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Abstract

We conjecture for strongly correlated quantum systems that the imaginary part of
a zero of the dispersion relation of the elementary excitation is equal to the inverse
correlation length. In order to calculate the dispersion relation and to search zeros
in the complex momentum space, we transform the Hermitian Hamiltonian to a
non-Hermitian one by replacing the momentum p with p + ig, where g is a real
constant. For several strongly correlated quantum systems that this non-Hermitian
generalization is equivalent to multiplying the right hopping energy by eg and the
left hopping energy e−g. We demonstrate for these models that we can obtain the
correlation length only by observing non-Hermitian energy spectra after the non-
Hermitian generalization; the non-Hermitian critical point gc where the energy gap
vanishes for the non-Hermitian model is equal to the inverse correlation length of
the Hermitian model.
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Chapter 1

Introduction of a non-Hermitian
analysis of strongly correlated
quantum systems

In the present thesis, we conjecture for strongly correlated quantum systems that
the imaginary part of a zero of the dispersion relation of the elementary excitation
in the complex momentum space is equal to the inverse correlation length due to
the energy gap of the elementary excitation. The dispersion relation in the complex
momentum space is obtained by analytic continuation of the one on the real axis.

For non-interacting systems, the static correlation function c(x), namely, the
equal-time one-particle Green’s function has the form [1]

c(x) =

∫ ∞

−∞

eikx

4πε(k)
dk, (1.1)

where ε(k) denotes the dispersion relation of the elementary excitation at the mo-
mentum k. We assume that analytic continuation of ε(k) is valid everywhere in the
complex k plane. We define the correlation length ξ corresponding to the excitation
as

1

ξ
≡ − lim

x→∞

ln |c(x)|
x

. (1.2)

We assume
∣∣eikx/4πε(k)

∣∣ → 0 for |k| → ∞ in the upper half-plane in order to
make the following discussion easy. By setting the counter of the integration in
Eq. (1.1) a semicircle closed on the upper half-plane, the correlation function c(x)
is calculated as the summation of the residues of the integrand in Eq. (1.1) at the
zeros of ε(k) located in the upper half-plane; specifically, c(x) can have the form

c(x) =
M∑

m=1

Ameikmx, (1.3)

where km is a zero in the upper half-plane, M is the number of the zeros in the
upper half-plane and Am is a constant. We may consider that |c(x)| behaves for
large x as

|c(x)| ∼ e−κx, (1.4)

7
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where κ is the imaginary part of a zero nearest to the real axis in the upper half-
plane. We can conclude from Eqs. (1.2) and (1.4) that the imaginary part of a zero
nearest to the real axis is equal to the inverse correlation length.

For strongly correlated quantum systems, however, it is not trivial to express
the the equal-time one-particle Green’s function in the form (1.1). It is one of
our conclusions that there may still be a universal relation between the correlation
length and the imaginary part of a zero of the dispersion relation of an elementary
excitation.

Is the analytic continuation of the dispersion relation valid everywhere in the
complex momentum space for strongly correlated systems? We presume that the
answer is no; the analytic continuation may be valid only near the real axis in
the complex momentum space. In order to determine the area where the analytic
continuation of the dispersion relation is valid and to search zeros in this area, we
consider a problem of calculating the dispersion relation ε(p) on the axis Im p = g,
that is, on the axis where the imaginary part of the momentum p is a real constant
g. Specifically, we introduce the parameter g which makes the low-energy part of
the Hermitian Hamiltonian of the form

H ∼=
∑

−π<p<π

ε(p)η†pηp (1.5)

transformed to the non-Hermitian one of the form

H(g) ∼=
∑

−π<p<π

ε(p + ig)η†pηp, (1.6)

where η†p and ηp are the creation and annihilation operators of the elementary exci-
tation and ε(p) is the dispersion relation of the elementary excitation.

We reveal for several exactly solved models that obtaining the dispersion relation
ε(p) on the axis Im p = g is equivalent to solving non-Hermitian models where an
imaginary vector potential i&g (where &g is a real vector) is added to the momentum
operator. The non-Hermitian kinetic energy in the continuous space is given by [2]

Hk =
(−i!&∇+ i&g)2

2m
. (1.7)

Its second-quantized form within the tight-binding approximation in the d-dimensional
case is given by

Hk = −t
d∑

ν=1

∑

$x

(
egν($x)c†$x+$eν

c$x + e−gν($x)c†$xc$x+$eν

)
(1.8)

after the Pierels substitution of the imaginary vector potential [2]. We hereafter
focus on the one-dimensional case with a constant imaginary vector potential and
use

Hk = −t
∑

x

(egc†x+1cx + e−gc†xcx+1), (1.9)

where g is a real constant; in other words, we make the hopping energy asymmetric.
More generally, we multiply the right hopping energy −tc†x+ncx by eng and the left
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hopping energy −tc†xcx+n by e−ng in the original Hermitian Hamiltonian. We call
the transformation (1.9) a non-Hermitian generalization of quantum systems.

Let us exemplify the above on the half-filled Hubbard model. Obtaining the
dispersion relation ε(p) of the charge excitation on the axis Im p = g may be actually
equivalent to solving the non-Hermitian model [3]

HHubbard(g) =− t
L∑

l=1

∑

σ=↑,↓

(egc†l+1,σcl,σ + e−gc†l,σcl+1,σ) + U
L∑

l=1

nl,↑nl,↓, (1.10)

which was first introduced by Fukui and Kawakami. They solved analytically the
non-Hermitian Hubbard model (1.10) in the thermodynamic limit by the Bethe-
ansatz method. They argued that the “Hubbard gap” vanishes at g = gc as we
increase the non-Hermiticity g and obtained an analytical expression of the non-
Hermitian critical point gc. We pointed out [4] that the non-Hermitian critical point
gc is actually equal to the inverse correlation length of the charge excitation. This
equality may be understood quite naturally by considering that the imaginary part
of a zero of the dispersion relation of the charge excitation is equal to the inverse
correlation length and that the Hamiltonian (1.10) yields the dispersion relation ε(p)
of the charge excitation on the axis Im p = g.

It is remarkable that we can obtain the length scale, namely, the correlation
length due to the energy gap only by observing the behavior of the non-Hermitian
spectrum. It is a purpose of the non-Hermitian generalization that we can obtain
the length scale of Hermitian quantum systems only from non-Hermitian energy
spectra. The non-Hermitian generalization in Eqs. (1.7)-(1.9) was first introduced
and applied to the one-electron Anderson model in a random potential by Hatano
and Nelson [2]. Their model is, in one dimension,

Hrandom(g) =− t
L∑

x=1

(
eg|x + 1〉〈x| + e−g|x〉〈x + 1|

)
+

L∑

x=1

Vx|x〉〈x|, (1.11)

where Vx is a random potential at site x and we require the periodic boundary
condition. As we increase the non-Hermiticity g, a pair of neighboring eigenvalues
collide at a point g = gc and then become complex [5]. It was revealed [2] that
the non-Hermitian critical point gc is equal to the inverse localization length of the
eigenfunction of the original Hermitian Hamiltonian; see Appendix A. The non-
Hermitian energy spectra of the systems with randomness and without interactions
thus yield the localization length. In the present thesis, we try to claim that the
non-Hermitian spectra of the systems without randomness and with interactions
yield the correlation length.

The present thesis is organized as follows; we discuss the S = 1/2 ferromagnetic
isotropic XY chain in a magnetic field in Chapter 2, the half-filled Hubbard model
in Chapter 3 and the S = 1/2 XXZ chain in the Ising-like region in Chapter 4. For
these models, we first point out that the imaginary part of a zero of the dispersion
relation is equal to the inverse or twice the inverse correlation length. The factor
one or two corresponds to the number of the elementary excitations involved in
the excited state. We next use non-Hermitian models in order to calculate the
dispersion relation on the axis Im p = g with a real constant g. By analyzing the



10CHAPTER 1. INTRODUCTION OF A NON-HERMITIAN ANALYSIS OF STRONGLY CORRELA

non-Hermitian models, we argue that the non-Hermitian critical point gc where
the energy gap vanishes is equal to the inverse correlation length. It supports our
conjecture proposed at the beginning of the introduction. We numerically determine
the area in the complex momentum space where the analytic continuation of the
Hermitian dispersion relation is valid. We search zeros in the area analytically for
the S = 1/2 ferromagnetic isotropic XY chain in a magnetic field and numerically
for the half-filled Hubbard model and for the S = 1/2 XXZ chain in the Ising-like
region. We argue that the zeros nearest to the real axis in this area correspond to
the non-Hermitian critical point gc.

We have a prospect that the non-Hermitian generalization in Eq. (1.9) is also ap-
plicable to unsolved systems. In Chapter 5, we analyze the Majumdar-Ghosh model,
for which we do not know the energy gap exactly; only approximate estimates are
known. We still show that the non-Hermitian critical point gc, where approximate
estimates of the energy gap vanish, is equal to the inverse correlation length cal-
culated, by finite-size scaling of the correlation function of the ground state of the
Hermitian Majumdar-Ghosh model.

In Chapter 6, we numerically analyze non-Hermitian models of finite size L. We
calculate the non-Hermitian “critical” point gc(L) where the energy of the eigenstate
corresponding to the ground state in the limit L → ∞ becomes complex; we then
obtain an extrapolated estimate gc(∞). We numerically confirm that the estimate
gc(∞) and the inverse correlation length of the Hermitian systems are consistent for
the Hubbard model and for the S = 1/2 XXZ chain. We also analyze an unsolved
model, namely the S = 1/2 antiferromagnetic Heisenberg chain with nearest- and
next-nearest-neighbor interactions including the Majumdar-Ghosh model.

In the summary, we conjecture again for strongly correlated quantum systems
that it may be a universal relation that the imaginary part of a zero of the dispersion
relation is equal to the inverse correlation length. We next give some examples for
which the non-Hermitian generalization in Eq. (1.9) does not work well in order to
obtain the correlation length. However, our conjecture proposed at the beginning
of the introduction is valid ever for these examples.



