
THESIS
Spectrum Analysis of the Conductance

of Open Quantum Dots

Keita Sasada
Department of Physics, University of Tokyo

Komaba, Meguro, Tokyo 153-8505

December 19, 2007



Abstract

A purpose of the present thesis is to analyze the conductance of an N-level
quantum dot with multiple semi-infinite leads. First, we obtain a simple
conductance formula that contains only the local density of states of the
discrete eigenstates and the local density of states of the leads, where the
discrete eigenstates consist of the bound states, the resonant states and the
anti-resonant states.

Second, by using the conductance formula, we show that the symmetry
of the conductance peak arises from the interference between the resonant
states as well as between a resonant state and a bound state.

Finally, we derive the Fano parameter from the local density of states
of the discrete eigenvalues. In previous studies in the literature, the Fano
parameter has been used only phenomenologically to describe the shape of
an asymmetric conductance peak. We show that the Fano asymmetric peak
can be understood in terms of the interference between resonant states as
well as between a resonant state and a bound state. We thereby relate the
Fano parameter to the local density of states of the discrete eigenvalues.
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Chapter 1

Introduction

The electron conduction in nano-scale systems has been studied extensively in
recent years [1]. The resonant transport is one of its interesting phenomena,
where resonant states affect the conductance in its ballistic transport regime.
The resonant transport is an intrinsic feature of general open systems. The
quantum mechanics of the open system, however, has not been developed
so much as applicable to the computation of the conductance of nano-scale
systems. We here propose a conductance formula of a class of open quantum
dot systems by using the discrete eigenstates.

We are particularly interested in an asymmetric conductance peak, namely
the Fano effect [2]. It is a conventional understanding that the Fano effect
arises from the coupling of continuous states in the leads and discrete states
in the device [3, 4]. In contrast, we here stress the importance of the interfer-
ence between two of resonant states as well as between a resonant state and
a bound state when we consider the Fano conductance peak. We show [5]　
that the complex eigenvalues of the resonant states of the whole system, the
quantum dot with the leads, form the asymmetric conductance peak.

The present thesis is organized as follows. In Chap. 2, we derive a con-
ductance formula consisted only of the local density of states of the discrete
eigenstates and the local density of states of the leads. In Chap. 3, we sug-
gest that the symmetry of the conductance peak arises from the interference
between the resonant states as well as between a resonant state and a bound
state. In Chap. 4, we calculate the conductance and discrete eigenvalues of
the C60 with two semi-infinite leads attached.
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Chapter 2

Spectrum analysis of an open
quantum N-level dot

In the present chapter, we discuss an N-level extension of the Friedrichs
model. We derive a remarkably simple conductance formula for the model.
The formula contains only the local density of states of the discrete eigen-
states and the local density of states of the leads.

2.1 Open quantum N-level dot

We consider a one-body Hamiltonian of an N-level dot with semi-infinite
leads {α} attached to it (Fig. 2.1);

H = Hd +
∑

α

(Hα +Hd,α) (2.1)

with




Hd ≡
N−1∑
i=0

εi|di〉〈di| −
∑

06i<j6N−1

(vij|di〉〈dj|+ h.c.) ,

Hα ≡ −t
∞∑

xα=0

(|xα + 1〉〈xα|+ h.c.) ,

Hd,α ≡ −tα (|xα = 0〉〈d0|+ h.c.) .

(2.2)

The Hamiltonian Hd is the one of the N-level dot, while Hα is the tight-
binding Hamiltonian of the one-dimensional semi-infinite lead α and Hd,α is

4



the hopping between a site d0 on the central dot and the end site xα = 0 of
the lead α. Note that all the leads are attached to the single site d0 of the
dot; this is due to a technical requirement that appears below. The system
is an N-level extension of the Friedrichs model [6, 7, 8, 9].

By using the Fourier transformation and its inverse

|k, α〉 =
∞∑

xα=0

eikxα|xα〉 for −π < k 6 π, (2.3)

|xα〉 =

∫ π

−π

dk

2π
e−ikxα|k, α〉 for xα = 0, 1, 2, · · · , (2.4)

we can transform the Hamiltonians Hα and Hd,α to

Hα =

∫ π

−π

dk

2π
Ek|k, α〉〈k, α|, (2.5)

Hd,α = −tα
∫ π

−π

dk

2π
(|k, α〉〈d0|+ h.c.), (2.6)

where the dispersion relation of the tight-binding model of a one-dimensional
lead is

Ek = −2t cos k (2.7)

in the Brillouin zone −π < k 6 π.
The system (2.1) has bound states, scattering states, resonant states and

anti-resonant states. Let us first present the bound states

{
H|ψj〉 = Ej|ψj〉,
〈ψj|H = Ej〈ψj|, (2.8)

where the eigenvalues are Ej = −2t cos kj ∈ R and their eigen-wave-numbers
kj are pure imaginary with =kj > 0. The bound eigenfunctions |ψj〉 have
the orthonormal relation as follows

〈ψi|ψj〉 = 〈ψj|ψi〉 = δij. (2.9)

Due to some symmetries, some bound states may have 〈d0|ψj〉 = 0. Since
such states do not affect conduction, we neglect them hereafter and assume
that the number of contributing states is N . The bound states exponentially
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Figure 2.1: The open quantum N-level dot with the multiple leads that we
consider in the present chapter.
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Figure 2.2: The eigenfunction of the bound states (a), resonant states (b)
and anti-resonant states (c) in the lead α. Each solid line indicates the real
part of the eigenfunction and each broken line indicates the imaginary part.
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decay in the leads away from the central dot. They are not traveling wave,
as shown in Fig. 2.2 (a);

|〈xα|ψj〉| ∝ e−(=kj)xα . (2.10)

Let us second present the scattering states of the open quantum dot.
Using the Lippmann-Schwinger equation as discussed in Appendix A, we
obtain scattering states as




|ψF

k 〉 =
∑

α

|ψF
k,α〉,

〈ψF
k | ≡ |ψF

k 〉†
(2.11)

with the scattering state in the lead α

|ψF
k,α〉 ≡

1√
〈ψF

k,α|ψF
k,α〉

{
|k, α〉 − tα

(
N−1∑
j=0

|dj〉〈dj|GR(Ek)|d0〉

−〈d0|GR(Ek)|d0〉
∑

β

∫ π

−π

dq

2π

tβ|q, β〉
Ek − Eq + iδ

)}

=
1√

〈ψF
k,α|ψF

k,α〉
(|k, α〉 − tα|ψout

k 〉), (2.12)

where |ψout
k 〉 is the term of the outgoing wave, and we defined the retarded

and advanced Green’s functions as

GR(E) ≡ 1

E −H + iδ
, (2.13)

GA(E) =
{
GR(E)

}†
, (2.14)

where δ is a positive infinitesimal. Each scattering state has its eigenvalue
Ek = −2t cos k and is orthonormal to the each other,

H|ψF
k 〉 = Ek|ψF

k 〉 and 〈ψF
k |H = Ek〈ψF

k | (2.15)

〈ψF
k |ψF

k′〉 = δ(k − k′), (2.16)

as well as is orthonormal to the bound eigenstates

〈ψj|ψF
k 〉 = 〈ψF

k |ψj〉 = 0. (2.17)
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Equation (2.15) can be proved as follows;

H|ψF
k 〉 = H

∑
α

|ψF
k,α〉 = Ek

∑
α

|k, α〉

−
∑

α

tα

{
|d0〉+

N−1∑

l=0

〈dl|GR(Ek)|d0〉
(
εl|dl〉 −

N−1∑

j=l+1

vlj|dj〉 −
l−1∑
j=0

v∗jl|dj〉
)

−〈d0|GR(Ek)|d0〉
∑

β

∫ π

−π

dq

2π

(
tβ|q, β〉+

tβEq|q, β〉
Ek − Eq + iδ

− t2β
Ek − Eq + iδ

|d0〉
)}

=Ek

∑
α

|ψF
k,α〉

+
∑

α

tα

{
N−1∑

l=0

〈dl|GR(Ek)|d0〉
(

(Ek − εl) |dl〉+
N−1∑

j=l+1

vlj|dj〉+
l−1∑
j=0

v∗jl|dj〉
)

