer matrix with virtual sites. The electronics on a nanometer
scale, so called the nanoelectronics, is now one of the most important and anticipated
technologies along with the information technology and biotechnology. One of the
most hopeful materials for the nanoelectronicsis is carbon-based materials. It is
silicon that has played the most important role through the history of the electronics
in the twentieth century. However, the techniques of forming electronic devices on a
nanometer scale of silicon have almost reached the limit. Carbon-based materials are
expected to break the limit, because carbon generally forms crystals of smaller size
than silicon does.

In the present thesis, we use the transfer matrix method with virtual sites in
order to calculate the conductance of deformed carbon-based materials, where the
channel number changes from place to place. Our new point is to introduce virtual
sites. The case where the channel number changes was conventionally analyzed by a
special method called the constrained transfer-matrix method. By introducing the
virtual sites, we treat the cases of the uniform channel number and the non-uniform
channel number in the same way. We show, as tutorial examples, the results for the
chain lattice and the ladder lattice with uniform channel numbers as well as a chain
connected a ladder with a non-uniform channel number. Finally, we discuss an
application to carbon-based materials.
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Abstract

We propose a new method of calculating the conductance of carbon-
based materials with non-uniform channel numbers. Carbon-based
materials is one of the most hopeful materials for the nanoelectronics.
By the present method, we can calculate the conductance in the same
way no matter the channel number changes or not. We demonstrate
the method in several examples.
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1 Introduction

The electronics on a nanometer scale, so called the nanoelectronics, is now
one of the most important and anticipated technologies along with the in-
formation technology and biotechnology. The development of the electronics
has been the development of techniques of making electronic devices smaller
and smaller. For example, the most important requirement for LSI (Large
Scale Integration), which is essential in our life, is to make its size much
smaller to the range of nanometers.

One of the most hopeful materials for the nanoelectronics is carbon-based
materials [1, 2]. It is silicon that has played the most important role through
the history of the electronics in the twentieth century. However, the tech-
niques of forming electronic devices on a nanometer scale of silicon have
almost reached the limit. Carbon-based materials are expected to break the
limit, because carbon generally forms crystals of smaller size than silicon
does.

The carbon-based materials have several advantages over silicon. One of
the advantages is that carbon has a much wider variety of network struc-
ture; carbon can form not only the sp3-hybridized orbital but also the sp*-
hybridized orbital. Carbon atoms of sp*-hybridized orbitals form the dia-
mond crystal as well as molecules of saturated hydrocarbons, such as methane,
ethane, and so on. On the other hand, carbon atoms of sp*-hybridized or-
bitals form the graphite crystal as well as molecules of aromatic hydrocar-
bons, such as benzene, naphthalene, and so on. Another advantage of carbon
is a possibility of electronic conduction by 7 electrons in the case of carbon
materials with sp?-hybridized atoms.

The discoveries of fullerene (Cgg) in 1985 and of nanotube in 1991 caused
a breakthrough in the work of a series of materials made of sp?-hybridized
carbon atoms; a number of materials of sp*-hybridized carbon atoms with
interesting forms were formed, such as cages and tubes. The most hopeful
material as an electronic device is carbon nanotube. The carbon nanotube
is intrinsically a quantum wire, whereas lithography is necessary to from a
quantum wire of silicon. In addition, the nanotubes show metallic or semi-
conducting properties depending on the radius and the chirality.

Another carbon-based material of focused attention is carbon nanohorn.
The carbon nanohorn has been already in the stage of application as an elec-
trode of fuel cells for mobile computers. Thus we need to study the electronic
conductivity of the carbon-based materials for the further development of the



nanoelectronics.

In the present thesis, we propose a new method of computing the conduc-
tance of carbon-based materials. In Sec. 2 we present the general method of
calculation used in this study. We introduce in Sec. 2.1 the Landauer formula,
which yields the conductance of mesoscopic materials from the transmission
coefficient. In Sec. 2.2 we present the transfer-matrix method of obtaining
the transmission coefficient. In Sec. 3 we show tutorial examples: a chain
lattice, a ladder lattice and a chain connected to ladder. The last example, in
particular, describes a case where the channel number is not uniform through
the material. This is relevant to various carbon-based materials. In order to
treat such a case, we introduce a new method using virtual sites. In Sec. 4
we show how to apply the virtual-site method to carbon-based materials.
Finally, in Sec. 5 we give the summary.

2 Calculation method

In this section, we introduce the Landauer formula and the transfer-matrix
method. We adopt the tight-binding model for numerical calculations.