Chapter 2

S = 1/2 isotropic XY chain

2.1 Zeros of the dispersion relation of the elemen-
tary excitation and the correlation length

We first consider as an introductory example the S = 1/2 ferromagnetic isotropic
XY chain in a magnetic field which is mapped to a non-interacting Fermion system.
The Hamiltonian of this model is

HXY = −J
L∑

l=1

(
Sx

l Sx
l+1 + Sy

l Sy
l+1

)
− h

L∑

l=1

Sz
l , (2.1)

where we set J > 0. The Hamiltonian (2.1) is transformed into

HXY = −J

2

L∑

l=1

(c†l+1cl + c†l cl+1)−
hL

2
+ h

L∑

l=1

c†l cl (2.2)

by the Jordan-Wigner transformation

cj = 2j−1Sz
1S

z
2 . . . Sz

j−1S
+
j , c†j = 2j−1Sz

1S
z
2 . . . Sz

j−1S
−
j . (2.3)

We can immediately diagonalize the Hamiltonian (2.2) in the form

HXY =
∑

−π<p<π

ε(p)c†pcp −
hL

2
(2.4)

with the Fourier transformation

cp =
1√
L

L∑

l=1

e−iplcl, c†p =
1√
L

L∑

l=1

eiplc†l , (2.5)

where ε(p) ≡ −J cos p + h is the dispersion relation of the one-particle excitation
shown in Fig. 2.1 for h > J . The ground state for h > J has no Fermions and its
the eigenenergy is −hL/2. The first excited state is the one-particle excitation of
the momentum p = 0 and its excitation energy is h− J .

11
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 0

!!p"

p"# #

Figure 2.1: The dispersion relation ε(k) = h− J cos p of the one-particle excitation
for the S = 1/2 isotropic XY chain for h > J .

Let us obtain the zero p(0) of the dispersion relation ε(p) of the one-particle
excitation in the complex momentum space. The equation

h− J cos(p(0)
r + ip(0)

i ) = 0 (2.6)

yields the equation for the real p(0)
r ≡ Re p(0) part of the form

h− J cos p(0)
r cosh p(0)

i = 0 (2.7)

and the one for the imaginary part p(0)
i ≡ Im p(0) of the form

sin p(0)
r sinh p(0)

i = 0. (2.8)

By solving Eqs. (2.7) and (2.8), we obtain the zero p(0) in the region Im p ≥ 0 of the
form

p(0) = i ln



h

J
+

√(
h

J

)2

− 1



 ; (2.9)

its imaginary part is equal to the inverse correlation length obtained by the quantum
transfer matrix method [6].

We hereafter briefly review the calculation of the correlation length ξ(T ) at
finite temperature T by the quantum transfer matrix method. The eigenvalues of
the quantum transfer matrix yields the correlation length ξ(T ) of the form

1

ξ
= lim

NT→∞

∣∣∣∣∣
Λ(Max)

NT

Λ(Max)
NT−1

∣∣∣∣∣ , (2.10)

where Λ(Max)
NT

is the largest eigenvalue in the subspace where the Trotter number,
that is, the number of slices along the imaginary time axis, is NT. For the isotropic
XY chain, the eigenvalues lim

NT→∞
Λ(Max)

NT
and lim

NT→∞
Λ(Max)

NT−1 at finite temperature T
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are obtained in the forms [7]

lim
NT→∞

Λ(Max)
NT

= exp

[
1

2π

∫ 2π

0

dp ln

(
2 cosh

(
J cos p + h

2T

))]
, (2.11)

lim
NT→∞

Λ(Max)
NT−1 =

J

2T
exp

[
1

2π

∫ 2π

0

dp ln

(
sinh[(J cos p + h)/2T ]

(J cos p + h)/2T

)]
. (2.12)

By substituting Eq. (2.12) into Eq. (2.10), we have the correlation length ξ(T ) at
finite temperature T of the form

1

ξ(T )
= ln



h

J
+

√(
h

J

)2

− 1



+
1

2π

∫ 2π

0

dp ln

[
2 coth

(
J cos p + h

2T

)]
. (2.13)

By taking the limit T → 0, we can neglect the second term of the right hand-side
in Eq. (2.13) and we thus have the inverse correlation length 1/ξ(0) of the form

1

ξ(0)
= ln



h

J
+

√(
h

J

)2

− 1



 , (2.14)

which is equal to the imaginary part of the zero (2.9).

2.2 Non-Hermitian analysis of the isotropic XY
chain

We propose a non-Hermitian isotropic XY chain in order to obtain the dispersion
relation on the axis Im p = g and discuss the spectral behavior of the non-Hermitian
model.

Let us transform the Hermitian Hamiltonian (2.4) to the non-Hermitian one of
the form

HXY (g) =
∑

−π<p<π

ε(p + ig)c†pcp −
hL

2
(2.15)

as we described in Eq. (1.6), in order to obtain the dispersion relation on the axis
Im p = g. In the real space, the non-Hermitian Hamiltonian (2.15) becomes

HXY (g) = −J

2

L∑

l=1

(egc†l+1cl + e−gc†l cl+1)−
hL

2
+ h

L∑

l=1

c†l cl. (2.16)

The expression (2.16) actually corresponds to the non-Hermitian generalization in
Eq. (1.9). By the inverse Jordan-Wigner transformation, the Hamiltonian (2.16) is
transformed back into

HXY (g) =− J

2

L∑

l=1

[
egS−

l S+
l+1 + e−gS+

l S−
l+1

]
− h

L∑

l=1

Sz
l

=− J
L∑

l=1

[
cosh g

(
Sx

l Sx
l+1 + Sy

l S
y
l+1

)
+ i sinh g

(
Sy

l S
x
l+1 + Sx

l Sy
l+1

)]
− h

L∑

l=1

Sz
l .

(2.17)
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Figure 2.2: (a) The real part of E(p) and (b) the imaginary part of E(p) for h > J ,
where gc denotes the non-Hermitian critical point defined in Eq. (2.20).

We obtain the ground-state energy and the excitation energy by the one-particle
excitation. The ground state has no Fermions and its eigenenergy is Egs = −hL/2,
which does not depend on g. On the other hand, the one-particle excitation energy
E(p) at the momentum p is

E(p) = ε(p + ig) = −J cos(p + ig) + h, (2.18)

whose real part ReE(p) and imaginary part Im E(p) are schematically shown in
Fig. 2.2. Figure 2.3 shows the energy spectra of the non-Hermitian XY chain (2.16)
for h > J . The symbol × denotes the ground state and the solid lines denote the
one-particle excitations. All eigenvalues are real at the Hermitian point g = 0 and
ε(0) = h− J gives the finite energy gap as shown in Fig. 2.3 (a). As we turn on the
non-Hermiticity g, all eigenvalues except for p = 0 and ±π immediately spread into
the complex E plane (Fig. 2.3 (b)). The g dependence of the energy gap ∆E(g) is

∆E(g) = ε(ig) = h− J cosh g. (2.19)

We define the non-Hermitian critical point gc as the point where the energy gap
above the ground state vanishes. From Eq. (2.19), we obtain the non-Hermitian
critical point gc of the form

gc = ln



h

J
+

√(
h

J

)2

− 1



 . (2.20)

Figure 2.4 shows the non-Hermitian critical point gc as a function of h/J . The
Hermitian system is gapless (the XY phase) for h < J and hence we have the non-
Hermitian critical point gc = 0 in the region. We can immediately confirm that the
analytical expression of the non-Hermitian critical point gc in Eq. (2.20) is equal to
the inverse correlation length of the Hermitian system [6].

Indeed, to see where the gap (2.19) vanishes is equivalent to solve Eq. (2.7).
This is how the non-Hermitian generalization of the form (1.9) may give a zero
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(a)

-hL/2

Energy gap

ReE

E

p=0

p # ±#

(b)

-hL/2

Energy gap

ReE

E

p=0

p # ±#

Figure 2.3: The eigenvalue distributions of the non-Hermitian isotropic XY chain
for h > J for (a) g = 0 and (b) 0 < g < gc. The symbol × denotes the ground state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

gc

h/J

Figure 2.4: The non-Hermitian critical point gc of the isotropic XY chain. The
ground-state critical point of the Hermitian system is h/J = 1.
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of the dispersion relation and hence give the inverse correlation length. In the
region g ≥ gc, the ground-state energy energy Egs denoted by × in Fig. (2.3) does
not become complex because the ground state is in a different subspace from any
excited states. This behavior is quite different from the one for the non-Hermitian
Hubbard model (3.11) and for the non-Hermitian S = 1/2 antiferromagnetic XXZ
chain (4.15) as shown below.

2.3 Non-Hermitian analysis of the S = 1/2 trans-
verse Ising chain

We here comment that the non-Hermitian generalization of the form Eq. (1.9), that
is, multiplying the right hopping energy eg and the left hopping energy by e−g in
the Hermitian Hamiltonian, does not work for the S = 1/2 ferromagnetic transverse
Ising chain

HIsing = −J
L∑

l=1

Sx
l Sx

l+1 − h
L∑

l=1

Sz
l (2.21)

in order to obtain the correlation length. Our conjecture is nevertheless supported
for this model; the imaginary part of a zero of the dispersion relation is equal to the
inverse correlation length.

First, let us obtain the zeros of the dispersion relation of the Hermitian model.
The Hamiltonian (2.21) is transformed into

HIsing = −J

4

L∑

l=1

(c†l+1cl + c†l cl+1 − c†l+1c
†
l − clcl+1)−

hL

2
+ h

L∑

l=1

c†l cl (2.22)

by the Jordan-Wigner transformation in Eq. (2.3). By the Fourier transformation
of the Fermionic operators c†l and cl,

ck =
1√
L

L∑

l=1

e−ikle−
π
4 icl, c†k =

1√
L

L∑

l=1

eikle
π
4 ic†l , (2.23)

the Hamiltonian (2.22) is rewritten in the form

HIsing = −hL

2
−
∑

0<k<π

[
(
J

2
cos k − h)(c†kck + c†−kc−k) +

J

2
sin k(c†kc

†
−k + c−kck)

]
.

