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Abstract

To date, many power-law distributions have been found in various
fields of natural and social sciences. In particular, Zipf’s law, the
power-law distribution with the power-law exponent 1, is reported
very frequently. This universality of Zipf’s law, however, has not been
well explained theoretically. Until now, we have only models specific
to each problem.

In the present thesis, we first introduce a simple and generic model
that reproduces Zipf’s law. We can regard this model both as the time
evolution of the population of cities and that of the asset distribution.
We show that our model is very robust against various variations.

Next, we explain theoretically why our model reproduces Zipf’s
law. By considering the time-evolution equation of our model, we
see that the essence of Zipf’s law is an asymmetric random walk in a
logarithmic scale.

Finally, we extend our model by introducing an additional asym-
metry. We show that the extended model reproduces various power-
law exponents. By extending the theoretical argument for Zipf’s law,
we find a simple equation of the power-law exponent.
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1 Introduction

Zipf’s law is the observation that the frequency n of the occurrence of various
events is an inverse power-law function n ∝ R−1, where the rank R is deter-
mined by the descending order of the frequency of each event. Zipf [1] first
made this observation for the frequency of occurrence of English words in
literature; that is, the most frequent word “the” (rank R = 1) appears twice
as many times as the second most frequent word “of”(rank R = 2). Since
then, Zipf’s law has been found in various fields, including the population of
cities [2] and the asset distribution of companies [3, 4]. This universality of
Zipf’s law, however, has not been well explained theoretically. To date, we
have only models specific to each problem [2]. The purpose of the present
thesis is to explain the mechanism of Zipf’s law and thereby its universality.

In various fields of natural and social sciences, there are also many phe-
nomena that exhibit power laws with other exponents, n ∝ R−κ with κ 6= 1,
including internet [5], traffic flow [6], economics [7, 8, 9] and family names
[10]. We explain the mechanism of these power laws as well by extending the
argument for Zipf’s law.

In section 2, we introduce a simple and generic model that reproduces
Zipf’s law. We can regard this model both as the time evolution of the
population of cities and that of the asset distribution. In section 3, we
explain theoretically why this model reproduces the power law. In section
4, we extend our model so as to reproduce power laws with other power-law
exponents. Our explanation shows that the power-law of our model is very
robust.

Before introducing our model, let us make a tutorial remark on the rela-
tion among three types of distribution appearing in the present thesis: the
ranked distribution, the cumulative distribution function and the probabil-
ity distribution function. The ranked distribution, including Zipf’s law, is a
cumulative distribution function with the horizontal and vertical axes being
flipped. A ranked distribution

n ∝ R−κ (1)

means that there are, say, R cities whose population is greater than or equal
to n. In other words, the probability that the population of an arbitrarily
chosen city is greater than or equal to n is given by

P (≥ n) =
R

N
, (2)

where N is the total number of cities. Changing the variable R to n on the
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right-hand side, we have

P (≥ n) ∝ n−1/κ = n−b, (3)

where b is the power-law exponent of the cumulative distribution function
P (≥ n). Thus we obtain the relation between the power-law exponents of
the cumulative distribution function and the ranked distribution.

Next, the cumulative distribution function P (≥ x) is related to the prob-
ability distribution function p(x) in the form

P (≥ x) =

∫ ∞

x

p(x)dx. (4)

This means that

p(x) ∝ x−a ⇔ P (≥ x) ∝ x−(a−1) = x−b. (5)

where a is the power-law exponent of the probability distribution function.
Consequently we arrive at the relation among the three power-law expo-

nents as follows:

1

κ
= b = a− 1. (6)

In the following sections, we introduce models that reproduce power laws
in the form of the cumulative distribution function P (≥ x) ∝ x−b. It cor-
responds to the power laws of the probability distribution function and the
ranked distribution in the forms p(x) ∝ x−(b+1) and n ∝ R−1/b, respectively.
In particular, the case b = 1 is equivalent to Zipf’s law in the form of the
ranked distribution n ∝ R−1 .

