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We propose a new definition of the tunneling time. The tunneling time is the time that it takes for a
particle to pass through a tunneling barrier. Various definitions of the tunneling time have been proposed [1],
including the ones that use a wave packet [2], the Feynman path integral [3] and an oscillatory barrier [4].
However, it is controversial which definition is the most appropriate. We here define the tunneling time using the
lifetime of resonant states. We present results obtained for several types of potential.

We first search resonant states in a triangular potential, which may be comparable to experimental
situations. We find resonant states, some of which are located inside the potential. We propose to define the
tunneling time as the reciprocal of the imaginary part of the resonant eigenvalue. We note that the resonant states
inside the potential do not move when the potential width and height are changed, while keeping the potential
slope unchanged. We also show resonant states in other potentials. For a potential with a flat top, we find resonant
states inside the potential, similar to the case of the triangular potential. The resonant states inside the potential do
not move at all when the potential width is changed. We also find resonant states inside a semi-infinite potential,
whereas there are not any states located above the potential.

We calculated the energy dependence of the transmission probability as well. A peak appears in the
transmission probability owing to a resonant state. We discuss the relation between the position of resonant states

and the peak in the transmission probability.
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Abstract

We propose a new definition of the tunneling time using the lifetime
of resonance states. For several types of potentials, we find resonance
states, some of which are located inside the potential. We show the
tunneling time calculated from the lifetime of these states. We also
show the energy dependence of the transmission probability.
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1 Introduction

The tunneling time is the time that it takes for a particle to pass through
a tunneling barrier. Various definitions of the tunneling time have been
proposed [1]. However, it is controversial which definition is the most ap-
propriate. One of the definitions, for example, is based on the use of a wave
packet [2]. It measures the time that takes for a transmission wave packet
to come out of the barrier since an incident wave packet comes into it. This
definition of the tunneling time, however, have met the following counterar-
gument [1]. The transmission probability of a wave is generally greater for a
greater wave number. The above definition of the tunneling time hence mea-
sures only the tunneling time of a wave component with the greatest wave
number. Another definition of the tunneling time uses the Feynman path
integral [3], and the Biittiker-Landauer time [4] uses an oscillatory barrier.

In the present thesis, we propose to define the tunneling time using the
lifetime of resonant states. We present our definition of the tunneling time
in Section 2. Since we use the lifetime of resonant states for the definition,
we review in Section 3 a few properties of resonant states. In particular,
we discuss the relation between complex eigenvalues and the momentum
flux in Section 3.1. We show that an eigenvalue is generally complex, if
the momentum in a system is not preserved. In Section 3.2, we discuss
the lifetime of the resonant state by using the time-dependent Schrodinger
equation. We propose to define the tunneling time as the reciprocal of the
imaginary part of the resonant eigenvalue. In Section 3.3, we introduce a
special boundary condition for searching resonant states: only the outgoing
wave exists in the limit |x| — co. We show that using this boundary condition
is equivalent to searching singularities of the scattering matrix.

We present our numerical results in Section 4. We first search resonant
states in a triangular potential. This potential may be comparable to exper-
imental situations. We find resonant states, some of which are located inside
the potential. We also show resonant states in other potentials as well as the
energy-dependence of the transmission probability. A peak appears in the
transmission probability owing to a resonant state. We discuss the relation
between the position of resonant states and the peak in the transmission
probability.



2 The tunneling time defined by using the
lifetime of resonant states

In the present section, we propose a new definition of the tunneling time by
using the lifetime of resonant states. Hereafter, we focus on problems in one
dimension.

Consider a resonant state shown in Fig. 1. An electron is trapped in a

e—ikx ¢ itkx

electron

O

Figure 1: A resonant state.

potential for a while and eventually escapes from the potential. This is the
resonant scattering. The lifetime of the resonant state is the time that it
takes for the trapped electron to go out of the potential.

