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Abstract

We conjecture for strongly correlated quantum systems that the imaginary part of
a zero of the dispersion relation of the elementary excitation is equal to the inverse
correlation length. In order to calculate the dispersion relation and to search zeros
in the complex momentum space, we transform the Hermitian Hamiltonian to a
non-Hermitian one by replacing the momentum p with p + ig, where g is a real
constant. For several strongly correlated quantum systems that this non-Hermitian
generalization is equivalent to multiplying the right hopping energy by e? and the
left hopping energy e 9. We demonstrate for these models that we can obtain the
correlation length only by observing non-Hermitian energy spectra after the non-
Hermitian generalization; the non-Hermitian critical point g. where the energy gap
vanishes for the non-Hermitian model is equal to the inverse correlation length of
the Hermitian model.
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Chapter 1

Introduction of a non-Hermitian
analysis of strongly correlated
quantum systems

In the present thesis, we conjecture for strongly correlated quantum systems that
the imaginary part of a zero of the dispersion relation of the elementary excitation
in the complex momentum space is equal to the inverse correlation length due to
the energy gap of the elementary excitation. The dispersion relation in the complex
momentum space is obtained by analytic continuation of the one on the real axis.

For non-interacting systems, the static correlation function ¢(x), namely, the
equal-time one-particle Green’s function has the form [1]

o(z) = /Z 47‘:;(;)0[1{;, (1.1)

where €(k) denotes the dispersion relation of the elementary excitation at the mo-
mentum k. We assume that analytic continuation of €(k) is valid everywhere in the
complex k plane. We define the correlation length £ corresponding to the excitation
as

E = — lim M (1.2)
=

We assume |¢™* /4me(k)| — 0 for |k| — oo in the upper half-plane in order to
make the following discussion easy. By setting the counter of the integration in
Eq. (1.1) a semicircle closed on the upper half-plane, the correlation function ¢(z)
is calculated as the summation of the residues of the integrand in Eq. (1.1) at the

zeros of €(k) located in the upper half-plane; specifically, ¢(z) can have the form

M
c(x) = Z Aeitm (1.3)
m=1

where k,, is a zero in the upper half-plane, M is the number of the zeros in the
upper half-plane and A,, is a constant. We may consider that |c(x)| behaves for

large x as
le(x)] ~ e ", (1.4)
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where k is the imaginary part of a zero nearest to the real axis in the upper half-
plane. We can conclude from Egs. (1.2) and (1.4) that the imaginary part of a zero
nearest to the real axis is equal to the inverse correlation length.

For strongly correlated quantum systems, however, it is not trivial to express
the the equal-time one-particle Green’s function in the form (1.1). It is one of
our conclusions that there may still be a universal relation between the correlation
length and the imaginary part of a zero of the dispersion relation of an elementary
excitation.

Is the analytic continuation of the dispersion relation valid everywhere in the
complex momentum space for strongly correlated systems? We presume that the
answer is no; the analytic continuation may be valid only near the real axis in
the complex momentum space. In order to determine the area where the analytic
continuation of the dispersion relation is valid and to search zeros in this area, we
consider a problem of calculating the dispersion relation €(p) on the axis Imp = g,
that is, on the axis where the imaginary part of the momentum p is a real constant
g. Specifically, we introduce the parameter g which makes the low-energy part of
the Hermitian Hamiltonian of the form

H= > edp)nny (1.5)

—m<p<m

transformed to the non-Hermitian one of the form

Hig)= > elp+ig)nin,. (1.6)

—T<p< T

where 77; and 7, are the creation and annihilation operators of the elementary exci-
tation and €(p) is the dispersion relation of the elementary excitation.

We reveal for several exactly solved models that obtaining the dispersion relation
€(p) on the axis Imp = g is equivalent to solving non-Hermitian models where an
imaginary vector potential ig (where § is a real vector) is added to the momentum
operator. The non-Hermitian kinetic energy in the continuous space is given by [2]

(—ihV +ig)?

H.. =
k 2m

(1.7)
Its second-quantized form within the tight-binding approximation in the d-dimensional
case is given by

d
Hyx = —t Z Z (eg”(f)c;w”cf + e_g”(f)c;cﬂe;) (1.8)
v=1 ¢

after the Pierels substitution of the imaginary vector potential [2]. We hereafter
focus on the one-dimensional case with a constant imaginary vector potential and
use
Hy = —t Z(egclﬂcx +eclepy), (1.9)
T
where ¢ is a real constant; in other words, we make the hopping energy asymmetric.
More generally, we multiply the right hopping energy —tcl +nCz by €™ and the left



hopping energy —tcic,y, by e in the original Hermitian Hamiltonian. We call
the transformation (1.9) a non-Hermitian generalization of quantum systems.

Let us exemplify the above on the half-filled Hubbard model. Obtaining the
dispersion relation €(p) of the charge excitation on the axis Imp = g may be actually
equivalent to solving the non-Hermitian model [3]

L L

Hiubbara(9) = — tz Z (echLJclJ + e_gClT,UClH,U) +U Z NNy, (1.10)
=1 o=1,| =1

which was first introduced by Fukui and Kawakami. They solved analytically the
non-Hermitian Hubbard model (1.10) in the thermodynamic limit by the Bethe-
ansatz method. They argued that the “Hubbard gap” vanishes at g = g. as we
increase the non-Hermiticity g and obtained an analytical expression of the non-
Hermitian critical point g.. We pointed out [4] that the non-Hermitian critical point
ge is actually equal to the inverse correlation length of the charge excitation. This
equality may be understood quite naturally by considering that the imaginary part
of a zero of the dispersion relation of the charge excitation is equal to the inverse
correlation length and that the Hamiltonian (1.10) yields the dispersion relation €(p)
of the charge excitation on the axis Imp = g.

It is remarkable that we can obtain the length scale, namely, the correlation
length due to the energy gap only by observing the behavior of the non-Hermitian
spectrum. It is a purpose of the non-Hermitian generalization that we can obtain
the length scale of Hermitian quantum systems only from non-Hermitian energy
spectra. The non-Hermitian generalization in Eqs. (1.7)-(1.9) was first introduced
and applied to the one-electron Anderson model in a random potential by Hatano
and Nelson [2]. Their model is, in one dimension,

L L

Hrandom(9) = —t Y (e%]x + 1) (x| + e a)(x + 1]) + Y Vila)(zl, (1.11)

=1 r=1

where V, is a random potential at site x and we require the periodic boundary
condition. As we increase the non-Hermiticity ¢, a pair of neighboring eigenvalues
collide at a point g = g¢. and then become complex [5]. It was revealed [2] that
the non-Hermitian critical point g. is equal to the inverse localization length of the
eigenfunction of the original Hermitian Hamiltonian; see Appendix A. The non-
Hermitian energy spectra of the systems with randomness and without interactions
thus yield the localization length. In the present thesis, we try to claim that the
non-Hermitian spectra of the systems without randomness and with interactions
yield the correlation length.

The present thesis is organized as follows; we discuss the S = 1/2 ferromagnetic
isotropic XY chain in a magnetic field in Chapter 2, the half-filled Hubbard model
in Chapter 3 and the S = 1/2 XXZ chain in the Ising-like region in Chapter 4. For
these models, we first point out that the imaginary part of a zero of the dispersion
relation is equal to the inverse or twice the inverse correlation length. The factor
one or two corresponds to the number of the elementary excitations involved in
the excited state. We next use non-Hermitian models in order to calculate the
dispersion relation on the axis Imp = ¢ with a real constant g. By analyzing the
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non-Hermitian models, we argue that the non-Hermitian critical point g. where
the energy gap vanishes is equal to the inverse correlation length. It supports our
conjecture proposed at the beginning of the introduction. We numerically determine
the area in the complex momentum space where the analytic continuation of the
Hermitian dispersion relation is valid. We search zeros in the area analytically for
the S = 1/2 ferromagnetic isotropic XY chain in a magnetic field and numerically
for the half-filled Hubbard model and for the S = 1/2 XXZ chain in the Ising-like
region. We argue that the zeros nearest to the real axis in this area correspond to
the non-Hermitian critical point g..

We have a prospect that the non-Hermitian generalization in Eq. (1.9) is also ap-
plicable to unsolved systems. In Chapter 5, we analyze the Majumdar-Ghosh model,
for which we do not know the energy gap exactly; only approximate estimates are
known. We still show that the non-Hermitian critical point g., where approximate
estimates of the energy gap vanish, is equal to the inverse correlation length cal-
culated, by finite-size scaling of the correlation function of the ground state of the
Hermitian Majumdar-Ghosh model.

In Chapter 6, we numerically analyze non-Hermitian models of finite size L. We
calculate the non-Hermitian “critical” point g.(L) where the energy of the eigenstate
corresponding to the ground state in the limit . — oo becomes complex; we then
obtain an extrapolated estimate g.(00). We numerically confirm that the estimate
gc(00) and the inverse correlation length of the Hermitian systems are consistent for
the Hubbard model and for the S = 1/2 XXZ chain. We also analyze an unsolved
model, namely the S = 1/2 antiferromagnetic Heisenberg chain with nearest- and
next-nearest-neighbor interactions including the Majumdar-Ghosh model.

In the summary, we conjecture again for strongly correlated quantum systems
that it may be a universal relation that the imaginary part of a zero of the dispersion
relation is equal to the inverse correlation length. We next give some examples for
which the non-Hermitian generalization in Eq. (1.9) does not work well in order to
obtain the correlation length. However, our conjecture proposed at the beginning
of the introduction is valid ever for these examples.



Chapter 2

S =1/2 isotropic XY chain

2.1 Zeros of the dispersion relation of the elemen-

tary excitation and the correlation length

We first consider as an introductory example the S = 1/2 ferromagnetic isotropic
XY chain in a magnetic field which is mapped to a non-interacting Fermion system.

The Hamiltonian of this model is

L L
Hxy = —=J Y (SFSEa +SYSE,) —h Y St (2.1)
=1 1=
where we set J > 0. The Hamiltonian (2.1) is transformed into
TN i
Hxy = ) ;(CZHCH-CZCJH - —i—hchcl (2.2)
by the Jordan-Wigner transformation
cj=2718585...S7,S] ol =21718585 .57 |5 (2.3)
We can immediately diagonalize the Hamiltonian (2.2) in the form
Hxy = Z e(p)c;cp — % (2.4)
—m<p<m
with the Fourier transformation
LN o= - ot
cp = ﬁ;e a, ¢p= ; o, (2.5)
where €(p) = —Jcosp + h is the dispersion relation of the one-particle excitation

shown in Fig. 2.1 for h > J. The ground state for h > J has no Fermions and its
the eigenenergy is —hL/2. The first excited state is the one-particle excitation of

the momentum p = 0 and its excitation energy is h — J.

11
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e(p)

iy

- 1o = P

Figure 2.1: The dispersion relation e(k) = h — J cos p of the one-particle excitation
for the S = 1/2 isotropic XY chain for h > J.

Let us obtain the zero p(®) of the dispersion relation e(p) of the one-particle
excitation in the complex momentum space. The equation

h — Jcos(p¥ + ip®”) =0 (2.6)

yields the equation for the real p£0) = Re p® part of the form
h — J cos pl% cosh pgo) =0 (2.7)

0

and the one for the imaginary part p; ) =1Im p© of the form

O~ . (2.8)

sin p£0) sinh p;
By solving Egs. (2.7) and (2.8), we obtain the zero p(® in the region Imp > 0 of the
form

h h\°
p» =iln 5+ (j) —1]; (2.9)

its imaginary part is equal to the inverse correlation length obtained by the quantum
transfer matrix method [6].

We hereafter briefly review the calculation of the correlation length £(7") at
finite temperature T" by the quantum transfer matrix method. The eigenvalues of
the quantum transfer matrix yields the correlation length &(T") of the form

(Max)

A

E—N!rlgloo A(Max) s (210)
Np—1

where A%ax) is the largest eigenvalue in the subspace where the Trotter number,
that is, the number of slices along the imaginary time axis, is Np. For the isotropic

XY chain, the eigenvalues lim Ag;/[ax) and lim A§$4aj‘} at finite temperature T
Nt—o0 T Nt —00 T
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are obtained in the forms [7]

1 [ Jcosp+h
(Max) _ - P
NITILnoo Ay, =exp {27? /0 dp In (2 cosh ( 5T ))} , (2.11)
J 1 [ sinh[(J cosp + h) /2T
lim AN — = 1 . 2.12
Npsbo | Ne=1 = o &P |:27T /0 dpin ( (Jcosp+ h)/2T (2.12)

By substituting Eq. (2.12) into Eq. (2.10), we have the correlation length £(T") at
finite temperature 1" of the form

1 h h\° 1 [ Jcosp+h
S A - =1 — dpln |2coth | ———— ] | . 2.1
ary =70y (5) 1] ra [ fpen (5] e

By taking the limit 7" — 0, we can neglect the second term of the right hand-side
in Eq. (2.13) and we thus have the inverse correlation length 1/£(0) of the form

ERN LA O | o

which is equal to the imaginary part of the zero (2.9).

2.2 Non-Hermitian analysis of the isotropic XY
chain

We propose a non-Hermitian isotropic XY chain in order to obtain the dispersion
relation on the axis Im p = ¢g and discuss the spectral behavior of the non-Hermitian
model.

Let us transform the Hermitian Hamiltonian (2.4) to the non-Hermitian one of
the form

Hxv(g) = Y elp+ig)e Cp_% (2.15)

—T<p< T

as we described in Eq. (1.6), in order to obtain the dispersion relation on the axis
Imp = g. In the real space, the non-Hermitian Hamiltonian (2.15) becomes

L

J
Hxy (g) = ) Z(e c;r“cl +e” cchlH - — + hchcl (2.16)

=1

The expression (2.16) actually corresponds to the non-Hermitian generalization in
Eq. (1.9). By the inverse Jordan-Wigner transformation, the Hamiltonian (2.16) is
transformed back into

L
Hxy(g)=—= Z 9SSy + eSS, —h Y SF
=1

L
—JY [coshg (SFSfyy + SPSY,,) +isinhg (SYSE, + SPSEa)] —h Y SP
=1
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ReE(p)  +ImE(p)
T 0 —
1t 1 '1 g:o —_—
(a) - - - p (b) -3 -2 -1 1 2 p 3

Figure 2.2: (a) The real part of £(p) and (b) the imaginary part of £(p) for h > J,
where g. denotes the non-Hermitian critical point defined in Eq. (2.20).

We obtain the ground-state energy and the excitation energy by the one-particle
excitation. The ground state has no Fermions and its eigenenergy is Eg = —hL/2,
which does not depend on g. On the other hand, the one-particle excitation energy
E(p) at the momentum p is

E(p) =e(p+ig) = —Jcos(p+ ig) + h, (2.18)

whose real part Re&(p) and imaginary part Im E(p) are schematically shown in
Fig. 2.2. Figure 2.3 shows the energy spectra of the non-Hermitian XY chain (2.16)
for h > J. The symbol x denotes the ground state and the solid lines denote the
one-particle excitations. All eigenvalues are real at the Hermitian point g = 0 and
€(0) = h — J gives the finite energy gap as shown in Fig. 2.3 (a). As we turn on the
non-Hermiticity g, all eigenvalues except for p = 0 and -7 immediately spread into
the complex E plane (Fig. 2.3 (b)). The g dependence of the energy gap AE(g) is

AE(g) = €(ig) = h — J cosh g. (2.19)

We define the non-Hermitian critical point g. as the point where the energy gap
above the ground state vanishes. From Eq. (2.19), we obtain the non-Hermitian
critical point g. of the form

h R\ 2
c=1In|= ) —1f. 2.20
ge=In| =+ (J) (2.20)

Figure 2.4 shows the non-Hermitian critical point g. as a function of h/J. The
Hermitian system is gapless (the XY phase) for h < J and hence we have the non-
Hermitian critical point g. = 0 in the region. We can immediately confirm that the
analytical expression of the non-Hermitian critical point g. in Eq. (2.20) is equal to
the inverse correlation length of the Hermitian system [6].