−
(

1 + 〈d0|GR(Ek)|d0〉
∑

β

∫ π

−π

dq

2π

t2β
Ek − Eq + iδ

)
|d0〉

}

=Ek|ψF
k 〉+

∑
α

tα

{(
N−1∑
i=0

〈d0|(Ek −H + iδ)|di〉〈di|GR(Ek)|d0〉 − 1

)
|d0〉

+
N−1∑

l=1

(
N−1∑
i=0

〈dl|Ek −H + iδ|di〉〈di|GR(Ek)|d0〉
)
|dl〉

}

=Ek|ψF
k 〉+

∑
α

tα

{
(〈d0|d0〉 − 1) |d0〉+

N−1∑

l=1

〈dl|d0〉|dl〉
}

=Ek|ψF
k 〉. (2.18)

Equation (2.16) is proved as follows;

〈ψF
k′|H|ψF

k 〉 =

{ 〈ψF
k′|

(
H|ψF

k 〉
)

= Ek〈ψF
k′|ψF

k 〉(〈ψF
k′|H

) |ψF
k 〉 = Ek′〈ψF

k′|ψF
k 〉

(2.19)

and hence

(Ek − Ek′) 〈ψF
k′|ψF

k 〉 = 0. (2.20)

R. G. Newton generally proved that the bound states and the scattering
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states constitute the completeness of an open system [10];

1 =
∑

j

|ψj〉〈ψj|+
∫ π

−π

dk

2π
|ψF

k 〉〈ψF
k |. (2.21)

2.2 Resonant states of the open quantum dot

In the present section, we generally define resonant states of an open quantum
dot [11]. We seek discrete and generally complex eigenvalues Eres

l of the
resonant states of the whole system;

H|ψres
l 〉 = Eres

l |ψres
l 〉, (2.22)

〈ψ̃res
l |H = Eres

l 〈ψ̃res
l |, (2.23)

where |ψres
l 〉 is the right-eigenfunction and 〈ψ̃res

l | is the left-eigenfunction.
The resonant eigenfunctions satisfies the boundary condition of an outgoing
and diverging wave as [11]

〈xα|ψres
l 〉 ∝ eikres

l xα , (2.24)

〈ψ̃res
l |xα〉 ∝ eikres

l xα (2.25)

for xα on any lead α. Note that the resonant eigen-wave-number kres
l ≡

kr
res
l + iκres

l is generally a complex number with its real part kr
res
l > 0 and its

imaginary part κres
l < 0 [11]; the resonant state

〈xα|ψres
l 〉 ∝ eikr

res
l xαe−κres

l xα (2.26)

hence describes a wave flowing in the positive xα direction and diverging
exponentially as shown in Fig. 2.2 (b). The resonant eigenvalue Eres

l is given
by the dispersion relation (2.7) with the eigen-wave-number kres

l . It is hence
also generally complex as follows;

Eres
l ≡ Er

res
l + iEi

res
l = −2t cos kres

l

= −2t cos kr
res
l coshκres

l + 2ti sin kr
res
l sinhκres

l , (2.27)

where Er
res
l is the real part of the eigenvalue and Ei

res
l (< 0) is the imagi-

nary part. The entire eigenfunction of the resonant state can be given by
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substituting a resonant eigen-wave-number kres
l for the wave number k of the

outgoing wave term |ψout
k 〉 of the scattering state (2.12);

|ψres
l 〉 ≡ |ψout

k 〉
∣∣
k=kres

l

=N res
l

(∑
i=0

|di〉〈di|GR(Eres
l )|d0〉+ 〈d0|GR(Eres

l )|d0〉
∑

α

tα
t

∞∑
xα=0

eikres
l xα|xα〉

)
,

(2.28)

except that the normalization coefficient N res
l is not fixed yet.

The resonant eigenfunctions are bi-orthonormal to each other;

〈ψ̃res
l′ |ψres

l 〉(g) = δll′ . (2.29)

We stress that the inner product 〈·|·〉(g) of Eq. (2.29) is different from the
inner product in the Hilbert space. In the next subsection, we argue in detail
a definition of the inner product in the extended Hilbert space.

We also define anti-resonant states of the system;

H|ψanti
m 〉 = Eanti

m |ψanti
m 〉, (2.30)

〈ψ̃anti
m |H = Eanti

m 〈ψ̃anti
m | (2.31)

with the anti-resonant eigenvalues Eanti
m ≡ (Eres

l )∗, its right-eigenfunction
|ψanti

m 〉 ≡ |ψ̃res
l 〉 and its left-eigenfunction 〈ψ̃anti

m | ≡ 〈ψres
l |. The anti-resonant

state has the complex wave-number kanti
m = − (kres

l )∗, and satisfies the bound-
ary condition of an incoming and diverging wave as

〈xα|ψanti
m 〉 = eikanti

m xα , (2.32)

〈ψ̃anti
m |xα〉 = eikanti

m xα . (2.33)

Note that anti-resonant eigen-wave-number kanti
m ≡ kr

anti
m + iκanti

m satisfies
kr

anti
m , κanti

m < 0; the anti-resonant state

〈xα|ψanti
m 〉 ∝ eikr

anti
m xαe−κanti

m xα = e−ikr
res
l xαe−κres

l xα (2.34)

hence describes time reversal of the resonant state as shown in Fig. 2.2 (c).
The anti-resonant eigenvalue Eanti

m is given by

Eanti
m ≡ Er

anti
m + iEi

anti
m = −2t cos kanti

m

= −2t cos kr
anti
m coshκanti

l + 2ti sin kr
anti
m sinhκanti

m

= −2t cos kr
res
m coshκres

m − 2ti sin kr
res
m sinhκres

m

= Er
res
m − iEi

res
m = (Eres

m )∗ , (2.35)
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with its imaginary part Ei
anti
m > 0. Similarly to Eq. (2.28), the entire eigen-

function of the anti-resonant state can be given by

|ψanti
m 〉 ≡ |ψin

k 〉
∣∣
k=kanti

m
= |ψout

k 〉∗
∣∣
k=kanti

m

=Nanti
m

(
N−1∑
i=0

|di〉〈di|GA(Eanti
m )|d0〉+ 〈d0|GA(Eanti

m )|d0〉
∑

α

tα
t

∞∑
xα=0

eikanti
m xα|xα〉

)
.

(2.36)

The anti-resonant states also have the bi-orthonormal relation

〈ψ̃anti
m′ |ψanti

m 〉(g) ≡ δmm′ . (2.37)

Here we summarize the eigen-wave-numbers and eigenvalues of the bound,
resonant and anti-resonant states in Fig. 2.3. The eigen-wave-number kj of
a bound state is either on the imaginary k axis or on the line <k = π. (In
systems with continuous space, the bound states exist only on the imaginary
k axis; the bound states on the line <k = π appear because the leads of the
present system are lattice systems.) The eigen-wave-number kres

l of a resonant
state is on the fourth quadrant of the complex wave-number plane. The eigen-
wave-number kanti

m of an anti-resonant state is on the third quadrant of the
complex wave-number plane.

Upon mapping the complex wave-number plane to the complex energy
plane through the dispersion relation E = −2t cos k, we have two Riemann
sheets. The bound eigenvalues are located on the real axis of the first Rie-
mann sheet of the complex energy plane with |Ej| > 2t. The resonant eigen-
values are on the lower half plane of the second Riemann sheet, while the
anti-resonant eigenvalues are on the upper half plane of the same sheet. There
are a branch cut |E| < 2t and two branch points E = ±2t connecting the
two Riemann sheets.