In the present thesis, we claim that the origin of the power laws is diffusion
in the logarithmic scale. For this reason, we also make a remark on the
variable transformation of Eq. (5). To see Eq. (5) in the logarithmic scale,
we change the variable to be ξ = log x. The probability distribution function
p(x) is transformed to

p(x)dx ∼ x−adx = e−aξeξdξ ≡ p̃(ξ)dξ. (7)

In other words, we define the probability distribution function with respect
to ξ as

p̃(ξ) = e−(a−1)ξ = e−bξ. (8)

It shows that the exponent of the exponential law of the probability distribu-
tion function in the logarithmic scale coincides with the power-law exponent
of the cumulative distribution function.
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2 Model and simulation results

In this section we introduce our model and show the results of its simulation.
The model that we introduce here evolves as follows: First, we consider a
set of positive values {xi} with N entities. Then we repeat the following
procedures T times:

1. Choose an entity i randomly from 1 ≤ i ≤ N .

2. Add or subtract randomly the amount αxi from the chosen entity with
the probability 1/2:

xi → xi ± αxi, (9)

where α is a constant with 0 < α < 1. For simplicity, we assume that the
initial values of {xi} are all equal. However, this initial condition is irrelevant
in the long-time limit T →∞.

If we regard the values {xi} as the population of N cities, an explanation
of this model from the viewpoint of the population distribution is that bigger
cities tend to have greater population movement. During the time evolution
we require the boundary condition that xi should not be less than a lower
bound xl.b.(> 0); When an operation such as xi → xi − αxi < xl.b. is chosen
in the step 2, this operation is cancelled. This boundary condition is required
in order to prevent each entity xi from decreasing limitlessly. This is quite
a plausible requirement; In realities, the population of cities, for example,
cannot be less than xl.b. = 1.

Figure 1 shows results of the simulation of the above procedures for vari-
ous values of α in the form of the cumulative distribution function P (≥ x) ∝
x−b. (Here the number of the entities is N = 104.) We can clearly see that
the distribution converges to power laws in all cases in the long-time limit
T →∞. Figure 2 shows the power-law exponents estimated from the results
in Fig. 1. (We estimated the exponents by the least-squares method.) The
exponent b is obviously close to unity for any values of α. We note that the
parameter α is related only to the rapidity of the convergence to Zipf’s law.
Because of the relation (6), we obtain Zipf’s law in the form of the ranked
distribution n ∝ R−1 by flipping the horizontal and vertical axes of Figure
1; The model thus reproduces the universality of Zipf’s law as T →∞.

To show the robustness of the model, we modify it from the viewpoint of
the asset distribution and still reproduce Zipf’s law. Assume that a company
tends to trade with a company of a similar size. Then we repeat the following
procedures T times:

1. Choose an entity i randomly from 1 ≤ i ≤ N .

6



100
101
102
103
104

10-1 100 101 102 103

105
106
107

population

P(≥
 x)

α=0.1

100
101
102
103
104

10-1 100 101 102 103

105
106
107

population

P(≥
 x)

α=0.2

7



100
101
102
103
104

10-1 100 101 102 103population

105
106
107

P(≥
 x)

α=0.3

100
101
102
103
104

10-1 100 101 102 103

105
106
107

population

P(≥
 x)

α=0.4

8



100
101
102
103
104

10-1 100 101 102 103

105
106
107

population

P(≥
 x)

α=0.5

100
101
102
103
104

10-1 100 101 102 103

105
106
107

population

P(≥
 x)

α=0.6

9



100
101
102
103
104

10-1 100 101 102 103

105
106
107

population

P(≥
 x)

α=0.7

100
101
102
103
104

10-1 100 101 102 103

105
106
107

population

P(≥
 x)

α=0.8

10



100
101
102
103
104

10-1 100 101 102 103

105
106
107

population

P(≥
 x)

α=0.9

Figure 1: The results of the simulation for various values of α. The number
of steps is T = 105 (dotted line), 106 (dashed line) and 107 (solid line). The
straight line indicates the power law with the exponent b = 1, namely Zipf’s
law.
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Figure 2: The power-law exponent b against the parameter α. The straight
line shows the solution Eq. (31), while the squares indicate estimates from
the results in Fig. 1.
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2. For i > 1, we move the amount αxi−1 from the (i− 1)th entity to the
ith entity, where α is a constant parameter with 0 < α < 1. In other
words, the following takes place:

xi−1 → xi−1 − αxi−1, (10)

xi → xi + αxi−1. (11)

For i = 1, we increase all values xi by the same amount x1α/N .