Indeed, to see where the gap (2.19) vanishes is equivalent to solve Eq. (2.7).
This is how the non-Hermitian generalization of the form (1.9) may give a zero
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p==xn
Energy gap /
G
% >
-hL/2 / ReE

p:

p==n |£
Energy gap
ey
% >
_hL2 / U ReE

p=0

(b)

Figure 2.3: The eigenvalue distributions of the non-Hermitian isotropic XY chain
for h > J for (a) g = 0 and (b) 0 < g < g.. The symbol x denotes the ground state.

1
0.8 /
06 /
04 /
0.2 /

0
0 02 04 06 08 1 12 14
hilJ

Figure 2.4: The non-Hermitian critical point g. of the isotropic XY chain. The
ground-state critical point of the Hermitian system is h/J = 1.
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of the dispersion relation and hence give the inverse correlation length. In the
region g > g., the ground-state energy energy E,s denoted by x in Fig. (2.3) does
not become complex because the ground state is in a different subspace from any
excited states. This behavior is quite different from the one for the non-Hermitian
Hubbard model (3.11) and for the non-Hermitian S = 1/2 antiferromagnetic XXZ
chain (4.15) as shown below.

2.3 Non-Hermitian analysis of the S = 1/2 trans-
verse Ising chain

We here comment that the non-Hermitian generalization of the form Eq. (1.9), that
is, multiplying the right hopping energy e¢? and the left hopping energy by ¢ in
the Hermitian Hamiltonian, does not work for the S = 1/2 ferromagnetic transverse
Ising chain

L L
Hising = —J Y SESH —h Y S (2.21)
=1 =1

in order to obtain the correlation length. Our conjecture is nevertheless supported
for this model; the imaginary part of a zero of the dispersion relation is equal to the
inverse correlation length.

First, let us obtain the zeros of the dispersion relation of the Hermitian model.
The Hamiltonian (2.21) is transformed into

L

J
Hising = -7 Z(c}rﬂcl + cchlH — c;r“c;r —l41) — — —|— hz ca (2.22)
=1

by the Jordan-Wigner transformation in Eq. (2.3). By the Fourier transformation
of the Fermionic operators clT and ¢,

L

L
1 i

Cp = — e e 1y, 2.23

=Ly l Ty (229

=1

»H
—0—

the Hamiltonian (2.22) is rewritten in the form

J .
Hising = —— — Z [ —cosk — h)(ckck +cf "Ccok) + 5 Sin k(c,zcik + c_kCr)
0<k<m

(2.24)
The elementary excitation of Eq. (2.24) is given by

np = €os O,¢, — sin O,c"

Do
N—p =sind, c + cos Opc_y, (2.25)
where
1 Jsinp
0, = —— arct _— 2.26
P g Aretan [JCOSp—Qh:| (2.26)
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The Hamiltonian (2.21) is therefore diagonalized in the momentum space of the form

P = 3 <o) (1 3). (227

—m<p<m

where the dispersion relation €(p) is given by

e(p) = \/(JC;)SP - h)2 + (JS;HP)Q. (2.28)

We then obtaln zeros p® of the dispersion relation (2.28). By introducing p&o) =

Rep® and p!” = Im p©, the equation

2
N e R
9 2 .

yields the equation for the real part of the form

JQ
=t h? — Jhcos pl¥ coshpl =0 (2.30)

and the one for the imaginary part of the form

sin p(© sinhp@ =0. (2.31)

T K3

By solving Egs. (2.30) and (2.31), we obtain the zeros p(® of the dispersion rela-
tion (2.28) in the region Imp > 0 of the form

| 2h

n .
J

The imaginary part of the zeros (2.32) is equal to the inverse correlation length of

the transverse Ising chain. The correlation length is obtained from asymptotic form
of the two-point correlation function <Sf5f+n>, which is given for large n in the

p =i (2.32)

form [8]

(SPSEn)

. ( (&) ) () [ (1 () (- () ) oo
~ exp(—n/€). (2.33)

with the inverse correlation length 1/ = In(2h/J).

Next, we derive a non-Hermitian Hamiltonian of the form (1.6) by replacing p
with p + ig in the dispersion relation ¢(p) in order to obtain the dispersion relation
on the axis Imp = ¢g. As shown in Appendix B, the Hamiltonian is transformed
back to the spin Hamiltonian of the form

HIsing( )
- Z Z 2)"Sfy1 -+ Stino1 [(@n = 1) SEn ST+ (i + ) SE SE + 18 (ST S — SEaST]

— o Z S (2.34)
l
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where coefficients «,, 3, and 7, are given by the following integrals:

Lo . .
oo L Jeosp e(p +ig) + e(p — ig) cos(np)dp,
or |\ 2 2¢(p)

_ i [Telptig) —elp—ig) .

By = 5 /ﬂ 5 sin(np)dp,
1 [T Jsinpe(p+ig) +e(p —ig) .

= dp. 2.

Yn 5 /7r 5 2(7) sin(np)dp (2.35)

This non-Hermitian Hamiltonian is very complicated; interactions between spins
beyond the nearest neighbor sites emerge as soon as g is finite. It is because its
elementary excitation is obtained by the Bogoliubov transformation; the creation
and annihilation operators at two different momenta p and —p are mixed. Con-
versely, the non-Hermitian generalization of the simple form (1.9) does not produce
the dispersion relation €(p + ig) in this model. We may need another principle of a
non-Hermitian generalization for this model.



Chapter 3
Half-filled Hubbard model

In the present chapter, we consider the half-filled Hubbard model

L L
Hiubbara = —¢ Z Z (CZTH,UCz,a + CZF,JCJH,U) +U annl,l. (3.1)

I=1 o=1,] =1
The charge excitation has a finite energy gap, namely, the Hubbard gap for U >
0. By considering the finite-size scaling of the Drude weight, Stafford and Millis
obtained the inverse correlation length of the charge excitation of the form [9]

1 < Ji inh(wU/4
£ arcsinh(U/4t) — 2/0 Of()lsfeiu(j/%/) t) dw, (3.2)

where Jy(w) is the Bessel function of the first kind. The Drude weight is defined
as [10]

1d°E,
D="= 3.3
for the Hubbard chain under the magnetic ﬁeld, Whose Hamiltonian is given by
L
:—tz D (€l g0+ €70 jea o) FUD gy, (3.4)
I=1 o=1,] =1

where ¢ is a real constant and Ej is the ground-state energy per site. They solved
the Hamiltonian (3.4) in the half-filled case for large enough size L by the Bethe-
ansatz method and asymptotically obtained the L dependence of the ground state
energy Eo(L). By applying Eq. (3.3), they obtained the expression (3.2) from the L
dependence of the Drude weight D(L) of the form [9]

D(L) = ()2 LY2 R (U ft)e ¢ (3.5)
for large L, where F(U/t) is a U-dependent function given by

P 4t —/1+ 4t / dz e " tanh(z)J; (4tx/U) o
(4t> + (1 + (%)2> x tanh(x )]

19

z/ dx e Jo(4tz/U)
2 Jo
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3.1 Zeros of the dispersion relation of the charge
excitation and the correlation length

We first point out for the half-filled Hubbard model that the imaginary part of a zero
of the dispersion relation of the charge excitation is equal to the inverse correlation
length of the half-filled Hubbard model given in Eq. (3.2).

We obtain the dispersion relation in the complex momentum space by consider-
ing the analytic continuation of the Hermitian dispersion, which has been already
known; specifically, the charge excitation of the half-filled Hubbard model has the
excitation energy & (k) of the form [11]

* cos(wsin kp)J1(w)
E(kp) = U + 4t cosky, + 8t/0 e ewU/;) dw (3.7)
and the momentum p(ky,) of the form
* sin(wsin k) Jo(w)
p(kn) = ki + 2/0 e aw, (3.8)

where kj, is the quasimomentum of the “hole”. The dispersion relation of the charge
excitation £(p) is thus obtained through the parameter kj. Fukui and Kawakami

obtained zeros k,(lo) of the excitation energy (3.7) on the axis Rek, = =£m in the
quasimomentum space in the region Im kj, > 0 of the form [3]

kY = 7 +1i arcsinh(U/4t). (3.9)

By substituting Eq. (3.9) into Eq. (3.8), we have the corresponding zeros pgo) of the
dispersion relation in the momentum space in the region Imp;, > 0 as

00 inh(wl /4
P = 1 + 1 |arcsinh(U/4t) — 2 / Jo(w) sinh(wU/41) (3.10)

0 w(l 4 ewU/2t)
The imaginary part of zeros pﬁf) is equal to the inverse correlation length of the
charge excitation in Eq. (3.2). Figure 3.1 shows numerical calculation of the real
part of the excitation energy £(p) in the complex momentum space in the region
Imp < 1/¢ for U/t = 4; it suggests that the zeros in Eq. (3.10) are the nearest to
the real axis.

In the next section, we use a non-Hermitian Hubbard model for the purpose
of obtaining the dispersion relation on the axis Imp = g. We then argue where
the analytic continuation of the dispersion relation may be valid in the complex
momentum space. We also conclude that the zeros in Eq. (3.10) actually exist in
the area where the analytic continuation is assumed to be valid.

3.2 Non-Hermitian analysis of the Hubbard model

For the purpose of searching zeros in the complex momentum space, we use a non-
Hermitian Hubbard model in order to obtaining the dispersion relation on the axis
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Figure 3.1: The real part of the excitation energy £(p) in the complex momentum
space for U/t = 4. The red symbols x denote the zeros of £(p), whose imaginary

part is 1/¢.
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Figure 3.2: The U/t dependence of g, = £~

Imp = g with real g. As will be demonstrated in §3.2.2, obtaining the dispersion
relation on the axis Imp = g may be actually equivalent to solving a non-Hermitian
Hubbard model

L L
Hiubbara(g) = —t Z Z (€%t 1 0010 + €79 serina) + UZ npngy, o (3.11)

=1 o=1,| =1

which was first proposed by Fukui and Kawakami [3]. They solved the non-Hermitian
model (3.11) in the half-filled case exactly by the Bethe-ansatz method. They also
derived an analytical expression of the non-Hermitian critical point g. where the
Hubbard gap vanishes of the form
e A+iU/4t
. = inh(U/4t) + 2i tan ———
ge = arcsinh(U/4t) + 1/ arctan O/t

— 00

a(A)dA, (3.12)

where the distribution function () of the spin rapidity A is given by

™

o(\) = 2i /0 " sech (%) cos(\w) Jo(w) o (3.13)

After some algebra in Appendix C, we can show that the analytical expression of
the non-Hermitian critical point g. is actually equal to the inverse correlation length
1/¢ due to the charge excitation in Eq. (3.2). Figure 3.2 shows the U/t dependence
of g.(= 1/&). For large U, we have g. ~ arcsinh(U/4t) by neglecting the second
term of Eq. (3.2).

We also discuss partly numerically where in the complex momentum space the
analytical continuation may be valid by analyzing the non-Hermitian Hubbard
model (3.11). We then show that the zeros pgo) in Eq. (3.10) actually exist in
the area where the analytic continuation of the dispersion relation of the charge
excitation is considered to be valid.
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In §3.2.1, we review the analytic solution [3] of the non-Hermitian Hamilto-
nian (3.11) by the Bethe-ansatz method. In §3.2.2, we argue physical meaning
of the non-Hermitian generalization of the Hubbard model; the non-Hermiticity ¢
makes the dispersion relation £(p) of the charge excitation transformed to E(p+1ig).

3.2.1 Exact solution of the non-Hermitian Hubbard model
Bethe-ansatz equation and its exact solution

In order to solve the Hamiltonian (3.11), we make the following ansatz for the right

R)

eigenfunction \I{E, , considering the imaginary gauge transformation (A.4) [3]:

N
\Il(gR)(xla"' yIN;O1," 7UN) = exXp (gzx]> \IIO(xla"' y LN, 01, " 70N)
7=1
N
= ZSgH(PQ)Aan,---,aQN (kp,,--- ,kpy)exp 12 (kp, —ig)xg,) (3.14)
{P} 7j=1

The wave function V¥ is the Bethe-ansatz wave function in the Hermitian case g = 0,

N
\Ifo(l'l, N3O, 701\7) = Z Sgn(pQ>AUQ17“'7UQN (kPu e 7kPN> eXp(iZ kijQj)7
{r} j=1

(3.15)

where L, M and N are the number of sites, the number of the down spins and the

number of the electrons, respectively. The symbols P = (P, Ps,--- , Py) and @ =

(Q1,Q2, - - - ,Qn) denote permutations of the set (1,2,--- , N) with 1 < zg, < zg, <

- < zgy < L. The symbol AUQp"'vUQN (kp,,- -+ ,kpy) is a set of N x N! coefficients

depending on the two permutations P and (). The quasimomenta ky, ko, - -- , ky are
unequal to each other for the ground state [12].

The non-Hermitian Bethe-ansatz equation is then given by [3] (see Appendix D)

ﬁ sink; — \g + iU /4t
e sink; — \g —iU/4t

M

ﬂ sink; — Ao +iU/4t 77 Aa — g —iU/2
-sink; — Aq —1U/4t i Ao — A +1U/2t

By taking the logarithm of Eq. (3.16), we have

kj — X
kL —igL =2nl; — QZarctan San/4t g (j=1,---,N), (3.17)

ki — Ao Ao — A
_Qzamtansm[]/4t =27J, +22arctan U/Qtﬁ (a=1,---, M),
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where we set the quantum numbers I; and J, of the ground state for even NV and
odd M as follows [13]:

N—-1 N-3 N -1
A S S R (3.19)
2 2 2
M-1 M-3 M—-1
a — ) y Ty T . 2
J 5 5 5 (3.20)

We here consider the half-filled case where L = N and M = N/2. By taking the
thermodynamic limit L — oo of Egs. (3.17) and (3.18), we obtain the Fredholm-type
integral equations:
) sink — A
k—ig =2mze(k) — 2arctan ————o(A)d\  for k € C(g), (3.21)
S(9) U/4t

Y/

A —sink A—A
2 arctan ———— p(k)dk = 2725(\) + / 2arctan ———o(\)dN
/C(g) U/4t S(g) U/Qt

for A € S(g). (3.22)

In Egs. (3.21) and (3.22), we introduced functions z¢(k) and zs(A) by taking the
continuous limit L — oo of the discrete functions z¢(k;) = I;/L and zs(\o) = Jo/L.
We also defined p(k) = dzc(k)/dk and o(\) = dzs(A)/dA. The symbols C(g) and
S(g) denote distribution curves on which the quasimomentum k& and the rapidity
A lie. By solving Egs. (3.21) and (3.22) numerically, we obtained the distribution
curves C(g) in the complex k plane for an infinite system as in Fig. 3.3 for g < g..
We also observed numerically that the distribution curve S(g) is always located on
the real axis from —oo to oo for g < g.. By differentiating Eqs. (3.21) and (3.22)
with respect to k£ and A\, we have

1 cosk [ U/4t
k)= — A)dX  for k 2
Pk) SE /Oo (U/4t)? 4+ (A —sin k‘)20( ) or k € C(g). (3:23)
1 U/t 1 [ U/t
A) =— k)dk — — NYdN
() w/c(g) T+ 0 =i’ w/oo @207+ ="
for A\ € [—o0, o0],
(3.24)
where we assumed S(g) = [—00, 00]. We here consider an area C¢ in the k plane as

shown in Fig 3.4, where we denote the end points of the curve C(g) for g < g. by
+m+ir(g) with (g) real. The poles of the integrand (U/4t)/[(U/4t)*+ (A —sin k)?]
in the k plane get closest to the real axis for A = 0:

k, = £iarcsinh(U/4t) + nw (n=0,=£1). (3.25)

As long as there are no poles in the area C¢ shown in Fig. (3.4), we may be able to
modify the integral contour C(g) as [3]

-7 T m+ik(g)
L= ] (3.26)
Cl9) —m+ir(g) -7 ™
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Figure 3.3: The distribution C(g) of the charge rapidity k for the infinite system
with U/t = 4. We plot the data for g = 0,0.1,0.2 and 0.245. The end points become
+7m+470881... asg — g. =0.246.. ..
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Figure 3.4: The area C¢ in the complex k plane.
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where we assume that the expression of p(k) on the curve C(g) is valid everywhere
inside the area C¢ in the complex k plane. The modification of the integral contour
C(g) is thus assumed to be valid as long as the end points +m + ix(g) are below the
poles at +m + iarcsinh(U/4t).