(2.24)
The elementary excitation of Eq. (2.24) is given by

ηp = cos θpcp − sin θpc
†
−p,

η−p = sin θpc
†
p + cos θpc−p, (2.25)

where

θp = −1

2
arctan

[
J sin p

J cos p− 2h

]
. (2.26)
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The Hamiltonian (2.21) is therefore diagonalized in the momentum space of the form

HIsing =
∑

−π<p<π

ε(p)

(
η†pηp −

1

2

)
, (2.27)

where the dispersion relation ε(p) is given by

ε(p) =

√(
J cos p

2
− h

)2

+

(
J sin p

2

)2

. (2.28)

We then obtain zeros p(0) of the dispersion relation (2.28). By introducing p(0)
r ≡

Re p(0) and p(0)
i ≡ Im p(0), the equation
(

J cos(p(0)
r + ip(0)

i )

2
− h

)2

+

(
J sin(p(0)

r + ip(0)
i )

2

)2

= 0 (2.29)

yields the equation for the real part of the form

J2

4
+ h2 − Jh cos p(0)

r cosh p(0)
i = 0 (2.30)

and the one for the imaginary part of the form

sin p(0)
r sinh p(0)

i = 0. (2.31)

By solving Eqs. (2.30) and (2.31), we obtain the zeros p(0) of the dispersion rela-
tion (2.28) in the region Im p ≥ 0 of the form

p(0) = i

∣∣∣∣ln
(

2h

J

)∣∣∣∣ . (2.32)

The imaginary part of the zeros (2.32) is equal to the inverse correlation length of
the transverse Ising chain. The correlation length is obtained from asymptotic form
of the two-point correlation function

〈
Sx

l Sx
l+n

〉
, which is given for large n in the

form [8]
〈
Sx

l Sx
l+n

〉

, 1

4

(
1−
(

2h

J

)2
)
π−1/2n−1/2

(
2h

J

)−n
[
1− 1

8
n−1

(
1 +

(
2h

J

)2
)(

1−
(

2h

J

)−1
)

+ O(n−2)

]

, exp(−n/ξ). (2.33)

with the inverse correlation length 1/ξ = ln(2h/J).
Next, we derive a non-Hermitian Hamiltonian of the form (1.6) by replacing p

with p + ig in the dispersion relation ε(p) in order to obtain the dispersion relation
on the axis Im p = g. As shown in Appendix B, the Hamiltonian is transformed
back to the spin Hamiltonian of the form

HIsing(g)

=
∑

l

∞∑

n=1

(−2)nSz
l+1 . . . Sz

l+n−1

[
(αn − γn)Sx

l+nS
x
l + (αn + γn)Sy

l+nS
y
l + iβn(Sx

l+nS
y
l − Sy

l+nS
x
l )
]

− α0

∑

l

Sz
l , (2.34)
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where coefficients αn, βn and γn are given by the following integrals:

αn =
1

2π

∫ π

−π

(
J cos p

2
− h

)
ε(p + ig) + ε(p− ig)

2ε(p)
cos(np)dp,

βn =
i

2π

∫ π

−π

ε(p + ig)− ε(p− ig)

2
sin(np)dp,

γn = − 1

2π

∫ π

−π

J sin p

2

ε(p + ig) + ε(p− ig)

2ε(p)
sin(np)dp. (2.35)

This non-Hermitian Hamiltonian is very complicated; interactions between spins
beyond the nearest neighbor sites emerge as soon as g is finite. It is because its
elementary excitation is obtained by the Bogoliubov transformation; the creation
and annihilation operators at two different momenta p and −p are mixed. Con-
versely, the non-Hermitian generalization of the simple form (1.9) does not produce
the dispersion relation ε(p + ig) in this model. We may need another principle of a
non-Hermitian generalization for this model.



Chapter 3

Half-filled Hubbard model

In the present chapter, we consider the half-filled Hubbard model

HHubbard = −t
L∑

l=1

∑

σ=↑,↓

(c†l+1,σcl,σ + c†l,σcl+1,σ) + U
L∑

l=1

nl,↑nl,↓. (3.1)

The charge excitation has a finite energy gap, namely, the Hubbard gap for U >
0. By considering the finite-size scaling of the Drude weight, Stafford and Millis
obtained the inverse correlation length of the charge excitation of the form [9]

1

ξ
= arcsinh(U/4t)− 2

∫ ∞

0

J0(ω) sinh(ωU/4t)

ω(1 + eωU/2t)
dω, (3.2)

where J0(ω) is the Bessel function of the first kind. The Drude weight is defined
as [10]

D ≡ 1

2

d2E0

d2φ

∣∣∣∣
φ=0

(3.3)

for the Hubbard chain under the magnetic field, whose Hamiltonian is given by

H = −t
L∑

l=1

∑

σ=↑,↓

(eiφc†l+1,σcl,σ + e−iφc†l,σcl+1,σ) + U
L∑

l=1

nl,↑nl,↓, (3.4)

where φ is a real constant and E0 is the ground-state energy per site. They solved
the Hamiltonian (3.4) in the half-filled case for large enough size L by the Bethe-
ansatz method and asymptotically obtained the L dependence of the ground state
energy E0(L). By applying Eq. (3.3), they obtained the expression (3.2) from the L
dependence of the Drude weight D(L) of the form [9]

D(L) = (−1)L/2+1L1/2F (U/t)e−L/ξ (3.5)

for large L, where F (U/t) is a U-dependent function given by

F (U/t) ≡

(
U

4t

)2

−

√

1 +

(
U

4t

)2 ∫ ∞

0

dx e−x tanh(x)J1(4tx/U)

√√√√π

2

∫ ∞

0

dx e−xJ0(4tx/U)

[(
U

4t

)2

+

(
1 +

(
U

4t

)2
)

x tanh(x)

] . (3.6)

19
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3.1 Zeros of the dispersion relation of the charge
excitation and the correlation length

We first point out for the half-filled Hubbard model that the imaginary part of a zero
of the dispersion relation of the charge excitation is equal to the inverse correlation
length of the half-filled Hubbard model given in Eq. (3.2).

We obtain the dispersion relation in the complex momentum space by consider-
ing the analytic continuation of the Hermitian dispersion, which has been already
known; specifically, the charge excitation of the half-filled Hubbard model has the
excitation energy E(kh) of the form [11]

E(kh) = U + 4t cos kh + 8t

∫ ∞

0

cos(ω sin kh)J1(ω)

ω(1 + eωU/2t)
dω (3.7)

and the momentum p(kh) of the form

p(kh) = kh + 2

∫ ∞

0

sin(ω sin kh)J0(ω)

ω(1 + eωU/2t)
dω, (3.8)

where kh is the quasimomentum of the “hole”. The dispersion relation of the charge
excitation E(p) is thus obtained through the parameter kh. Fukui and Kawakami

obtained zeros k(0)
h of the excitation energy (3.7) on the axis Re kh = ±π in the

quasimomentum space in the region Im kh ≥ 0 of the form [3]

k(0)
h = ±π + i arcsinh(U/4t). (3.9)

By substituting Eq. (3.9) into Eq. (3.8), we have the corresponding zeros p(0)
h of the

dispersion relation in the momentum space in the region Im ph ≥ 0 as

p(0)
h = ±π + i

[
arcsinh(U/4t)− 2

∫ ∞

0

J0(ω) sinh(ωU/4t)

ω(1 + eωU/2t)
dω

]
. (3.10)

The imaginary part of zeros p(0)
h is equal to the inverse correlation length of the

charge excitation in Eq. (3.2). Figure 3.1 shows numerical calculation of the real
part of the excitation energy E(p) in the complex momentum space in the region
Im p ≤ 1/ξ for U/t = 4; it suggests that the zeros in Eq. (3.10) are the nearest to
the real axis.

In the next section, we use a non-Hermitian Hubbard model for the purpose
of obtaining the dispersion relation on the axis Im p = g. We then argue where
the analytic continuation of the dispersion relation may be valid in the complex
momentum space. We also conclude that the zeros in Eq. (3.10) actually exist in
the area where the analytic continuation is assumed to be valid.

3.2 Non-Hermitian analysis of the Hubbard model

For the purpose of searching zeros in the complex momentum space, we use a non-
Hermitian Hubbard model in order to obtaining the dispersion relation on the axis
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Figure 3.1: The real part of the excitation energy E(p) in the complex momentum
space for U/t = 4. The red symbols × denote the zeros of E(p), whose imaginary
part is 1/ξ.
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Figure 3.2: The U/t dependence of gc = ξ−1.

Im p = g with real g. As will be demonstrated in §3.2.2, obtaining the dispersion
relation on the axis Im p = g may be actually equivalent to solving a non-Hermitian
Hubbard model

HHubbard(g) = −t
L∑

l=1

∑

σ=↑,↓

(egc†l+1,σcl,σ + e−gc†l,σcl+1,σ) + U
L∑

l=1

nl,↑nl,↓, (3.11)

which was first proposed by Fukui and Kawakami [3]. They solved the non-Hermitian
model (3.11) in the half-filled case exactly by the Bethe-ansatz method. They also
derived an analytical expression of the non-Hermitian critical point gc where the
Hubbard gap vanishes of the form

gc = arcsinh(U/4t) + 2i

∫ ∞

−∞
arctan

λ + iU/4t

U/4t
σ(λ)dλ, (3.12)

where the distribution function σ(λ) of the spin rapidity λ is given by

σ(λ) =
1

2π

∫ ∞

0

sech

(
ωU

4t

)
cos(λω)J0(ω)dω. (3.13)

After some algebra in Appendix C, we can show that the analytical expression of
the non-Hermitian critical point gc is actually equal to the inverse correlation length
1/ξ due to the charge excitation in Eq. (3.2). Figure 3.2 shows the U/t dependence
of gc(= 1/ξ). For large U , we have gc ∼ arcsinh(U/4t) by neglecting the second
term of Eq. (3.2).

We also discuss partly numerically where in the complex momentum space the
analytical continuation may be valid by analyzing the non-Hermitian Hubbard
model (3.11). We then show that the zeros p(0)

h in Eq. (3.10) actually exist in
the area where the analytic continuation of the dispersion relation of the charge
excitation is considered to be valid.
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In §3.2.1, we review the analytic solution [3] of the non-Hermitian Hamilto-
nian (3.11) by the Bethe-ansatz method. In §3.2.2, we argue physical meaning
of the non-Hermitian generalization of the Hubbard model; the non-Hermiticity g
makes the dispersion relation E(p) of the charge excitation transformed to E(p+ ig).