3. Rearrange the entities in the descending order of the values xi.

An intuitive explanation of this modified model is that money flows from one
company to a smaller company and the smaller company delivers products
to the larger company. Figure 3 shows the results of the simulation of the
above procedures for various values of α. (Here the number of the companies
is N = 104.) The cumulative distribution function again converges to P (≥
x) ∝ x−1 in all cases. The operation for i = 1 in the step 2 corresponds to
the boundary condition xi ≥ xl.b. of the population-distribution model.

The value of the lower bound xl.b. does not need to be fixed. We modify
the population-distribution model and make xl.b. a changeable parameter.
When the operation xi → xi − αxi < xl.b. is chosen in the step 2 of the first
model, we produce a random number S (0 < S < 1). For

e−(xl.b.−xi) > S, (12)

this operation is cancelled, but for

e−(xl.b.−xi) < S, (13)

xi becomes the new value of xl.b.. A broad change that exceeds the lower
bound xl.b. is allowed with a small probability. Figure 4 shows the results of
the modified model for α = 0.3 and N = 104. Compare it with Fig. 1; we
can see the distribution in Fig. 4 behaves in the form of the Zipf’s law, while
shifting to the negative direction.

The value α does not need to be fixed as well. We can modify the
population-distribution model and make α as a changeable parameter; We
choose α randomly from 0 < α < 1 every time between the steps 1 and 2 in
the population-distribution model. In other words, the value of α changes
at each time step. Figure 5 shows the results of the latter modified model
for N = 104. Compare it with Fig. 1; we can see the distribution in Fig. 5
behaves in the form of the Zipf’s law. The results in Figs. 4 and 5 show that
Zipf’s law of our model holds out against a wide variety of modification.
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Figure 3: The results of the simulation of the asset distribution for various
values of α. The number of steps is T = 105 (dotted line), 106 (dashed line)
and 107 (solid line). We normalized the results by the asset of the highest
entity. The straight line indicates the power law with the exponent b = 1,
namely Zipf’s law.
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b = 1, namely Zipf’s law.
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Figure 5: The results of the simulation with randomly chosen α (0 < α < 1).
The number of steps is T = 105 (dotted line), 106 (dashed line) and 107
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b = 1, namely Zipf’s law.
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We see from the above variations that the essence of the model is the
increase and the decrease proportional to the size of each entity; this is the
key to the universality of Zipf’s law. On the basis of the simpleness and the
robustness of our model, we believe that Zipf’s law in many fields of science
has the same origin of “proportional change.”

3 Continuum Limit and Universality

In this section we give a theoretical explanation as to why the model in
the previous section reproduces Zipf’s law. Let us consider the limit N →
∞. Hence we regard the set of variables {xi} as a continuous variable x.
We consider in this limit the time evolution of the probability distribution
function p(x). We note that Eq. (9) gives probability flows in the directions

x → x± αx = (1± α)x. (14)

The time-evolution equation of the probability distribution function p(x) is
therefore given by the following:

∂

∂t
p(x, t) = −γp(x, t) +

1

2

γ

1− α
p

(
x

1− α
, t

)
+

1

2

γ

1 + α
p

(
x

1 + α
, t

)
, (15)

where p(x, t) is the probability distribution of x at time t and γ is a constant
determining the unit of time. The first term on the right-hand side represents
a flow from the point x to the points (1 ± α)x, while the second and third
terms represents flows from x/(1± α) into x.