Now as a gedanken experiment, suppose that we raise the bottom of the
potential as shown in Fig. 2. We can regard the rectangular potential as
a limit of the trapping potential. Resonant states that are trapped in the
potential may survive in the rectangular potential. The lifetime 7 of the
possibly surviving resonant state is the time it takes for a particle virtually
“trapped” inside the rectangular potential to go out of the potential. Thus
we propose to define the tunneling time as twice the resonant lifetime; 7 to
get into the potential and further 7 to get out of it.

o =\,

Figure 2: A rectangular potential as a limit of a trapping potential.



Figure 3: A segment of the length L.

3 The theoretical explanation

Since we use the resonant state for the definition of the tunneling time, we
here review a few theoretical aspects of the complex eigenvalue of the resonant
state.

3.1 Complex eigenvalues and the momentum flux

In the present subsection, we discuss the relation between complex eigenval-
ues and the momentum flux [5]. We show that the eigenvalues of a system
where the momentum is not preserved can be generally complex.

Let us consider a Hamiltonian in one dimension,

H=K-+V, (1)

where the kinetic energy K is given by

2 2 2
P h® 0
K== 2
2m 2m 0x?’ 2)
and the (real) potential
V=V (3)

is reasonably concentrated around the origin. Let us define the expectation
value of the Hamiltonian as

L)2

WH), = [ o) (). (4)
Note that we define the expectation value on a segment of length L as shown
in Fig. 3. We obtain the usual definition of the expectation value in the
limit L — oo. The reason of the unusual definition (4) will be self-evident



below. We show now that the imaginary part of the expectation value of the
Hamiltonian exists. The complex conjugate of Eq. (4) is

(i), = [ vapmeva)as o)

Subtracting Eq. (5) from Eq. (4), we have

2im(Y[H[Y), = (WIH[Y), — (WIH|Y) )" = (WIK[), — (IK),)" (6)

Note that the potential term vanishes because it is Hermitian. The right-
hand side of Eq. (6) is transformed by partial integration as follows:

(WIK[Y), = (WK ) L) (7)

& L0 AR R T I B,
- et 2 <x>]_m+2m [ obte) s
12 o M w2 29 o .
Fams |90 0@ ]m e I 2w vty
h
= g @) pule) + Y@ ()1,
h
= ——Re ([p@)pe(@),) . (8)
where we used 59
pzz%. (9)

Thus we have

Ay [H]g), =~ Re (o), — WP 1a).  (10)

where
(WDlple) oo = V(L/2)"PY(L/2), (11)

is the momentum flux at z = L/2, and (¢|p[¢),__; » is defined likewise. The
right-hand side of Eq. (10) means the total momentum flux which goes out
of the segment of length L. Thus eigenvalues can be generally complex when
the momentum is not conserved as in the situation in Fig. 1. In fact, we
define resonant states using the boundary condition where only the outgoing
waves exist in the limit |z| — oo, as we see below.



3.2 The lifetime of resonant states

In the present subsection, we discuss the relation between the lifetime 7
of resonant states and the imaginary part I' of the corresponding complex
eigenvalues

r
E=E, i, (12)

namely the relation
(13)

'1_\ St

T

We first consider the time-dependent Schrodinger equation
in L w1 = Py V(z) b W(z, 1) (14)
ot 1 2m T
We assume a solution of the form of the variable separation:

U(x,t) = ¢(x)x (). (15)

This gives us a set of equations

() = Ex(t), (16)
(L v@)ot - Bt (17)

The solution of Eq. (16) is given by

St

x(t) = Ce wFt (18)
where C'is a constant. By substituting Eq. (18) for x(¢) in Eq. (15), we have

Flap(x). (19)

Now, suppose that the stationary Schrodinger equation (17) has a complex
eigenvalue

i

U(z,t) =Ce n

r

E=F, — z§ (20)

Then we have ' .
U(x,t) = Ce nErmily(z), (21)
Integrating the square modulus of Eq. (21) over the segment in Fig. 3, we

arrive at
L/2 2 2, —L¢

[, 1 P de = |CPeF ) (22)



5

Figure 4: The lifetime of a resonant state.