2.2.1 Definition of the inner product in the extended
Hilbert space

In the present subsection, we give a definition of the inner product of reso-
nant eigenfunctions [12]. The resonant states generally have diverging and
outgoing wave functions away from the central dot, so that the inner prod-
uct 〈ψ̃res

l |ψres
l 〉 would also diverge if we used the standard definition in the

11



k

π−π 0

k1

k2

kj

k1

k2
kn

k1

k2
km

res

res
resanti

anti

anti

(a)

branch cut

E (2nd Reimann sheet)

0

E2

E1

Em

anti

anti

anti

E (1st Reimann sheet)

0

resonant states

anti-resonant states

E2

E1

En

res

res

res

E1 E2 Ej

2t−2t

bound states

(b)

Figure 2.3: (a) Distribution of the bound eigen-wave-numbers kj, resonant
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Hilbert space. To avoid this problem a definition of the inner product in the
extended Hilbert space has been introduced;

〈ψ̃res
l |ψres

l 〉(g) ≡ lim
g→+0

(∑
α

∞∑
xα=0

〈ψ̃res
l |x(g)

α 〉〈x(g)
α |ψres

l 〉
)

+
N−1∑
i=0

〈ψ̃res
l |di〉〈di|ψres

l 〉,

(2.38)

with

|x(g)
α 〉 ≡ e−gxα|xα〉. (2.39)

The convergent factor g must take a positive and sufficiently large value
when we calculate the summation over xα. It is introduced to suppress the
divergence indicated in Eqs. (2.26) and (2.34). Note that the inner product
of the bound states in the extended Hilbert space coincides with the inner
product in the Hilbert space.

The definition (2.38) is equivalent to modify an integration contour in
the complex wave-number plane in the following way (Fig. 2.4). Instead
of the integration contour in Fig. 2.4 (a), we first consider an integration
contour in Fig. 2.4 (b) with a large and negative imaginary part. The contour
must be low enough so that all resonant states may be above it. We then
move the integration contour upward until it comes upon the real axis of the
complex wave-number plane. On its way upward, the contour must enclose all
resonant states as in Fig. 2.4 (c). In other words, we carry out the following
procedure;

∞∑
xα=0

〈ψ̃res
l |x(g)

α 〉〈x(g)
α |ψres

l 〉 =
∞∑

xα=0

e−gxα〈ψ̃res
l |xα〉〈xα|ψres

l 〉e−gxα

=

∫ π

−π

dk

2π

∫ π

−π

dk′

2π
〈ψ̃res

l |k + ig, α〉〈k′ + ig, α|ψres
l 〉

∞∑
xα=0

ei(k′−k)xα

=

∫ π

−π

dk

2π
〈ψ̃res

l |k + ig, α〉〈k + ig, α|ψres
l 〉

=

∫ π−ig

−π−ig

dk

2π
〈ψ̃res

l |k, α〉〈k, α|ψres
l 〉. (2.40)
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Figure 2.4: A definition of the inner product of the resonant states in the
complex wave-number plane.

Hence Eq. (2.38) can be rewritten in the form

〈ψ̃res
l |ψres

l 〉(g) = lim
g→+0

∑
α

∫ π−ig

−π−ig

dk

2π
〈ψ̃res

l |k, α〉〈k, α|ψres
l 〉+

N−1∑
i=0

〈ψ̃res
l |di〉〈di|ψres

l 〉.

(2.41)

2.2.2 A normalization coefficient of resonant states

We next fix the normalization coefficient N res
l (∈ C) of the resonant state

(2.28), using the inner product (2.38). We have the inner product as

〈ψ̃res
l |ψres

l 〉(g) = (N res
l )2

{
N−1∑
i=0

〈d0|GR(Eres
l )|di〉〈di|GR(Eres

l )|d0〉

+
(〈d0|GR(Eres

l )|d0〉
)2

lim
g→+0

∑
α

(
tα
t

)2 ∞∑
xα=0

e2(−g+ikres
l )xα

}
,

(2.42)

= (N res
l )2

{
t̄2

(〈d0|GR(Eres
l )|d0〉

)2

1− e2ikres
l

+
N−1∑
i=0

〈d0|GR(Eres
l )|di〉〈di|GR(Eres

l )|d0〉
}
.

(2.43)

14



Thus we obtain the normalization coefficient of the resonant states as

N res
l =

{
t̄2

(〈d0|GR(Eres
l )|d0〉

)2

1− e2ikres
l

+
N−1∑
i=0

〈d0|GR(Eres
l )|di〉〈di|GR(Eres

l )|d0〉
}− 1

2

,

(2.44)

By the same token, we obtain the normalization coefficient of the anti-
resonant eigenfunction (2.36) as

Nanti
m =

{
t̄2

(〈d0|GA(Eanti
m )|d0〉

)2

1− e2ikanti
m

+
N−1∑
i=0

〈d0|GA(Eanti
m )|di〉〈di|GA(Eanti

m )|d0〉
}− 1

2

= (N res
m )∗ . (2.45)

Here we summarize the bound states |ψj〉, resonant states |ψres
l 〉 and anti-

resonant states |ψanti
m 〉 as the discrete eigenstates |ψn〉. We newly define the

discrete eigenstates as

H|ψn〉 = En|ψn〉 (2.46)

〈ψ̃n|H = 〈ψ̃n|En (2.47)

with |ψn〉 ∈
{|ψj〉, |ψres

l 〉, |ψanti
m 〉} and 〈ψ̃n| ∈

{
〈ψj|, 〈ψ̃res

l |, 〈ψ̃anti
m |

}
. They all

are bi-orthonormal to each other;

〈ψ̃n|ψn′〉(g) = δnn′ . (2.48)

The quantum number n runs from 1 to 2N , where each number of the bound,
resonant and anti-resonant states depends on the structure of the central dot.

2.2.3 Calculation of eigenstates for the discrete eigen-
states

We now briefly describe a method of computing all discrete eigenvalues us-
ing a finite effective Hamiltonian Heff(E) with a complex effective potential
Veff(E) [1]. The effective Hamiltonian is defined so that the Green’s function
of the whole system may be equal to that of the effective system for the sites
on the central dot;

〈di|GR(E)|dj〉 = 〈di|GR
eff(E)|dj〉 ≡ 〈di| 1

E −Heff(E) + iδ
|dj〉 (2.49)
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with

Heff(E) ≡ Hd +
∑

α

V
(α)
eff (E)|d0〉〈d0|. (2.50)

The effective potential V (α)(E) is equivalent to the self-energy of the semi-
infinite lead α and represents an effect of the boundary condition of an out-
going wave [13]. In the present case, the effective potential is given in the
form

V
(α)
eff (E) = −t

2
α

t
zE = (t̄α)2 E − i

√
4t2 − E2

2
, (2.51)

where zE ≡ eikE (<kE > 0) and t̄α ≡ tα/t denotes the normalized hopping
energy between the dot and the lead α. See Appendix B for an easy way of
calculating the effective potential.

The effective Hamiltonian (2.50) is a non-Hermitian energy-dependent
operator. The discrete eigenvalues E = En of bound and resonant states
are given as poles of the Green’s function (2.49). Hence we solve the secular
equation for the effective Hamiltonian;

det (En −Heff(En)) = 0. (2.52)

Since we used the retarded Green’s function in (2.49), Eq. (2.52) does not
produce anti-resonant states. The anti-resonant states are given by using the
advanced Green’s function in (2.49). Then we obtain the advanced effective
Hamiltonian

H∗
eff(E) = Hd +

∑
α

V
(α)
eff (E)

∗|d0〉〈d0|. (2.53)

The secular equation for the effective Hamiltonian (2.53),

det (En −H∗
eff(En)) = 0, (2.54)

produces the anti-resonant states instead of the resonant states. Indeed, the
left-hand side of Eq. (2.54) is equal to

det (En −H∗
eff(En)) = det (E∗

n −Heff(E∗
n))∗ , (2.55)

which gives complex conjugate of the solutions of Eq. (2.52). Then we also
obtain the eigen-wave-number kn from the dispersion relation and the corre-
sponding eigenfunction of Eqs. (2.28) and (2.36).
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2.3 Relation of the Green’s function and the

discrete eigenstates

In the present section, we show the contribution of resonant states to the
retarded Green’s function. Using the completeness (2.21), we first express
the Green’s functions in the spectral representation;

GR(E) =
∑

j

|ψj〉〈ψj|
E − Ej

+

∫

CR
B.Z.

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

, (2.56)

GA(E) =
∑

j

|ψj〉〈ψj|
E − Ej

+

∫

CA
B.Z.