3.2.1 Exact solution of the non-Hermitian Hubbard model

Bethe-ansatz equation and its exact solution

In order to solve the Hamiltonian (3.11), we make the following ansatz for the right

eigenfunction Ψ(R)
g , considering the imaginary gauge transformation (A.4) [3]:

Ψ(R)
g (x1, · · · , xN ; σ1, · · · , σN ) = exp

(

g
N∑

j=1

xj

)

Ψ0(x1, · · · , xN ; σ1, · · · , σN)

=
∑

{P}

sgn(PQ)AσQ1 ,··· ,σQN
(kP1, · · · , kPN ) exp(i

N∑

j=1

(kPj − ig)xQj). (3.14)

The wave function Ψ0 is the Bethe-ansatz wave function in the Hermitian case g = 0,

Ψ0(x1, · · · , xN ; σ1, · · · , σN) =
∑

{P}

sgn(PQ)AσQ1 ,··· ,σQN
(kP1, · · · , kPN ) exp(i

N∑

j=1

kPjxQj),

(3.15)
where L, M and N are the number of sites, the number of the down spins and the
number of the electrons, respectively. The symbols P = (P1, P2, · · · , PN) and Q =
(Q1, Q2, · · · , QN) denote permutations of the set (1, 2, · · · , N) with 1 ≤ xQ1 ≤ xQ2 ≤
· · · ≤ xQN ≤ L. The symbol AσQ1 ,··· ,σQN

(kP1, · · · , kPN ) is a set of N !×N ! coefficients
depending on the two permutations P and Q. The quasimomenta k1, k2, · · · , kN are
unequal to each other for the ground state [12].

The non-Hermitian Bethe-ansatz equation is then given by [3] (see Appendix D)

exp(iLkj + gL) =
M∏

β=1

sin kj − λβ + iU/4t

sin kj − λβ − iU/4t
(j = 1, · · · , N),

N∏

j=1

sin kj − λα + iU/4t

sin kj − λα − iU/4t
= −

M∏

β=1

λα − λβ − iU/2t

λα − λβ + iU/2t
(α = 1, · · · , M). (3.16)

By taking the logarithm of Eq. (3.16), we have

kjL− igL = 2πIj − 2
M∑

β=1

arctan
sin kj − λβ

U/4t
(j = 1, · · · , N), (3.17)

− 2
N∑

j=1

arctan
sin kj − λα

U/4t
= 2πJα + 2

M∑

β=1

arctan
λα − λβ
U/2t

(α = 1, · · · , M),

(3.18)
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where we set the quantum numbers Ij and Jα of the ground state for even N and
odd M as follows [13]:

Ij =
N − 1

2
,
N − 3

2
, · · · ,−N − 1

2
, (3.19)

Jα =
M − 1

2
,
M − 3

2
, · · · ,−M − 1

2
. (3.20)

We here consider the half-filled case where L = N and M = N/2. By taking the
thermodynamic limit L→∞ of Eqs. (3.17) and (3.18), we obtain the Fredholm-type
integral equations:

k − ig = 2πzC(k)−
∫

S(g)

2 arctan
sin k − λ

U/4t
σ(λ)dλ for k ∈ C(g), (3.21)

∫

C(g)

2 arctan
λ− sin k

U/4t
ρ(k)dk = 2πzS(λ) +

∫

S(g)

2 arctan
λ− λ′

U/2t
σ(λ′)dλ′

for λ ∈ S(g). (3.22)

In Eqs. (3.21) and (3.22), we introduced functions zC(k) and zS(λ) by taking the
continuous limit L→∞ of the discrete functions zC(kj) ≡ Ij/L and zS(λα) ≡ Jα/L.
We also defined ρ(k) ≡ dzC(k)/dk and σ(λ) ≡ dzS(λ)/dλ. The symbols C(g) and
S(g) denote distribution curves on which the quasimomentum k and the rapidity
λ lie. By solving Eqs. (3.21) and (3.22) numerically, we obtained the distribution
curves C(g) in the complex k plane for an infinite system as in Fig. 3.3 for g ≤ gc.
We also observed numerically that the distribution curve S(g) is always located on
the real axis from −∞ to ∞ for g ≤ gc. By differentiating Eqs. (3.21) and (3.22)
with respect to k and λ, we have

ρ(k) =
1

2π
+

cos k

π

∫ ∞

−∞

U/4t

(U/4t)2 + (λ− sin k)2
σ(λ)dλ for k ∈ C(g), (3.23)

σ(λ) =
1

π

∫

C(g)

U/4t

(U/4t)2 + (λ− sin k)2
ρ(k)dk − 1

π

∫ ∞

−∞

U/2t

(U/2t)2 + (λ− λ′)2
σ(λ′)dλ′

for λ ∈ [−∞,∞],
(3.24)

where we assumed S(g) = [−∞,∞]. We here consider an area CC in the k plane as
shown in Fig 3.4, where we denote the end points of the curve C(g) for g < gc by
±π+ iκ(g) with κ(g) real. The poles of the integrand (U/4t)/[(U/4t)2 +(λ− sin k)2]
in the k plane get closest to the real axis for λ = 0:

kn = ± i arcsinh(U/4t) + nπ (n = 0,±1). (3.25)

As long as there are no poles in the area CC shown in Fig. (3.4), we may be able to
modify the integral contour C(g) as [3]

∫

C(g)

=

∫ −π

−π+iκ(g)

+

∫ π

−π
+

∫ π+iκ(g)

π

, (3.26)
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where we assume that the expression of ρ(k) on the curve C(g) is valid everywhere
inside the area CC in the complex k plane. The modification of the integral contour
C(g) is thus assumed to be valid as long as the end points ±π + iκ(g) are below the
poles at ±π + i arcsinh(U/4t).

We obtain the non-Hermiticity g at which the end points reach ±π+i arcsinh(U/4t).
The quasimomenta with Re k = ±π may correspond to I1 and IN in Eq. (3.19) for
L→∞. Hence we assume zC(k) = ±1/2 for the end points of C(g). We thereby ob-
tain the non-Hermiticity g by substituting ±1/2 for zC(k) and ±π + i arcsinh(U/4t)
for k in Eq. (3.21). The result is equal to the non-Hermitian critical point gc in
Eq. (3.12), where the charge gap vanishes.

After the above assumption for the modification of the integral counter C(g), we
rewrite Eqs. (3.23) and (3.24) for g < gc in the forms

ρ(k) =
1

2π
+

cos k

π

∫ ∞

−∞

U/4t

(U/4t)2 + (λ− sin k)2
σ(λ)dλ for k ∈ [−π, π], (3.27)

σ(λ) =
1

π

∫ π

−π

U/4t

(U/4t)2 + (λ− sin k)2
ρ(k)dk +

1

π

∫ π+iκ(g)

π

U/4t

(U/4t)2 + (λ− sin k)2
ρ(k)dk

+
1

π

∫ −π

−π+iκ(g)

U/4t

(U/4t)2 + (λ− sin k)2
ρ(k)dk − 1

π

∫ ∞

−∞

U/2t

(U/2t)2 + (λ− λ′)2
σ(λ′)dλ′

for λ ∈ [−∞,∞].
(3.28)

Since the integrand is a periodic function with respect to k, we have

1

π

∫ π+iκ(g)

π

U/4t

(U/4t)2 + (λ− sin k)2
ρ(k)dk+

1

π

∫ −π

−π+iκ(g)

U/4t

(U/4t)2 + (λ− sin k)2
ρ(k)dk = 0,

(3.29)
which is followed by

σ(λ) =
1

π

∫ π

−π

U/4t

(U/4t)2 + (λ− sin k)2
ρ(k)dk − 1

π

∫ ∞

−∞

U/2t

(U/2t)2 + (λ− λ′)2
σ(λ′)dλ′

for λ ∈ [−∞,∞].
(3.30)

Equations (3.27) and (3.30) are the same as in the Hermitian case [11]. The solutions
are obtained by taking the Fourier transformation of σ(λ) and are given by [11]

ρ(k) =
1

2π
+

cos k

π

∫ ∞

0

cos(ω sin k)J0(ω)

1 + eωU/2t
dω for k ∈ [−π, π], (3.31)

σ(λ) =
1

2π

∫ ∞

0

sech

(
U

4t
ω

)
cos(λω)J0(ω)dω for λ ∈ [−∞,∞]. (3.32)

The above suggests that the analytic continuation of the solutions ρ(k) and σ(λ)
may be valid inside the area CC(gc), where CC(gc) is the area CC for g = gc.

Eigenenergies

We calculate the dependence of eigenenergies on the non-Hermiticity g in the region
g < gc, particularly, the ground-state energy and the charge excitation energy.
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We first obtain the ground state energy Egs. As long as there are no poles in CC
in Fig. 3.4, that is, for g < gc, the ground state energy Egs per site is

Egs(g) = −2t

∫

C(g)

cos kρ(k)dk

= −2t

∫ π

−π
cos kρ(k)dk − 2t

∫ −π+iκ(g)

−π
cos kρ(k)dk − 2t

∫ π+iκ(g)

π

cos kρ(k)dk.

(3.33)

Since cos kρ(k) is a periodic function with respect to k, we have

−2t

∫ −π+iκ(g)

−π
cos kρ(k)dk − 2t

∫ π+iκ(g)

π

cos kρ(k)dk = 0. (3.34)

Hence Egs(g) is given by

Egs(g) = −2t

∫ π

−π
cos kρ(k)dk = −4t

∫ ∞

0

J0(ω)J1(ω)

ω(1 + eωU/2t)
dω. (3.35)

We thus find that the ground state energy does not depend on g for g < gc.
We next obtain the excitation energy E(kh) on the curve C(g). The excitation

energy is defined in terms of the chemical potentials µ+ and µ− in the form [11]

E(kh) ≡ µ+ − µ−, (3.36)

where µ+ is the chemical potential as we take one electron in and µ− is the one as
we take one electron out at the quasimomentum kh. Specifically, µ+ and µ− are
defined as

µ+ ≡ E(M + 1, M)− E(M, M),

µ− ≡ E(M, M)− E(M − 1, M), (3.37)

where E(n↑, n↓) denotes the eigenenergy in the subspace where the numbers of the
up spins and the down spins are n↑ and n↓, respectively. By considering the particle-
hole transformation:

c†i,↑c
†
i,↓|vac〉 → |vac〉,

|vac〉 → c†i,↑c
†
i,↓|vac〉, (3.38)

we have

E(L− n↑, L− n↓)− E(n↑, n↓) = (ndouble − nvac)U = (L− n↑ − n↓)U, (3.39)

where ndouble and nvac are the number of double occupancies and the number of the
vacuum states, respectively. By using Eq. (3.39), we rewrite µ+ in the form

µ+ =E(M + 1, M)−E(M, M)

=E(L− (M + 1), L−M)− [L− (M + 1)−M ]U − E(M, M)