We can see that the existence probability of a particle in the segment decays
exponentially (Fig. 4). The lifetime of the decay is given by 7 = h/I". This
is the time it takes for the particle to go out of the trapped potential.

According to the argument in the previous section, the decay rate I is
related to the momentum flux as

h
['= -2 lim Im([H|¢)), = — lim Re ((Wlple)g—p o — (WP p))
(23)
This is indeed a very natural consequence; the decay rate of the existence
probability in the segment is proportional to the momentum flux going out
of the segment.

3.3 The boundary condition for resonant states

In the present subsection, we discuss the boundary condition for searching
resonant states [5].

The resonant state is generally defined as a point in the complex energy
plane where the elements of the scattering matrix (or in short, the S matrix)
is divergent:

| - (21)



Co ‘w\

ikx

Scatterer
Figure 5: A scattering problem, where Ae?** is the incident wave, Be*® is
the transmission wave, and Ce™* is the reflection wave.

where R(E) and T'(E) are the reflection and transmission coefficients, re-
spectively. Instead of the S matrix, however, we use the boundary condition
where only the outgoing waves exist in the limit |z] — oo, in order to search
resonant states. We show here that the latter is equivalent to the former.
Thus we can search resonant states more easily.

Let us consider a scattering problem as shown in Fig. 5. We assume that
an incident wave e’** with the coefficient A(E) comes in to a scatterer, where

2mFE
h

[

k

(25)

After the incident wave is scattered, it is separated into a transmission wave
e** with the coefficient B(E) and a reflection wave e~ with the coefficient
C(FE). In this case, the S matrix is given by

C(E) B(E)
s=| Blg o) 26
AB) AE)

The location of the resonant state, or the divergence of the matrix elements
is hence given by [6]
A(E) =0. (27)

The condition A(E) = 0 means that only the outgoing waves exist in Fig. 5.
Thus we can use the boundary condition Eq. (27) instead of seeking the
divergence of the S matrix in order to search resonant states.

It is now obvious from the arguments in the preceding sections that the
resonant states have complex eigenvalues. Since the incoming wave is lacking

10



as in Eq. (27), the momentum flux is going out of the scatterer. Equation
(23) gives the imaginary part of the resonant eigenvalues as

Rk, )
[ = —2ImE = W(|B| + O} > 0. (28)

(Note that the coefficients B and C have the dimensionality of v/k.)

11



4 The results

We here present resonant states obtained for several types of potential.

4.1 A triangular potential

We first show resonant states and their lifetimes in a triangular potential
shown in Fig. 6, which may be comparable to an experimental situation of
the field emission as in Fig. 7. By applying a strong electric field to the tip
of a material such as metals and semiconductors, the triangular potential
emerges, as shown in Fig. 7(b). An electron near the Fermi surface is even-
tually emitted out of the potential because of the tunneling effect. We may
be able to measure experimentally the time At it takes for the electron to
pass through the potential.

V()

Ae—ik’x Belkx

Figure 6: A triangular potential. The potential parameters a, a;, Vy and V}
are all positive.

Let us solve the Schrodinger equation

n? 02
{—maszFV(x)}Wx) = Ey(z), (29)
where the potential is given by
-V (x < —ay)
Vig) =S 22+ Vy (—a; <z <0) (30)
0 (x > 0)
with Vit Vi
a; = 0‘—2 La. (31)

12



— __ef
conduction
At band
(b)
Figure 7: An experiment situation of the field emission.
(i) In the region z < —ay, Eq. (29) is reduced to
n o
{—MW—W}¢1($>:E¢1@)' (32)
The solution is given by
Y1(z) = Be”* 7, (33)
where (3 is a constant and
, 2m(E + 'V,
o T o0

Note that we here used the boundary condition of the outgoing waves
only in order to search resonant states. Hence in this region, we have
only, the left-going wave in Eq. (33).