We obtain the non-Hermiticity g at which the end points reach +m+i arcsinh(U/4t).
The quasimomenta with Re k = 4+ may correspond to I; and Iy in Eq. (3.19) for
L — oo. Hence we assume z¢ (k) = 4+1/2 for the end points of C(g). We thereby ob-
tain the non-Hermiticity g by substituting £1/2 for z¢(k) and £ +iarcsinh(U/4t)
for k in Eq. (3.21). The result is equal to the non-Hermitian critical point g. in
Eq. (3.12), where the charge gap vanishes.

After the above assumption for the modification of the integral counter C(g), we
rewrite Eqgs. (3.23) and (3.24) for g < g. in the forms

p(k) = i + cosk /OO (U/4)% + U{it_ sin k)2 o(Ndx  for k € [—m, 7|, (3.27)
U/ 4t | [rHsG) U/t
/ (U/4t)? — sin k>2p(k>dk " ™ /7r (U/4t)? + (A — sin k)2p(k)dk

U/4t 1 [ U/Qt
T / vty (U/42)2 sk = o / U207 + (A= N)?
for A € [—o0, 0.
(3.28)

o(X)dN

Since the integrand is a periodic function with respect to k, we have

1 s U/4t 1 [ U/4t

— k)dk+~ k)dk =

w/ﬂ (U/4t)? + (X —sin k)2p( Jak /Hm(g) (U/4t)2 + (A — sin k)2p( Jak =0,
(3.29)

which is followed by

1 U/4t 1 [ U/2t N
oW =2 / TaE T (= smpeP R = / O+ =M

for A € [—o0, 0.
(3.30)

Equations (3.27) and (3.30) are the same as in the Hermitian case [11]. The solutions
are obtained by taking the Fourier transformation of o(\) and are given by [11]

1 cosk [ cos(wsink)Jy(w)
= f — 31
p(k) o + - /0 [ U/ dw or k € [—m, 7, (3.31)
1 [ U
o(A) = —/ sech (—w) cos(Aw)Jp(w)dw  for A € [—o0, 00]. (3.32)
2m Jo 4t

The above suggests that the analytic continuation of the solutions p(k) and o(\)
may be valid inside the area C¢(g.), where Ce(g.) is the area C¢ for g = g..
Eigenenergies

We calculate the dependence of eigenenergies on the non-Hermiticity g in the region
g < ¢g., particularly, the ground-state energy and the charge excitation energy.
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We first obtain the ground state energy Fy. As long as there are no poles in C¢
in Fig. 3.4, that is, for g < g, the ground state energy Eqs per site is

Ey(g) = —2t /c( )cos kp(k)dk
g

T —7+ik(g) m+ik(g)
= —Qt/ cos kp(k)dk — 2t/ cos kp(k)dk — Qt/ cos kp(k)dk.

) ) (3.33)
Since cos kp(k) is a periodic function with respect to k, we have
—7+ik(g) m+ik(g)
—Qt/ cos kp(k)dk — Qt/ cos kp(k)dk = 0. (3.34)
Hence Eg4(g) is given by
T o Jo(CU)Jl(W)

We thus find that the ground state energy does not depend on g for g < g..
We next obtain the excitation energy &£(kj) on the curve C(g). The excitation
energy is defined in terms of the chemical potentials py and p_ in the form [11]

E(kn) = py — pos (3.36)

where g4 is the chemical potential as we take one electron in and p_ is the one as
we take one electron out at the quasimomentum kj. Specifically, py and p_ are
defined as
Ky = E(M+ 17M) - E(M>M)7
p-=EM,M)—E(M—1,M), (3.37)
where E(ny,n|) denotes the eigenenergy in the subspace where the numbers of the
up spins and the down spins are n; and n |, respectively. By considering the particle-
hole transformation:
el jvac)  —  |vac)
Z’T Z?l ?

lvac) — cj}TcI’l\Vac), (3.38)
we have
E(L — Ny, L— nl) — E(?”LT, nl) = (ndouble — nvaC)U = (L —ny — nl)U, (339)

where Ngouple and Nyae are the number of double occupancies and the number of the
vacuum states, respectively. By using Eq. (3.39), we rewrite p in the form

py =E(M +1,M) — E(M, M)
=BE(L—(M+1),L—M)—[L—(M+1)— MU - EM,M)
=E(M —1,M)—E(M,M)+U = —p_ + U. (3.40)
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Hence we have the excitation energy £ (k) at the quasimomentum kj, of the form
Elkn) =U —2pu_. (3.41)

For the calculation of y_, we remove an electron whose quasimomentum is ky,.
The distribution of I; changes into
N —1 N—-2h+3 N—-2h—-1 N -1

ILi=—:\. .. R 42
7 9 9 ) 9 ) 9 9 ) 9 ) (3 )

where we remove the (h — 1)th quantum number. We assume that the distribution
function p(k) in Egs. (3.23) and (3.24) for the ground state changes into pp(k) —
10(k — ky) by the one-hole excitation at k = kj, on the distribution curve C(g). The
Bethe-ansatz equation then becomes

(k) = % - %M — k) + CO;’“ /S(g) T f{;”_ S A for ke Cg)
1 U/t 1 U/2t P
o) =2 /C(g) 77+ O —sm gz Rk = 2 /S(g) @727 + (= oM

for A € S(g). (3.43)

As long as g is less than the non-Hermitian critical point g., we assume to be able
to modify the integral counters fc(g) as Eq. (3.26) and [ as [°._, where we assume
that the expression of p,(k) on the curve C(g) is valid everywhere inside the area
Ce in the complex k plane. Since the integrands in Eq. (3.43) have the periodicity
27 with respect to k, we can reduce the integral counter in Eq. (3.26) to fjﬂ The
modified Bethe-ansatz equation then becomes

on(k) = % B %(xk ) + CO;k /_Z T f{it_ Sink)Qah()\)d)\ for k € [, 7],
1T U /4t [ U/2t o
N =2 /_ Tt (s Rk = = /_ R+ o=

for A € [—o0, 0.
(3.44)

The solutions of Eq. (3.44) are obtained by taking the Fourier transformation of
o(A) and are given by

1 [ U t 2mt
on(AN) :—/0 sech (4—tw) cos(Aw)Jo(w)dw — ﬁsech [%(A — sin kh)]

™

for A € [—o0, 0],

1 cosk [ cos(wsink)Jy(w 1
(i) =5+ 28 [T O Ltk 1)
0

27 T 1+ ewt/2t L
cosk [ cos|w(sink — sin k)]
e /O e for k€ -7, (3.45)

where we here assume that the analytic continuation of pp(k) is valid everywhere
inside the area Cg. Since the integral of the distribution function of the charge
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excitation changes by 1/L, we pick out the excitation as the shift of p,(k) in the
order of 1/L. This has the form

Apn(k) = =0k — ky) —

cos k /°° cos|w(sin k — sin ky,)] o (3.46)
0

T 1+ ewU/2t

everywhere inside the area Ce. We thus obtain the chemical potential p_;

™

o = —Qt/ cos kApp(k)dk = —2t/ cos kApy, (k)dk
C(g)

B * cos(wsin kp,)J1 (w)
= —2cosky, — 4t/0 (1 £ e dw. (3.47)

We therefore obtain the excitation energy £(kp) on the curve C(g):

E(ky) = U + At cos ky + 8t/ cos(wsin ky)J1 (w) d. (3.48)

0 w(l + ewU/2t)

We note that the excitation energy in Eq. (3.48) has the same expression as in the
Hermitian case (3.7). In short, the analytic continuation of the expression £(ky) in
Eq. (3.7) is considered to be valid in the area C¢(g.) in the complex k plane as we
assume that the expression of py (k) is valid everywhere inside the area C¢. (Note,
however, that kj, is on C(g) and hence depends on g.)

We next discuss how the Hubbard gap vanishes as we increase the non-Hermiticity
g. In the non-Hermitian case, we define the “Hubbard gap” as the excitation energy
at the end point kj, = +7 + ix on the curve C(g). The dependence of the Hubbard
gap AHubbard ON K 1S

Anubbara = E(kp, = £ + ik)

> cosh(w sinh
=U — 4t cosh k + St/ cosh(w sin R)Jl(w)dw. (3.49)

0 w(l + ewl/2t)

From Eq. (3.21), on the other hand, the dependence of the non-Hermiticity g on &

is
* sinh(w sinh k) Jy(w)
g(k) =Kk — 2/0 (1 o+ 0/ dw. (3.50)
We thus obtain the dependence of the Hubbard gap on the non-Hermiticity g through
the parameter k. Figure 3.5 numerically exemplifies how the Hubbard gap collapses
as we increase the non-Hermiticity g. The ground-state energy does not change
and the Hubbard gap gradually decreases before it vanishes at ¢ = ¢g.. The way
the energy gap collapses is different from that for the Anderson model discussed
by Hatano and Nelson [2]; the difference of the order of 1/L between neighboring
eigenvalues decreases almost suddenly as g gets close to g = g. [5].
We here comment that the Hubbard gap Apupara has a singularity with an
exponent 1/2

Aubbard ~ ¢(ge — 9)1/2 + O(g. — 9) (3.51)

around but below the non-Hermitian critical point ¢ = g¢., where ¢ is a pos-
itive constant given below. We consider the Taylor expansion of the Hubbard
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Figure 3.5: The ¢ dependence of the Hubbard gap Apupbara for U/t = 4. The
non-Hermitian critical point is g. = 0.246.

/A Hubbard
/

gap Apupbara 0 Eq. (3.49) and the non-Hermiticity g(x) in Eq. (3.50) around
k = k(ge)(= arcsinh(U/4t)) which determines the non-Hermitian critical point g.:

Asusnara = 4t/ (U741 <1—2Z P ><mc—m>+0(<mc—n>2),

(2n — 1)(U/4t) (s
[(2n — 1)2(U/4)2 + 1172 °

g(k) = go + 2 [(U/4t)? Z —k)?+ 0 ((ke — &)%)

(3.52)

These expressions are assumed to be valid for k < k(g.). We thus obtain the
asymptotic behavior around g ~ g. in the form Eq. (3.51) with

N (2n — 1)(U/4t)
1—-2) (-1)"
o — V(2 — 12(U/4t) +

N
2 e e

(3.53)

n=1

We later argue that the non-Hermitian S = 1/2 antiferromagnetic X X Z chain (4.15)
has the same exponent 1/2.

For g > g., on the other hand, Fukui and Kawakami [3] argued the shapes
of the distribution curves C and § are quite different from the ones in the region
g < g.. Bethe-ansatz equations thus do not become the Hermitian ones at all. It
is therefore difficult to know ground-state properties of the non-Hermitian Hubbard
model (3.11) for g > g.. However, we expect that the ground-state energy becomes
complex for g > g. on the basis of finite-size data shown in §6.1.
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3.2.2 Physical meaning of the non-Hermitian generalization

We argue physical meaning of the non-Hermitian generalization of the Hubbard
model; the non-Hermiticity g makes the dispersion relation £(pp) of the charge
excitation at the momentum pj, transformed to €(py, + ig).

For the non-Hermitian Hubbard model (3.11), let us first obtain the momentum
pr(g) of the hole at the quasimomentum ky, or, at the quantum number I, in
Eq. (3.42) defined [9] as

N

pr(g) = Z k;ss -

-1
Jj=1 Jj=1

kS = 5 = 2mze(kp), (3.54)
where {k}"} denotes the set of the quasimomenta for the ground state and {k{*}
denotes the one for the excited state due to the charge excitation at kfs = kj,. From
Eq. (3.21), we have

*° sinkp, — A

g = 2mize(ky) — ik, — i/ 2 arctan WU(/\)CZ/\

_ _ . [ sin(wsin k) Jo(w)
= 2mize(ky) — iky — 21/0 w(1+ e/t

—00

= QWiZC(kh) - iph,
(3.55)

where P, denotes the momentum p(kp) of the hole given by Eq. (3.8). Since the
analytic continuation of the excitation energy E(ky,) or E(p(kn)) = E(Fy) is assumed
to be valid for g < g. as shown in Eq. (3.48), the non-Hermitian Hamiltonian (3.11)
may be diagonalized in low energy in the form

Hiubbard (9) = Z 5(Ph)77;h(g)7lph(g) (3.56)

—m<pp(g)<m

in terms of the charge excitation, where n;h @ and 7, 5 are the creation and anni-
hilation operators of the hole at the momentum pp(g). The Hamiltonian (3.56) is
rewritten in the form

Huwnara(9) = Y Epal9) +i9)n), () Tono) (3.57)

—m<pp(g)<m

because we have P, = pp,(g) + ig from Eq. (3.55). Since p,(g) is real, Eq. (3.57) has
the same structure as Egs. (1.6) and (2.15). We thus conclude that we may be able
to obtain the dispersion relation on the axis Imp = ¢ in the complex momentum p
space by analyzing the non-Hermitian Hamiltonian (3.11).

The assumption that the analytic continuation of the excitation energy is valid
everywhere inside the area C¢ in the complex quasimomentum space is equivalent
to the assumption that the analytic continuation of the dispersion relation is valid
in the area

Imp < g. (3.58)

in the complex momentum space. The zeros of the dispersion relation of the charge
excitation for the Hermitian Hubbard model in Eq. (3.10) indeed exist in the re-
gion (3.58).






Chapter 4

S = 1/2 antiferromagnetic XXZ
chain

In the present chapter, we consider the S = 1/2 antiferromagnetic XXZ chain
“T1
Hxxy = JZ b (S[Sf;l + SlJrSz:q) + ASFSE (4.1)
1=1

in the Ising-like region A > 1 for J > 0, whose ground state has an energy gap
above it due to the spinon excitation.

4.1 Zeros of the dispersion relation of the spinon
excitation and the correlation length

We first point out that the imaginary part of zeros in the complex momentum space
of the dispersion relation of the two-spinon excitation is equal to twice the inverse
correlation length of the spinon excitation. A pair of spinon excitations at the
rapidities A = A\; and A = A3 has the excitation energy of the form

£, Ns) = @ (0(M) + o(A))
_ Jsinhy K (u) ldn (M’u) 4 dn (M’u)] , (4.2)

where the distribution function () of the rapidity A is given by

N e K@) (K (u)A
U(A)_gnz 2cosh(ny) 272 dn( 7r ,u) (4:3)

— 00

and we set v = arccoshA. The functions dn(z,u) in Egs. (4.2) and (4.3) and sn(z, u)
in Eq. (4.8) are the Jacobian elliptic functions. The modulus u is determined by

K(V1-u?*) ~
K(u) — « (44)

33
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where K (u) is defined by

(4.5)

_/” dp
—Jo \/1—u281n2p'

By considering Eqgs. (4.4) and (4.5), the modulus u is given by

u = lcosh ( Z tanh(n’y))] _ : (4.6)

The momentum pgpinon 0f the two-spinon excitation is

Pspinon = p(A1) + p(Aa), (4.7)

where

p) =2 ¢ i SN esin {Sn (Mu)] . (4.8)

2 — ncosh(ny) T

By using the formula dn(z,u) = /1 — u2sn?(x, u), we obtain the explicit expression
of the dispersion relation £(A1, A2) as a function of p(A;) and p(A2) of the form

JsinhvK (u
™

E(M, X)) = {\/1 u?sin? p(\;) + \/1 — u?sin p()\g)] : (4.9)

We search zeros of (A1, \2) by considering the analytic continuation of the
dispersion relation of the spinon excitation. Because of Eq. (4.9), the zeros p(® ();)

and p(o)()\2> with 8()\50), )\éo)) = 0 must satisfy

sin p@ (\;) = il (4.10)
u

for i = 1 and 2. All zeros p®()\;) and p®()\y) in the regions Imp(A;) > 0 and
Imp(Ag) > 0 are thus given by

1
p(o)()\l)’ p(O)()\Q) = ig + iarccosh (—)
U

+ Z " tanh( n’y)]

(1.11)
(0)

All zeros Pspinon of the momentum of the two spinon excitation in the region Im pspinon >
0 are
) _ =, (—1)"tanh(n~y) " tanh(n~y)
=t r4i|y+2 , +2
Plptoon = y ; - y Z

(4.12)

We note that the imaginary part of the momentum in Eq. (4.12) is equal to twice
the inverse correlation length 1/£ obtained by the quantum transfer matrix method
of the form [14]

T = " tanh(n~y)
=5+ Z : (4.13)

n=1



4.4, INUN-OERMILTIAIN ANALYOS1LS OF 1 AR ANLTIF DRINOMAGINE LTTICO AAZL CHALINGD

that is,
Popinon = %7+ 21/6, 21/€. (4.14)
The reason why Im pggznon is equal to twice the inverse correlation length in Eq. (4.14)

is that we consider a two-spinon excitation. The above relation was first pointed
out by Okunishi et al. [15] for the S = 1/2 XYZ chain. However, they did not
discuss where in the complex momentum space the analytic continuation is valid.
We argue below by analyzing the non-Hermitian S = 1/2 XXZ chain that the zeros
+7+2i/€ and 2i/€ in the complex momentum space actually exist in the area where
the analytic continuation is assumed to be valid.