The coefficients 1/(1± α) in front of p in Eq. (15) are necessary in order
to satisfy the probability conservation. To see this, we integrate Eq. (15)
over x as

∂

∂t

∫ ∞

0

p(x, t)dx = −γ

∫ ∞

0

p(x, t)dx +
1

2

γ

1− α

∫ ∞

0

p

(
x

1− α
, t

)
dx

+
1

2

γ

1 + α

∫ ∞

0

p

(
x

1 + α
, t

)
dx. (16)

Changing the variables to be

x′ =
x

1− α
, x′′ =

x

1 + α
, (17)

we can rewrite Eq. (16) as

∂

∂t

∫ ∞

0

p(x, t)dx = −γ

∫ ∞

0

p(x, t)dx +
γ

2

∫ ∞

0

p(x′, t)dx′

+
γ

2

∫ ∞

0

p(x′′, t)dx′′ = 0.
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Thus the total probability is conserved. (In the present case, the probability
would be conserved without the coefficients 1/(1 ± α): However, they are
necessary when Eq. (15) is generalized later; see Eq. (35).)

Let us see Eq. (15) in the logarithmic scale; we change the variable to be
ξ = log x. The probability distribution function is transformed to

p(x, t)dx = p(eξ, t)eξdξ = p̃(ξ, t)dξ. (18)

In other words, we define

p̃(ξ, t) = p(x, t)x = p(eξ, t)eξ. (19)

By rewriting p in terms of p̃ as

p(x, t) = e−ξp̃(ξ, t) =
1

x
p̃(log x, t), (20)

p

(
x

1∓ α
, t

)
=

1∓ α

x
p̃

(
log

x

1∓ α
, t

)

=
1∓ α

x
p̃(ξ − log(1∓ α), t), (21)

we transform the evolution equation (15) to

∂

∂t
p̃(ξ, t) = −γp̃(ξ, t) +

γ

2
p̃(ξ + β−, t) +

γ

2
p̃(ξ − β+, t), (22)

where

β± ≡ ± log(1± α) > 0. (23)

We can regard the evolution equation (22) as a random walk from ξ to ξ±β±,
that is, a random walk with asymmetrically fixed step sizes.

Let us consider the meaning of the asymmetric random walk. We carry
out the Taylor expansion of the second and third terms on the right-hand
side of Eq. (22). Assuming O(β3

±) ' 0, we can rewrite Eq. (22) as

∂
∂t

p̃(ξ, t) = −2γp̃(ξ, t) +γ
(
p̃(ξ, t) + ∂

∂ξ
p̃(ξ, t)β− + ∂2

∂ξ2 p̃(ξ, t)
β2
−
2

)

+γ
(
p̃(ξ, t)− ∂

∂ξ
p̃(ξ, t)β+ + ∂2

∂ξ2 p̃(ξ, t)
β2
+

2

)
.

(24)

By rearranging the right-hand side of Eq.(24), we have

∂

∂t
p̃(ξ, t) = γ

(
β2

+

2
+

β2
−
2

)
∂2

∂ξ2
p̃(ξ, t) + γ(−β+ + β−)

∂

∂ξ
p̃(ξ, t). (25)
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The first and second terms on the right-hand side of Eq. (25) correspond to
the diffusion and advection terms, respectively. Consequently we can regard
the equation of the asymmetric random walk, Eq. (22), as an advection-
diffusion equation (25) approximately. For 0 < α < 1, the advection coeffi-
cient is

−β+ + β− = − log(1 + α)− log(1− α) = log
1

1− α2
> 0. (26)

It suggests that the probability distribution function in the logarithmic scale
p̃(ξ, t) moves to the negative direction while diffusing.

Let us now concentrate on finding stationary solutions p̃s(ξ) of Eq. (22):

−2γp̃s(ξ) + γp̃s(ξ + β−) + γp̃s(ξ − β+) = 0. (27)

We assume a solution of the form

p̃s ∝ e−bξ. (28)

(See Appendix for the validity of this assumption). By plugging Eq. (28)
into Eq. (27), we have

−2γe−bξ + γe−bξe−bβ− + γe−bξebβ+ = γe−bξ(−2 + e−bβ− + ebβ+) = 0, (29)

or

ebβ+ + e−bβ− = 2. (30)

Rewriting Eq. (30) using Eq. (23), we obtain the following equation for b:

f(b) ≡ (1 + α)b + (1− α)b = 2. (31)