In the region —a; < x < 0, we transform the Schrodinger equation in
the form

P0ol) _ flapune), (39
where
f0) = =23 (B-V(@)

13



(i)

with

f(x) = alz+X), (37)
2mVq
= h2a°, (38)
a
X = — —F. 39
T (39)
Putting )
z=as3(r+ X), (40)
we arrive at 54 ()
2\ T
5.2 = 2o (). (41)
Two particular solutions of Eq. (41) are given by the Airy functions
1 oo 3
Ai(z) = ;/0 COS(g + zt)dt, (42)
1 oo 3 t3
Bi(z) = —/ {6_3+Zt + sin(— + Zt)} . (43)
T Jo 3

The general solution 1,(z) in this region is a superposition of the two
Airy functions:
Ya(x) = yAi + 0B, (44)

where v and ¢ are constants.

In the region x > 0, Eq. (29) is

h? 0%1s(x)
—— =F ) 4
2m Oz Ys(a) (45)
The solution is
Ps(z) = ce kT (46)
where € is a constant and
2mE
p= Y (47)

h

We have only the right-going wave because of the boundary condition
for resonant states.

14



Now we fix the constants 3, v, ¢ and € with the boundary conditions at

x = —a; and z = 0. The boundary conditions at x = —a; are

Pi(—a1) = Yo(—ar),
Ui(—a1) = ¥y(—ar),

or

5€ik ar ”)/Aila::fal + 5B’i|x=fa17
—ik B = yA|i——a, + 0B, |ee—a, .

Similarly, the boundary conditions at x = 0 are

¢2(0) = ¢3(0)a
¢2(0> = 1/13(0)7

or

YAilo=0 + 0Bila=0 = ¢,
VAiloo + 0Bilomo = ike.

Equations (50), (51), (54) and (55) are summarized in the form

M,y =

=2
o O O O

where

eiklal _Ai|z:—a1 _Bi|m:—a1 O

M, = ikleik/al A;|$:—a1 B; |w:—a1 0
0 Af|x:0 B§|z:0 -1
0 Ai|x:0 BZ ’:1::0 —ik

The resonant eigenvalues are the solutions of the the equation

det M1 =0.

(58)

We plot in Figs. 8-10(a) log|det M| as a function of £ = E, 41 E; for several
parameter sets. The dimples in the plots indicate the resonant eigenvalues.

The numerical estimates of the eigenvalues are shown in Tables 1-3.

we put h = 1.

15
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Figure 8: (a) The dimples indicate the positions of resonant states in the
complex energy plane. The potential parameters are a = 2, V5 = 2 and V; =
20. (b) The top view of (a). (c¢) The energy dependence of the transmission
probability.

16
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Figure 9: (a) The dimples indicate the positions of resonant states in the
complex energy plane. The potential parameters are a = 8, V) = 2 and V} =
30. (b) The top view of (a). (c) The energy dependence of the transmission
probability.
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2 4 6 8 o E
()

Figure 10: (a) The dimples indicate the positions of resonant states in the
complex energy plane. The potential parameters are a = 2, Vj =4 and V; =
20. (b) The top view of (a). (c¢) The energy dependence of the transmission
probability.
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A\

o pPpwmAa

—22 -2

20

Figure 11: The resonant states inside the triangular potential. The potential
parameters are a = 2, Vo = 2 and V] = 20. The green lines A—C indicate the
resonant states in the region 0 < E, < V. The eigenvalues of the resonant
states A—C correspond to the ones in Table 1.

eigenvalues lifetime
0.0123204 — 0.725906¢ 0.688794
0.668691 — 0.719661¢  0.694771
1.31052 — 0.813337¢ 0.614752
2.05178 — 0.963382i 0.519005
2.87329 — 1.10478: 0.452579

mHo QW

Table 1: Eigenvalues in the triangular potential in Fig. 8. The capital letters
A-E correspond to the ones in Fig. 8 (b).