=E(M − 1, M)− E(M, M) + U = −µ− + U. (3.40)
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Hence we have the excitation energy E(kh) at the quasimomentum kh of the form

E(kh) = U − 2µ−. (3.41)

For the calculation of µ−, we remove an electron whose quasimomentum is kh.
The distribution of Ij changes into

Ij =
N − 1

2
, . . . ,

N − 2h + 3

2
,
N − 2h− 1

2
, . . . ,−N − 1

2
, (3.42)

where we remove the (h− 1)th quantum number. We assume that the distribution
function ρ(k) in Eqs. (3.23) and (3.24) for the ground state changes into ρh(k) −
1
Lδ(k− kh) by the one-hole excitation at k = kh on the distribution curve C(g). The
Bethe-ansatz equation then becomes

ρh(k) =
1

2π
− 1

L
δ(k − kh) +

cos k

π

∫

S(g)

U/4t

(U/4t)2 + (λ− sin k)2
σh(λ)dλ for k ∈ C(g),

σh(λ) =
1

π

∫

C(g)

U/4t

(U/4t)2 + (λ− sin k)2
ρh(k)dk − 1

π

∫

S(g)

U/2t

(U/2t)2 + (λ− λ′)2
σh(λ

′)dλ′

for λ ∈ S(g). (3.43)

As long as g is less than the non-Hermitian critical point gc, we assume to be able
to modify the integral counters

∫
C(g) as Eq. (3.26) and

∫
S as

∫∞
−∞, where we assume

that the expression of ρh(k) on the curve C(g) is valid everywhere inside the area
CC in the complex k plane. Since the integrands in Eq. (3.43) have the periodicity
2π with respect to k, we can reduce the integral counter in Eq. (3.26) to

∫ π
−π. The

modified Bethe-ansatz equation then becomes

ρh(k) =
1

2π
− 1

L
δ(k − kh) +

cos k

π

∫ ∞

−∞

U/4t

(U/4t)2 + (λ− sin k)2
σh(λ)dλ for k ∈ [−π, π],

σh(λ) =
1

π

∫ π

−π

U/4t

(U/4t)2 + (λ− sin k)2
ρh(k)dk − 1

π

∫ ∞

−∞

U/2t

(U/2t)2 + (λ− λ′)2
σh(λ

′)dλ′

for λ ∈ [−∞,∞].
(3.44)

The solutions of Eq. (3.44) are obtained by taking the Fourier transformation of
σ(λ) and are given by

σh(λ) =
1

π

∫ ∞

0

sech

(
U

4t
ω

)
cos(λω)J0(ω)dω − t

UL
sech

[
2πt

U
(λ− sin kh)

]

for λ ∈ [−∞,∞],

ρh(k) =
1

2π
+

cos k

π

∫ ∞

0

cos(ω sin k)J0(ω)

1 + eωU/2t
− 1

L
δ(k − kh)

− cos k

πL

∫ ∞

0

cos[ω(sin k − sin kh)]

1 + eωU/2t
dω for k ∈ [−π, π], (3.45)

where we here assume that the analytic continuation of ρh(k) is valid everywhere
inside the area CC. Since the integral of the distribution function of the charge
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excitation changes by 1/L, we pick out the excitation as the shift of ρh(k) in the
order of 1/L. This has the form

∆ρh(k) ≡ −δ(k − kh)−
cos k

π

∫ ∞

0

cos[ω(sin k − sin kh)]

1 + eωU/2t
dω (3.46)

everywhere inside the area CC. We thus obtain the chemical potential µ−;

µ− ≡ −2t

∫

C(g)

cos k∆ρh(k)dk = −2t

∫ π

−π
cos k∆ρh(k)dk

= −2 cos kh − 4t

∫ ∞

0

cos(ω sin kh)J1(ω)

ω(1 + eωU/2t)
dω. (3.47)

We therefore obtain the excitation energy E(kh) on the curve C(g):

E(kh) = U + 4t cos kh + 8t

∫ ∞

0

cos(ω sin kh)J1(ω)

ω(1 + eωU/2t)
dω. (3.48)

We note that the excitation energy in Eq. (3.48) has the same expression as in the
Hermitian case (3.7). In short, the analytic continuation of the expression E(kh) in
Eq. (3.7) is considered to be valid in the area CC(gc) in the complex k plane as we
assume that the expression of ρh(k) is valid everywhere inside the area CC. (Note,
however, that kh is on C(g) and hence depends on g.)

We next discuss how the Hubbard gap vanishes as we increase the non-Hermiticity
g. In the non-Hermitian case, we define the “Hubbard gap” as the excitation energy
at the end point kh = ±π + iκ on the curve C(g). The dependence of the Hubbard
gap ∆Hubbard on κ is

∆Hubbard = E(kh = ±π + iκ)

= U − 4t coshκ + 8t

∫ ∞

0

cosh(ω sinhκ)J1(ω)

ω(1 + eωU/2t)
dω. (3.49)

From Eq. (3.21), on the other hand, the dependence of the non-Hermiticity g on κ
is

g(κ) = κ− 2

∫ ∞

0

sinh(ω sinh κ)J0(ω)

ω(1 + eωU/2t)
dω. (3.50)

We thus obtain the dependence of the Hubbard gap on the non-Hermiticity g through
the parameter κ. Figure 3.5 numerically exemplifies how the Hubbard gap collapses
as we increase the non-Hermiticity g. The ground-state energy does not change
and the Hubbard gap gradually decreases before it vanishes at g = gc. The way
the energy gap collapses is different from that for the Anderson model discussed
by Hatano and Nelson [2]; the difference of the order of 1/L between neighboring
eigenvalues decreases almost suddenly as g gets close to g = gc [5].

We here comment that the Hubbard gap ∆Hubbard has a singularity with an
exponent 1/2

∆Hubbard ∼ c(gc − g)1/2 + O(gc − g) (3.51)

around but below the non-Hermitian critical point g = gc, where c is a pos-
itive constant given below. We consider the Taylor expansion of the Hubbard
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Figure 3.5: The g dependence of the Hubbard gap ∆Hubbard for U/t = 4. The
non-Hermitian critical point is gc

∼= 0.246.

gap ∆Hubbard in Eq. (3.49) and the non-Hermiticity g(κ) in Eq. (3.50) around
κ = κ(gc)(≡ arcsinh(U/4t)) which determines the non-Hermitian critical point gc:

∆Hubbard = 4t
√

(U/4t)2 + 1

(
1− 2

∞∑

n=1

(−1)n (2n− 1)(U/4t)√
(2n− 1)2(U/4t)2 + 1

)
(κc − κ) + O

(
(κc − κ)2

)
,

g(κ) = gc + 2
[
(U/4t)2 + 1

] ∞∑

n=1

(−1)n (2n− 1)(U/4t)

[(2n− 1)2(U/4t)2 + 1]3/2
(κc − κ)2 + O

(
(κc − κ)3

)
.

(3.52)

These expressions are assumed to be valid for κ ≤ κ(gc). We thus obtain the
asymptotic behavior around g ∼ gc in the form Eq. (3.51) with

c = 2
√

2t

1− 2
∞∑

n=1

(−1)n (2n− 1)(U/4t)√
(2n− 1)2(U/4t)2 + 1

√ ∞∑

n=1

(−1)n+1 (2n− 1)(U/4t)

[(2n− 1)2(U/4t)2 + 1]3/2

. (3.53)

We later argue that the non-Hermitian S = 1/2 antiferromagnetic XXZ chain (4.15)
has the same exponent 1/2.

For g ≥ gc, on the other hand, Fukui and Kawakami [3] argued the shapes
of the distribution curves C and S are quite different from the ones in the region
g < gc. Bethe-ansatz equations thus do not become the Hermitian ones at all. It
is therefore difficult to know ground-state properties of the non-Hermitian Hubbard
model (3.11) for g ≥ gc. However, we expect that the ground-state energy becomes
complex for g > gc on the basis of finite-size data shown in §6.1.
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3.2.2 Physical meaning of the non-Hermitian generalization

We argue physical meaning of the non-Hermitian generalization of the Hubbard
model; the non-Hermiticity g makes the dispersion relation E(ph) of the charge
excitation at the momentum ph transformed to E(ph + ig).

For the non-Hermitian Hubbard model (3.11), let us first obtain the momentum
ph(g) of the hole at the quasimomentum kh, or, at the quantum number Ih in
Eq. (3.42) defined [9] as

ph(g) ≡
N∑

j=1

kgs
j −

N−1∑

j=1

kes
j =

2πIh

L
= 2πzC(kh), (3.54)

where {kgs
j } denotes the set of the quasimomenta for the ground state and {kes

j }
denotes the one for the excited state due to the charge excitation at kgs

j = kh. From
Eq. (3.21), we have

g = 2πizC(kh)− ikh − i

∫ ∞

−∞
2 arctan

sin kh − λ

U/4t
σ(λ)dλ

= 2πizC(kh)− ikh − 2i

∫ ∞

0

sin(ω sin kh)J0(ω)

ω(1 + eωU/2t)
dω

≡ 2πizC(kh)− iPh,

(3.55)

where Ph denotes the momentum p(kh) of the hole given by Eq. (3.8). Since the
analytic continuation of the excitation energy E(kh) or E(p(kh)) = E(Ph) is assumed
to be valid for g < gc as shown in Eq. (3.48), the non-Hermitian Hamiltonian (3.11)
may be diagonalized in low energy in the form

HHubbard(g) ∼=
∑

−π<ph(g)<π

E(Ph)η
†
ph(g)ηph(g) (3.56)

in terms of the charge excitation, where η†ph(g) and ηph(g) are the creation and anni-
hilation operators of the hole at the momentum ph(g). The Hamiltonian (3.56) is
rewritten in the form

HHubbard(g) ∼=
∑

−π<ph(g)<π

E(ph(g) + ig)η†ph(g)ηph(g) (3.57)

because we have Ph = ph(g) + ig from Eq. (3.55). Since ph(g) is real, Eq. (3.57) has
the same structure as Eqs. (1.6) and (2.15). We thus conclude that we may be able
to obtain the dispersion relation on the axis Im p = g in the complex momentum p
space by analyzing the non-Hermitian Hamiltonian (3.11).