2.1 Landauer formula

The Landauer formula has been used to calculate the conductance of meso-
scopic conductors [3]. The formula expresses a concept that has proved very
useful in understanding mesoscopic transport; the current flow through a
conductor is proportional to the transmission coefficient, which describes
the ease of transmit of electrons through the conductor.

It is well-known that the conductance G of a large conductor of width
Wand of length L obeys the ohmic scaling law:

G=oW/L, (1)

where the conductivity o is a material constant independent of its dimensions.
Mesoscopic conductors, however, do not show the behavior of Eq. (1) because
its dimensions are much smaller than the mean free path and the phase-
relaxation length. The conductance of mesoscopic systems is given by

2e
G =3 Il 2)
4,J
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where ¢;; denotes the transmission coefficient from the ith channel to the jth
channel. This is the Landauer formula.

We can derive the transmission coefficient ¢;; from the scattering matrix
S. Consider a scattering problem in one dimension (Fig. 1(a)). The S-
matrix is the matrix that relates the amplitudes of the scattering waves b to
the incident wave amplitudes a:

(h)=s(om)= (8 &) (o). o

where the subscripts L and R denote the left-going and right-going waves,
respectively. The S matrix is a unitary matrix because of the flux conser-
vation. We use the transfer matrix to write down the S matrix in the next
subsection.

Meanwhile, the usual scattering problem has an incident wave, a reflection
wave and a transmission wave (Fig. 1(b) and (c)). They are related in the
following ways:

Ur +r¥; = tdgr for an incident wave from the left,
Oy, +r'®g = t'Up,  for an incident wave from the right, (4)

where the factors ¢ and t' are the transmission coefficients and r and " are
the reflection coefficients, while W(®) denotes the wave function on the left
(right) side. We rewrite Eq. (4) as follows:

\I’R = —T\I’L + t(I)R,
(I)L = t/\PL - T’/(DR, (5)

from which we obtain
\IJR o —-Tr t \I/L - \IIL
()= ) )=a(s) @
Comparing Fig. 1(a)—(c), we have

agr = Vg,
ar, = (I)L. (7>

We then notice in Egs. (6) and (3) that the matrix A is, in fact, the inverse
of the S matrix:

A=8"1=4g" (8)



'Y, o,

Figure 1: (a) The definition of the S-matrix; a and b represent the amplitudes
of the incident waves and the scattering waves. (b) The incident wave Wg
from the left is split into the transmission wave t®g and the scattering wave
rWy. (c¢) The incident wave ®p, from the right is split into the transmission
wave t'Uy, and the scattering wave r’'®g.



Thus we arrive at

/ / :ST:( 11 il> 9
(t _7"> 12 P22 (9)

2.2 Transfer matrix

Figure 2: A chain with a potential at x = 0. We obtain the states at x = —1
and x = 0 by transferring the states at x = 0 and x = 1.

Consider, for example, a scattering problem in one dimension with the
potential Vy at © = 0 (Fig. 2). The Hamiltonian is that of the tight-binding
model:

H= Y (o) Wl + [) (a1 ]) + Volto) (¢l (10)

We define the transfer matrix in the form

(7’2_01>_T0<:i?). (11)

Let us write down the transfer matrix 7y. From the Schrédinger equation

H|vo) = E|1bg), we obtain

|th1) + [¢-1) + Volvo) = Elt), (12)

or

|w71> = (E - Vo) |¢0> - |¢1>' (13)



By adding a trivial condition

[%0) = ltho), (14)

()-(5 D(E)=(z) o

Thus we obtain the transfer matrix 7p. We can also write the transfer matrix
for x # 0 in the same way:

(o) (T ()= ()

We now relate the transfer matrix to the S matrix. Consider the situa-
tions shown in Fig. 3(a) and (b). It is quite difficult to transfer the incident
wave plus the reflection wave to the transmission wave, because we do not
know the coefficients r and r’apriori. Instead, we transfer in the opposite
direction. Now consider the situations in Fig. 3(c) and (d). We transfer the
transmission wave ®g(Wy,) to the left (right) to obtain the incident wave and
the reflection wave. The three waves in Fig. 3(c) and (d) are related in the
following ways:

we have

dr = zrVYRr +yLVy for an incident wave from the eft,

Uy, = 21,91 + yrPr for an incident wave from the right, (17)

where the factor x is the incident coefficient and y is the reflection coefficient.
We rewrite Eq. (17) as follows:

()= (o) (e (0 ) (i) o

from which we obtain
I —yr Uy, \ ([ 0 Vg
(7)) -Ca w)(e)
followed by

(%) -



(c) (d)

Figure 3: (a) The same as Fig. 1(b). (b) The same as Fig. 1(c). (c) The
transmission wave ®y is transferred to the left side, yielding the incident
wave rrWUgr and the reflection wave y,Wp. (d)The transmission wave Wy,
is transferred to the right side, yielding the incident wave xp®p, and the

reflection wave yr®r.