We find resonant states, some of which are located inside the potentials
as indicated in Fig. 11; for example, in Fig. 8, three resonant states (A, B and
C) in the region 0 < E, < V. (Note that we find resonant states not only
as shown in Figs. 8-10 but also in the region —V; < E,. < 0.) We propose to
define the tunneling time as twice the lifetimes of the resonant states A-C
shown in Table 1. The lifetime of the resonant state B is the longest of all
the resonant states.

We plot in Fig. 12 the position of resonant states shifting the potential
parameters a and Vj, while keeping the potential slope V;/a unchanged. We
note that the resonant states inside the potential do not move as shown in
Fig. 12 (b), when the potential parameters a and Vj are changed.

We also calculate the transmission probability as follows. We first assume

19



resonant states

the transmission probability

eigenvalues lifetime peak position  peak height
A | 0.110814 — 0.0337756¢ 14.8036 | A | 0.12189 1.027 x 107°
B | 0.253774 — 0.0336957: 14.8387 || B | 0.262845 7.11 x 1076
C | 0.396397 — 0.0336166: 14.8736 || C | 0.404652 3.8794 x 107°
D | 0.538684 — 0.0335389: 14.9081 | D | 0.546252 0.000184972
E | 0.680638 — 0.033463:  14.9419 | E | 0.686866 0.000792
F | 0.822255 — 0.0334002; 14.97 F | 0.828707 0.00307558
G | 0.963523 — 0.03337147 14.9829 | G | 0.969458 0.0108186
H | 1.10442 — 0.0334517:  14.9469 | H | 1.10984 0.0341876
I | 1.24494 — 0.033827: 14.7811 || T | 1.24991 0.0950405
J | 1.38517 — 0.0348767:  14.3729 || J | 1.38966 0.224078
K | 1.52552 — 0.0371568:  13.4565 | K | 1.52963 0.429549
L | 1.66682 — 0.0411267:  12.1576 | L | 1.67068 0.658974
M | 1.81011 — 0.0467853:  10.6871 || M | 1.8138 0.837398
N | 1.95614 — 0.0536976:  9.3114 | N | 1.95972 0.939643

Table 2: Comparison between eigenvalues in the triangular potential and the
peak positions of the transmission probability in Fig. 9. The capital letters
A-N correspond to the ones in Fig. 9.

resonant states

the transmission probability

eigenvalues lifetime peak position peak height
A | 0.367546 — 0.479006: 1.04383 | A — —
B | 1.72488 — 0.489104¢:  1.02228 | B | 1.91688 0.26
C | 3.09429 — 0.58705: 0.851716 | C | 3.25509 0.655869
D | 4.60643 — 0.752364 0.664575 | D | 4.71808 0.872763
E | 6.30015 —0.919728  0.543639 | E | 6.38363 0.947941
F | 8.16525 — 1.07157¢ 0.466605 | F | 8.23269 0.973696

Table 3: Comparison between eigenvalues in the triangular potential and the
peak positions of the transmission probability in Fig. 10. The capital letters
A-F correspond to the ones in Fig. 10.

20
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Figure 12: (a) The triangular potential with the potential parameters a and
Vp shifted and the potential slope V;/a = 1 kept. (b) The position of resonant
states for the potential (a). The potential height is changed as Vy = 2, 3,4, 6
and 8.
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the solution of the form

geik/:p_{_pefik/a: (ZE < —&1),
Y(z) =4 oA +uB; (—a; <2 <0), (59)
we'k? (x> 0),

where &, p, o, v and w are coefficients. We next solve the Schrodinger
equation. The transmission probability is defined as

¢l
T=—, (60)
‘]i‘

where j; and j; are the transmission flux and the incident flux, respectively:

h

J = Rewph = 5 (07— VYY), (61)

Thus we have

hE |
.i = — ) 2
i = g (62)

, Lk
il = T, (63)

which is followed by
k|wf?