The assumption that the analytic continuation of the excitation energy is valid
everywhere inside the area CC in the complex quasimomentum space is equivalent
to the assumption that the analytic continuation of the dispersion relation is valid
in the area

Im p < gc (3.58)

in the complex momentum space. The zeros of the dispersion relation of the charge
excitation for the Hermitian Hubbard model in Eq. (3.10) indeed exist in the re-
gion (3.58).





Chapter 4

S = 1/2 antiferromagnetic XXZ
chain

In the present chapter, we consider the S = 1/2 antiferromagnetic XXZ chain

HXXZ = J
L∑

l=1

[
1

2

(
S−

l S+
l+1 + S+

l S−
l+1

)
+ ∆Sz

l S
z
l+1

]
(4.1)

in the Ising-like region ∆ > 1 for J > 0, whose ground state has an energy gap
above it due to the spinon excitation.

4.1 Zeros of the dispersion relation of the spinon
excitation and the correlation length

We first point out that the imaginary part of zeros in the complex momentum space
of the dispersion relation of the two-spinon excitation is equal to twice the inverse
correlation length of the spinon excitation. A pair of spinon excitations at the
rapidities λ = λ1 and λ = λ2 has the excitation energy of the form

E(λ1,λ2) =
2πJ sinh γ

γ
(σ(λ1) + σ(λ2))

=
J sinh γK(u)

π

[
dn

(
γK(u)λ1

π
, u

)
+ dn

(
γK(u)λ2

π
, u

)]
, (4.2)

where the distribution function σ(λ) of the rapidity λ is given by

σ(λ) =
γ

2π

n=∞∑

n=−∞

einγλ

2 cosh(nγ)
=

γK(u)

2π2
dn

(
γK(u)λ

π
, u

)
(4.3)

and we set γ = arccosh∆. The functions dn(x, u) in Eqs. (4.2) and (4.3) and sn(x, u)
in Eq. (4.8) are the Jacobian elliptic functions. The modulus u is determined by

K(
√

1− u2)

K(u)
=

γ

π
, (4.4)

33
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where K(u) is defined by

K(u) ≡
∫ π/2

0

dp√
1− u2 sin2 p

. (4.5)

By considering Eqs. (4.4) and (4.5), the modulus u is given by

u =

[

cosh

(
γ

2
+

∞∑

n=1

(−1)n tanh(nγ)

n

)]−1

. (4.6)

The momentum pspinon of the two-spinon excitation is

pspinon = p(λ1) + p(λ2), (4.7)

where

p(λ) ≡ γλ

2
+

∞∑

n=1

sin(nγλ)

n cosh(nγ)
= arcsin

[
sn

(
γK(u)λ

π
, u

)]
. (4.8)

By using the formula dn(x, u) =
√

1− u2sn2(x, u), we obtain the explicit expression
of the dispersion relation E(λ1,λ2) as a function of p(λ1) and p(λ2) of the form

E(λ1,λ2) =
J sinh γK(u)

π

[√
1− u2 sin2 p(λ1) +

√
1− u2 sin2 p(λ2)

]
. (4.9)

We search zeros of E(λ1,λ2) by considering the analytic continuation of the
dispersion relation of the spinon excitation. Because of Eq. (4.9), the zeros p(0)(λ1)

and p(0)(λ2) with E(λ(0)
1 ,λ(0)

2 ) = 0 must satisfy

sin p(0)(λi) = ±1

u
(4.10)

for i = 1 and 2. All zeros p(0)(λ1) and p(0)(λ2) in the regions Im p(λ1) ≥ 0 and
Im p(λ2) ≥ 0 are thus given by

p(0)(λ1), p(0)(λ2) = ±π

2
+ i arccosh

(
1

u

)
= ±π

2
+ i

[
γ

2
+

∞∑

n=1

(−1)n tanh(nγ)

n

]
.

(4.11)

All zeros p(0)
spinon of the momentum of the two spinon excitation in the region Im pspinon ≥

0 are

p(0)
spinon = ± π + i

[

γ + 2
∞∑

n=1

(−1)n tanh(nγ)

n

]

, i

[

γ + 2
∞∑

n=1

(−1)n tanh(nγ)

n

]

.

(4.12)

We note that the imaginary part of the momentum in Eq. (4.12) is equal to twice
the inverse correlation length 1/ξ obtained by the quantum transfer matrix method
of the form [14]

1

ξ
=

γ

2
+

∞∑

n=1

(−1)n tanh(nγ)

n
, (4.13)
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that is,
p(0)

spinon = ±π + 2i/ξ, 2i/ξ. (4.14)

The reason why Im p(0)
spinon is equal to twice the inverse correlation length in Eq. (4.14)

is that we consider a two-spinon excitation. The above relation was first pointed
out by Okunishi et al. [15] for the S = 1/2 XYZ chain. However, they did not
discuss where in the complex momentum space the analytic continuation is valid.
We argue below by analyzing the non-Hermitian S = 1/2 XXZ chain that the zeros
±π+2i/ξ and 2i/ξ in the complex momentum space actually exist in the area where
the analytic continuation is assumed to be valid.

4.2 Non-Hermitian analysis of the antiferromag-
netic XXZ chain

For the purpose of searching zeros in the complex momentum space, we use a non-
Hermitian XXZ chain in order to obtaining the dispersion relation on the axis
Im p = g with real g. As will be demonstrated in §4.2.2, obtaining the dispersion
relation on the axis Im p = g may be equivalent to solving a non-Hermitian XXZ
chain [16]

HXXZ(g) = J
L∑

l=1

[
1

2

(
e2gS−

l S+
l+1 + e−2gS+

l S−
l+1

)
+ ∆Sz

l S
z
l+1

]
(4.15)

with J > 0. We set Sz
tot = 0 hereafter. The non-Hermitian Hamiltonian HXXZ(g)

in the case of ∆ = 1 is derived as an effective Hamiltonian in the strong coupling
expansion of the non-Hermitian Hubbard model in the half-filled case,

Hspin(g) = −t
L∑

l=1

(egc†l+1,↑cl,↑ + e−gc†l,↑cl+1,↑ + e−gc†l+1,↓cl,↓ + egc†l,↓cl+1,↓) + U
L∑

l=1

nl,↑nl,↓,

(4.16)

which is a special case t′ = 0 of the model (E.1) in Appendix E. Note the difference
between Eqs. (3.11) and (4.16); the first-order perturbation with respect to the
non-Hermiticity g gives

Hspin(g)−Hspin(0) = −ig(J↑ − J↓), (4.17)

where J↑−J↓ is the spin current operator. Thus we expect that the non-Hermiticity
g induces a spin current and eliminates the spin gap. We then generalize the model
to arbitrary values of ∆.

Albertini et al. [16] exactly solved the non-Hermitian XXZ chain (4.15) and
obtained an analytical expression in the limit L→∞ of the non-Hermitian critical
point gc at which the energy gap due to the spinon excitation vanishes, in the
form [16]

gc =
γ

2
+

∞∑

n=1

(−1)n tanh(nγ)

n
. (4.18)
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Figure 4.1: The γ dependence of gc = ξ−1.

We show the γ dependence of gc in Fig. 4.1. Although Albertini et al. did not
point out the fact, the expression (4.18) is the same as Eq. (4.13). We demon-

strate below that zeros p(0)
spinon in Eq. (4.14) actually exist in the area where the

analytic continuation is assumed to be valid by analyzing the non-Hermitian XXZ
chain (4.15). In §4.2.1, we review the analytic solution [16] of the non-Hermitian
Hamiltonian (4.15) by the Bethe-ansatz method. In §4.2.2, we argue physical mean-
ing of the non-Hermitian generalization of the XXZ chain; the non-Hermiticity g
makes the dispersion relation E(p) of a spinon transformed to E(p + ig).

4.2.1 Exact solution of the antiferromagnetic non-Hermitian
XXZ chain

Bethe-ansatz equation and its exact solution

We now consider the case of zero magnetization
L∑

i=1

Sz
i = 0 with even L, M up spins

and M down spins (M ≡ L/2). We define the vacuum state |vac〉 as the state where
all spins are up. An eigenfunction with M down spins is given by

|Ψ(R)(g)〉 =
∑

(x1,x2,··· ,xM)

ψ(R)
g (x1, x2, · · · , xM)S−

x1
S−

x2
· · ·S−

xM
|vac〉, (4.19)

where we put down spins at x1, x2, · · · , xM with 1 ≤ x1 ≤ x2 ≤ · · · ≤ xM ≤ L. In
order to solve the non-Hermitian Hamiltonian (4.15), we make the following ansatz
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for the right eigenfunction ψ(R)
g [16]:

ψ(R)
g (x1, x2, · · · , xM ) = exp

(

2g
M∑

j=1

xj

)

ψ0(x1, x2, · · · , xM)

=
∑

{P}

A(P1, · · · , PM) exp(i
M∑

j=1

(kPj − 2ig)xj). (4.20)

The wave function ψ0 is the Bethe-ansatz wave function in the Hermitian case g = 0:

ψ0(x1, x2, · · · , xM) =
∑

{P}

A(P1, · · · , PM) exp(i
M∑

j=1

kPjxj), (4.21)

where the symbol P = (P1, P2, · · · , PM) denotes a permutation of the set (1, 2, · · · , M).
The symbol A(P1, · · · , PM) is a set of M ! coefficients depending on the permutation
P . The quasimomenta k1, k2, · · · , kM are unequal to each other for the ground state.

The Schrödinger equation for ψ(R)
g is

J

2

M∑

j=1

(1− δxj+1,xj+1)
[
e−2gψ(R)

g (x1, · · · , xj + 1, · · · , xM) + e2gψ(R)
g (x1, · · · , xj+1 − 1, · · · , xM)

]

+

[
∆J

M∑

j=1

δxj+1,xj+1 + ∆J

(
L

4
−M

)]
ψ(R)

g (x1, · · · , xM ) = Eψ(R)
g (x1, · · · , xM),

(4.22)

where E is an eigenenergy. The Schrödinger equation (4.22) yields

E = J
M∑

j=1

(cos kj −∆) +
∆J

4
L, (4.23)

A(P1, · · · , Pj+1, Pj, · · · , PM)

A(P1, · · · , Pj, Pj+1, · · · , PM)
= (−1)

1 + exp[i(kPj + kPj+1)]− 2∆ exp(ikPj+1)

1 + exp[i(kPj + kPj+1)]− 2∆ exp(ikPj)
.