10



xX—-2 x—= X+2

Figure 4: By transferring the states at  and x + 1, we obtain the states at
x — 1 and x, where z # 0.

Comparing Eq. (20) with Eq. (6), we arrive at

—-r t T T
A= = 21
( t/ —T’ ) ( fol _xLilyR ( )
Thus we obtain the transmission coefficients ¢ and ¢’ as the reciprocal of the
rgr and zi,.

3 Tutorial examples

We show here several examples of deriving the conductance by the method
introduced in the previous section. In Sec. 3.1 we solve the scattering problem
on a chain. Next, we treat a ladder in Sec. 3.2. Finally in Sec. 3.3, we show
how to treat a system where the width changes.

3.1 Chain

Consider the scattering problem in one dimension once more. Before cal-
culating the transmission coefficient, we first need to obtain the dispersion
relation for z # 0 by diagonalizing the transfer matrix in Eq. (16). Next,
we write down the equation for x = 0 with the three waves, the incident,
reflection and transmission waves.

3.1.1 Dispersion relation for = # 0

We consider the situation for x # 0 (Fig. 4). The transfer matrix is given by
Eq. (16), that is,

<¢£;1)2T<¢fi1):(? _(Jl)<¢i)il)' (22)

11



We here note the identity

( 1/}ac—lT 1/}3;[ ) ( 1/}77:2;1 ) = ( ¢mT 1/}30+1T ) ( ijj-l ) ) (23)
which follows from the flux conservation
[e1]? = Yo | (24)

Substituting Eq. (22) for Eq. (23), we have
T =1, (25)

where I is the identity matrix. Equation (25) means that the transfer matrix
T is a unitary matrix. The absolute values of the eigenvalues of a unitary
matrix is unity. We also note that the elements of the transfer matrix are all
real. This means the following; when we have an eigenvalue \ as in Tv = A\v,
we have

NV =T'v =Tv", (26)

that is, A\* is another eigenvalue. In other words, the eigenvalues of the
transfer matrix 7" appears as a complex-conjugate pair. Therefore we can
express the eigenvalues in the form

)\:i: = 6¥ik, (27>

where A\* are the eigenvalues and k is a real number, which below turns out
to be the wave number. Defining the respective eigenvector as

(+)
’ , 28
( Vi ) 2%)
(£) 77Z}(ﬂt) \ (%)
xT — T X — xX
( D) ) ( D ) - ( D )

+
, )
— e:sz
< wx+1

)
)
(
(£)
_ TRk ( zkif ) . (29)

42

we have

(+
+)

12



Thus we obtain

i/Jg(ci) etikz
<¢:§i)1 X etik(z+1) |- (30)

By substituting Eq. (30), or ¥ o« e** for the Schrodinger equation

o1 T Ui = EYT (31)
we arrive at
SR Y O} (32)
namely,
E =2cosk. (33)

Thus we obtain the dispersion relation for x # 0 as shown in Fig. 5(a). We
notice that this system has only one channel.

3.1.2 Scattering at x =0

Next, we rewrite the equation at x = 0, Eq. (15), with the three waves, which
are the transmission wave, the incident wave and the reflection wave. As was
shown in Sec. 2.2, the transmission coefficient ¢ is derived from the coefficient
zg in Fig. 3(c) as t = zg".

Consider the situation where the transmission wave ®g is on the right
side (Fig. 3(c)). The wave function v, on both sides can be written in the

form of superposition of the wave functions ¢§f):

) = | etk on the right (z >
P arle*®) + yole ™) on the left (z <

0),
0 (34)

Substituting Eq. (34) for Eq. (15), we have

—ik ik
Tre "+ yLe (E-V -1 1
(i) () (a) e

Equation (35) is a simultaneous equation of xg and yr,. Solving it, we obtain

2e'* — B+,
2isink

(36)

TR —

13



which yields

. 2isink

BE e T (37)

t:xR

In the same way, we can obtain the transmission coefficient ¢’ from zy,. In-
stead of Eq. (34), we have