4.2 Non-Hermitian analysis of the antiferromag-
netic XXZ chain

For the purpose of searching zeros in the complex momentum space, we use a non-
Hermitian XXZ chain in order to obtaining the dispersion relation on the axis
Imp = g with real g. As will be demonstrated in §4.2.2, obtaining the dispersion
relation on the axis Imp = g may be equivalent to solving a non-Hermitian XXZ
chain [16]

L
1
Hxxz(g) = JZ l (€*S7 S, +e7S75,) + ASlZSlerI:| (4.15)

=1

with J > 0. We set SZ, = 0 hereafter. The non-Hermitian Hamiltonian Hxxz(g)
in the case of A = 1 is derived as an effective Hamiltonian in the strong coupling
expansion of the non-Hermitian Hubbard model in the half-filled case,

L L
Hapin(9) = =t Y (€7clyyeuy + €706 e + e 70y ey + el i) + U Y mypn,
=1 =1
(4.16)

which is a special case t' = 0 of the model (E.1) in Appendix E. Note the difference
between Eqs. (3.11) and (4.16); the first-order perturbation with respect to the
non-Hermiticity g gives

Hepin(9) — Hepin(0) = —ig(Jy — J), (4.17)

where J; — J| is the spin current operator. Thus we expect that the non-Hermiticity
g induces a spin current and eliminates the spin gap. We then generalize the model
to arbitrary values of A.

Albertini et al. [16] exactly solved the non-Hermitian XXZ chain (4.15) and
obtained an analytical expression in the limit L. — oo of the non-Hermitian critical
point g. at which the energy gap due to the spinon excitation vanishes, in the
form [16]

T " tanh( nv)
=5+ Z (4.18)

n=1
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v

Figure 4.1: The v dependence of g, = £~

We show the 7 dependence of g. in Fig. 4.1. Although Albertini et al. did not
point out the fact, the expression (4.18) is the same as Eq. (4.13). We demon-
strate below that zeros pigznon in Eq. (4.14) actually exist in the area where the
analytic continuation is assumed to be valid by analyzing the non-Hermitian XXZ
chain (4.15). In §4.2.1, we review the analytic solution [16] of the non-Hermitian
Hamiltonian (4.15) by the Bethe-ansatz method. In §4.2.2, we argue physical mean-
ing of the non-Hermitian generalization of the XXZ chain; the non-Hermiticity g

makes the dispersion relation £(p) of a spinon transformed to E(p + ig).

4.2.1 Exact solution of the antiferromagnetic non-Hermitian
XXZ chain

Bethe-ansatz equation and its exact solution

L

We now consider the case of zero magnetization Z S7 = 0 with even L, M up spins
i=1

and M down spins (M = L/2). We define the vacuum state |vac) as the state where

all spins are up. An eigenfunction with M down spins is given by

|\IJ(R)(g)> = Z 77Z)éR)(‘r17x27"' 7xM)S:E_1SI_2 "'SI_M|VELC>, (419)
)

(1,22, x 01

where we put down spins at x1, 29, -+, 2y with 1 <z <y <--- <z < L. In
order to solve the non-Hermitian Hamiltonian (4.15), we make the following ansatz



4.4, INUN-OERMILTIAIN ANALYOS1LS OUF 1 HAE ANLTIF DRINOMAGINE LTTICO AAXZL CHALINS (

for the right eigenfunction qﬁéR) [16]:

M
¢éR)(x17x27 - ,l'M) =exp (292:[‘]-) ¢0(I1,l‘2, R ,I‘M)

J=1

M:

:ZA(P1,~-~, ) exp(i
7} J=1

— 2ig)x;). (4.20)

The wave function v is the Bethe-ansatz wave function in the Hermitian case g = 0:

M
Yo(wr, @2,y on) = Y AP+ Pa)exp(i Y kp ), (4.21)
{r} j=1
where the symbol P = (Py, Ps, - - - , Pyy) denotes a permutation of the set (1,2, -+, M).
The symbol A(P,-- -, Py) is a set of M! coefficients depending on the permutation
P. The quasimomenta ky, ko, - -+ | k M are unequal to each other for the ground state.

The Schrodinger equation for wg

<

M
5 Z(l - 5xj+1,xj+1) [672gw£(]R)(x1’ L, Ty + 17 e wxM) + 62g¢§R)(fl317 T4l — 17 e ,.TM)]
=1

\)

M
L
AJ25$j+17$j+1 +A<] (Z —_— M)] 77Z)£(]R)(I‘1’-.- 7xM) — E¢§R)(x1,-.. 7xM)7

j=1
(4.22)
where F is an eigenenergy. The Schrodinger equation (4.22) yields
M
AJ
E = JZ(COS kj—A)+ =L, (4.23)

A(Plu"' ‘Pj+17P‘7”'7PM) :( )1+exp[ (kP +kP]+l)]_2AeXp(1kPj+1)
APy, -+, Py, Pip1, -+, Py) 1+ expli(kp, + kp,,,)] — 2A exp(ikp,)

41

(4.24)
The periodic boundary condition ng)(xl,xQ, cee L xy) = éR)(xQ, <o xy,m + L)
yields the Bethe-ansatz equation for 1 < j < M [16]:
M . .
. _ ki + k)] + 1 — 2A exp(ik;)
kL4 2gL) — (— 1)1 T SRS 2 4.25
exp(l L+ 29 ) ( ) g exp[i(kj + kl)] +1-2A eXp(ikl) ( )
We here introduce a new rapidity parameter A;:
o sinby /2
ki) =— . 4.26
Equation (4.25) then becomes
sin (A +1)]7 50 M gin 2 (A — A+ 2i)
_— - = . 4.27
[sm T(Aj — 1)} ‘ H sin 3(A; — A — 2i) (4:27)

I#5
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Figure 4.2: The distribution curve of the spin rapidity A for the infinite system with
v = 3.5. In this case, the non-Hermitian critical point g. ~ 1.05867.

By taking the logarithm of Eq. (4.27), we have

tan(yA;/2)
tanh(vy/2)

tan[y(\; — A)/2]
tanh(7)

M
} = 2rl; +2igL+2 ) arctan { . (4.28)

2L arctan [
=1

where the quantum number [; for the ground state for L = 4n — 2 (n € N) is given
by

L/2—1 L/2-3 L/2—-1
I = R A — 4.2
J 2 ) 2 ) ) 2 ( 9)
The summation in Eq. (4.28) becomes an integral in the limit L — oo as
t A2 t A—AN)/2
2 arctan lw} = 2mzs(\) + 2ig + 2/ arctan l an )/ ]} o(A)dA
. tanh(v/2) | 5(9) tanh(7) |
=6 () —02(A—A)
(4.30)

for A € S(g), where S(g) denotes the distribution curve in the complex A plane on
which the rapidity A lies; see Fig. 4.2 for numerical calculation. In Eq. (4.30), we
introduced a function zg(\) by taking the continuous limit L — oo of the discrete
function zs(A\y) = Jo/L. We also define o(\) = dzs(A)/dA. We restrict ourselves
to the region —7/y < ReA < m/~, since 0;()\) in Eq. (4.30) is a function of the
periodicity 2 /7.

The distribution function o(\) satisfies the following integral equation after dif-
ferentiating Eq. (4.30) with respect to A:

~ sinh ~y 7 sinh(27)
=210 (A
coshy — cosyA mo(A) + /S(g) cosh(27y) — cos{y(A — A)}

o(A)dA  (4.31)
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Y Cs ReA

>

Figure 4.3: The loop Cs in the complex A plane.

for A € S(g). The poles of the integrand in Eq. (4.31),

v sinh(27)
cosh(27y) — cos{y(A — A)}

in the A plane are located at A = A & 2i. They never appear in the area Cs shown
in Fig. 4.3 as long as —1 < Im A <1 and —1 < Im A < 1, where we denote the end
points of S(g) by +7/v + if.

When the imaginary part of the end points of the curve S(g), ((g)becomes

B(g) = 1 as we increase the non-Hermiticity g, the left-hand side of Eq. (4.31)
diverges and we expect that the system changes dramatically.

We obtain the non-Hermiticity g at which the end points of the curve S(g)

reaches the points G(g) = 1. The quasimomenta with Rek = +7/y may correspond
to Jy and Jyy in Eq. (4.29) for L — oco. Hence we assume zg(\) = £1/4 for the end
points of S(g). We thereby obtain the non-Hermiticity g by substituting +1/4 for
zs(A\) and £7/v +1i for A in Eq. (4.30). The result is equal to the non-Hermitian
critical point g. in Eq. (4.18) where the energy gap due to the spinon excitation
vanishes.

As long as g is less than g., we can modify the integral contour as

-7/ /Y 7/y+iB(g)
/ _ / + / + / | (4.32)
S(g) —m/y+iB(g) -7/ /v

where we assume that the expression of the distribution function o(\) defined on
the curve §(g) is valid everywhere within the area Cs as shown in Fig. 4.3. We thus
rewrite Eq. (4.31) in the form

~ sinh ~y

/Y inh(2
:27TU()\)+/ 7 sinh(27)

A)dA. 4.
coshy — cosyA —/ COsh(27) — cos{y(A — A)}U( )d (4.33)
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We solve Eq. (4.33) by considering Fourier transformation and obtain o()) of the

form
n=00 —inyA

o(A) = nzzoo 20257}1(”7)7 (4.34)

because the integrand in Eq. (4.31) has the periodicity 2w/, The distribution
function o(A) in Eq. (4.34) has the same expression as in the Hermitian case in
Eq. (4.3); it suggests that the analytic continuation of the solution o(\) in Eq. (4.34)
may be valid inside the area Cs(g.), where Cs(g.) is the area Cs at g = g..

Eigenenergies

We calculate the dependence of eigenenergies, specifically, the ground-state energy
and the spinon excitation energy on the non-Hermiticity g for g < g..

We first obtain the ground state energy E,s. The ground-state energy Fg per
site is

M M 2

_J AJ J sinh® ~y AJ
— k; — — = —— —. 4.35
1 ; o8 )+ 4 L = coshy — cosyA; * 4 ( )

In the thermodynamic limit for L — oo under M/L = 1/2, we have
sinh? 5 AJ

Ey=—J A)d\ + —, 4.36
8 /Sg) cosh vy — cosv)\a( Jar+ 4 ( )

where () denotes the distribution function of the spin rapidity A in Eq. (4.34).
As long as there are no poles in Cg, that is, g is less than g., we can modify the
integral counter |, s as f:/r %. The ground-state energy E,s becomes

/v inh? AJ
By = — / T s()dh+ 2
_x/y COShy — cosyA 4
, 1 > 1 AJ
= — JSlnh")/ 5 —+ 2 nE:1 m T, (437)

which does not depend on g for g < g..
We next obtain the excitation energy £(A1, A2) of the two-spinon excitation. It

also has the same expression as the Hermitian case in Eq. (4.2) after assuming that
T/,

T/ ;
energy appears in A\; and Ay on the distribution curve S(g), whose shape depends

on g. The analytical continuation of the excitation £(Ay, Ay) is thus considered to
be valid within the area Cs(g.).

We now discuss how the energy gap Agpinon due to a pair of spinon excitations
vanishes as we increase the non-Hermiticity g for ¢ < g.. In the non-Hermitian
case, we define the energy gap Agpinon as the excitation energy £(A1, A2) at A\ =
+7/v +if(g) and at Ay = £7/v + iF(g) on the curve S(g). We first obtain the
dependence of p(\) in Eq. (4.8) on ( of the form

we can modify the integral counter |, s(g) 1O I the g dependence of the excitation

p(\ = £7/y+if) = i + z— + zz m;lﬁhn:;ﬁ) (4.38)
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by substituting A = %7/ + i into Eq. (4.8). We next obtain the dependence
of g on 3. In order to make the above discussion easy, we consider the following
expansions of 01 () and 6(\) in Eq. (4.30):

. exp(—iny\ — vy|n
n#0 n
—iny\ —2
92()\) = ”y)\—i-iz exp( ln,yn 7|n|) (4.39)
n#0

By substituting Eqs. (4.34) and (4.39) into Eq. (4.30), we have

—inyA

T +Z “sinh(myB) -y 4

n Cosh (n7)

. YA e
29 =2 A) —i— —_—
g mizs(A) — 2 +;2ncosh (n7y)

By substituting A = +7 /v + i into Eq. (4.40), we then have

h(
SIC e o
since _ +(L/2-1)/2 1
zs(E£m /vy +i8) = - iZ (4.42)

as L — co. We thus obtain the dependence of the non-Hermiticity g on (3 of the
form

LN Z " sinh(ny8) (4.43)

n cosh (n7)

By considering Egs. (4.38) and (4.43), we thus obtain the dependence of p on ¢ of
the form

p= ig +ig. (4.44)

We thus obtain the explicit relation between Agyinon and g of the form

JK inh
Agpinon = JH(u)sinhy {\/1 — u?sin? <j:g + ig) + \/1 — u? sin? (ig + zg)]

™

2JK inh
_ 2JK(u)sinhy (u) sin 7\/ 1 —u2cosh® g (4.45)
T

by substituting p(A\1) = £ + ig and p(\;) = £75 + ig into Eq. (4.9). Figure 4.4
shows the g dependence of the energy gap Agpinon due to the spinon excitation for
v =3.5.

We here comment that the energy gap Agpinon has a singularity at ¢ = g.(=
arccosh(1/u)) with the exponent 1/2. We consider the Taylor expansion for Agyinon
around g = g. in the form

8J K (u) sinh y

7

(1—u?)"*(gc — 9)"* + O(gc — g). (4.46)

Asp1non —
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Figure 4.4: The g dependence of the energy gap Agpinon due to the two-spinon
excitation for the antiferromagnetic non-Hermitian XXZ7 chain with v = 3.5. The
non-Hermitian critical point is g. = 1.05867.

Its exponent 1/2 is the same for the Hubbard model in the half-filled case.

For g > g., on the other hand, Albertini et al. [16] showed that the shape of the
distribution curve S(g) is quite different from the one for g < g.. The Bethe-ansatz
equation thus does not become the Hermitian one at all. It is therefore difficult to
know ground-state properties of the non-Hermitian XXZ chain (4.15) for g > g..
However, we expect that the ground-state energy becomes complex in the region
g > g. on the basis of finite-size data shown in §6.2.

4.2.2 Physical meaning of the non-Hermitian generalization

We argue physical meaning of the non-Hermitian generalization of the XXZ chain (4.15);
the non-Hermiticity g makes the dispersion relation £(ps) of a spinon transformed
to E(ps +1ig).
For the non-Hermitian XXZ chain (4.15), let us first obtain the momentum p,(g)
of the spinon at the rapidity A, or, at the quantum number J; in Eq. (4.29) defined
as

M M—1 o]

Sg) =) kB N gl — 270 onag(N), 4.47

o) = S = ST =T o) (1.47)

where {k&} denotes the set of the quasimomenta for the ground state and {£™}

denotes the one for the excited state due to the spinon excitation at \5” = A,; see
the relation between k; and \; in Eq. (4.26).