Figure 6 shows f(b) for various values of α. Though the form of f(b) changes
with α, the two solutions of Eq. (31), b = 0 and 1, are stable. Obviously
b = 0 is a solution of Eq. (31). The solution b = 0 means that the stationary
solution p̃s is a uniform distribution:

p̃s ∝ e−bξ = const. (32)

As we suggested in Eq. (25), our model can be regarded as diffusion with
advection in the logarithmic scale. We hence expect that the solution b =
0, or a uniform distribution appears only in the case of periodic boundary
conditions. For our model with the lower bound xl.b., the solution b = 1
survives:

p̃s ∝ e−ξ (33)

According to the argument at the end of Sec. 1, the solution (33) means
P (≥ x) ∝ x−1. This is in good agreement with our simulation data in Fig. 1.
The present argument indicates that a random walk with asymmetric step
sizes in the logarithmic scale is the essence of the universality of Zipf’s law.
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4 Extension of the model

So far, we have focused on Zipf’s law (b = 1). However, various power-
law exponents (b 6= 1) have been reported in many phenomena including
economics [7, 8, 9] and family names [10]. In this section, we extend our
model in order to reproduce power-law distributions with other exponents.

The extension is basically modification of the asymmetry of the random
walk. We introduce two types of extension. In both extensions, the initial and
the boundary conditions are the same as in the model in Sec. 2. Extension
A of the model evolves as follows:

1. Choose an entity i randomly from 1 ≤ i ≤ N .

2. Add the amount α+xi or subtract the amount α−xi randomly from the
chosen entity with the probability 1/2.

xi → xi ± α±xi. (34)

Here the parameters α+ and α− are made different; α+ is the growth param-
eter and α− is the anti-growth parameter. We restrict ourselves to the case
0 < α+ < α− < 1; otherwise, we can have a meaningless solution b < 0 (See
Eq. (38) below).

Figure 7 shows results of the simulation of the above procedures for var-
ious values of α and N = 105. We can still see the power-law distribution,
but the power-law exponents b changed from unity. The power-law exponent
b takes various values in the modified model while it was fixed to b = 1 for
any values of α in Sec. 2.

We can easily modify the argument in Sec. 3 so as to analyze the above
modified model, Extension A. Instead of Eq. (15) we now write the time-
evolution equation of p(x) as

∂

∂t
p(x, t) = −γp(x, t) +

1

2

γ

1− α−
p

(
x

1− α−
, t

)
+

1

2

γ

1 + α+

p

(
x

1 + α+

, t

)
.

(35)
Note that the probability is still conserved. By rewriting p in terms of p̃, we
transform the evolution equation (35) to

∂

∂t
p̃(ξ, t) = −γp̃(ξ, t) +

γ

2
p̃(ξ + β−, t)− γ

2
p̃(ξ − β+, t), (36)

where

β± ≡ ± log(1± α±) > 0. (37)
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Figure 7: The results of the simulation of Extension A for various values of
α. The number of steps is T = 106 (dotted line), 107 (dashed line) and 108

(solid line).
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Figure 8: The function f(b) defined in Eq. (38) b for various values of α± with
the ratio α+/α− = 0.7 fixed. The curvature of f(b) increases as α becomes
larger.

Note the difference between Eq. (23) and Eq. (37). The equation for the
exponent b now reads

f(b) = (1 + α+)b + (1− α−)b = 2. (38)

Figure 8 shows f(b) for various values of α± with α+/α− = 0.7. Though
the solution b = 0 is still stable, the other solution depends on α±. Owing
to the asymmetry between α+ and α−, the relevant solution of Eq. (38)
now depends on α+ and α−. Figure 9 shows that the simulation results of
Extension A (Fig. 7) are in good agreement with the solution of Eq. (38).