[ xple”™*) 4+ yple*®)  on the right (z > 0),
[e) = { etk on the left (z < 0), (38)
from which we obtain
2e" — E+V,
= 39
o 2isin k (39)
and hence
2isink
V=g, 1= ————. 40
o 2etk — E + 'V (40)
Finally, the transmission probability is given by
4sin®k
T = [t = ¢ = — (41)

4+ (E-Vo)(E =V —4cosk)
This is shown in Fig. 5(b) for V5 = 0.0,1.0,2.0 and 3.0. The transmission
probability is, of course, T'=1 for V; = 0.
3.2 Ladder lattice

Next, we calculate the transmission coefficient on a ladder lattice shown in
Fig. 6. The Hamiltonian is defined by

H = Z Z (|¢x+1,y><¢x,y|+|¢m7y><¢x+17y|)

z y=A,B
+ ) (B (Caal + [t0,) (W 5])
+ Valto,a)([vo,al + Vi[to,5){|0,5- (42)
From the Schrédinger equation
Hltho,a) = Elto,a),
M Bl 4)

14



[ ) S N A I I B A A R
-2 -1.5 -1 -0.5 0 05 1 15 2

E
(b)

Figure 5: (a) The dispersion relation for z # 0. (b) The energy dependence
of the transmission probability 7" for V5 = 0.0, 1.0, 2.0 and 3.0.
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A A

2 1 0 1 2

Figure 6: A ladder lattice with the potential at (z,y) = (0, A) and (0, B).

we obtain the following relations:

[V1,4) + [-1,4) + [o,B) + Vo|tho,a) = Elto.a),
[1,8) + [¥-1,8) + [Yo.a) + Voltbos) = Elvos). (44)

By adding two trivial conditions

|¢0,A> = |¢0,A>a
|¢0,B> = ’¢O,B>a (45>
we write down the transfer matrix as
Y_1,4 E-Vy —1 -1 0 0,4 0,4
Vo, 4 1 0 0 0 via | _ V1.4
, _ ' =T ' (46
Y_1B -1 0 E-Vg -1 Yo,B | vos (46)
Yo,B 0 0 1 0 V1.8 V1.8

The transfer matrix for x # 0 is given as

w:r—l,A E -1 -1 0 wx,A wm,A
¢$ A 1 0 0 0 w;t—&—l A _ 1/}:1:+1 A
, _ ; =T ’ . (47
Yy_1,B -1 0 F£E -1 (U Vo5 (47)
V2B o 0 1 0 Yet1,B Yey1,B

3.2.1 Dispersion relation for = # 0

In order to obtain the dispersion relation, we diagonalize the transfer matrix
T in Eq. (47). From the argument in Eqs. (23)—(26), the eigenvalues of the

16



transfer matrix 1" appears as complex-conjugate pairs. Hence we can express
the eigenvalues A\ as

etik1
A= { etk (48)
In a way similar to the argument in Eqs. (28)—(30) we obtain
&) ik ko
?/fiﬂ . ik (2+1) ik (a41)
w(ii x ptikiz ) _pFikaa (49)
P ik (a+1) _ ptika(at1)
wa:Jrl,B
By substituting Eq. (49) for the Schrédinger equation
+ + + +
[ a) TS0+ ey = B,
+ + + +
5 s) T D5 + D) = B, (50)
we arrive at
| 2cosk; +1,
b= { 2cosky — 1. (51)

We show the dispersion relation in Fig. 7(a). We notice that the ladder
lattice has two channels. We define the state of the wave number k; as the
channel 1 and that of the number ks as the channel 2.

3.2.2 Scattering at z =0

In the scattering problem in this case, each of the incident, reflection and
transmission waves consists of the two channels. Consequently, we must
consider the following situation (Fig. 8). When the wave Wg of the channel
1 incidents from the left, we have

Uig + Wi +ri2Wo, = 11 PR + 12Por, (52)

where the factor ¢(r) is the transmission (reflection) coefficient and the index
(1j) represents the scattering from the ith channel to the jth channel. In the
same way we obtain the other three relations as follows:
Wor + ro1Win + roaWor, = to1Pir + t220Por,
O+ 7' 11 Pir +'12Por = WL+t Vs,
Do, +1'91P1r +1'02Por = U1 Wir + t'9 Vs, (53)

17
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Figure 7: The dispersion relation for x # 0. The upper line is the channel 1
and the lower line is the channel 2.