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

, (2.57)

where the integration contours CR
B.Z. and CA

B.Z. are indicated in Fig. 2.5.
Next, we displace the integration contours CR

B.Z. and CA
B.Z. as shown in

Fig. 2.6. The residues integrals of the resonant states kres
l and anti-resonant

states kanti
m are reduced to

∮

C(k=kres
l )

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

=
|ψres

l 〉〈ψ̃res
l |

E − Eres
l

, (2.58)

∮

C(k=kanti
m )

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

=
|ψres

m 〉〈ψ̃anti
m |

E − Eanti
m

. (2.59)

We then have

GR(E) =
∑

j

|ψj〉〈ψj|
E − Ej

+
∑

l

|ψres
l 〉〈ψ̃res

l |
E − Eres

l

+ lim
κ0→+∞

∫

CR
⊥(κ0)+CR

‖ (κ0)

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

, (2.60)

GA(E) =
∑

j

|ψj〉〈ψj|
E − Ej

+
∑
m

|ψanti
m 〉〈ψ̃anti

m |
E − Eanti

m

+ lim
κ0→+∞

∫

CA
⊥(κ0)+CA

‖ (κ0)

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

. (2.61)

We thus extract the resonant and anti-resonant states. Note that κ0 of the
modified integration contour must be positive and larger than the imaginary
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Figure 2.5: (a) An integration contour for the retarded Green’s function and
(b) for the advanced Green’s function, with the circular contours extracting
bound states in the complex wave-number plane.

18



parts of all the resonant eigen-wave-numbers. On the other hand, we numeri-
cally found that the contributions of the parallel integration contours CR

‖ (κ0)

and CA
‖ (κ0) vanish for the states on the central dot;

lim
κ0→+∞

∫

CR
‖ (κ0)

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

+

∫

CA
‖ (κ0)

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

= 0. (2.62)

The relation can be analytically proved for N = 2. On the other hand,
Eq. (2.62) does not seen to hold if the semi-infinite leads are not attached
to a single site of the central dot. This is why we are focused on the present
system (2.1).

Finally, we add the retarded and advanced Green’s functions;

GR(E) +GA(E) =2
∑

j

|ψj〉〈ψj|
E − Ej

+
∑

l

|ψres
l 〉〈ψres

l |
E − Eres

l

+
∑
m

|ψanti
m 〉〈ψanti

m |
E − Eanti

m

+

∫

CR
⊥+CA

⊥

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

. (2.63)

The sum of the contributions of the integration contour CR
⊥ and CA

⊥ is equal
to the contribution of the bound states except for the sign;

∫

CR
⊥+CA

⊥

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

=
∑

j

∮

C(k=kj)

dk

2π

|ψF
k 〉〈ψF

k |
E − Ek

= −
∑

j

|ψj〉〈ψj|
E − Ej

. (2.64)

Thus we find that the sum of the retarded and advanced Green’s functions
is equal to the contributions of only the discrete eigenstates for the states on
the central dot;

GA(E) +GR(E) = Λ(E), (2.65)

where

Λ(E) ≡
∑

n∈j,l,m

|ψn〉〈ψ̃n|
E − En

. (2.66)

It is noteworthy here that the difference between the retarded and ad-
vanced Green’s function is known to be given by [1]

GA(E)−GR(E) = iGR(E)Γ(E)GA(E), (2.67)
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Figure 2.6: (a) An integration contour of the retarded Green’s function, mod-
ified for extracting the resonant states in the complex wave-number plane.
(b) An integration contour of the advanced Green’s function, modified for
extracting the anti-resonant states.
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Figure 2.7: The sum of the modified integration con-
tour of the retarded and advanced Green’s functions
in the complex wave-number plane.
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where

Γ(E) ≡
∑

α

Γ(α)(E), (2.68)

Γ(α)(E) ≡ i
[
V

(α)
eff (E)−

(
V

(α)
eff (E)

)∗]
|d0〉〈d0|

= (t̄α)2
√

4t2 − E2|d0〉〈d0|. (2.69)

Equation (2.65) shows that the real part of the Green’s function is given by
the discrete eigenstates, while Eq. (2.67) shows that the imaginary part of
the Green’s function is given by the inverse of branch point singularity [1].
Using the simultaneous matrix equation of Eqs. (2.65) and (2.67), we can
construct the Green’s function with the discrete eigenstates and the branch
point singularity.

2.4 Conductance consisted of the discrete eigen-

states and the branch points

In the present section, we derive a simple conductance formula showing that
the conductance of the system (2.1) consists of the contributions from the
discrete states and the branch points. Equations (2.65) and (2.67) give the
matrix Riccati equation

GR/A(E) (±iΓ(E))GR/A(E)− {2 + Λ(E) (±iΓ(E))}GR/A(E) + Λ(E) = 0,
(2.70)

which gives the elements of the Green’s functions as follows:

〈di|GR(E)|dj〉 =
〈di|Λ(E)|dj〉

2
− i

〈di|Λ(E)|d0〉〈d0|Λ(E)|dj〉
〈d0|Λ(E)|d0〉2

×




1

〈d0|Γ(E)|d0〉 ±
√(

1

〈d0|Γ(E)|d0〉
)2

−
(〈d0|Λ(E)|d0〉

2

)2



 ,

(2.71)

where the sign ± is dependent on the structure of the central dot. Using the
Fisher-Lee relation [14], we can obtain the conductance Gα→β(E) from the
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lead α to the lead β;

Gα→β(E) ≡ 2e2

h
Tr

{
Γ(β)(E)GR(E)Γ(α)(E)GA(E)

}

= 〈d0|Γ(β)(E)|d0〉〈d0|Γ(α)(E)|d0〉
∣∣〈d0|GR(E)|d0〉

∣∣2

=
4e2

h

(
t̄αt̄β

t̄2

)2



1±

√
1−

(〈d0|Γ(E)|d0〉〈d0|Λ(E)|d0〉
2

)2



.

(2.72)

This is reduced to a remarkably simple formula

Gα→β(E) =
e

π
Jmax

α→β



1±

√
1−

(
ρeigen(E)

ρleads(E)

)2



, (2.73)

where





ρeigen(E) ≡ 〈d0|Λ(E)|d0〉
2π

=
1

2π

∑
n

〈d0|ψn〉〈ψ̃n|d0〉
E − En

ρleads(E) ≡ 1

t̄2π

∂kE

∂E
=

1

t̄2π
√

4t2 − E2
=

1

π〈d0|Γ(E)|d0〉 .
(2.74)

Here ρeigen(E) is the local density of state of the discrete eigenstates of the
whole system H on the site d0 and ρleads(E) is the local density of state of
the lead Hamiltonians

∑
αHα. Note that ρeigen(E) has singularities at the

discrete eigenvalues, whereas ρleads(E) has singularities at the branch points.
The system-independent constant

Jmax
α→β ≡

2e

~

(
t̄αt̄β

t̄2

)2

(2.75)

gives the maximum possible current from the lead α to the lead β. The
conductance itself has singularities due to the discrete eigenstates but not due
to branch points . We exemplify ρeigen(E) and ρleads(E) in Fig. 2.8 for a two-
level dot with two leads with t̄α1 = t̄α2 = 1, ε0/t = 5.0, ε1/t = 0.5, v01/t = 0.5.
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Figure 2.8: (a) The energy dependence of the local density of the states
ρeigen(E). (b) The energy dependence of the local density of the states
ρleads(E). The plots are for a two-level dot with two leads with t̄α1 = t̄α2 =
1, ε0/t = 5.0, ε1/t = 0.5, v01/t = 0.5.
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Chapter 3

Quantum interference effect
due to the discrete eigenstates

In the present chapter, we argue that the Fano conductance arises as a result
of interference between a pair of discrete eigenstates. The conductance for-
mula (2.73) has square modulus of the local density of states of the discrete
eigenstates. Therefore, we have cross terms between a pair of the resonant
states as well as between a resonant state and a bound state. We show in
the present chapter that discrete eigenvalues decide the symmetry of the con-
ductance peaks in addition to the location of the conductance peaks, using
several examples. We thereby describe the Fano parameter microscopically.