By taking Egs. (4.8) and (4.43) into consideration, we rewrite Eq. (4.40) in the

form

2g = 2mizs(As) — ip(As) + g, (4.48)
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or
g= ips(g) - iPsa (449)

where P; denotes p(As). We assume that analytic continuation of the excitation
energy E(Xg), or E£(p(As)) = E(Ps) is valid for g < g¢. as discussed in §4.2.1. The
excitation energy £(Ps) is then rewritten as E(ps(g) + ig). Since ps(g) is real, we
have the same structure as Egs. (1.6) and (2.15). We may be thus able to obtain the
dispersion relation on the axis Imp = ¢ in the complex momentum p by analyzing
the non-Hermitian Hamiltonian (4.15).
The assumption where the analytic continuation of the excitation energy at
A = ), is valid everywhere inside the area Cs(g.) in the complex rapidity space
is thus equivalent to the assumption where the analytic continuation of the disper-
sion relation is valid in the area Imp < g. in the complex momentum space. Now
that we consider the two-spinon excitation, the analytic continuation may be valid
in the region
Irnpspinon < 29(3 (450)

The zeros in Eq. (4.14) in the complex momentum space indeed exist in the area
Im pspinon < 2gc






Chapter 5

Majumdar-Ghosh model

In the previous discussions for exactly solved strongly correlated quantum systems in
Chapters 2, 3 and 4, we revealed that the imaginary part of a zero of the dispersion
relation is equal to the inverse or twice the inverse correlation length. We then
used the non-Hermitian systems in order to obtain the dispersion relation on the
axis Imp = g. We expect that we can develop the parallel discussions for unsolved
models. In this chapter, we discuss the Majumdar-Ghosh model under the periodic
boundary condition [17, 18]

SiaST + S S0,) + 5P ST

l\DI»—t

L
J
Huic = JZ ST + S8 + ST Sil + 5 ;

(5.1)

for J > 0 in the antiferromagnetic region. The Hamiltonian (5.1) has two-fold
degenerate ground states and has a finite energy gap [19]. However, only variational
estimates of the energy gap are known [20, 21]. We reveal in §5.2 that the imaginary
part of a zero of the variational dispersion relation of the two-particle excitation
is equal to twice the inverse correlation length. We calculate the correlation length
from finite-size scaling of the correlation function of the ground state in §5.1. In
§5.3, we propose a non-Hermitian Hamiltonian of the Majumdar-Ghosh model in
order to obtain the dispersion relation on the axis Imp = g.

5.1 Correlation length of the Majumdar-Ghosh
model
Let us first calculate the correlation length of the Majumdar-Ghosh model from

finite-size scaling of the correlation function of the ground state. The two-fold
degenerate ground states of the Majumdar-Ghosh model (5.1) are

1
|\I/g8>+ = 21 4. 27L/2(|CDI> + ‘@H»a
1
W) = (1) [ 2n), (52)

45
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where the wave functions |®;) and |®y) are defined by

|P1) = |¢1,2) ® |P34) @+ ® |Pr-1.L),

|Pr1) = |d23) ® |Pas) @+ @ [Pr1) (5.3)
with |¢; ;) denoting the singlet state of a pair of spins at sites ¢ and j:
1
’@',j) = —=(| Tz’lj) - | liTj))-

V2
Note that |®1) and |®y) are not orthogonal for finite L: (®q|®y) = (Py|P;) =
27L/2*1 The states (5.2), on the other hand, are orthonormal.

The correlation functions (S557) = £ (Wgs|S557|Wes)+ with respect to the two-
fold degenerate ground states |¥,) and |¥_) of the system of size L are given by
—1F 27L/2+2

2 4+ 9-L/2+2
1
— _5 = 27[//2 4 O ((27[//2)2) ’
s j:2fL/2+1
US55+ = T ot
=£27L2T L O ((278%)?%)  (fori > 1),

s :!:27L/2+1

HSoSh1)+ = T omrm

=272 L O ((278%)?%)  (fori>1). (5.4)

4(5557)+ =

Assuming finite-size correction of the correlation function in the form
(S557)L = (5557 )00 + O (exp(—L/¢)) (5.5)
we obtain the correlation length

£=—". (5.6)

5.2 Zeros of the dispersion relation and the cor-
relation length

In this section, we use a variational approach to argue that the imaginary part
of zeros in the complex momentum space of the dispersion relation of the spinon
excitation may be equal to twice the inverse correlation length. As mentioned for
the antiferromagnetic XXZ chain in §4.1, the factor two comes from the fact that
the first excited state involves two spinons.

Although the exact dispersion relation is not obtained, some variational forms are
obtained. The dispersion relation was first obtained by Shastry and Sutherland [20]
with a trial wave function and then by Caspers et al. [21] with a variational wave
function. The dispersion relation of the Hermitian Majumdar-Ghosh model given
by Shastry and Sutherland [20] is

es(p) = J G + cosp) , (5.7)
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where p is a momentum of the spinon. All zeros péo) of the dispersion relation (5.7)
in the region Imp > 0 are
) = +m +iln2. (5.8)

The variational form of the dispersion relation given by Caspers et al. [21] is

(607 + 34) cos 2p — (278r + 340) cos p — (475r — 731)
(167 + 8) cos 2p — (561 + 140) cos p — (104r — 172)

ec(p) = J (5.9)

with

. V2 cos2p — 20 COSp+43' (5.10)
5+ 4cosp

All zeros pg) ) of the dispersion relation (5.9) in the region Imp > 0 are
PP = 7 +iln2 (5.11)

and
0 5 . :
pg’ = arccos | 5 — 21) ~(0.80...)+1i(1.85...). (5.12)

In both cases, the imaginary part of the zeros in Eq. (5.8) and the zeros nearest
to the real axis in Eq. (5.11) is equal to twice the inverse correlation length of the
spinon excitation.

5.3 Non-Hermitian analysis of the Majumdar-Ghosh
model

In order to obtain the dispersion relation on the axis Im p = ¢ in the complex momen-
tum space, we consider the non-Hermitian generalization of the Majumdar-Ghosh

model. In analogy to the non-Hermitian generalization of the antiferromagnetic
XXZ chain discussed in §4.2, we analyze the non-Hermitian Hamiltonian:

1
Huc(g) =J 2[5( QQSZJ:qS + 672g5l+5111> + 57 Sh]

<
—_

L
+ 52 (M), Sy 4+ €TSS ,) + SESEL). (5.13)
=1

M

The above Hamiltonian can be derived from the effective Hamiltonian of the non-
Hermitian t-t'-U model in the half-filled case as shown in Appendix E:

L
Hevv(g) = —t Z(egCLl,TCl,T + efngT,TCzH,T + e’gCLLlCz,l + egclT,chu)
=1
L L
— 'Y (Pl yy et + e a0y ey + € ana)) U Y g,
=1 =1

(5.14)
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Figure 5.1: The non-Hermiticity dependence of the approximate estimates of the
energy gap calculated by Shastry and Sutherland’s approach and by Caspers et al.’s
approach.

with J = 4t/U and J/2 = 4t /U in Eq. (5.13).

We calculate the non-Hermitian critical point g. where approximate estimates
of the energy gap vanish. For both dispersion relations obtained by Shastry and
Sutherland in Eq. (5.7) and by Caspers et al. in Eq. (5.9), the excitation energy
at p = +7 determines the energy gaps. For the non-Hermitian Majumdar-Ghosh
model (5.13), we assume that the non-Hermiticity g shifts the momentum % of one
defect by ig. Since we consider a two-spinon excitation, we replace the momentum
pin Eq. (5.7) and in Eq. (5.9) by p 4 2ig. We below argue that the non-Hermitian
critical point g. where the energy gap vanishes is equal to the inverse correlation
length 1/¢ = In2/2; it suggests that the non-Hermitian Hamiltonian (5.13) can yield
the dispersion relation on the axis Imp = g. We thereby assume that the energy
gap AFE(g) is given by the excitation energy e(£7 + 2ig).

The dependence of the energy gap AFEs(g) on the non-Hermiticity g on the basis
of es(p) in Eq. (5.7) is thus given by

AEs(g) = es(£m + 2ig) = J (Z - cosh(Qg)) . (5.15)

As shown in Fig. 5.1, the non-Hermitian critical point g. where the energy gap
AFEs(g) vanishes is g. = In2/2. The dependence of the energy gap AEq(g) on the
non-Hermiticity ¢ on the basis of e¢(p) in Eq. (5.9) is again given by

AEc(g) = ec(Em + 2ig)
(60R 4 34) cosh(4g) + (278 R + 340) cosh(2g) — (475R — 731)

= J 5.16
(16R + 8) cosh(4g) + (56 R + 80) cosh(2g) — (104R — 172) (5.16)
with
2 cosh(4g) + 20 cosh(2g) + 43
= d
R \/ (5 — 4 cosh(29))? (5.17)
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As shown in Fig. 5.1, the non-Hermitian critical point g. is g. = In2/2 again. In
both cases, the non-Hermitian critical point g. is equal to the inverse correlation
length ¢! =1n2/2 in Eq. (5.6).

We now give a piece of evidence that the non-Hermitian critical point is exactly
ge = In2/2 by showing that the ground-state property drastically changes at g =
In2/2. The non-Hermitian Majumdar-Ghosh model (5.13) has two-fold degenerate
dimer ground states as in the Hermitian case. The right eigenfunctions |[¥%) and
the left eigenfunctions (¥ | of the ground states of the system of size L are given
by

1
W) = e (10 £ o)),
\/2 + QW
1
(wh| = g (1 = (2} (5.13)
(& €
\/2 + QW

where the wave functions | ;) and (®f ;| are defined by

@F) = ‘¢§2> ® ‘¢3R,4> Q- ® |¢%—1,L>7

|@%> - |¢2Rg> ® ‘¢4R,5> Q- ® |¢%,1>7

<CDH = < If2’ ® <¢§,4’ - ® < Iljfl,Lya

<CI)IL1| = <¢153| ® <¢IZ5| Q- ® <¢IE1| (5-19)

with |¢;%;) and (¢;;] denoting weighted singlet states of a pair of spins at sites ¢ and
J:

1
) = %(€_g| Tily) — €] LiTy)),

1

\/i(eg(Tilj | —e 915 1) (5.20)

<¢’LL]| -

Equation (5.19) is consistent with Eq. (5.3) transformed by a many-body version of
the imaginary gauge transformation [2]

W(xy, x9,...59) =exp(g Z ) (x1, e, . . .5 0). (5.21)

Note that (®F[|@F) = (0}|0R) = 1 and (@r|Q]}) = (Df|Of) = (e9F + e79%) /282,
3
but |U}) and (¥L| are bi-orthonormal. We note that the ground-state energy —gJ

per site does not depend on the non-Hermiticity g.

The correlation functions of the non-Hermitian system, (SgS?). = (¥ |SgSZ|0R)
with respect to the two-fold degenerate ground states |¥%) and [¥®) are obtained
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Figure 5.2: The correlation function (S§S?). of the non-Hermitian Majumdar-
Ghosh model of infinite size in the regions (a) ¢ <1n2/2 and (b) g > In2/2.

in the forms

edt 4 e~9F
—i
eIl 9k 7
i

—1F2
4(5557)+ =

2+2

eIl + g9k
—
el 4 em9lb
—in

+2
(fori > 1),

4(5555)+ =
242

eIl 4 em9lb
—i
edt 4 e~9F
——

F2

4(S555;11)+ = (for i > 1). (5.22)

242

Figure 5.2 shows the correlation function in the limit L — oo in the region 0 <
g <In2/2 and in the region g > In2/2, respectively. The ground state is dimerized
in the region 0 < g < In2/2 and is an extended state in the region g > In2/2.
The phase transition from the dimer state to the extended state reminds us of the
localization-delocalization transition of the non-Hermitian random Anderson model
discussed by Hatano and Nelson [2] (see Appendix A). The phase transition point
ge = In2/2 then may be naturally regarded as the non-Hermitian critical point. We
thus conjecture from the above discussions that the non-Hermitian critical point is
equal to the inverse correlation length of the Hermitian systems for the Majumdar-
Ghosh model.



Chapter 6

Numerical analysis of
non-Hermitian models

In the previous chapter, we discussed the non-Hermitian generalization of exactly
solved models and suggested the conjecture that the non-Hermitian critical point
ge where the energy gap vanishes is equal to the inverse correlation length of the
Hermitian system. We now numerically show that the inverse correlation length is
consistent with the extrapolated estimate g.(co) of finite-size data g.(L) where an
eigenvalue which corresponds to the ground state in the limit L — oo, becomes
complex. We show the above for the Hubbard model in § 6.1, for the S = 1/2 XXZ
chain in § 6.2 and for a frustrated quantum spin chain in § 6.3. Although we do not
know the correlation length of the S = 1/2 antiferromagnetic Heisenberg chain with
nearest- and next-nearest-neighbor interactions, we show in § 6.3 that the numerical
estimate g.(oo) is consistent with the ground-state phase diagram.

6.1 Non-Hermitian Hubbard model

We first analyze the non-Hermitian Hubbard models (3.11) and (4.16) of size L. We
define the non-Hermitian “critical” point g.(L) of a finite system as the point where
the energy gap between the ground state and a low-lying excited state vanishes and
beyond which the ground-state energy becomes complex. We here show that the
extrapolated estimate g.(oo) of finite-size data g.(L) is close to the exact value of
the correlation length.

We first use the non-Hermitian generalization of the form (3.11) in the subspace
Sg . = 0, which eliminates the charge gap. All eigenvalues are real at the Hermitian
point g = 0. Upon increasing g, a pair of eigenvalues move on the real axis. They
spread into the complex space when g exceeds a value g.(L).

Figure 6.1 (a) shows the spectral flow of the eigenvalues per site for L = 4
around the ground state for U = 2¢. The eigenvalues of the ground state and the
third excited state move toward each other on the real axis and spread into the
complex space as soon as the two eigenvalues collide, which gives the non-Hermitian
“critical” point g.(L). The eigenvalues of the first and the second excited states
scarcely move. The movement of the ground-state energy is presumably a finite-size
effect; the ground-state energy does not change for g < g. for the infinite system as

51
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Figure 6.1: (a) The spectral flow of the eigenvalues per site around the ground state
for L = 4 with U/t = 2 as we increase the non-Hermiticity g which eliminates the
charge gap. (b) The 1/L plot of g.(L).
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shown in Fig. 3.5.
We numerically estimated g¢.(L) for L = 4,6,8 and 10 and extrapolated them to
ge(00) by considering the finite-size correction as follows:

ge(L) = go(c0) +a/L + O(1/L?). (6.1)

Figure 6.1 (b) shows the 1/L plot of g.(L); this implies that we have to consider
different finite-size corrections in the case L = 4n (for L = 4 and 8) and in the
case L = 4n + 2 (for L = 6 and 10). The reason why we have to consider different
finite-size corrections is that the quantum numbers /; and J, in the Bethe-ansatz
equations (3.17) and (3.18) are different between two cases; for L = 4n+ 2, we have
{I} = {=(N = 1)/2,- (N = 1)/2} and {Ju} = {~(M — 1)/2,-- . (M — 1)/2},
whereas for L = 4n, we have {[;} = {—-N/2,--- ,N/2 — 1} and {J,} = {—(M —
1)/2, -+, (M —1)/2}.

In Fig. 6.1 (b), the line A is the linear fitting of g.(L) for L = 6 and 10 and the
line B is that for L = 4 and 8; both lines are determined by the least-squares method
under the condition that they have the same intercept g.(co). The final estimate
of gc(00) is 0.037, while the Bethe-ansatz method yields g. = 1/&charge = 0.038. . ..
Our estimate is consistent with the exact value. It is quite remarkable to obtain
such a good estimate from data for such small L.

Figure 6.2 (a) shows the spectral flow for L = 4 around the ground state when
we use the non-Hermitian generalization of the form (4.16), which eliminates the
spin gap. The eigenvalues of the first and the second excited states move toward
each other, while the eigenvalues of the ground state and the third excited state
scarcely move. We presume that the energy gap between the ground state and the
third excited state is caused by the charge excitation while the energy gap between
the first and the second excited states is caused by the spinon excitation. We
expect that the ground state and the first excited state are eventually degenerate
in the thermodynamic limit. Hence we regard the collision of the first and second
excited states as the ground-state transition. This behavior implies the charge-
spin separation of one-dimensional quantum systems in the low-energy region [22].
Figure 6.2 (b) shows the 1/L plot of g.(L). We obtain the extrapolated estimate
gc(00) by the same least-squares method as we used above; the line A shows the
linear fitting of ¢g.(L) for L = 4 and 8 and the line B is that for L = 6 and 10, which
yields the extrapolated estimate g.(oco) = —0.003. Our estimate is also consistent
with the exact value g. = 1/&pinon = 0.