L (I)lL (I)IR
I ||ﬂ am 1)

|
hn ||ﬂ hn Iip‘

2L

Figure 8: We represent the state for x < 0 with four waves; the right and
left-going waves of the channel 1 and the channel 2, W g, ¥y, Yor, Vor,, re-
spectively. In the same way, we represent the state for x > 0 with four waves
QiR, Pi1, Por, Por..

hd
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where

» eiklx 6—iklx
ezkzw e—ikgr
Wor _gikaz | Wyr, o —_ethem |0 (z <0), (54)
. 6zk1m e—lklf
b= ( zﬁxé ) h < eikiz | D o —tkiw [
ezkgm e—ikg:c
q)2R X ( _ezk:QJ: ) ) (I)QL X < _e—ikzx ) ) (ZL’ > 0) (55)
We summarize Egs. (52) and (53) to obtain

(41 Vir
-r t \I’QL o \IIQR

( t/ _r/ ) (I)IR - q)lL ’ (56)
(I)QR CI>2L

where

t

tir tig p= (T T2
tor o2 )’ T\ ra1 T2 )
t = ( t th ) ¢ = < TRRAT ) (57)
- / / - / / .
tyy ty )7 Ta1 Ta
In order to calculate the transmission and reflection coefficients correctly,
we normalize the flux of each wave function to unity. Let us first define the

flux in the present case. Consider the waves 1, 4 = €** and ¢, p = €™**. We
define the flux operator in the form

htpost — Yo

Py, = - 5 (58)

which is a discretized version of the momentum operator ?ﬁa%‘ The expecta-

20



tion value of the flux is given by

: wz '[pz
w;,A}?w%A _ ( e—tkz  o—ikz ) 72 M
MY e i w

eikz(gik_efik)

2
etk (eikief’ik)

24

= n(1 1)$nk(i}>::2h$nh (59)

= he™ (1 1)

We put h = 1 hereafter. Thus we can normalize the wave function as

1
V2sin k

so that the flux is unity. We hence re-define the waves in Egs. (54) and (55)
as

wx — eikx 7 (60)

\I] 1 ik1x \IJ 1 6—1k1x
1R — Tﬂk’l( ikuc)? 1L_\/Tnkl<eiklx)?

zk’gac
\DQR = etk )

(-

o= e (SU0L) wso (61)
=
oA

V2sin ko kz

zklx 1 e—zklm
1R ik1x ’ 1L \/m e~ thiz )

zkgx
zkg:c )
—zkgz

7%?@(—{“”)’(xzm' (62)

Let us make a comment here. We notice in Eqs. (61) and (62) the relations

\/2 sin k

g =

v/2sin ]{32
Oy, =

(U1r[Vor) = (¥ip[War) = 0, (63)

(Pir|Por) = (Pir,|Par) = 0. (64)

21



In other words, the channels are orthogonal to each other.
To relate the transfer matrix in Eq. (46) to Eq. (56), we transfer the
transmission wave ®1g on the right to the waves on the left. Thus we have

g = 211rVir + T12rYor + Y11LVin + Y121 VYor, (65)

where the factor z(y) is the incident (reflection) coefficient while the index
(1jK') represents that ¢j is the scattering from the ith channel to the jth
channel and K = L or R. In the same way we have the following relations:

DPop = 22rVir + T2rYor + Y2r1.Vir + Yoor, Wor,
Ui, = 29, Pin + 2o Por, + ¥1r Pk + Yior Por,
Uor, = @ Pin + Thop Por. + Y1 g Pir + Yoor Por, (66)

To relate Egs. (65) and (66) to Eq. (56), we rewrite them in the form:

\41 \41 Vir
Wor, @ y/ Wor, Q) x/ \I[2R

= + : 67
Q1R ( y 0 ®1r x 0 Oy, (67)
Por Por oL,

where
x = ( T11R  T12R ) Ly = ( Y YioL ) :
T21R T22R Y1 Y22L
x = ( T11L  T12L ) 7 y’ _ < Y11r  Y12r ) ’
T211, T22L Yo1.  Y22R
0 0
0 = (00). (68)

From Eq. (67), we obtain

\IflL \IllR

I -y Uor, | (0 X Vor
(—y I > dr | \x 0 QL |7 (69)

(I)QR (I)2L

where

1:(3?). (70)



Equation (69) is followed by

ViR . LTS
Uor _ 0 x I -y Uy,
Dy, N x 0 -y 1 DR
Dy, Do
Wy,
_ Xﬁ1 1 —y, \IJQL
Xt -y I dir
Dor

Uy,

—X‘ly x~ ! o,

- ( X/1 X/—1y/> (I)lR (71)
Dor

Comparing Eq. (71) to Eq. (56), we notice the following relation:

t = x !

t = y! (72)

Thus we need to calculate the inverse of x and x’ in Egs. (65) and (66) to
obtain t and t'.