3.1 Point contact system

First we show the conductance and the corresponding eigenvalues of the one-
level dot with two leads, namely the point contact shown in Fig. 3.1. There
are only two bound states and no resonant state. We plotted in Fig. 3.2 the
conductance and two bound eigenvalues for ε0/t = 0, 1, 1.5, 2, 2.5 with the
hopping energy t̄α1 = t̄α2 = 1. The conductance of the point contact has
no peculiar behavior such as the Breit-Wigner peak. Upon increasing the
potential ε0, the two bound eigenvalues move away from the branch points
E = ±2t. This decreases the contribution of the local density of the states
ρeigen(E) and hence deflates the conductance gradually.
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Figure 3.1: The point contact d0 with the two leads.
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Figure 3.2: The energy dependence of the conductance (the left axis) and
the discrete bound eigenvalues (the right axis).
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Figure 3.3: The two-level quantum dot with the two leads.

3.2 T-shaped quantum dot system

We next show that the conductance and the eigenvalues of the two-level quan-
tum dot with two leads, namely T-shaped quantum dot shown in Fig. 3.3.
This system is a minimal model that possesses a resonant state pair (a reso-
nant state and the corresponding anti-resonant state). We obtain the conduc-
tance, two bound states and one resonant state pair for ε0/t = 0, 1, 3, 5, ε1 = 0
and v01/t = 1 with t̄α1 = t̄α2 = 1 as shown in Fig. 3.4.

We have a Breit-Wigner peak for ε0 = 0, but for ε0 6= 0, we have an
asymmetric peak, namely the Fano conductance peak. Maruyama et al.
[15] claimed that the asymmetry of the conductance peak of the T-shaped
quantum dot is proportional to ε0. We here discuss the asymmetry from the
viewpoint of the discrete eigenstates.

We argue hereafter that the Fano conductance peak arises from the in-
terference, or the cross term between a bound state and the resonant state
pair. We compare in Fig. 3.5 the conductance formula (2.73) with the full
local density of states ρeigen(E) and the same conductance formula but with
an incomplete local density of states for ε0/t = 5, ε1 = 0 and v01/t = 1 with
t̄α1 = t̄α2 = 1. In Fig. 3.5 (a), we used only the two bound states as the
incomplete local density of states;

ρeigen(E) −→
∑
j=1,2

ρj(E) ≡
∑
j=1,2

1

2π

〈d0|ψj〉〈ψj|d0〉
E − Ej

. (3.1)

We do not have any Breit-Wigner or Fano peaks. In Fig. 3.5 (b), on the other
hand, we used only the resonant state pair as the incomplete local density of
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Figure 3.4: (a) The energy dependence of the conductance (the left axis) and
the discrete eigenvalues (the right axis). (b) is a part of (a). Here we fixed
ε1/t = 0 and v01/t = 1.
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states;

ρeigen(E) −→ ρpair(E) ≡ ρres(E) + ρanti(E)

≡ 1

2π

〈d0|ψres〉〈ψ̃res|d0〉
E − Eres

+
1

2π

〈d0|ψanti〉〈ψ̃anti|d0〉
E − Eanti

.

(3.2)

This reproduces the asymmetry peak only partly.
We thus find that the cross term

ρpair(E)×
∑
j=1,2

ρj(E) (3.3)

plays the essential role. Let us approximate the cross term at the neighbor-
hood of E ∼ Eres

r by using the normalized energy

ε ≡ E − Eres
r

Eres
i

. (3.4)

We first rewrite ρres(E) and ρanti(E) in the forms

ρres(E) ≡ 1

2π

〈d0|ψres〉〈ψ̃res|d0〉
E − (Eres

r + iEres
i )

=
|Ñ |eiθ/2

E − (Eres
r + iEres

i )
(3.5)

ρanti(E) ≡ (ρres(E))∗ , (3.6)

where we define the coefficient of the local density of states of the resonant
state as

|Ñ |eiθ ≡ 〈d0|ψres〉〈ψ̃res|d0〉
π

. (3.7)

We then rewrite the local density of state of the resonant state pair in the
form

ρpair(E) ≡ ρres(E) + ρanti(E) = |Ñ |(E − Eres
r ) cos θ + Eres

i sin θ

(E − Eres
r )2 + Eres

i
2

=
|Ñ |
Eres

i

cos θε+ sin θ

ε2 + 1
. (3.8)
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Figure 3.5: (a) The conductance with the full local density of states (the
broken line) and with only the local density of two bound states (the solid
line). (b) The conductance with the full local density of states (the broken
line) and with only the local density of the resonant state pair (the solid
line). We fixed ε0/t = 5, ε1/t = 0 and v01/t = 1.
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On the other hand, we approximately have the local density of states of two
bound states as

∑
j=1,2

ρj(E) ∼
∑
j=1,2

(
ρj(E

res
r ) + ρ′j(E

res
r )Eres

i ε
)
. (3.9)

We therefore have the cross term between the resonant state pair and the
two bound states as

ρpair(E)×
∑
j=1,2

ρj(E) ∼ |Ñ |/Eres
i (cos θε+ sin θ)

ε2 + 1

∑
j=1,2

(
ρj(E

res
r ) + Eres

i ρ′j(E
res
r )ε

)

∼ pε2 + qε+ r

ε2 + 1
, (3.10)

where

p ≡ |Ñ | cos θ
∑

j

ρ′j(E
res
r ), (3.11)

q ≡ |Ñ |
∑

j

(
ρj(E

res
r ) cos θ

Eres
i

+ ρ′j(E
res
r ) sin θ

)
, (3.12)

r ≡ |Ñ |
∑

j

ρj(E
res
r ) sin θ

Eres
i

. (3.13)

The coefficient q of the linear term controls the asymmetry of the conductance
peak. This is often referred to as the Fano parameter.

In a rather special case where q = 0, or
∑

j ρj(E
res
r ) =

∑
j ρ

′
j(E

res
r ) = 0,

the resonance peak takes the form of a symmetric Lorentzian. In a general
case, however, we end up with an asymmetric peak. A small imaginary part
Eres

i cause a particularly large q and hence yields a particularly asymmetric
peak.

For ε0 = 0 as shown in Fig. 3.6 (a), the conductance peak around the
resonant state pair is symmetric because the bound state 1 and the bound
state 2 affect the peak of the resonant state pair symmetrically. For ε0 6= 0,
on the other hand, the bound state 1 affects the resonant state pair more
strongly than the bound state 2 does. The conductance peak around the
resonant state pair is asymmetric because the bound state 1 and the bound
state 2 affect the peak of the resonant state pair asymmetrically as shown in
Fig. 3.6 (b).
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Figure 3.6: A schematic illustration of the resonant states and two bound
states for (a) ε0 = 0 and (b) ε0 6= 0.
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Figure 3.7: The three-level quantum dot with two leads.

3.3 Three-level quantum dot system

Third, we discuss the conductance of the three-level quantum dot with two
leads shown in Fig. 3.7. This system has a possibility of yielding two resonant
states. We obtain the conductance, two bound states and two resonant state
pairs for ε0/t = 0, ε1/t = −0.3, ε2/t = 0.5, v01/t = 1, v01/t = 0.8, v02/t = 0.5
and v12/t = 0.4 with t̄α1 = t̄α2 = 1 as shown in Fig. 3.8.

The conductance of this system has the cross term between one resonant
state pair and the other resonant state pair as well as between a resonant
state pair and a bound state. The conductance formula (2.73) contains the
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Figure 3.8: The energy dependence of the conductance (the left axis) and
the eigenvalues (the right axis). We fixed ε0/t = 0, ε1/t = −0.3, ε2/t =
0.5, v01/t = 1, v01/t = 0.8, v02/t = 0.5 and v12/t = 0.4.
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square of the discrete eigenvalues

ρeigen(E) =
∑

l=1,2

ρpair
l (E) +

∑
j=1,2

ρj(E) (3.14)

with

ρpair
l (E) ≡ |Ñl|(E − Eres

rl ) cos θl + Eres
il sin θl

(E − Eres
rl )2 + Eres

il
2 . (3.15)

Thus the conductance has the cross term between the resonant state pair 1
and the other resonant state pair 2;

ρpair
1 (E)× ρpair

2 (E). (3.16)

We approximate the cross term at the neighborhood of E ∼ Eres
r1 by using

the normalized energy

ε ≡ E − Eres
r1

Eres
i1

. (3.17)

We then approximately have the cross term between the resonant states pairs

ρpair
1 (E)× ρpair

2 (E) ∼ |Ñ1|/Eres
i1 (cos θ1ε+ sin θ1)

ε2 + 1

(
ρpair

2 (Eres
r1 ) + Eres

i1 ρ
pair
2

′
(Eres

r1 )ε
)

=
presε2 + qresε+ rres

ε2 + 1
(3.18)

with

pres ≡ |Ñ1| cos θ1ρ
pair
2

′
(Eres

r1 ), (3.19)

qres ≡ |Ñ1|
(
ρpair

2 (Eres
r1 ) cos θ1

Eres
i1

+ ρpair
2

′
(Eres

r1 ) sin θ1

)
, (3.20)

rres ≡ |Ñ1|ρ
pair
2 (Eres

r1 ) sin θ1

Eres
i1

. (3.21)

We thus have another Fano parameter qres that controls the asymmetry, in
addition to the coefficient q in Eq. (3.12).