(4.24)

The periodic boundary condition ψ(R)
g (x1, x2, · · · , xM) = ψ(R)

g (x2, · · · , xM , x1 + L)
yields the Bethe-ansatz equation for 1 ≤ j ≤M [16]:

exp(ikjL + 2gL) = (−1)M−1
M∏

l '=j

exp[i(kj + kl)] + 1− 2∆ exp(ikj)

exp[i(kj + kl)] + 1− 2∆ exp(ikl)
. (4.25)

We here introduce a new rapidity parameter λj:

exp(ikj) = −sin[γ(λj + i)/2]

sin[γ(λj − i)/2]
. (4.26)

Equation (4.25) then becomes

[
sin γ

2 (λj + i)

sin γ
2 (λj − i)

]L

e2gL =
M∏

l '=j

sin γ
2 (λj − λl + 2i)

sin γ
2 (λj − λl − 2i)

. (4.27)



38 CHAPTER 4. S = 1/2 ANTIFERROMAGNETIC XXZ CHAIN

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Im
)

Re)

g=0
g=0.5
g=1
g=1.05

Figure 4.2: The distribution curve of the spin rapidity λ for the infinite system with
γ = 3.5. In this case, the non-Hermitian critical point gc , 1.05867.

By taking the logarithm of Eq. (4.27), we have

2L arctan

[
tan(γλj/2)

tanh(γ/2)

]
= 2πIj + 2igL + 2

M∑

l=1

arctan

[
tan[γ(λj − λl)/2]

tanh(γ)

]
, (4.28)

where the quantum number Ij for the ground state for L = 4n− 2 (n ∈ N) is given
by

Ij =
L/2− 1

2
,
L/2− 3

2
, · · · ,−L/2− 1

2
. (4.29)

The summation in Eq. (4.28) becomes an integral in the limit L→∞ as

2 arctan

[
tan(γλ/2)

tanh(γ/2)

]

︸ ︷︷ ︸
≡θ1(λ)

= 2πzs(λ) + 2ig + 2

∫

S(g)

arctan

[
tan[γ(λ− Λ)/2]

tanh(γ)

]

︸ ︷︷ ︸
≡θ2(λ−Λ)

σ(Λ)dΛ

(4.30)
for λ ∈ S(g), where S(g) denotes the distribution curve in the complex λ plane on
which the rapidity λ lies; see Fig. 4.2 for numerical calculation. In Eq. (4.30), we
introduced a function zS(λ) by taking the continuous limit L → ∞ of the discrete
function zS(λα) ≡ Jα/L. We also define σ(λ) ≡ dzS(λ)/dλ. We restrict ourselves
to the region −π/γ ≤ Reλ ≤ π/γ, since θ1(λ) in Eq. (4.30) is a function of the
periodicity 2π/γ.

The distribution function σ(λ) satisfies the following integral equation after dif-
ferentiating Eq. (4.30) with respect to λ:

γ sinh γ

cosh γ − cos γλ
= 2πσ(λ) +

∫

S(g)

γ sinh(2γ)

cosh(2γ)− cos{γ(λ− Λ)}
σ(Λ)dΛ (4.31)
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Figure 4.3: The loop CS in the complex λ plane.

for λ ∈ S(g). The poles of the integrand in Eq. (4.31),

γ sinh(2γ)

cosh(2γ)− cos{γ(λ− Λ)}

in the Λ plane are located at Λ = λ± 2i. They never appear in the area CS shown
in Fig. 4.3 as long as −1 < Im λ < 1 and −1 < ImΛ < 1, where we denote the end
points of S(g) by ±π/γ + iβ.

When the imaginary part of the end points of the curve S(g), β(g)becomes
β(g) = 1 as we increase the non-Hermiticity g, the left-hand side of Eq. (4.31)
diverges and we expect that the system changes dramatically.

We obtain the non-Hermiticity g at which the end points of the curve S(g)
reaches the points β(g) = 1. The quasimomenta with Rek = ±π/γ may correspond
to J1 and JM in Eq. (4.29) for L→∞. Hence we assume zS(λ) = ±1/4 for the end
points of S(g). We thereby obtain the non-Hermiticity g by substituting ±1/4 for
zS(λ) and ±π/γ + i for λ in Eq. (4.30). The result is equal to the non-Hermitian
critical point gc in Eq. (4.18) where the energy gap due to the spinon excitation
vanishes.

As long as g is less than gc, we can modify the integral contour as
∫

S(g)

=

∫ −π/γ

−π/γ+iβ(g)

+

∫ π/γ

−π/γ

+

∫ π/γ+iβ(g)

π/γ

, (4.32)

where we assume that the expression of the distribution function σ(λ) defined on
the curve S(g) is valid everywhere within the area CS as shown in Fig. 4.3. We thus
rewrite Eq. (4.31) in the form

γ sinh γ

cosh γ − cos γλ
= 2πσ(λ) +

∫ π/γ

−π/γ

γ sinh(2γ)

cosh(2γ)− cos{γ(λ− Λ)}
σ(Λ)dΛ. (4.33)
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We solve Eq. (4.33) by considering Fourier transformation and obtain σ(λ) of the
form

σ(λ) =
n=∞∑

n=−∞

e−inγλ

2 cosh(nγ)
, (4.34)

because the integrand in Eq. (4.31) has the periodicity 2π/γ,. The distribution
function σ(λ) in Eq. (4.34) has the same expression as in the Hermitian case in
Eq. (4.3); it suggests that the analytic continuation of the solution σ(λ) in Eq. (4.34)
may be valid inside the area CS(gc), where CS(gc) is the area CS at g = gc.

Eigenenergies

We calculate the dependence of eigenenergies, specifically, the ground-state energy
and the spinon excitation energy on the non-Hermiticity g for g < gc.

We first obtain the ground state energy Egs. The ground-state energy Egs per
site is

Egs =
J

L

M∑

j=1

(cos kj −∆) +
∆J

4
= −J

L

M∑

j=1

sinh2 γ

cosh γ − cos γλj
+

∆J

4
. (4.35)

In the thermodynamic limit for L→∞ under M/L = 1/2, we have

Egs = −J

∫

S(g)

sinh2 γ

cosh γ − cos γλ
σ(λ)dλ+

∆J

4
, (4.36)

where σ(λ) denotes the distribution function of the spin rapidity λ in Eq. (4.34).
As long as there are no poles in CS , that is, g is less than gc, we can modify the
integral counter

∫
S as

∫ π/γ
−π/γ . The ground-state energy Egs becomes

Egs =−
∫ π/γ

−π/γ

sinh2 γ

cosh γ − cos γλ
σ(λ)dλ +

∆J

4

=− J sinh γ

[
1

2
+ 2

∞∑

n=1

1

e2nγ + 1

]
+

∆J

4
, (4.37)

which does not depend on g for g < gc.
We next obtain the excitation energy E(λ1,λ2) of the two-spinon excitation. It

also has the same expression as the Hermitian case in Eq. (4.2) after assuming that

we can modify the integral counter
∫
S(g) to

∫ π/γ

−π/γ ; the g dependence of the excitation

energy appears in λ1 and λ2 on the distribution curve S(g), whose shape depends
on g. The analytical continuation of the excitation E(λ1,λ2) is thus considered to
be valid within the area CS(gc).

We now discuss how the energy gap ∆spinon due to a pair of spinon excitations
vanishes as we increase the non-Hermiticity g for g < gc. In the non-Hermitian
case, we define the energy gap ∆spinon as the excitation energy E(λ1,λ2) at λ1 =
±π/γ + iβ(g) and at λ2 = ±π/γ + iβ(g) on the curve S(g). We first obtain the
dependence of p(λ) in Eq. (4.8) on β of the form

p(λ = ±π/γ + iβ) = ±π

2
+ i

γβ

2
+ i

∞∑

n=1

(−1)n sinh(nγβ)

n cosh(nγ)
(4.38)
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by substituting λ = ±π/γ + iβ into Eq. (4.8). We next obtain the dependence
of g on β. In order to make the above discussion easy, we consider the following
expansions of θ1(λ) and θ2(λ) in Eq. (4.30):

θ1(λ) = γλ + i
∑

n '=0

exp(−inγλ− γ|n|)
n

,

θ2(λ) = γλ + i
∑

n '=0

exp(−inγλ− 2γ|n|)
n

. (4.39)

By substituting Eqs. (4.34) and (4.39) into Eq. (4.30), we have

2g = 2πizS(λ)− i
γλ

2
+
∑

n '=0

e−inγλ

2n cosh(nγ)
+

γβ

2
+

∞∑

n=1

(−1)n sinh(nγβ)

n cosh(nγ)
. (4.40)

By substituting λ = ±π/γ + iβ into Eq. (4.40), we then have

2g =2πizS(±π/γ + iβ)− i
γ

2

(
±π

γ
+ iβ

)
+

γβ

2
+ 2

∞∑

n=1

(−1)n sinh(nγβ)

n cosh(nγ)

=γβ + 2
∞∑

n=1

(−1)n sinh(nγβ)

n cosh(nγ)
, (4.41)

since

zS(±π/γ + iβ) =
±(L/2− 1)/2

L
→ ±1

4
(4.42)

as L → ∞. We thus obtain the dependence of the non-Hermiticity g on β of the
form

g =
γβ

2
+

∞∑

n=1

(−1)n sinh(nγβ)

n cosh(nγ)
. (4.43)

By considering Eqs. (4.38) and (4.43), we thus obtain the dependence of p on g of
the form

p = ±π

2
+ ig. (4.44)

We thus obtain the explicit relation between ∆spinon and g of the form

∆spinon =
JK(u) sinh γ

π

[√
1− u2 sin2

(
±π

2
+ ig

)
+

√
1− u2 sin2

(
±π

2
+ ig

)]

=
2JK(u) sinh γ

π

√
1− u2 cosh2 g (4.45)

by substituting p(λ1) = ±π
2 + ig and p(λ1) = ±π

2 + ig into Eq. (4.9). Figure 4.4
shows the g dependence of the energy gap ∆spinon due to the spinon excitation for
γ = 3.5.

We here comment that the energy gap ∆spinon has a singularity at g = gc(=
arccosh(1/u)) with the exponent 1/2. We consider the Taylor expansion for ∆spinon

around g = gc in the form

∆spinon ,
8JK(u) sinh γ

π
(1− u2)1/4(gc − g)1/2 + O(gc − g). (4.46)
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Figure 4.4: The g dependence of the energy gap ∆spinon due to the two-spinon
excitation for the antiferromagnetic non-Hermitian XXZ chain with γ = 3.5. The
non-Hermitian critical point is gc

∼= 1.05867.