3.2.3 Solution for £ =0

We now compute the coefficients in Eqs. (65) and (66). We here solve the
problem for £ = 0, V4 # 0 and Vp = 0, for example. From Eq. (51), we
obtain

=8 kgzg for E = 0. (73)

1

1 1
V2 sin ky /9. V3/2
1 1
= =31 for E=0. (74)
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We first consider the situation that the transmission wave ®r, which is the
channel 1, is on the right. From Eqs. (61) and (62) we obtain the wave
function on the both sides by the superposition of the wave function:

$11R€_%ﬂi + yllLe%ﬂi + $12R€_%i + leLegi 21 ‘
34 _ TR + YL + Z19r +2y12L . _ 3iT0 es’
Tre 3+ ynres’ —Tigre 3 — Yore 3’ 21W.
T1R + Y11L — T12R — Y12L es’
V4, -1 -1 0 1
1 1 0 0 0 e
=3 21 0 0 -1 | (™)
0 0 1 0 e

We now use the relations (63) and (64) to calculate the coefficients. By taking
the inner product of Eq. (75) and the complex conjugate of the channel 1,

1/1—1,14 f €$2‘7ﬂi !

1/}0,,4 ol 1 ol 42y 4 2m; 7
Yorn = 31 Jpats —34(6 5t 1 eTs 1), (76)
o,B 1

we can cancel out the components of the channel 2 and obtain the coefficients

of the channel 1, x11gr and yy11,. In fact, by calculating the inner products of
Egs. (75) and (76), we obtain

i ey
TR + 5 YL = T As
; T _2m,;
€3 €3 e 3
— Vv 77
T11R + 9 Y11L 5 TGS (77)

or

_T;
2
2

We thus arrive at
T -1 .
= ™, eﬂi _— —Qli
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In the same way, by calculating the inner product of Eq. (75) and the complex
conjugate of the channel 2 (ks = 7/3),

Y14 ! et '
Yoa | _ o1 1 Lol oam L
v =31 e =37 (ef3’ 1 —eF3' 1),  (80)
~1,B -
Yo,B -1
we obtain

1< T12R Vi [ es’
2 - —— i .
( S 1 ) ( o s oy

We arrive at

_ —£¢VA< L ) (82)

We next consider the situation where the transmission wave ®9r, which
is the channel 2, is on the right. From Egs. (61) and (62) we obtain the wave
function on the both sides by the superposition of the wave function:

_2m,; 27, _z; T
T21RE 3 + Y2116 3 + XToor€ 3+ Yoor€3 1
.
=
34 TR T Y211 + T22r + Y221, _3ir es 33
—27 2 _m T = 0 1 ( )
T21R€ 3"+ Y2163 — Taor€ 37 — Y21,€3 -1
=2
ZT21R + Y21L — T22R — Y22L —es

We obtain the following relations by calculating the inner products of Eq. (83)
and Egs. (76) and (80):

1 e_zgi T21R 7 e %
e8! 1 Y21L T4\ e T )
2
1 ehi x 1 Va efi
< e 5i i ) < yQZS ) - ( 67%1‘ > - I ef%i . (84>
e 2t 22 5 -
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We arrive at
() = =m(4):
Y21L 6
T22R 1 \/g
— — V 85
() = (o) 5w () )
Equations (79), (83) and (85) yield

_ Tur Tir \ [ 1— %giVA —*/?giVA (86
* = Tolr Tor ) V3 1— Y3V, ’ )
6 VA 6 VA

from which we finally obtain
lin tio —1
t = =X
( tor loo )

1 _ V3, V3,
_ iV 1 \/§§ 1Va 6 \Z/‘g/A ) (87)
1 — \/?3 TZVA 1— TZVA

In the same way, we obtain the transmission coefficient t’ from the right side
to the left side by assuming the transmission wave on the left. We show
Zi,j |t:;|? in Fig. 9 for V4 = 0.0,1.0,2.0, 3.0 with V = 0.0.

3.3 Chain connected to ladder
3.3.1 Virtual-site method

Now we consider a problem where the channel numbers are different on the
left and on the right. We should now pay attention to two points. One is
the normalization of the flux. The eigenstates on the both sides differ when
the channel number of the right side is one and the left are two. We need to
normalize the flux to calculate the transmission coefficient correctly. We use
the procedure similar to the one in Sec. 3.2. The other point is the difference
of the matrix dimension. The transfer matrix 7" is not a square matrix when
the channel number of the right side is one and the left are two. We cannot
obtain the coefficients in the same way as above.