In a rather special case where qres = 0, or ρpair
2 (Eres

r1 ) = ρpair
2

′
(Eres

r1 ) = 0,
the resonance peak takes the form of a symmetric Lorentzian. In a general
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q

qres

|E−En|

Figure 3.9: A schematic view of the decays of the Fano parameters q and
qres.

case, however, we end up with an asymmetric peak. A small imaginary part
Eres

i1 cause a particularly large qres and hence yields a particularly asymmetric
peak.

Let us discuss the difference between the Fano parameters q and qres.
The parameter q contains (E −Ej)

−1, while the parameter qres contains the

Lorentzian
[
(E − Eres

r2 )2 + Eres
i2

2
]−1

. When the resonant state pair 2 is quite
close to the resonant state pair 1, the Lorentzian factor gets larger and makes
the parameter qres dominate over the parameter q. However, the Lorentzian
factor decays as ∼ (E − Eres

r2 )−2 when the pair 2 moves away from the pair
1; it decays faster than the factor (E−Ej)

−1 as shown in Fig. 3.9. Then the
parameter q becomes dominant.

We obtain the conductance and the discrete eigenstate for ε0/t = 0.0, ε2/t =
0.5, v01/t = 1.0, v01/t = 0.8, v02/t = 0.5, v12/t = 0.4 with t̄α1 = t̄α2 = 1 as
shown in Fig. 3.10. Upon increasing the potential energy ε1, a dipped con-
ductance peak approaches to the other conductance peak gradually. Then
the other conductance peak becomes an asymmetric peak.

We can show that the cross term between two resonant pairs forms the
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Figure 3.10: (a) The potential energy ε1-dependent conductance for ε0/t =
0.0, ε2/t = 0.5, v01/t = 1.0, v01/t = 0.8, v02/t = 0.5, v12/t = 0.4. The dipped
conductance peak of the resonant state 1 approaches the conductance peak
of the resonant state 2, upon increasing the potential energy ε1. Then the
conductance peak of the resonant state 2 has an asymmetric peak.
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Fano conductance peak. We compare in Fig. 3.11 the conductance formula
(2.73) with the full local density of states ρeigen(E) and the same conductance
formula but with an incomplete local density of states for ε0/t = 0.0, ε2/t =
0.5, v01/t = 1.0, v01/t = 0.8, v02/t = 0.5, v12/t = 0.4. We used only the two
resonant state pair as the incomplete local density of states. This almost
reproduces the asymmetry peak. We stress that the complete description of
the conductance peak requires all pairs of the discrete eigenstates as shown
in Fig. 3.12.

3.4 The effect of the hopping energy t̄α be-

tween the central dot and the leads

Finally, we discuss the effect of the hopping energy t̄α between the central
dot and the lead α. We here deal with the case of the three-level dot with two
leads case with t̄α ≡ t̄α1 = t̄α2, ε0/t = 0.0, ε1/t = −0.3, ε2/t = 0.5, v01/t =
1.0, v01/t = 0.8, v02/t = 0.5 and v12/t = 0.4. For the weakly coupled case
t̄α = 0.1, 0.3, the conductance has three sharp peaks as shown in Figs. 3.13
(a) and (b), and the system has the corresponding three resonant state pairs
as shown in Fig. 3.14. Upon increasing the hopping energy t̄α, for t̄α =
1/
√

2 one resonant state pair collides and becomes two bound states, while
the conductance continuously changes. Upon increasing further the hopping
energy t̄α, into the strongly coupled regime t̄α > 1/

√
2, two resonant state

pairs form a sharp Fano asymmetric peak.
We argue why the discrete eigenvalues have singular behavior at t̄α =

1/
√

2. The hopping energy t̄α = 1/
√

2 gives the sum of the squares of the
hopping energy as t̄2 ≡ ∑

α t̄
2
α = 1. For t̄2 = 1, the effective potential

Veff(E) = −tt̄2eikE discussed in Subsec. 2.2.3 cancels the term −teikE in the
energy E = −t(eikE +e−ikE). This changes the secular equation for the effec-
tive Hamiltonian (2.53) and causes the singular behavior of the eigenvalues.
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Figure 3.11: (a) The energy-dependence of the conductance with the full
local density of states (the broken line) and with an incomplete local density
of states for two resonant state pairs (the solid lines). (b) shows the part
around E = Eres

r2 .
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Figure 3.12: A diagrammatic illustration of the cross-terms between the
discrete eigenstates of the three-level quantum dot. There is a large difference
in the cross-term between the resonant state pair and resonant-bound states.
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Figure 3.13: The conductance for (a) t̄α = 0.1, (b) t̄α = 0.3, (c) t̄α = 1/
√

2
and (d) t̄α = 0.8. The broken line indicates the strongly coupled case t̄α1 = 1.
We fixed ε0/t = 0.0, ε1/t = −0.3, ε2/t = 0.5, v01/t = 1.0, v01/t = 0.8, v02/t =
0.5, v12/t = 0.4.
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Figure 3.14: (a) The real part of eigenvalues for ε0/t = 0.0, ε1/t =
−0.3, ε2/t = 0.5, v01/t = 1.0, v01/t = 0.8, v02/t = 0.5, v12/t = 0.4. (b) The
imaginary part of eigenvalues in the same case.
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Chapter 4

The conductance and the
discrete eigenvalues of C60

In the present chapter, we show that our discussion in the previous chapter
is applicable to a general device with leads attached . We demonstrate the
above method by analyzing a fullerene C60 (Fig. 4.1) in the form,

Hc = −t
∑

〈i,j〉

(
c†icj + c†jci

)
(4.1)

where t is the hopping energy between the carbon atoms. (For simplicity, we
assume that the hopping energy is the same for every bond.) The leads are
attached to sites of the fullerene symmetrically. The system dose not belong
to the class (2.1). We show that the argument on the Fano peak still holds
for the system.

Figure 4.2 shows the conductance together with the location of the res-
onant eigenvalue. We can clearly see that each complex eigenvalue of the
resonant state corresponds to a peak of the conductance, particularly the
two Fano peaks around Eres

r ∼ −1.65t and Eres
r ∼ 1.5t. In other words, the

Fano effect is here described by the resonant states of the whole system, not
as a “coupling” of the device and the leads.