6.2 Non-Hermitian S = 1/2 antiferromagnetic X X7
chain

We analyze the non-Hermitian S = 1/2 antiferromagnetic XXZ chain (4.15) in the
Ising-like region A > 1 for finite L. We numerically calculate the non-Hermitian
“critical” point g.(L) of the X X Z chain of size L. We obtain the extrapolated esti-
mate g.(oco) of finite-size data g.(L) and show that the estimate g.(o0) is consistent
with the inverse correlation length of the Hermitian system. Figure 6.3 (a) shows
the spectral flow per site around the ground state of the X X Z chain of L = 8 in
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Figure 6.2: (a) The spectral flow of the eigenvalues per site around the ground state
for L = 4 with U/t = 2 as we increase the non-Hermiticity g, which eliminates the
spin gap. (b) The 1/L plot of g.(L).
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the subspace S7, = 0 as we increase the non-Hermiticity g for A = 3. The pair
of the first and the second excited states undergoes the real-complex transition,
which is the same as in Fig. 6.2 (a). The ground state and the first excited state
of Hermitian finite systems are eventually degenerate in the thermodynamic limit;
the ground state has the Néel order in the region A > 1 for infinite L. We therefore
expect that the real-complex transition point of the first and second excited states
converges to the non-Hermitian critical point g. in the limit L — oco. We thereby
use the real-complex transition point in order to define the non-Hermitian “critical”
point g.(L).

We then extrapolate the finite-size data. Figure 6.3 (b) shows the extrapolation
of g.(L) for the X X Z chain with A = 3. The extrapolated estimate g.(co) by linear
fitting in the form

gc(L) = gC(OO) + a/L + O(l/L2) (62)

for L = 12,14 and 16, is 0.231. In order to take the finite-size data g.(L) for
small L into consideration, we also calculate the extrapolated estimate g.(oo) by a
second-order fitting in the form

ge(L) = go(00) +a/L +b/L* + O(1/L?) (6.3)

for L =4,6,...,14,16 to obtain g.(co0) = 0.235. Both estimates are consistent with
the inverse correlation length g. = 1/£ = 0.244 calculated analytically.

6.3 NNN Heisenberg chain

In this section, we consider the S = 1/2 antiferromagnetic Heisenberg chain with
nearest- and next-nearest-neighbor interactions; we hereafter call this model the
NNN Heisenberg chain. The Hermitian Hamiltonian of this model is

L
Hanw = JZ[SI Sip1 + aS; - Spa, (6.4)
=1

where J > 0 and a > 0. We require the periodic boundary conditions. At the point
a = 0, the model is the standard Heisenberg chain. The ground state is a spin fluid
state and the energy gap is zero. At the point o = 1/2, the model is the Majumdar-
Ghosh model [17, 18] and the energy gap is finite. Okamoto and Nomura [23]
numerically showed that a massive-massless transition occurs at o, = 0.2411.

We calculate the correlation length of the model (6.4). In general, it is hard
to calculate the correlation length of the frustrated system (6.4) because the quan-
tum Monte Carlo method is not efficient owing to the minus sign problem. By
means of the density matrix renormalization group method, the correlation length
are numerically obtained [15, 24]

In this section, we propose another method of obtaining the correlation length.
The method is the non-Hermitian analysis of the NNN Heisenberg chain; specifically,
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we hereafter analyze the following Hamiltonian:

L
1 - - — zQz
Hnn(g) =J 2[5(62‘[/511151 + eSS + S St

=1

L
1 — — — z Qz
+ad SIS, + e ISTSL,) + SiSE) (65)
=1

We numerically estimated the non-Hermitian “critical” point g.(L) of the system (6.5)
of size L in the subspace S = 0 where an eigenvalue which corresponds to the
ground state in the thermodynamic limit becomes complex. We obtain the ex-
trapolated estimate g.(oo) of finite-size data of g.(L). We reveal that the estimate
gc(00) calculated from finite L systems is approximately consistent with the inverse
correlation length.

Figure 6.4 shows the spectral flow of the eigenvalues per site around the ground
state for L = 8 with a = 0.49, @ = 0.5 (the Majumdar-Ghosh point) and « = 0.51.
In Fig. 6.4 (a) for a = 0.49, as we increase the non-Hermiticity g, the energy gap
between the first excited state, which corresponds to one of the degenerate ground
states in L — oo [23], and the second excited state, which corresponds to the first
excited state in L — oo, vanishes at g = g.1(L) = 0.24. These two eigenvalues
become complex in the region g.;(L) < g < ge2(L) before they become real again at
g = ge2(L) = 0.42. We define the non-Hermitian “critical” point of a finite system
for @ < 0.5 as the point g = g1 (L) where the first excited-state energy first becomes
complex.

In Fig. 6.4 (b) for a = 0.5, the two-fold degenerate ground states exist for any g
and the energy gap between the ground state and the first excited state vanishes at
g = ge(L) = 0.35. However, these eigenvalues do not become complex for g > g.(L).
This is presumably because g.1(L) = geo(L) = g.(L). We still regard g.1(L) as the
non-Hermitian “critical” point ¢.(L) for o = 0.5.

In Fig. 6.4 (c) for a = 0.51, the ground state and the first excited state never
become complex for any g. The ground state for @ > 0.5 is an incommensurate
state of the spiral phase [25]. Our non-Hermitian generalization of the form (6.5)
is presumably not appropriate for detecting the incommensurate state in the region
a > 0.5 because we can never vanish the energy gap between two states which have
the different wave numbers. In this region, other types of non-Hermitian general-
ization may be needed.

We hereafter restrict ourselves to the region 0 < o < 0.5. We extrapolate the
finite-size data g.(L) for L = 4,8,12 and 16 by the linear fitting in the form

gc(L) = gC(OO) + a/L + O(l/L2) (66)
and by the second-order fitting in the form
9e(L) = ge(o0) +a/L +b/L* + O(1/L?). (6.7)

Figure 6.5 shows the extrapolated estimates g.(co) in the region 0 < «a < 0.5. The
second-order estimate g.(oo) around o = 0 is almost zero and is consistent with
&' = 0 in the limit L — oo. The extrapolated estimates g.(c0) at o = 0.5 are
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around 0.35 for both linear and second-order fitting, which is consistent with the
inverse correlation length £7' = In2/2 (= 0.347...); see § 5.1. At a = 0.48, on
the other hand, the extrapolated estimates g.(oco) for linear fitting is 0.165 and the
one for second-order fitting is 0.154. These values are approximately consistent
with the inverse correlation length £~! = 0.175 by means of the density matrix
renormalization group method [15].

The estimate g.(o0) is almost zero in the region 0 < o < 0.25 and is finite in the
region 0.25 < a < 0.5. This is consistent with the massive-massless transition [23]
at o = 0.2411 if we admit that g.(oo) is equal to the inverse correlation length. (We
here comment that the jump of the estimate g.(co) around o = 0.25 is caused from
inaccuracies of the extrapolation; the energy gap between the first excited state A
and the second excited state B at ¢ = 0 in Fig. 6.4 (a) becomes almost zero around
a = 0.25.) It is remarkable that g.(00) is at least approximately equal to the inverse
correlation length all through the region 0 < o < 0.5 though we do not know the
exact dispersion relation of the elementary excitation of this model.



Chapter 7

Summary and discussions

To summarize, we first conjectured that the imaginary part of a zero of the dispersion
relation of the elementary excitation in the complex momentum space is equal to
the inverse or twice the inverse correlation length. The factor one or two comes from
the number of the elementary excitation involved in the excited state. We obtain
the dispersion relation in the complex momentum space by analytic continuation of
the one on the real axis. We confirmed the equality for several strongly correlated
quantum systems, that is, the S = 1/2 XY chain in a magnetic field, the Hubbard
model in the half-filled case and the S = 1/2 antiferromagnetic XXZ chain in the
I[sing-like region. We also confirmed the equality for unsolved systems, namely, the
Majumdar-Ghosh model, whose variational dispersion relations are only obtained.
We expect that it may be a universal relation for any strongly correlated quantum
systems that the imaginary part of a zero of the dispersion relation of the elementary
excitation in the complex momentum space is equal to the inverse correlation length.

We next proposed the method of obtaining the dispersion relation on the axis
Imp = g (g is a real positive constant) for the purpose of searching zeros of the
dispersion relation in the complex momentum space. The method is to consider
a non-Hermitian generalization of strongly correlated quantum systems where an
imaginary vector potential is added to the momentum operator; specifically, we
multiply the right hopping energy by e and the left hopping energy by e 9. We
argued that we may be able to obtain zeros only by observing the spectral behavior,
that is, by looking for the point where the energy gap from the ground state vanishes.
We partly analytically confirmed the relation that the non-Hermitian critical point
ge where the energy gap vanishes for a non-Hermitian system is equal to the inverse
correlation length of a Hermitian system. The relation is valid for the S = 1/2
isotropic XY chain in a magnetic field; and is suggested to be valid for the Hub-
bard model in the half-filled case and for the S = 1/2 XXZ chain in the Ising-like
region. The equality between the non-Hermitian critical point g. of a non-Hermitian
system and the inverse correlation length of a Hermitian system is thus equivalent
to our conjecture that the imaginary part of a zero of the dispersion relation is
equal to the inverse correlation length. We also numerically analyzed the S = 1/2
antiferromagnetic Heisenberg chain with the nearest- and the next-nearest-neighbor
interactions, which is unsolved analytically. We presented numerical evidence that
the extrapolated estimates of the non-Hermitian “critical” point for finite systems
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is consistent with the inverse correlation length.

We have to admit that our non-Hermitian generalization is not always appropri-
ate for having the inverse correlation length. One example is the NNN Heisenberg
chain (6.5) with o > 0.5 in the incommensurate state, whose energy gap between the
ground state and the excited state have different wave numbers. Another example is
the S = 1/2 ferromagnetic transverse Ising chain whose elementary excitation is ob-
tained by the Bogoliubov transformation; the creation and annihilation operators at
two different wave numbers k and —k are mixed. Other principles of non-Hermitian
generalizations for such cases may be needed.



Appendix A

Non-Hermitian analysis of the
random Anderson model

We review an application of the non-Hermitian generalization (1.9), which was first
discussed by Hatano and Nelson [2] for the random Anderson model. We can es-
timate the localization length only by observing the energy-spectral flow upon in-
creasing the non-Hermiticity g without calculating the wave function directly. A
one-electron non-Hermitian Anderson model in one dimension is given by

H=—t Z (e?|z 4+ 1) (z| + e |z){z + 1]) + Z Velx) (x (A.1)

T=—00 T=—00

where V,, is a random potential at site x. In solving the non-Hermitian Schrodinger
equations

H\I/g“(x) = eg\lff(x),
Ul(z)H =g, Ul (2), (A.2)

we look for the right eigenfunction W}*(x) and the left eigenfunction W} (z) in the
normalizable functional space. A localized eigenfunction for g = 0 is, except for an
oscillatory factor, asymptotically given by

Wo(x) ~ e "l (A.3)

where k is the inverse localization length and we set the localization center to x = 0
for simplicity. We here introduce the imaginary vector potential ihg. We readily see
that the right and the left wavefunctions [2]

Ul(z) = 7" Wy (x), (A.4)
Ul(x) = e 9 Wy(x), (A.5)

satisfy Eq. (A.2) with the same eigenvalue as in the Hermitian case, namely ¢, = ¢,.
We refer to Egs. (A.4) and (A.5) as the imaginary gauge transformation. Equa-
tions (A.4) and (A.5) with Eq. (A.3) yield

R T—K|T L —gr—K|T
V() ~ef el Uy (z) ~e™? el (A.6)
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Figure A.1: The right eigenfunction \I/f = e9*7 Il for ¢ = 0.9,1 and 1.1. The
non-Hermitian critical point is g. = 1 in this case.

which is schematically shown in Fig. A.1 for k = 1. The right and left eigenfunctions
are indeed normalizable for |g| < &, that is,

Ul(+o0) =0,  U(+o0) — 0, (A7)

and hence they can be solutions of Eq. (A.2) in the normalizable functional space.
However, the solution changes dramatically for |g| > x. The functions of the
forms (A.4) and (A.5) diverge as

\I/f(—i—oo) — 00, \115(—00) — 00, (A.8)

and are not normalizable any more. They are no longer the solution in the normal-
izable functional space. In fact, an extended wavefunction

\Iff(L) (z) ~ e (A.9)
with an approximate eigenvalue
 (hk +ihg)?

is permitted [2]. Note that ¢, is a complex number depending on g. In numeri-
cal calculations, we can reproduce the above for finite systems under the periodic
boundary condition:

L L

H=—t> (v +1){z|+e?a)@+1]) + > Vila)(al, (A.11)

=1 r=1

where the site L + 1 is identified with the site 1. The spectrum of periodic systems
converge to Eq. (A.10) as L — oo. The functions (A.4) and (A.5) satisfy the



periodic boundary condition for |g| < k because of Eq. (A.7) in the large L limit,
while they never satisfy the periodic boundary condition for |g| > k because of
Eq. (A.8) in the large L limit. We define the non-Hermitian critical point g.(L) at
which the eigenvalues change from real to complex for system size L. We presume
that g.(L) converges to the inverse localization length  for the infinite system as
L — oo. We thus estimate the inverse localization length s only by observing the
spectral change, not by calculating the wave function directly. It is a merit of the
non-Hermitian generalization.






Appendix B

Non-Hermitian analysis of the
S = 1/2 transverse Ising chain

We derive an appropriate non-Hermitian version of the S = 1/2 ferromagnetic trans-
verse Ising chain

L L
H=—J> SiSiy—h> S; (B.1)
=1 =1

by making the momentum £ of the elementary excitation transformed to k + ig.
We argue that the non-Hermitian generalization in Eq. (1.9) is not efficient for this
model.

The Hamiltonian (B.1) is transformed into (2.22) by the Jordan-Wigner trans-
formation in Eq. (2.3). By the Fourier transformation (2.23), the Hamiltonian (2.22)
is rewritten in the form (2.24). The Hamiltonian (2.24) is then diagonalized in the
momentum space in the form (2.27). The elementary excitation in Eq. (2.27) is
given by the Bogoliubov transformation (2.25). The dispersion relation €(p) is given
by (2.28).

By replacing p with p + ig in the dispersion relation ¢(p), let us consider the
non-Hermitian Hamiltonian of the form

o= Y co+io) (- 3). (B.2)

—T<p< T
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The inverse Bogoliubov transformation of (B.2), after some algebra, gives

H(g) :% OQ.ZQ {e(p +ig) —e(p—ig) — (Jcosp/2 — h) bt ig)ea;)e(p — ig)} chen
- > clp-+ig) + elp—ig) ~ (Jeosp/2 - LI ZI oe
B logp;ﬂ Jsinpe(p + ig)ea—j;( lg)( el T yey)
N OQZU( Jcosp/2 — h)e(p + ig;:(rpe)(p —ig)
= Oéﬂrl(p)(cicp +cle,)+ 0;@ Ty(p —cl e y)
-~ 0<Z< Ls(p)(chel, + copey) + O<Z< L4(p), (B.3)

where

I'y(p) = (Jcosp/2 — h)e(p+ ig) + e(p —ig)

| - 2) ’
Io(p) = e(p + ig) ; e(p — 19)7
_ Jsinpe(p +ig) +€e(p — ig)
[3(p) = 5 2¢(p) ’

e(p +ig) + e(p — ig)

2¢(p)

We rewrite I'; (p), I'2(p) and I's(p) by the Fourier-series expansions

Iy(p) = (J cosp/2 — h)

(B.4)

[(p) =2 Z ay cos(np), Ta(p) = —2i Z Bnsin(np), Is(p) = —2 Z Yn Sin(np),

(B.5)
where the coefficients «,,, 4, and ~,, are given by the following integrals:

1 m : .
= _/ I’y (p) cos(np)dp = (JCOSp — h) fp+ig) + elp —ig) cos(np)dp,

Gy 2 2¢(p)
i +1ig) —e(p —1ig) .
By = 5 / ['2(p) sin(np)dp = Py "y 9)2 b~ ig) sin(np)dp,
1 [ . T Jsinpe(p +ig) +e(p —ig) .
——— | T dp = —— :
5 o | 3(p) sin(np)dp 3 2(p) sin(np)dp
(B.6)

We thus the Hamiltonian (B.2) rewritten in the form

Z Z [ —a + Ba)cf e+ (—an = Ba)clern — (el + ClCl+n):| —2a0 » _ cletC
l
(B.7)



in the real space. By the inverse Jordan-Wigner transformation, we further have
H(g)
[e.e]

= Z Z(_Q)n_lslz—f—l c Slz—l—n—l [(—Oén + ﬁn)sl—:nsl_ + (—O[n - ﬁn)sl—i_sljrn + /yn(sl—:nsl—i_ + Sl_Sljrn)]

I n=1
— 200 S;—wL+C
l

o0

= Z (_2)nslz+1 te Slernfl [(an - /Yn)SIIJrnSlx + (Oén + Vn)sly—knsly + lﬁn(sﬁrnsly - Sly-i-nslx)}
l

n=1

—2a0 » S, (B.8)
l

where
L [" L [" L (7 e(p +ig) +e(p —ig)
C=— T dp = — T dp = — J 2—h dp.
27?/0 4(p)dp 27 /o 1(p)dp 27?/0( cosp/ ) 2¢(p) P
(B.9)
We note that
_ L+C——£/WF()d +£/WF()d — 0 (B.10)
Qg = T - 1\p)ap o J, 1\p)ap = U. .