We here propose the virtual-site method, by which we can compute the
coefficients in a much similar way. Tamura and Tsukada previously proposed
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0.5+

Figure 9: The energy dependence of the transmission probability 7" for V4 =
0.0,1.0,2.0,3.0 with Vg = 0.0.

the conditioned transfer-matrix method [4]. An advantage of our new method
is that we can use the same transfer matrix as before.

We consider the situation that the channel number of the right side is one
and the left are two (Fig. 10(a)). We can write down the following transfer
matrix Ty at x = 0 for the tight-binding model:

Y_1,4 E -1 -1

0,4 Yo,A
1 0 0 ’ ’
'lfOiAB - -1 0 E ¢1,A - TO wl,A (88>
w;] ’B 0 0 1 wo,B woyB

We notice that the transfer matrix 7y is not a square matrix. We hence
introduce virtual sites (Fig. 10(b)). That is, we temporarily add sites (z, B)
for x > 1, and later make the wave amplitudes on these sites zero. Taking
account of the virtual sites, we write the transfer matrix similar to Eq. (46)
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Figure 10: (a) The lattice where a chain is connected to a ladder. (b) The
channel number of the right side is one and the left are two. (¢) The open
circles indicate the virtual sites at (z, B) for x > 0.

as
V_1.4 E-Vy -1 —1 0 o, A
Yo, _ 1 0 0 0 V1,4
Y_1B —1 0 E-Vp —1 Yo,B
Yo,B 0 0 1 0 V1B
o, 4
P14
= T ’ . &9
°| o (89)
0

Thus we obtain a square transfer matrix 7y. We calculate the coefficients in
the same way as in Sec. 3.2.

3.3.2 Comparison with a previous method

We here show that our new method is mathematically equivalent to a pre-
vious method by Tamura and Tsukada [4], called the conditioned transfer-
matrix method. We emphasize that their method is numerically less accurate
and time-consuming since it involves the numerical matrix inversion.
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Let us first briefly review the conditioned transfer-matrix method. Tamura
and Tsukada used the generalized inverse matrix of the rectangular trans-
fer matrix Ty in Eq. (88). The generalized inverse (or “pseudo-inverse” as
Tamura and Tsukada called it) of the rectangular matrix Tg is defined by

-1 ) gt
Ty = (T0T0> Ty, (90)
which satisfies
T To=1 but TyT,*' # 1 (91)
We can hence rewrite Eq. (88) as follows:
Yo, Vo1
b | =Tt ] (%)
Yo.B V-
’ Yo,

We then need the condition that Eq. (88) is derived from Eq. (92) again by
multiplying 7y on the both sides. The condition reads

Y_1,4 Y_1.4
0,4 1| %oa

' = TyT, ’ ) 93
V1B 070 V1B (93)
Yo,B Yo,B

Note that this not an identity. On the contrary, this gives an equation
involving ©_1 4, %04, %1, and g . ~

Tamura and Tsukada obtain an expanded square transfer matrix 7T by
adding a condition in Eq. (93) to Eq. (92). The condition from our method,
on the other hand, is to substitue zero for the virtual site. We show that
these two conditions are equivalent for V4 = Vp = 0, for example. The
generalized inverse of Ty is given by

-1
Tl = (TJT0> T

-1

E 1 -1 0 ?_01_01 E 1 -1 0
— -10 0 0 1 0 E -10 0 0
-1 0 E 1 0 o0 1 -1 0 E 1
1 0 E?+1 -1 E
- — | -E?2—2 E} —2F E?*-2 |. (94)
E? 42
0 E E 2
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Equation (94) satisfies the relation (91). We obtain from Eq. (93) the fol-
lowing condition:

0 2F

V1.4 0 0 1,4
— 1 0O -1 -1 FE Yo.4
— (TwT 1 I wU,A _ o,
0= (0T, ) Yo1,B E24+21 0 -1 -1 F Y 1B
Yo.B 0 F E —FE? Yo.B
One of the equations give
Yo,a + -1, — Etop = 0. (96)

This is the condition for the wave function on the ladder to survive on the
chain. The wave function that does not satisfy this condition cannot transmit
into the chain.