We now show that the Fano asymmetric conductance is caused by the
combination of two resonant states (Fig. 4.3), one with a small imaginary part
(Eres

r1 , E
res
i1 ) and one with a large imaginary part (Eres

r2 , E
res
i2 ) under the relation

Eres
i1 < |Eres

r1 − Eres
r2 | < Eres

i2 . The denominator of the conductance near the
resonance Eres

1 = Eres
r1 +iEres

i1 takes the form |E − Eres
1 |2 = (E − Eres

r1 )2+Eres
i1

2,
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Figure 4.1: A fullerene C60 with two leads attached.
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Figure 4.2: The energy dependence of the conductance (the left axis) of
the fullerene in Fig. 4.1 and its resonant eigenvalues (the right axis). The
circles denote resonant eigenvalues and the symbols × denote bound states.
The resonant eigenvalues obtained from the advanced Green’s function are
omitted, because they are complex conjugate to the retarded ones.
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and hence we would expect a sharp Lorentzian peak. However, the numerator
of the conductance also has the energy dependence because of the nearby
broad conductance peak at E ' Eres

r2 :

T (E) ' ρ2(E)

(E − Eres
r1 )2 + Eres

i1
2

(4.2)

with

ρ2(E) ' 1

(E − Eres
r2 )2 + Eres

i2
2
. (4.3)

This can be written in the form

T (ε) ' rres + qresε

ε2 + 1
(4.4)

with ε ≡ (E−Eres
r1 )/Eres

i1 and rres ≡ ρ2(E
res
r1 )/Eres

i1
2. We define the normalized

asymmetry coefficient, or the Fano parameter as

qres ≡ ρ′2(E
res
r1 )/Eres

i1 . (4.5)

This is roughly equal to Eq. (3.20).
In a rather special case where qres = 0, or ρ′2(E

res
r1 ) = 0, the resonance peak

takes the form of a symmetric Lorentzian. In a general case, however, we end
up with an asymmetric peak. A resonant state with a small imaginary part
Eres

i1 has a particularly large qres and hence yields a particularly asymmet-
ric peak. From this viewpoint, the asymmetric Fano peak is a surprisingly
general phenomenon.
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Chapter 5

Summary

We carried out the spectrum analysis of the open quantum N-level dot with
the multiple leads. We obtain the conductance formula in terms of the dis-
crete eigenstates, containing the resonant, anti-resonant and bound states,
as well as the branch points. In Chap. 2, we showed that the resonant state
generally has a diverging eigenfunction and a complex eigenvalue. We re-
duced the Hamiltonian of an infinite system to the effective one of a finite
system, using the self-energy. We obtain the simple conductance formula
(2.73) by using the local density of states of discrete eigenstates, ρeigen(E),
and the local density of states of the leads, ρleads(E). In Chap. 3, we showed
that the Fano conductance arises from the cross terms between two reso-
nant state pairs as well as a resonant state pair and a bound state. We
also presented microscopic derivation of the Fano parameter. In Chap. 4, we
showed calculation of the conductance of a C60 molecule. The conductance
has a complicated structure but the shapes of the peaks can be essentially
described by the argument in Chap. 3.
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Appendix A: The scattering
state obtained by the
Lippmann-Schwinger equation

In this appendix, we present in detail the calculation of the expression of the
scattering states given in Eq. (2.11)[19]. First, for simplicity, we transform
the Hamiltonian of Eq.(2.1) to the second-quantized Hamiltonian

Ĥ = Ĥ0 + Ĥ1 (5.1)

Ĥ0 ≡
∑

α

∫ π

−π

dk

2π
Ekψ

†
k,αψk,α +

N−1∑
j=0

εjd
†
jdj (5.2)

Ĥ1 ≡ −
∑

α

tα

∫ π

−π

dk

2π

(
ψ†k,αd0 + h.c.

)
−

∑
06i<j6N−1

(
vijd

†
idj + h.c.

)
. (5.3)

where ψ†k,α and ψk,α are the Fermion field operators of the lead α while d†j and
dj are the creation and annihilation operators of the Fermion, respectively.
These operators obey the anticommutation relations;

{
ψ†k,α, ψk′,α′

}
= δk,k′δαα′ and

{
d†i , dj

}
= δi,j, (5.4)

{ψk,α, ψk′,α′} = 0 and {di, dj} = 0. (5.5)

We next define the Hamiltonians are assigned a Liouville operators L0

and L1 , which act on a general operator Ô ∈
{
ψ†k,α, ψk,α, d

†
j, dj

}
as

LnÔ ≡
[
Ô, Ĥn

]
for n = 0, 1, (5.6)
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where [·, ·] is the commutation relation. The Liouville operator L for the
Hamiltonian Ĥ of the whole system is given by

L ≡
[
Ô, Ĥ

]
=

[
Ô, Ĥ0 + Ĥ1

]
=

[
Ô, Ĥ0

]
+

[
Ô, Ĥ1

]
= L0 + L1. (5.7)

Third, we define the scattering-state operators c†k,α and ck,α of the lead
α, which have the anti-commutation relations

{
c†k,α, ck′,α′

}
= δk,k′δαα′ and {ck,α, ck′,α′} = 0. (5.8)

These scattering-state operator have the outgoing wave boundary condition
as follows;

Lc†k,α =
[
c†k,α, Ĥ

]
= −Ekc

†
k,α + iδ

(
ψ†k,α − c†k,α

)
, (5.9)

where δ is a positive infinitesimal. Equation (5.9) is rewritten as

c†k,α =
iδ

L+ Ek + iδ
ψ†k,α. (5.10)

We express the scattering-state operator c†k,α in terms of the known operators

ψ†k,α, d
†
j

c†k,α = ψ†k,α −
1

L+ Ek + iδ
L1ψ

†
k,αas (5.11)

by using the relation among L and L0,L1,

1

L+ Ek + iδ
=

{
1− 1

L+ Ek + iδ
L1

}
1

L0 + Ek + iδ
(5.12)

with

1

L0 + Ek + iδ
ψ†k,α =

1

iδ
ψ†k,α. (5.13)

Finally, we calculate the scattering-state operator c†k,α. Defining the op-
erators

D̂j ≡ 1

L+ Ek + iδ
d†j, (5.14)

F̂q,α ≡ 1

L+ Ek + iδ
ψ†q,α, (5.15)
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we simplify the scattering-state operator by using the relation

c†k,α = ψ†k,α − tαD̂0, (5.16)

where

D̂0 =

{
1− 1

L+ Ek + iδ
L1

}
1

L0 + Ek + iδ
d†0

=
1

Ek − ε0 + iδ

(
d†0 −

N−1∑
j=1

v0jD̂j −
∑

β

tβ

∫ π

−π

dq

2π
F̂q,β

)
, (5.17)

D̂j =

{
1− 1

L+ Ek + iδ
L1

}
1

L0 + Ek + iδ
d†j

=
1

Ek − εj + iδ

(
d†j −

N−1∑

l=j+1

vjlD̂l −
j−1∑

l=0

v∗ljD̂l

)
, (5.18)

F̂q,β =

{
1− 1

L+ Ek + iδ
L1

}
1

L0 + Ek + iδ
ψ†q,β =

1

Ek − Eq + iδ

(
ψ†q,β − tβD̂0

)
.

(5.19)

Using Eqs. (5.17) and (5.19), we can obtain a matrix equation




Ek − ε0 + iδ −
∑

α

∫ π

−π

dq

2π

t2α
Ek − Eq + iδ

v01 · · · v0,N−1

v∗01 Ek − ε1 + iδ · · · v1,N−1
...

...
. . .

...
v∗0,N−1 v∗1,N−1 · · · Ek − εN−1 + iδ




×




D̂0

D̂1
...

D̂N−1


 =




d†0 −
∑

β

∫ π

−π

dq

2π

tβψ
†
q,β

Ek − Eq + iδ

d†1
...

d†N



.

(5.20)

On the other hand, using the inverse of the retarded Green’s function of
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Eq. (2.49)

(
GR(Ek)

)−1
= Ek −Heff(Ek)

=




Ek − ε0 + iδ −
∑

α

∫ π

−π

dq

2π

t2α
Ek − Eq + iδ

v∗01 · · · v∗0,N−1

v01 Ek − ε1 + iδ · · · v∗1,N−1
...

...
. . .

...
v0,N−1 v1,N−1 · · · Ek − εN−1 + iδ



,

(5.21)

we obtain




D̂0

D̂1
...

D̂N−1


 =

(
GR(Ek)

)t




d†0 −
∑

β

∫ π

−π

dq

2π

tβψ
†
q,β

Ek − Eq + iδ

d†1
...

d†N−1




(5.22)

We write the scattering-state operator of the lead α as

c†k,α = ψ†k,α − tα

(
N−1∑
j=0

d†jdj −
∑

β

∫ π

−π

dq

2π

tβψ
†
q,β

Ek − Eq + iδ
d0

)
GR(Ek)d

†
0. (5.23)

The scattering states in the first-quantized form is thereby given as

|ψF
k,α〉 ≡ c†k,α|0〉

= |k, α〉 − tα

(
N−1∑
j=0

〈dj|GR(Ek)|d0〉|dj〉 − 〈d0|GR(Ek)|d0〉
∑

β

∫ π

−π

dq

2π

tβ|q, β〉
Ek − Eq + iδ

)
.