We can see from Eq. (B.8) that the non-Hermitian Hamiltonian is very com-
plicated; interactions between spins beyond the nearest neighbor sites emerge as
soon as ¢ is finite. It is because its elementary excitation is obtained by the Bogoli-
ubov transformation; the creation and annihilation operators at two different wave
numbers p and —p are mixed. Conversely, the non-Hermitian generalization of the
simple form (1.9) does not produce the dispersion relation €(p + ig) in this model.
We may need another principle of non-Hermitian generalization for this case.






Appendix C

Equality of gc and 1/£ for the
Hubbard model

We show for the Hubbard model that the non-Hermitian critical point g. in Eq. (3.12)
for the non-Hermitian model and the inverse correlation length 1/¢ in Eq. (3.2) for
the Hermitian model are actually equal. The non-Hermitian critical point g. is given

by

A .
A 4t
Ah—{ga {arcsmh(U/élt) —|—21/_A arctan %O’(A)d)\}
i A A+iU/4t [ cos(wA)Jp(w)
= li inh(U/4t) + — d\arct d
e {arcsm (U/41) + 7T/A arctan U/At /0 cosh((U/4t)w) “l
(C.1)

where () is a distribution function of the spin rapidity A given in Eq. (3.32). Using
the variable transformation

0 = arctan(\/(U/4t) + 1) (C.2)

with

tan Oy = (C.3)

tanf; = —

Ujar Y Ujat

we have

_1 h(U/4t)
im [arcsm U/ ), cos2 cosh((U/4t)w)

(U/4t) Jo(w)dw
= hm {arcsmh U/4t) + 7T/0 cosh((U/4t)w)

(U/4t)w . (U/4t)w

) (. /
-~

11 12

{sin((U/llt)w tanf — i(U/4t)w)0} b2 B /92 sin((U/4t)w tan § — i(U/4t)w)d0

(C.4)
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We rewrite the term I; in the form

I :m 6 sin((U/48)w tan 6 — i(U/48)w) — 61 sin((U/AL)w tan 6y — i(U/4t)w)]
:W(@l + 65) sin(wA), (C.5)

where the coefficients ¢; and 6, for A > 1 take the form

6, :—%—51, 9223—52 (C.6)

with |01],|d2] < 1. Because of

1 1 1 1
tanf; = s 5 tan Oy = o 5 (C.7)
we have
1 )
Il = ([]/T)u)(_61 — 52) SIH(CL)A)
1 U/t U /4t .
_ _ — A
(U/4)w ( i(U/4t) — A i(U/4t)+A) sin(w)
2A(U/At)
= A
w((U/46)2 + A2) sin(wA)
A, (C.8)

Next we calculate the integral I5 in Eq. (C.4). By using the variable transformation
x = tanf — i, we have

- MU gin(U/4t)wz) dz
= 11m .
2 A—oco —A/(U/4t) (U/4t)w 1 + ($ + 1)2

[ sin((U/4t)wz) B T it
_/_oo o s = mas ey ()

We thus arrive at

go =arcsinh(U/4t) — %/OOO Cég}{égﬁgi) 2i(U7/T4t)w(1 — e 2l U740y,
=arcsinh(U/4t) — 2/0 Jo(u;)(ilj_héig/éf;)w)dw. (C.10)

We thus confirmed that the expression (C.10), or Eq. (3.12) is actually equal to the
inverse correlation length of the charge excitation (3.2).



Appendix D

Lieb-Wu equation for the
non-Hermitian Hubbard model

We derive Lieb-Wu equation for the non-Hermitian Hubbard model [3]:

L L
H=—t Z Z (egc}:rl’gcl#7 + e_gc;UcHLU) +U Z Ny, - (D.1)
=1

I=1 o=1,]

We prepare the right eigenfunction | N, M) with N electrons and with M down spins;

|N, M) = Z Z \IléR)(xl, Xo, -+ ,IN; 01,09, " ,UN)CLW1 > -CLN,UN\O) (D.2)
{o5} {=5}

Considering the Fermion’s anticommutation relation, we impose the condition

\Ilg(yR)(xPUxsz APy 0P 0Py, 7JPN> = sgn(P)\I/éR)(xl,xQ, ©rr 3 IN; 01,02, 701\7)7
(D.3)
where P = (P, Py, -+ -, Py) is a permutation of the labels 1,2, - - - | N. The Schrédinger

equation for the right eigenfunction \IJE,R) is

N
_ R .
—te™? E \Ilé )(xla"' 7xj+17"' yIN; 01,02, * 70N>
7=1

N
§ R .

— te? \Il; )($17"'7$j_17"'7xN7017027"'JO-N)
7j=1

+U Z 5($j7$k)\11£(7R)($17 7$j7"' sy Ly " yTIN; 01,02, 70N)

T <Xk

= E\IJEIR)(xla yLjy 3 UN;O1,02," " 7UN)7 (D4)

where E is an eigenenergy. In order to diagonalize the Hamiltonian (D.1), we make
the ansatz for the right eigenfunction ﬁng) of the form

qjéR)(x17$27 3 IN; 01,02, 70N)
N
= " sgn(PQ)Avy, oy (kpyy- - kpy) exp (iZ(kpj - ig)mQ]) (D.5)
{P} i=1
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under the condition
1SIQ1§IQ2§"'SIQNSL. (D6)

In the case zg, < xg, < -+ < Tg,, the Schrédinger equation (D.4) is reduced
to

N N
ngn(PQ)Aan,...,UQN (kp,, -+, kpy) Z —telkr — lkP ) exp ( Z kp —ig) rQ, >
7j=1

{P} 7j=1

N
= EZ sgn(PQ)Asq 0, (kP kpy) exp (i Z (kp, —1ig xQJ> (D.7)

(P} j=1
We therefore obtain the eigenenergy E of the form

N N
E = —QtZCOS kp, = —Qthos k;. (D.8)
=1 j=1

We next consider the case zg, = 7q,,, = z, where ); = a and Q);1; = b are
assumed. We derive two sets of equations. First, the continuity of the wavefunction
\IléR) at x, = x, = x requires

AJQI7...70Qi7aQi+17...70QN (kpy,--  kpkpy - kpy)
— AJQI,...7JQiJQi+17...JQN(kpl, o kp ke, kpy)
- - AJQP...7(7Qi+17UQi7...7JQN (kpl, c k’p ; ]{JP_H, e ,]{JPN)
+ AO‘Ql,---,UQi+1,UQi,---,UQN (ka T kP+17 kPia Ty kPN>- (Dg)
Next, we use \I/(gR)(xl, S Tyttt Tyt ING 01,09, ON)
= \I/f,R) (x1, -, 2, -, @, - ,xN; 01,09, -+ ,0n) in the Schrodinger equation (D.4).

By taking all terms proportional to /#1719 )le+ Hilkp;—ig)ztilke, y —ig)atHlkey —iglzgy

we obtain the relation

AUQI,--- 0Qi9Qiq 1 0QN (kPU T kP ’ kP+17 e 7kPN

x [te™Pier 4+ te” i — 2t coskp, — 2t coskp,,, — U

x [teri 4 te ™ Pin1 — 2t cos kp, — 2t cos kp., —U
_Aanv“- 9Qi41:9Q; " H9QN (kPn o kP ) kPHa Tty kPN [ lkPH_l + teiikpi]
+AUQ17"' 19Q;11:9Q; " :9QN (kP17 o kP i+19 kPi? R kPN [telkP +te lkPZJrl]
= 0. (D.10)
By using the sets of equations (D.9) and (D.10), we have

)
]
_AUQl""7UQ¢70Q¢+17”'70QN (kp,, - ]gpw kp., - kpy)
]
)
)

AO‘Ql,---,UQi,UQi+1,---,UQN (kPN o kP+17 kPia Ty kPN)
—U/2it 0 pk k)
 sin kp, —sinkp,_ , — U/2it 7Q19Qix9Qp1 QN \ P Por BPivas PN
sin kpi — sin kPi-H

+ . . . g 00 Qs
sinkp, —sinkp,,, — U/2it" "9 7@ t@em

UQN(kP17 kPakPer"' 7kPN>'

(D.11)



[g9)

We now define a particular set of state in the spin chain:

‘kPla"' 7kPN> = Z Ao'l,ag,---,UN(kakPg:'" 7kPN>’O'170'27"' 7UN>- (D12)
{o:}=1,1

We thus map the problem in the space of (N!)? dimensions to a problem in the
space of 2V dimensions. We then introduce an operator Y (% (x) of the form

—U/2it x
Y@ (z) = () D.13
@ = —m amra (D-13)
E(;?:E) E,gzac)
where the operator I1(*? is an exchange operator defined by
o1, Oy Oy on) =T gy oo oy oy, oN). (D.14)

We can easily show that

Y(a,b)(sinkPi_SinkPiJrl)’ka' T 7kP¢7kP¢+17' T 7kPN> = ’kPN' T 7kP¢+1akP¢7 T 7kPN>

(D.15)
by considering Egs. (D.11) and (D.13).
We next map the periodic boundary conditions
\IléR)(xl’ e ’xj*l’()’ijrl? T3 IN; 01,02, 7UN>
:\DéR)(x1’ . ’Jj'jfl, L’ ,I‘j+1, . e ’JjN; 0'1, 0'2’ P 7UN) (D16)
and
\DéR)(x17 oo 7’rj—17 ]_7xj+17 e ’l'N; 0'17 0'27 PO JO-N)
:\IJEJR)(xh... i, L+ 1@, AN 01,09, ON), (D.17)

where @ = j is assumed, in the space of (N!)? dimensions to the space of 2V
dimensions. By inserting Eq. (D.5) into Eq. (D.17), we obtain

_ Li(kp, —ig)L
AO’QI,UQQW,UQN (kPU kng Ty kPN) =€ 1 AJQQ""JQN’JQl (kP27 Tty kPNu kpl).

(D.18)
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We thus have

‘kplakpw"' 7kPN Z AUl oo kPla"' 7kPN)‘0170'27"' 7UN>

{oi}=1.1
N-1
:el(kpl —ig)L Z Aaz,---,aN,Ul (kng ) kP]\m kPl) H H(J7]+1)|027 0N, 01>
{Uz'}*Tl Jj=1
_el(kpl_lg H HJJ—H Z Aaz,---,UN,(n(kPgu"' 7kPN7kP1)|027"' 70N701>
J=1 {o:}=1.1

1
H]]+1 Z Ao‘l,..-,o'N(kPQ,-.- 7kPN7kP1)‘O'17"' 7UN>

N—
—i(kp, —ig)L

j=1 {oi}=1.1
N-1
—el(kp —ig)L H(j,j+1)|kap2, oo kpy,kp)
7=1
N-1 N-2
:ei(kpl 9L H”Jrl HYN jil’Nij)(Sinkpl —SinkpN_].)‘kpl,kpg,"' ,kpN>
=1 j=0
N-2
=k =L 1T XN (sin kp, — sinkpy ) |kpy, kpy, -+ kpy), (D.19)
j=0

where we define the operator XU (x) of the form
XU (z) = TIRY TR (g), (D.20)

We here introduce an additional site a and define an operator S of the form

N-1
S = H X @N=9)(sin kp, — sin kpy_,)- (D.21)

j=0

We can easily show that

N-2
Tr()S =(Ta [S] Ta) + (la [5] La) = [[ XN (sinkp, —sinkp, ) (D.22)
7=0

From Egs. (D.19) and (D.22), we have
\kpy, kipy, o kpy) = €M T Slkpy kp,, - kpy). (D.23)

In order to calculate Tr(,)S, we introduce the Yang-Baxter relation for the X
operator:

XORO = ) XOD ) X ED () = XED () XUD) X IR (X = p), (D.24)

which is proved after some elementary algebra. By operating II*¥) to both hand
sides in Eq. (D.24), we obtain the relation

XD = ) XTR )Y D (1) = YD (1) X G (X)X ED (A — o). (D.25)



[

We here introduce additional sites a and b. On the basis |o,, 04,071, -+ ,0n), the
Yang-Baxter equation

YO A = ) XN XD (1) = X () XCON)Y @O (N = ) (D.26)

is satisfied for [ = 1,2, -+ | N. By using the Yang-Baxter relation (D.26) recursively,
we prove that

YO N — ) TONTO (1) = TO ()T (V)Y O (N = ), (D.27)
where we define T(®()) of the form
T@OMN) = X@M\ = Ay)--- X@DO = \), (D.28)

with A; = sinkp, — U/4it. On the basis | T,) and | |,), we set elements of 7@ (\)
as follows:

11 L)
oy ol (A0) BOY
row= {1 (60 o) (D2

where A, B,C and D are all matrices of 2! dimensions. We can show by mathe-
matic induction the following relations:
A(N)|vac) = |vac),
C'(\)|vac) = 0,
N . .
A —sinkp, 4 U/4it B
Mlvac) = H (/\ AJ —U/2 t) [vac) H( X — sinkp, — U/4it [vac) = d(A)lvac),

(D.30)

where we define the vacuum state |vac) as the state where all spins are up. We can
prove Eq. (D.30) by rewriting the operator X (@) (X — );) in the form

(A= \; — U/4it)] — (U/4dit)o —(U)2it)o;
(@d)(y ).\ — /\—/\1—U/21t )\—)\j—U/21t
X A=) = —(U)2it)ot (A= A; — U/4it)] + (U/4it)os |
N, U2t N — U200

(D.31)

where o7, 0']—-’— and o} are 2 x 2 Pauli matrices acting on site j.

We next derive relations involving A, B, C and D. The operator Y (*?(z) is given
by

| TaTb) ‘ Talb> | laTb) ‘ lalb>

<TaTb’ 1 0 0 0
ol 0w L) e
(lals I\ 0 0 1
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where
—U/2it x
b(r) = ———— _
@)= T W= T
By substituting Egs. (D.29) and (D.32) to Eq. (D.27), we obtain sixteen (=4 x 4)
equalities among A, B,C' and D. We hereafter use the matrix elements of row 1
and column 4, row 1 and column 3 and row 2 and column 4 to obtain the following

equalities:

(D.33)

B(N)B(p) = B(1) B(X),
BA)A(p) = c(A = p) A(u) B(A) + b(A — p1) B(1r) A(A),
b(A — 1) B(1) D(A) + ¢(A — p) D(N) B(p) = D(p) B(N), (D.34)
B(A)B(u) = B(p)B(A),
AMWBOY) = - BOAG) — 20— g A
c(A—p) c(A—p) ’
_ 1 b(p — )
D(p)B(A) = = /\)B()\) (1) = )\)B(M)D(A)- (D.35)
We make the ansatz for the eigenfunction |kp,, kp,, -, kp,) of the form
\kpy, kpy, -+ kpy) = B(A1)B(Ag) - - - B(Ay)|vac) (D.36)
by introducing M parameters Ay, - -, Ay, The eigenvalue equation (D.23) becomes

\kpy, kpy, -+ kpy) = e*P DL [ A(sin kp, — U/4it) + D(sinkp, — U/4it)] |kp,, kp,,- - -, kpy).