On the other hand, we obtain the following equation from the third row

of Eq. (89):

Y_1,8 = —Yoa+ Eop — U1 B, (97)

or

Yo,a + -1, — Evgp = —1 . (98)

By substituting zero for the virtual site ¢ p in Eq. (98), we notice that
the condition of the virtual-site method is equivalent to the condition (97)
of the conditioned transfer-matrix method. We expect that the numerical
calculation becomes extremely precise in the former method because the
matrix inversion in the latter method is not necessary.

3.3.3 Solution for £ =0

We here solve the problem for £ = 0 and V4 = Vg = 0, for example. The
lattice is a chain for > 0 and a ladder for x < 0. The eigenvectors for x > 0
are given by Eq. (30) with & = 7/2 because of Eq. (33). We normalize the
flux of the wave function in the same way as Eq. (60), obtaining

1 , 1 . i
d — A = ezkx — e2® — 657,:1:’
" Vot Vsin k \/sinm/2
1 , 1 . -
q)L — —e—zkr o 6—5113’ (99)

= —6_5
Vsink \/sinm/2

(95)



with
Y.5 = 0. (x >0) (100)

Next, the eigenvectors for z < 0 are given by Eq. (61) with Eq. (74):
1 1 E
ViR = 34( %ix)a ‘I’1L=3_4( 2”@x)?
€3 es

Tix — iz
( 6311’1} ) ) \IIQL = 3% ( ‘ ,3243@ ) (10]‘>
—e3 —e 3

We now consider the situation that the transmission wave ® is on the
right:

=

\IIQR:?)

Or = 21 ViR + Y1 Var + 22Wor + 12 War,, (102)

from which we obtain

T1e" 5 4 ye3 4 zoe” 5 4 yoe’ 0 -1 -1 0 1

3i . xr1 + %—i‘ ) +7y12. . _ 1 0 0 0 €2 (103)
T1€ 31+yle3’—x2@ :al—y2€3Z -1 0 0 -1 1
T+ Y — T2 — Y2 0 0 1 0 0

By calculating the inner products of Eq. (103) and Eqs. (76) and (80), we
have

I 1 12 + 43 — 4/3i
i 8.31 \ 12—4vV3+4V3i )’

(Z ) - 8.133 ( —441/% ) (104)

The factors x and y represent the incident and the reflection amplitudes.
Thus the flux amplitudes of the incident waves are

>

[z = —=. (105)

31



The transmission probability is given by

1
|21]2 + |22

1 4
= = = 0.517327 - - (106)

1 6
Z—l—m 6—|—\/§

T =

We followed the same procedure as above for general £/ and obtain Fig. 11.
We notice that the wave function of the wave number ky does not transmit
to the right side.

4 Application to carbon-based materials

We now show how we can apply the virtual-site method to carbon-based
materials. Carbon-based materials have the hexagonal lattice structure. We
here demonstrate the way of adding virtual sites to a graphite flake. Consider
the situation where there are seven hexagons (Fig. 12(a)). The figures 1, 2
and 3 represent the distance from the center. There are six sites of the
number 1 and the number 2, while twelve sites of the number 3. When we
transfer waves from inside to outside, the number of the channels increase
by six. Hence we add six virtual sites of the number 1 and six of the number
2, as is shown in Fig. 12(b). We thus obtain the situation where the channel
number is uniform by superimposing Fig. 12(b) over Fig. 12(a).

5 Summary

In the present thesis, we introduced a new method with virtual sites in order
to calculate the conductance of carbon-based materials numerically. In Sec. 2
we introduced the Landauer formula, the scattering matrix and the transfer
matrix, which are the basic concepts for obtaining the conductance. In Sec. 3
we show three tutorial examples: a chain lattice, a ladder lattice and a chain
connected to ladder. In Sec. 3.1 the channel number was one on the both
sides. The conductance decreases as we increase the impurity potential. In
Sec. 3.2, the sum of the transmission coefficients is greater than unity since
the channel number is two for —1 < E < 1. In Sec. 3.3, we use the virtual-
site method for the case where the channel number is not uniform. We stress
that we can obtain the transmission coefficients in the same way as Secs. 3.1
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Figure 11: The energy dependence of the transmission probability 7" of the
system in Fig. 10(a) with V4 = Vp = 0.0.
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(&) (b)

Figure 12: (a) The graphite flake of seven hexagons. The figures 1, 2 and 3
represent the distance from the center. (b) Virtual sites added to the flake
in (a).

and 3.2. Finally in Sec. 4 we showed how to apply the virtual-site method to
carbon-based materials. The channel number of carbon-based materials can
be non-uniform. We can transform by the virtual-site method the problem
to the case of a uniform channel number.
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