= 64

We show the results in Figs. 8-10(c). Incidentally, the energy E is real
in computing the transmission probability, so that the momentum flux is
automatically conserved:

KEP? =K' |pl + klwl”. (65)

The transmission probability in Fig. 8 lacks any peaks, probably because the
imaginary parts of the eigenvalues are comparatively large. In Figs. 9 and
10, on the other hand, the transmission probability exhibits several peaks,
which is close to the real part of the resonant states as shown in Tables 2
and 3. We discuss in Appendix A the relation between the position of the
resonant state and the peak.

4.2 A potential with a flat top

We here show resonant states and its lifetime in a potential shown in Fig. 13,
taking more account of experimental situations. The potential for the actual

22



Figure 13: A flat-top potential. The potential parameters a, a;, as, Vo and
V1 are all positive.

field emission (Fig. 7) may be of a shape where the top of the triangular
potential (Fig. 6) is flattened out.

Similarly to the case of the triangular potential, we consider the solution
of the Schrodinger equation

n? 02
{_zmaxz + V(x)} U(z) = EY(z), (66)
where the potential is given by
-V (x < —ay)
You + V5 (—a; <2<0)
V(ZL’) - ‘/0 (0 <z S a2) ) (67)
0 (x > ay)
with VitV
a; = OVO La. (68)
(i) In the region z < —ay, Eq. (66) is reduced to
n o
{_Zm[?x?_vl}wl(x):Ewl(x)' (69)
The solution is .
Yi(z) = Ce ™, (70)
where ( is a constant and
, 2m(E + 'V,
AT "



Note that we here used the boundary condition of the outgoing waves
only, in order to search resonant states. Hence in this region, we have
only the left-going wave in Eq. (70).

(ii) In the region —a; < z < 0, the general solution is given by the Airy
functions as

where 7 and 0 are constants.

(iii) In the region 0 < z < ay, Eq. (66) is

B2 02
<—max2 -+ Vo) ¢3($) = E¢3($) (73)
0?3(x) B 2m(Vo — F)
w2 = gz ¥s@) (74)

The solution is
Ps(x) = Ne™ + pe ", (75)

where A and p are constants and

am(Ve — B)
S (76)

(iv) In the region = > ag, Eq. (66) is

h? 0%1y(x)
B— =F )
2m  Ox? V(@) (77)
The solution is
y(x) = ve ke (78)
where v is a coefficient and
2mE
= Y2 (79)

We have only the right-going wave due to the boundary condition for
resonant states.

Now we fix the constants (, n, 8, A, 4 and v with the boundary conditions

at * = —ay, r = 0 and x = ay. The boundary conditions at x = —a, are
vi(—a1) = Yo(—a), (80)
Yi(—a1) = y(—ar), (81)



or

Ceik/al = NAile=—a, + 0Bi|o=—a,,
LY, Y W) : 4
Similarly, the boundary conditions at x = 0 are
¥2(0) ¥3(0),
¥a(0) = ¥3(0),
or
NAile=0 + 0 Bilz=o A+
WA;\xzo - GB;|IZO = K\ — K.

The boundary conditions at x = as are

V3(az) = Pa(az),
by(az) = ¥y(az),

/\emag + ue—nag — Ve’LkCLQ’

Kaz

RAE™2 — ke "2 = jkyettoz,

(90)
(91)

Equations (82), (83), (86), (87), (90) and (91) are summarized in the form

of
¢ 0
n 0
0 0
Mty 1= o |
7 0
v 0
where
eik/al _Ai‘mz—al _Bilm:—al 0 0
ik'e® Al w0, Bile—a, 0 0
M, = 0 A;|x:0 B§|x:o -1 —1
0 Ai |l"=0 Bi |x:0 —K K
O 0 0 efa2 e~ a2
0 0 0 Ket2  —geRe2

o O O O

_eikag

—iketka2

The resonant eigenvalues are the solutions of the the equation

det M2 =0.