(D.37)
We calculate (A(X) + D(N))|kp,, kp,, - -+, kpy). By using
AT
ANkpy kpy, o kpy) = Hm’kmk&r“  kpy)
J=1
M M
—b(A; — \) 1
+Z (A= N) H (Ae — A )B(/\)B(Al) B(Aj-1)B(Ajt1) - B(Aum)[0
J=1 k=1,k#
(D.38)
and
M
D()\)|k‘P17kP27" kPN HC |kpl,kp27"' 7kPN>
Jj=1
M M
—b(A = Aj)d(A)) 1
- ; c(A—A;) kll_L] (A — Ak)B()‘)B(Al) B(Aj1)B(Aj11) (Anr)[0)



"

we have

(A()‘)+ ( ))|kP17kP27"' kPN)

M 1 M 1
(o

1 7j=1
+§:< b(A; — A) ﬁ b= Ayd(A) ﬁ 1 )
= A — )\ k 1 k;é] Ak — ) ()\ A ) k=1 ket C(Aj — Ak)
X BA)B(A1) - B(Aj1)B(Aj11) - - B(Au)|0). (D.40)
The condition that the state |kp,, kp,,- - ,kp,) should be an eigenstate of the op-
erator A(A) + D(A) with A = sin kp, — U/4it requires
M M
(A =) 1 _bA=Ay)d() 1 _0 (D41
c(Aj = A) oy, A = Ay) cA=Aj) ey €Ay = Ax)

for j=1,---, M. From Eq. (D.41), we have

N (A — sinkp, + Uit T (A — N+ UJ2it ,
;—sinkp, — U/dit pabe Aj— A, —UJ2it

- (D.42)

If the relation (D.42) is satisfied for j = 1,---, M, the eigenvalue equation (D.37)
for the eigenstate |kp,, kp,, -, kpy) is reduced to

M M
o 1 1
1 —ilkr, —ig)L d(sin kp, — U/4it
¢ <H (A, —simkp, 1 U/4it) (sinkp, — U/4i )]1;[1 c(sin kp, — A; — U/4it)

j=1
M )
itk —ig)L —sinkp, — U/4it D.43
‘ H(AJ—Slnkpl+U/4lt (D-43)

using d(sinkp, — U/4it) = 0. We thus obtain the Lieb-Wu equation of the non-
Hermitian Hubbard model (D.1) as follows:

ﬁ sink; — Ag + iU/4t

) =1,...,N
sink; — Ag — iU /4t (=1 s ),

exp(iLk; + gL) =

ﬁﬂ
ﬁ sink; — Ao +iU/4t H Ao — A —iU/2t

—1,...,M). (D44
sinky — A —iU/4t 14 Ao — Ag +iU/2 (@=1....,M). (D-44)







Appendix E

Strong coupling expansion of the
non-Hermitian ¢-t/-U model

E.1 Application of MacDonald’s technique to the
non-Hermitian ¢-¢-U model

We consider the strongly coupling expansion of the non-Hermitian ¢-#'-U model
(5.14) and derive the effective Hamiltonian (6.5) by applying MacDonald’s tech-
nique [26]. The non-Hermitian ¢-t-U model is

H=T+V, (E.1)
where
L
i=1 o=T, l i=1 o=T, l
(E.2)
L
V= Uznmnz,l- (E.3)

The real parameter g denotes the non-Hermiticity and o corresponds to +1 for o =7
and —1 for ¢ =]. We divide the hopping-energy term 7 into 7, which increases
the number of doubly occupied sites by m. We then have

T=T+T1+T/ +T',+ 7T, (E.4)
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where the operators 71y, 7/, and 7, are given by

L
_ o T —go T
T =t E E (€97 Nit1,6C 41 5 CioPio + €9 Ni5Cl Civ1,0Mit15), (E.5)
i=1 o=1,]
L
— o T —go t
Ta=—tY > (eChipracli oCionis+ € hiscl cii10mii10), (E.6)
i=1 o=1,]
L
’r / 290 } —2g0 T
T = —t'> > (" nisasclyy ,Cichis + e ni5c) o ohivas), (E.7)
i=1 o=1,]
L
1 290 T —2g0 T
T, =t E § (€ hisa5Citg oCioNio + € hisC) 5Cita0Nitazs), (E.8)
i=1 o=1,]
L
_ o T —go T
To=—t E E (eg Nit1,5Ci1,0CioNis T € 7 NisC  Civ1oMNiv1s
i=1 o=1,]

o t —go T
+e9 hi+1,50i+1700i,ahi,a +e hi,ﬁci’gCiJrl,ahiJrl,&)

L
! 2go 1 —2go T
—t E E (e 9 Ni42,6Ci10,5CioNio T € 7N 5C; ;CitaoNit2s
i=1 o=1,|

+€2g0hi+2,&C:‘r+27(;Ci,ahi,& + €72gahz’,50100i+2,ahz’+2,a) (E.9)
with h; , as h;, =1 —n;,. We can immediately derive the following relations:
V, Ti1) = +UT4,, v, 7., = £UT,, [V, To] = 0. (E.10)

We here introduce a new Hamiltonian H’ of the form

iS5, 4] [i8.[iS,H]] |

H = He ™ =H + e (E.11)
1! 2!
where S is an operator. All eigenvalues of H are equal to the ones of H'.
We hereafter obtain the Hamiltonian H'*®) recursively in the way
HW) = S g sy (E.12)

by choosing ¢S 50 that hopping terms changes the number of doubly occupied
sites may not be generated in the order higher than (1/U)"? in the Hamiltonian
H'®). We start from the Hamiltonian H'(V) = H:

HO =H=V+T+T,+T/ +T', +T. (E.13)

We can eliminate the terms 75, and 7/, which change the number of doubly occupied
sites by choosing iS® as

iSO =N -T,+T -T). (E.14)
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is®) is®)

The transformations e and e~
transformed Hamiltonian H'? is

are not unitary operators for any finite g. The

H'D — eis<1>Hl(1) —isM _ eis(l)He’iS(l)
=V+T+ U ([,Tl?T ] [,Tl?,]:,l] + [’Tl/?,]:l] + [,Tl/v Tll]
HTLT) + [T, Ta] + [T, T + [T, 7)) + O (1/U)?), (E15)

where we used the following relations:

: / / 2 / / o
[(SYH] = —(Ti+ T+ T+ T) + (T, Ta] + [T, T + [T ] + [T, 7))

+ (T, B + [T, Tl + [T T) + (5, 7)), (E.16)
S0, [, H]) =~ (5, 7] + [T, T20] + [T, Tl + [5, T4]) + O (107,
(E.17)
18W, [isW, is®, H]J] = O ((1/U)?). (E.18)
For the purpose of further procedures, we introduce the operator 7% (my, mg, - - - , my,)
of the form
T® (my,my, - ) = T[] = T Trny -+ Tony- (E.19)

We can easily derive the following relation by noting Eq. (E.10):
v, 7% UZml = UMW [m]T®[m), (E.20)

where we define M®)[m] as
M® [m Z my. (E.21)

The transformed Hamiltonian H'*) in Eq. (E.12), by definition, does not have
hopping terms that change the number of doubly occupied sites, in the order higher
than (1/U)*2. Tt can have the following form:

k-1
HE =v+Y v > COmTOm+U > " O m)T® [m]+0 ((1/U)*)
= {m|M[m]=0} {m}

(E.22)
where C®)[m] is a parameter. We here prove that we can eliminate all of the terms
that change the number of doubly occupied sites, in the order (1/U)*~! by choosing
iS*)

) [m]T(’“) [m]
k) — 77—k
stk = - E MO (E.23)
{m|M[m]#0}

The transformed Hamiltonian H/**1) is produced in the following procedure:

: Q(k : Q(k k
HIHD = S ) o8 — (k) 4 [i5K) (k)] 4 L [182( ik +.--. (E24)




SaArrLINDIA B O1L RUNG COUFLING DAFAINOIUIN OF 11 INUN-OERVILTIAN 1 -1"-U MOD L

The term [iS®), H'®)] is given by

[iS®) H'*)]

= [iS(k),V+iU1_l > COMITOm] + U " CPm)T®[m] + O ((1/0)")]
=1 {m|M[m]=0} {m}
= [iS™, V] + 0 ((1/U)F), (E.25)

where

[ig(k)’y]:(]fk Z %[T(k)[m]y]

M(’“)[m]
{m|M[m]#0}
—k c® [m] (k) (k) 1—k (k) (k)
—U > M(T[m](—UM M) T®[m]) = ~U > BT [m].
{m|M[m]#0} {m|M[m]#0}

(E.26)

By noting
i5®, [i8®, 1M = 0 ((1/T)*1), (E27)

we obtain

[ig(kr)’ [ig(k), H’(k)]]
+

(A e A Ao S A 2

k—1
=V+> U > COmTOm] + U O m) T [m)
=1

{m|M[m]=0} {m}

_ ik Z CPm]T®[m] + 0 ((1/U)")

{m|M[m]#0}

=V + Z vttt Y O T [m] + 0 ((1/U)F) . (E.28)

{m|M[m]=0}

We therefore conﬁrm that we can eliminate the terms of order (1/U)*1 in Eq. (E.22)
by operating ¢'5" and e=15" to H/®).

By using the expression (E.23) and by referring to Eq. (E.15), we have iS®) as

s0 gy O

e = g B = o Tl + (1Tl =[5, 7).
{m|M[m]#0}

(E.29)
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We thus obtain H'® in the form:

(S [iS@, H'@)]

HB) = (iSP(2) =8P _ 9 1(2) + [iS(Q) H/(z)] + 4.
’ 2
1 ! / / /
= V + 76 + E ([7-177:1] + [7-177—1] + [,]-177:1] + [7-17,]-—1]
T To) + [To, T] + [TV, To) + [T, T4))
]‘ / /
+ 53 [T B = [, T4 + [T/, )~ (55, T4)),V] + O ((1/U)?)
1 ! / / /
V4 T+ = ([T, Ta] + [T, T4 + [T, Tl + [T, T2]) + 0 ((1/U)?)

U
(E.30)

E.2 Effective Hamiltonian in the half-filled case

We consider the Hamiltonian (E.30) in the half-filled case. We restrict ourselves to
the subspace where there are no doubly occupied sites. For any basis |¥) in our
subspace, the relations

T 4|9) =0, T V) =0 (E.31)
must be satisfied. Equation (E.31) is generalized in the form
T®[m]| VL) =0 (E.32)

for any integer n (1 < n < k) as long as
k
M®P[m] =) m <0. (E.33)
l=n

The Hamiltonian H'® in Eq. (E.30) is then reduced in the subspace to

1
H =V +T - T (T h+ T\ T+ T+ T, 7)) + O ((1/U)?) . (E.34)

By noting
V‘\IIL> - O, %‘WL> - O, ,]ZIZ|\I/L> - 0, T—lz,|\11L> - 0, (E35)

we arrive at the Hamiltonian H’ %)J of the form

1
HE = — (T + T T)) + O (YU)?) (E.36)
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Specifically, the Hamiltonian H’ g’ﬁ is given by

(3) T ; !
3) _ Y go1y, . _ A o —goip. . A _
Hyr, = U E , E , ((e hl1+170'10i1+1,0'1C'llyUanhO'l +e hzlyUICil,alcll+170'1n'll+170'l)

t1,82=1 01,02=T1,]

—go2

go2,, . 1 4 . 4 t . 4
X (6 n12+1,526i2+1,02012702 hlz,tfz +e n127520i2,02012+1702 h22+1752)>

t/2 L T -‘-
_ 2901 ¢, . _ . A —2go1p, . . )
U E E <(€ hZ1+27<f1Ci1+2,alcn,01n11,0'1 te hu,U'lCil,alcn-i-?,alnu-i-?,a_l)
i1,02=101,02=T,]
2go2 1 —2go2 T 2
X(e ni2+2,520i2+2,agci2,02hiz,tfz +e niz,tfzcig,agcifr?,@hi2+2,52) + O ((1/U) ) .

(E.37)
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In order to prohibit doubly occupied sites and empty sites, the relation ¢; = 75 must
be satisfied. We thus rewrite Eq. (E.37) as follows:

L
i i g(o1+02)
HL U E E z+1,¢ﬂcz'+1,alci,al”i,cﬂnz’Jrl,&zCiJrl,aQCi,azhz’,&z)e
1=1 o1,02=T,|
~—
A1

§ ' § ' ] g(o1—02)
z—l—l o1 Z+1 o1 C; 01 n; ,01 n; ,02 CZ UQCH—I o9 hz—l—l 02)6
1=1 o1,02=T,|

-~

Az

T T g(—o1402)
- E E (i1 Ci g, Cit 1,01 M 1,61 it 1,62Ci 41,05 Cirra i ) €

=1 o1,02=1,]
N >

g

As

1 T —g(o1+to
— 1,01 Ci oy Cirt 1,01 Vit 1,61 T4, Ci 9 Cirt 1,00 it 1,675 o
i (higCi g C n Ni\Ci gy € h Ye 9 )

=1 o1,02=1,]
N >

g

Ay

§ E T T 2g(o1+o0
- U (thrQ J1 Z+2 o1 C; ,01 n; ,01 nz+2 o) H—Q o2 C; ,02 hz 0'2)6 g( ! 2)

i=1 01,02=T,]
~ /

g

As

1 T 2g(o1—02)
- E § (Pit2,61Cita.0, Ciior Wiy i3 Ci 5y Cirt 2,00 it 2,0 )€

i=1 o1,02=1,|

J/

-~

Asg

T T 2g(—o1+02)
T E § (i, Cf g, Cit2,01 it 2,09 Mit 2,02Ch 4 2,05 Cirora iy ) €

i=1 o1,02=T,|

J/

-~

Az

U Z E: (i€ g, Ci2,0n it 2,3 i, €y Cie 2,0 M, ) € 20102

i=1 o1,02=T,]
N >

v~

As
(E.38)

Since the basis |¥) have no doubly occupied sites, the relations

Al‘\IJL> :O, A4‘\IJL> :O, A5|\I/L> :O, A8|\I/L> :O, (E39)
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must be satisfied. By using (E.39), H’SI)J in Eq. (E.38) becomes

T g1 —O0:
E E hiv1,6 z+1 o1 Ci,01 1,61 104,62 Ci 0y Cit 1,02 hita az)eg( 12

Z 1 o1,02= Tl
g

g

A

t T —o1+to
— ﬁ Z Z (hz',cﬂ Ci o1 Cit 1,01 Mi+1,61 Vi+1,62Ci 41,05 Ci o2 hz’,a’g)eg( 1+02)
i=1 o1,02=T,|

J/

-~

As

1 T 2g(o1—02)
- E § (Pit2,61Cit a0, Ciior Wiy i,52 Ci 5y Cirt 2,00 it 2,0 )€

i=1 o1,02=1,|

J/

-~

Asg

T T 2g(—o1+02)
T E § (i1 Cf g, Cit 2,01 Mit 2,09 Mit2,02Ch 4 2,05 Cirora iy ) € -

i=1 o1,02=T,|

J/

-~

Az
(E.40)

By noting that all | ) satisfy n,; +mn; | = 1 and by using the transformation

1
St = C;TCZ‘J, S, = CzT,lci:Tv SP = i(nm —n;)), (E.41)

we have Ay and Az in the forms

L
1
Ay=As=—->" [ 2958 S 4+ e 2SS 425757, — 5} (E.42)

=1

after some algebra. We next calculate Ag and A7 in the same procedure:

L
1
A=Ay ==Y [ 95t ST+ eSS, + 25757, — 5} . (E.43)

i=1
We thus obtain the effective Hamiltonian of the non-Hermitian ¢-#-U model of the
form
L

SL :4t2 Z

1
(€25, S + e 29858 ) + 5257, — ﬂ

+

| — |
IIMh l\Dl)—‘

47 11 1
7 ) { (€Y994,8 + e Y9578 ,) + 57 ;H—ﬂ. (E.44)
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