(5.24)
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Appendix B:Calculation of the
self-energy due to the
outgoing-wave boundary
condition

A popular way of treating the semi-infinite leads is to contract the leads
to the self-energy. The self-energy of leads is a useful way of computing
the conductance as well as obtaining resonant states. In this Appendix, we
propose a new method of calculating the self-energy of the leads. The self-
energy Σ(E) was originally defined in [1]

〈x| 1

E −H + iδ
|x′〉 = 〈x| 1

E − (Hc + Σ(E))
|x′〉 (5.25)

for sites x and x′ inside the central conductor, where Hc is the Hamiltonian
of the central conductor and H is the total Hamiltonian including semi-
infinite leads attached to the conductor. The self-energy has been calculated
by various methods. The method that we present here is much easier than
previous methods. The main claim of this note is that the self-energy is
equivalent to the boundary conditions for resonant states.

We consider the Hamiltonian of a conductor with semi-infinite leads at-
tached to it: H = Hc +

∑
αHα, where Hc is a one-body Hamiltonian of

a finite-size conductor, while Hα describes a semi-infinite lead given by the
tight-binding model

Hα ≡ −t
∞∑

xα=0

(|xα + 1〉〈xα|+ |xα〉〈xα + 1|). (5.26)
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This includes the hopping between a site xα = 0 on the conductor and the
lead α. (Note that, if we have hopping between the conductor and a lead
with the amplitude different from −t, we include it in Hc.)

Equation (5.25) suggests that the eigenvalues of the effective Hamiltonian
Heff(E) ≡ Hc +Σ(E) are the poles (bound states and resonant states) of the
total Hamiltonian H on the complex E plane. Therefore, we seek discrete
and generally complex eigenvalues En of resonant states and bound states of
the whole system:

H|ψn〉 = En|ψn〉 and 〈ψ̃n|H = En〈ψ̃n|. (5.27)

The eigenfunctions are bi-orthogonal: 〈ψ̃n|ψm〉 = δnm. The eigenvalues En

are related to the corresponding eigen-wave-number kn, which is also gener-
ally complex, through the dispersion relation En = −2t cos kn. The eigen-
wave-number kn is on the upper-half plane for the bound states and on the
lower-half plane for the resonant states.

It is known that the resonant states as well as the bound states can be
found by requiring the boundary conditions 〈xα|ψn〉 ∝ eiknxα for xα ≥ 0
in the leads[11]. In other words, the discrete states satisfy the boundary
conditions

〈xα + 1|ψn〉 = eikn〈xα|ψn〉 for xα ≥ 0, (5.28)

where <kn ≥ 0. The boundary conditions transform the Schrödinger equa-
tion

〈xα = 0|Hc|ψn〉 − t〈xα = 1|ψn〉 = En〈xα = 0|ψn〉 (5.29)

to

〈xα = 0|Hc|ψn〉+ V
(α)
eff (En)〈xα = 0|ψn〉

= En〈xα = 0|ψn〉, (5.30)

where

V
(α)
eff (E) ≡ −teik (5.31)

is the energy-dependent effective potential.
We claim that the self-energy of the lead α is nothing but the effective

potential:

Σ(α)(E) = V
(α)
eff (E)|xα = 0〉〈xα = 0|. (5.32)
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The total self-energy is the sum over the leads: Σ(E) =
∑

α

Σ(α)(E). The

effective potential V
(α)
eff is rewritten in terms of E as

V
(α)
eff (E) ≡ E − i

√
4t2 − E2

2
(5.33)

by using the dispersion relation E = −2t cos k. Note that we choose the
branch =V (α)

eff < 0 for the retarded Green’s function. Equation (5.33) is
indeed equivalent to the expression obtained by other methods[1].

Let us now demonstrate that the present method is easily generalized to
other types of leads such as N-leg ladder and carbon nanotube. Hereafter,
we drop the lead index α for simplicity. First, we calculate the self-energy of
a lead of N-leg ladder (Fig.5.1):

Hladder =− t
∞∑

x=0

N∑
y=1

(|x+ 1, y〉〈x, y|

+|x, y + 1〉〈x, y|+ c.c.) . (5.34)

We first diagonalize Hladder in the y direction and obtain the conduction
channels {φj (y) |j = 1, 2, · · · , N}, where

φj(y) = sin
jπy

N + 1

/
√√√√

N∑

y′′=1

sin2 jπy′′

N + 1
. (5.35)

Each channel has the dispersion relation E = −2t cos kj + ωj, where ωj ≡
−2t cos(2πj/N). Each channel yields its effective potential of the form
Eq. (5.31), or

V
(j)
eff (E) = −teikj =

E − ωj − i
√

4t2 − (E − ωj)
2

2
. (5.36)

The self-energy of N-leg ladder is given in the N ×N matrix form

(Σladder(E))y,y′ =
N∑

j=1

φj(y)V
(j)
eff (E)φj(y

′)∗. (5.37)

The result is equivalent to the one obtained in Ref. [16].
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Figure 5.1: Leads of the form of ladders are attached to the central conductor.

Second, we calculate the self-energy of a lead of (n,0) zigzag carbon nan-
otube attached to the conductor as in Fig. 5.2, where n is the chiral number.
The Schrödinger equation of the zigzag carbon nanotube Hzigzag|ψ±A/B(kj)〉 =

E|ψ±A/B(kj)〉 yields the dispersion relation of the jth channel as

E= ±t
∣∣hkj

∣∣ = ±t
√

1± 4 cos

√
3kj

2
cos

πj

n
+ 4 cos2

πj

n
, (5.38)

with

hkj
≡ e

i
kj√

3 + 2 cos
πj

n
e
−i

kj

2
√

3 (5.39)

where the first Brillouin zone is |kj| < π/
√

3 [17], and its wavefunction on
the A and B sub-lattices as




〈x, y|ψ±A(kj)〉 = ∓ h∗kj

|hkj
|e

ikjxφj(y),

〈x, y|ψ±B (kj)〉 = eikjxφj(y),

(5.40)

where φj(y) ≡ ei 2πj
n

y/
√
n. The boundary conditions transform the Schrödinger

equation of the whole system

〈x = 0, y|Hc|ψ±B (kj)〉 − t〈x = 1
/√

3, y|ψ±A(kj)〉
= E〈x = 0, y|ψ±B (kj)〉 (5.41)
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to

〈x = 0, y|Hc|ψ±B (kj)〉+ V
(j;B)
zigzag(E)〈x = 0, y|ψ±B (kj)〉

=E〈x = 0, y|ψ±B (kj)〉, (5.42)

where the effective potential of the jth channel is given by

V
(j;B)
zigzag(E) ≡ ±t h

∗
kj

|hkj
|e

i
kj√

3 (5.43)

=
E2 + t2 − λ2

j ± i
√

(2tλj)
2 − (

E2 − t2 − λ2
j

)2

2E
(5.44)

with λj ≡ 2t cos πj/n. Hence we obtain the self-energy of an (n,0) carbon
nanotube in the n× n matrix form

(Σzigzag(E))yB,y′B
=

n∑
j=1

φj(yB)V
(j;B)
zigzag(E)φj(y

′
B)∗, (5.45)

where yA and yB are coordinates on the A and B sub-lattices, respectively,
which are indicated in Fig. 5.2. The result (5.45) is indeed equivalent to the
one obtained in Ref. [18].

When the A sub-lattice, instead of the B sub-lattice, is in contact with
the conductor, we obtain the self-energy in the form

(Σzigzag(E))yA,y′A
=

n∑
j=1

φj(yA)V
(j;A)
zigzag(E)φj(y

′
A)∗ (5.46)

with

V
(j;A)
zigzag(E)

≡
E2 − t2 + λ2

j ± i
√

(2tλj)
2 − (

E2 − t2 − λ2
j

)2

2E
. (5.47)
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Figure 5.2: A lead of the zigzag carbon nanotube. The upper and lower
edges satisfy the periodic boundary conditions.
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