Now we introduce Extension B of the model that also reproduces power-
law exponents b 6= 1. Extension B of the model evolves as follows:

1. Choose an entity i randomly from 1 ≤ i ≤ N .

2. Add or subtract randomly the amount αxi from the chosen entity with
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α+/α− = 0.7. The solid line shows the solution of Eq. (38), while the squares
are the simulation results.
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Figure 10: The results of the simulation of Extension B for various values
of α with ρ+ = 1/3 and ρ− = 2/3. The number of steps is T = 106 (dotted
line), 107 (dashed line), 108(solid line).
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the probabilities ρ+ and ρ−, respectively (ρ−+ρ− = 1). In other words,

xi →
{

xi + αxi with probability ρ+.

xi − αxi with prabability ρ−.
(39)

Figure 10 shows the results of the simulation of Extension B. We again see
power laws with b 6= 1. The time evolution equation of p(x) now reads

∂

∂t
p(x, t) = −γp(x, t) + ρ−

γ

1− α
p(

x

1− α
, t) + ρ+

γ

1 + α
p(

x

1 + α
, t). (40)

By rewriting p in terms of p̃, we transform the evolution equation (40) to

∂

∂t
p̃(ξ, t) = −γp̃(ξ, t) + ρ−γp̃(ξ + β−, t) + ρ+γp̃(ξ − β+, t), (41)

where

β± ≡ ± log(1± α) > 0. (42)

The equation for the exponent b now reads

f(b) = 2ρ−(1− α)b + 2ρ+(1 + α)b = 2 (43)

Figure 11 shows f(b) for various values of α. Though the solution b = 0
is still stable, the other solution depends on α. Owing to the asymmetry
between ρ+ and ρ−, the relevant solution of Eq. (43) depends on α, ρ+ and
ρ−. Figure 12 shows that the simulation results of Extension B (Fig. 10) are
in good agreement with the solution of Eq. (43).

5 Summary

In the present thesis, we explained the origin of the universality of Zipf’s law
theoretically and demonstrated it numerically. We claim that the essence
of Zipf’s law is a size change of each entity proportional to its size. The
simulation results of our simple and generic model indicate that the present
explanation of Zipf’s law is applicable to various phenomena both in natural
and social sciences.

We also extended the model slightly and reproduced power laws other
than Zipf’s law. We revealed that some asymmetry between the increase
and the decrease causes the deviation from Zipf’s law. Equations (38) and
(43) may be effective in estimating parameters in real power-law phenomena.
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Figure 11: The function f(b) defined in Eq. (43) for various values of α with
ρ+ = 1/3 and ρ− = 2/3 fixed. The curvature of f(b) increase as α becomes
larger.
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Figure 12: The power-law exponent b against the parameter α while fixing
ρ+/ρ− = 1/2. The solid line shows the solution of Eq. (43), while the squares
are the simulation results.
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A Exponential Solutions

In this appendix, we discuss the validity of the assumption (28) for the solu-
tion of Eq. (27). Carrying out the Fourier transform of Eq. (27), we obtain

−2 ˜̃ps(k) + eikβ+ ˜̃ps(k) + e−ikβ− ˜̃ps(k) = 0, (44)

or
eikβ+ + e−ikβ− = 2, (45)

where

p̃s(ξ) =

∫
˜̃ps(k)eikξdk. (46)

By substituting Eq. (23), we can write Eq. (45) in the form

(1− α)−ik + (1 + α)−ik = 2. (47)

Let us look for solutions k in the complex plane by writing

k = kr + ib, (48)

where kr and b are real numbers. If we have solutions with kr = 0 only, the
assumption Eq. (28) is justified. Substituting Eq. (48) for k in Eq. (47), we
have

(1− α)beikrβ+ + (1 + α)be−ikrβ− = 2. (49)

To satisfy Eq. (49), we need the phase factors to be real:

eikrβ+ = e−ikrβ− = 1 (50)

or
−eikrβ+ = e−ikrβ− = 1. (51)

In the case of Eq. (50), we have

kr =
2mπ

β+

=
2nπ

β−
, (52)

while in the case of Eq. (51) we have

kr =
(2m + 1)π

β+

=
2nπ

β−
, (53)
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where m and n are integers. In order for the solutions (52) and (53) to exist,
the ratio of the step sizes β+ and β− must be a rational number. It means that
the random walker has a possibility of returning exactly to the starting point.
We consider that such cases are quite exceptional; If we take a general value
of α, the ratio β+/β− is an irrational number in general. Hence we neglect
the solutions (52) and (53) and assume kr = 0. Therefore the remaining
solutions have the form k = ib. We can thus justify the assumption (28).
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