(93)

(94)

We show eigenvalues thus obtained for the flat-top potential in Fig. 14 and
Table 4. We plot in Fig. 14 (a) log | det M| as a function of F = E, + i E;.
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Figure 14: (a) The dimples indicate the positions of resonant states in the
complex energy plane. The potential parameters are a = 2, ay = 4, Vj = 2
and V7 = 20. (b) The top view of (a). (c) The energy dependence of the
transmission probability.
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= v

Figure 15: The resonant states inside the flat-top potential. The potential
parameters are a = 2, as = 4, Vo = 2 and V; = 20. The green lines A—C
indicate the resonant states in the region 0 < E, < V5. The eigenvalues of
the resonant states A—C correspond to the ones in Table 4.

eigenvalues T
0.0153786 — 0.734706¢  0.680544
0.71218 — 0.727131¢ 0.687634
1.40054 — 0.7144867 0.699804
2.10592 — 0.6782477 0.737195
2.28302 — 0.2796771 1.78778
2.80367 — 0.717486¢ 0.696878

HEHOoOQW =

Table 4: Eigenvalues in the flat-top potential. The capital letters A-F cor-
respond to the ones in Fig. 14 (b).

We find resonant states, some of which are located inside the potential,
similar to the case of the triangular potential as indicated in Fig. 15. We
find in Fig. 14, three resonant states (A, B and C) in the region 0 < FE, < V.
We propose to define the tunneling time as twice the lifetimes of the resonant
states A—C shown in Table 4.

We find in Fig. 16 (b) that some resonant states in the region 0 < E, <V,
do not change when the potential width as is changed as ay = 2,3,4,6 and 8
as shown in Fig. 16 (a), while keeping the other parameters unchanged. In
contrast, the resonant states in the region E, > Vj depend on the parameters
significantly.

We also plot the resonant states (Fig. 17 (b)), shifting the potential pa-
rameters a and Vj as shown in Fig. 17 (a), while the potential slope Vy/a = 1
and the width ay = 2 kept. We find that resonant states inside the poten-
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tial do not move. As the real part of the eigenvalue increases, however, the
eigenvalues get scattered.

We find a “floating” resonant state E in Fig. 14(b) and a peak in Fig. 14(c).
The imaginary part of the resonant state E is particularly smaller than the
one of the other resonant states as shown in Table 4. We consider that the
resonant state E contributes to the peak in Fig. 14(c). The peak of the
transmission probability is

(95)

E = 2.46471,
T(E) = 0.955409.
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Figure 16: (a) The flat-top potential with the potential width as shifted. (b)
The position of resonant states for the potential (a). The potential width is
changed as a, = 2,3,4,6 and 8.
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Figure 17: (a) The flat-top potential with the potential parameters a and V;
shifted, while the potential slope Vy/a = 1 and the width as = 2 kept. (b)
The position of resonant states for the potential (a). The potential height is
changed as Vy = 2,3,4,6 and 8.
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4.3 A semi-infinite triangular potential

We here show resonant states and its lifetime in a potential shown in Fig. 18.
In the region x < 0, the potential continues infinitely.

2 V(x)

Yo Ae™

A4

Figure 18: A semi-infinite triangular potential. The potential parameters a
and Vj are all positive.

Let us solve the Schrodinger equation

{—zmaszFV(x)}Wx) = By (), (96)
where the potential is given by

CfRr+Vy (2<0)
V(x)—{ 0 @sd- (97)

(i) In the region = < 0, we transform the way to solve the Schrodinger
equation in the same way as in (ii) of Section 4.1. The general solution
11(x) in this region is a superposition of the two Airy functions:

Note that we here used the boundary condition of the outgoing waves
only, in order to search resonant states. The asymptotic forms of the
Airy functions in x — —oo are given by

3 (99)

T

4

™

— 1
+ 1} (100)

Sy
X
2



where

z = a%(xth),
a

= a-2E
T

=
[l
—~
&
~
—~
|
N
~—
|
=
Q)
.
~=
wln
T
&
w
~
¥
+
SE
-

which is a left-going wave only.
In the region x > 0, Eq. (96) is
12 0%s(2)

Com 02?2

The solution is '
() = Pe ™,
where 3 is a constant and

2mE

k
h

(101)
(102)

(103)

(104)

(105)

(106)

We have only the right-going wave because of the boundary condition

for resonant states.

Now we fix the constants 3 with the boundary conditions at z = 0. The
boundary conditions at x = 0 are

or

Ailp=0 + Bilz=o = p,
Allg—o + Bilomo = ikf3.

By substituting Eq. (109) for 5 in Eq. (110), we have

M; = B;|z=0 + kA;|p=0 + 1 (A;|z:0 — kBi|z:0) =0.

(107)
(108)

(109)
(110)

(111)

We shows eigenvalues thus obtained for the semi-infinite triangular potential
in Fig. 19 and Table 5. We plot in Fig. 19 (a) log M3 as a function of
E =F,.+iFE;. Here we put h = 1.
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Figure 19: (a) The dimples indicate the position of resonant states in the
complex energy plane. The potential parameters are a = 2 and Vj = 2. (b)
The top view of (a).
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Figure 20: The resonant states inside the semi-infinite triangular potential.

The potential parameters are a = 2 and Vj

= 2. The eigenvalues of the

resonant states A—C (green lines) correspond to the ones in Table 5.

eigenvalues

T

A
B
C
D
E
F

0.735064 — 1.26171%
—0.241223 — 2.8479:
—0.988344 — 4.145621
—1.63417 — 5.282¢
—2.21901 — 6.31419:
—2.76136 — 7.271744

0.396288
0.175568
0.120609
0.0946611
0.0791867
0.0687593

Table 5: Eigenvalues in the semi-infinite potential. The capital letters A—F
correspond to the ones in Fig. 19 (b).

We find resonant states, some of which are located inside the potential
as indicated in Fig. 20. We find only one resonant state (the state A) in
the region 0 < E,. < Vj and do not find states in the region E, > V. On
the other hand, an infinite number of the resonant states exist in the region
E, < 0. The lifetime of the resonant state A is the longest of all the resonant
states as shown in Table 5.
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5 Summary

We obtain the resonant states for several potentials, some of which are located
inside the potential. We propose to define the tunneling time as twice the
lifetime of the resonant states. The resonant state with the longest lifetime
in the triangular potential exists in the region 0 < E, < V4. Our results for
the triangular potential may be comparable to field-emission measurements.

We also changed the potential parameters. We stress that the resonant
states inside the potential do not move when we keep the potential slope
constant. For the flat-top potential, the resonant states inside the potential
do not depend on the potential width. Finally, the transmission probability
exhibits several peaks, which is close to the real part of the resonant states.
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A The relation between the position of a res-
onant state and the Lorentz peak

We here discuss the relation between the position of a resonant state and a
peak of the transmission probability.
Suppose that we have a complex eigenvalue

A=a—if. (112)
The transmission probability, on the other hand, is given by

1 2

T(E) | = | (113)
which has a contribution from the eigenvalue A as
1
T(E) —,
|E — (a—if)|
B 1
- (B - a)+if)
1
= E—af 1 (114)
This leads to )
T(a) = 7 (115)

Eq. (115) represents the transmission probability in the real part of the com-
plex eigenvalue (Fig. 21).

=
>

e
)

=

1/
2p° /OK E,

X

X : aresonant state

Figure 21: The position of a resonant state and a peak of the transmission
probability.
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Let us consider the real part of the complex eigenvalue when the trans-
mission probability is a half of Eq. (115):

1 1
282~ (E—a)2+p2 (16)
(E-a) = 3, (117)
E = a+8. (118)

Eq. (118) represents that the imaginary part of a complex eigenvalue (Eq. 112)
corresponds to the half width. Thus the width of the transmission probability
is greater for the greater imaginary part of a complex eigenvalue.
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