Its exponent 1/2 is the same for the Hubbard model in the half-filled case.
For g ≥ gc, on the other hand, Albertini et al. [16] showed that the shape of the

distribution curve S(g) is quite different from the one for g < gc. The Bethe-ansatz
equation thus does not become the Hermitian one at all. It is therefore difficult to
know ground-state properties of the non-Hermitian XXZ chain (4.15) for g ≥ gc.
However, we expect that the ground-state energy becomes complex in the region
g > gc on the basis of finite-size data shown in §6.2.

4.2.2 Physical meaning of the non-Hermitian generalization

We argue physical meaning of the non-Hermitian generalization of the XXZ chain (4.15);
the non-Hermiticity g makes the dispersion relation E(ps) of a spinon transformed
to E(ps + ig).

For the non-Hermitian XXZ chain (4.15), let us first obtain the momentum ps(g)
of the spinon at the rapidity λs, or, at the quantum number Js in Eq. (4.29) defined
as

ps(g) ≡
M∑

α=1

k(gs)
α −

M−1∑

α=1

k(es)
α =

2πJs

L
= 2πzS(λs), (4.47)

where {k(gs)
α } denotes the set of the quasimomenta for the ground state and {k(es)

α }
denotes the one for the excited state due to the spinon excitation at λgs

j = λs; see
the relation between kj and λj in Eq. (4.26).

By taking Eqs. (4.8) and (4.43) into consideration, we rewrite Eq. (4.40) in the
form

2g = 2πizS(λs)− ip(λs) + g, (4.48)
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or
g = ips(g)− iPs, (4.49)

where Ps denotes p(λs). We assume that analytic continuation of the excitation
energy E(λs), or E(p(λs)) = E(Ps) is valid for g < gc as discussed in §4.2.1. The
excitation energy E(Ps) is then rewritten as E(ps(g) + ig). Since ps(g) is real, we
have the same structure as Eqs. (1.6) and (2.15). We may be thus able to obtain the
dispersion relation on the axis Im p = g in the complex momentum p by analyzing
the non-Hermitian Hamiltonian (4.15).

The assumption where the analytic continuation of the excitation energy at
λ = λs is valid everywhere inside the area CS(gc) in the complex rapidity space
is thus equivalent to the assumption where the analytic continuation of the disper-
sion relation is valid in the area Im p < gc in the complex momentum space. Now
that we consider the two-spinon excitation, the analytic continuation may be valid
in the region

Im pspinon < 2gc. (4.50)

The zeros in Eq. (4.14) in the complex momentum space indeed exist in the area
Im pspinon < 2gc.





Chapter 5

Majumdar-Ghosh model

In the previous discussions for exactly solved strongly correlated quantum systems in
Chapters 2, 3 and 4, we revealed that the imaginary part of a zero of the dispersion
relation is equal to the inverse or twice the inverse correlation length. We then
used the non-Hermitian systems in order to obtain the dispersion relation on the
axis Im p = g. We expect that we can develop the parallel discussions for unsolved
models. In this chapter, we discuss the Majumdar-Ghosh model under the periodic
boundary condition [17, 18]

HMG = J
L∑

l=1

[
1

2
(S+

l+1S
−
l + S+

l S−
l+1) + Sz

l S
z
l+1] +

J

2

L∑

l=1

[
1

2
(S+

l+2S
−
l + S+

l S−
l+2) + Sz

l S
z
l+2]

(5.1)

for J > 0 in the antiferromagnetic region. The Hamiltonian (5.1) has two-fold
degenerate ground states and has a finite energy gap [19]. However, only variational
estimates of the energy gap are known [20, 21]. We reveal in §5.2 that the imaginary
part of a zero of the variational dispersion relation of the two-particle excitation
is equal to twice the inverse correlation length. We calculate the correlation length
from finite-size scaling of the correlation function of the ground state in §5.1. In
§5.3, we propose a non-Hermitian Hamiltonian of the Majumdar-Ghosh model in
order to obtain the dispersion relation on the axis Im p = g.

5.1 Correlation length of the Majumdar-Ghosh
model

Let us first calculate the correlation length of the Majumdar-Ghosh model from
finite-size scaling of the correlation function of the ground state. The two-fold
degenerate ground states of the Majumdar-Ghosh model (5.1) are

|Ψgs〉+ =
1√

2 + 4 · 2−L/2
(|ΦI〉+ |ΦII〉),

|Ψgs〉− =
1√

2− 4 · 2−L/2
(|ΦI〉 − |ΦII〉), (5.2)

45
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where the wave functions |ΦI〉 and |ΦII〉 are defined by

|ΦI〉 = |φ1,2〉 ⊗ |φ3,4〉 ⊗ · · ·⊗ |φL−1,L〉,
|ΦII〉 = |φ2,3〉 ⊗ |φ4,5〉 ⊗ · · ·⊗ |φL,1〉 (5.3)

with |φi,j〉 denoting the singlet state of a pair of spins at sites i and j:

|φi,j〉 =
1√
2
(| ↑i↓j〉 − | ↓i↑j〉).

Note that |ΦI〉 and |ΦII〉 are not orthogonal for finite L: 〈ΦI|ΦII〉 = 〈ΦII|ΦI〉 =
2−L/2+1. The states (5.2), on the other hand, are orthonormal.

The correlation functions 〈Sz
0S

z
r 〉 = ±〈Ψgs|Sz

0S
z
r |Ψgs〉± with respect to the two-

fold degenerate ground states |Ψ+〉 and |Ψ−〉 of the system of size L are given by

4〈Sz
0S

z
1〉± =

−1∓ 2−L/2+2

2 ± 2−L/2+2

= −1

2
∓ 2−L/2 + O

(
(2−L/2)2

)
,

4〈Sz
0S

z
2i〉± =

±2−L/2+1

1 ± 2−L/2+1

= ±2−L/2+1 + O
(
(2−L/2)2

)
(for i ≥ 1),

4〈Sz
0S

z
2i+1〉± =

∓2−L/2+1

1 ± 2−L/2+1

= ∓2−L/2+1 + O
(
(2−L/2)2

)
(for i ≥ 1). (5.4)

Assuming finite-size correction of the correlation function in the form

〈Sz
0S

z
r 〉L = 〈Sz

0S
z
r 〉∞ + O(exp(−L/ξ)) , (5.5)

we obtain the correlation length

ξ =
2

ln 2
. (5.6)

5.2 Zeros of the dispersion relation and the cor-
relation length

In this section, we use a variational approach to argue that the imaginary part
of zeros in the complex momentum space of the dispersion relation of the spinon
excitation may be equal to twice the inverse correlation length. As mentioned for
the antiferromagnetic XXZ chain in §4.1, the factor two comes from the fact that
the first excited state involves two spinons.

Although the exact dispersion relation is not obtained, some variational forms are
obtained. The dispersion relation was first obtained by Shastry and Sutherland [20]
with a trial wave function and then by Caspers et al. [21] with a variational wave
function. The dispersion relation of the Hermitian Majumdar-Ghosh model given
by Shastry and Sutherland [20] is

εS(p) = J

(
5

4
+ cos p

)
, (5.7)
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where p is a momentum of the spinon. All zeros p(0)
S of the dispersion relation (5.7)

in the region Im p ≥ 0 are
p(0)

S = ±π + i ln 2. (5.8)

The variational form of the dispersion relation given by Caspers et al. [21] is

εC(p) =
(60r + 34) cos 2p− (278r + 340) cos p− (475r − 731)

(16r + 8) cos 2p− (56r + 140) cos p− (104r − 172)
J (5.9)

with

r =

√
2 cos 2p− 20 cos p + 43

5 + 4 cos p
. (5.10)

All zeros p(0)
C of the dispersion relation (5.9) in the region Im p ≥ 0 are

p(0)
C = ±π + i ln 2 (5.11)

and

p(0)
C = arccos

(
5

2
− 2i

)
, (0.80 . . . ) + i(1.85 . . . ). (5.12)

In both cases, the imaginary part of the zeros in Eq. (5.8) and the zeros nearest
to the real axis in Eq. (5.11) is equal to twice the inverse correlation length of the
spinon excitation.

5.3 Non-Hermitian analysis of the Majumdar-Ghosh
model

In order to obtain the dispersion relation on the axis Im p = g in the complex momen-
tum space, we consider the non-Hermitian generalization of the Majumdar-Ghosh
model. In analogy to the non-Hermitian generalization of the antiferromagnetic
XXZ chain discussed in §4.2, we analyze the non-Hermitian Hamiltonian:

HMG(g) =J
L∑

l=1

[
1

2
(e2gS+

l+1S
−
l + e−2gS+

l S−
l+1) + Sz

l S
z
l+1]

+
J

2

L∑

l=1

[
1

2
(e4gS+

l+2S
−
l + e−4gS+

l S−
l+2) + Sz

l S
z
l+2]. (5.13)

The above Hamiltonian can be derived from the effective Hamiltonian of the non-
Hermitian t-t′-U model in the half-filled case as shown in Appendix E:

Ht-t′-U(g) = −t
L∑

l=1

(egc†l+1,↑cl,↑ + e−gc†l,↑cl+1,↑ + e−gc†l+1,↓cl,↓ + egc†l,↓cl+1,↓)

− t′
L∑

l=1

(e2gc†l+2,↑cl,↑ + e−2gc†l,↑cl+2,↑ + e−2gc†l+2,↓cl,↓ + e2gc†l,↓cl+2,↓) + U
L∑

l=1

nl,↑nl,↓,

(5.14)
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Figure 5.1: The non-Hermiticity dependence of the approximate estimates of the
energy gap calculated by Shastry and Sutherland’s approach and by Caspers et al.’s
approach.

with J ≡ 4t2/U and J/2 ≡ 4t′2/U in Eq. (5.13).
We calculate the non-Hermitian critical point gc where approximate estimates

of the energy gap vanish. For both dispersion relations obtained by Shastry and
Sutherland in Eq. (5.7) and by Caspers et al. in Eq. (5.9), the excitation energy
at p = ±π determines the energy gaps. For the non-Hermitian Majumdar-Ghosh
model (5.13), we assume that the non-Hermiticity g shifts the momentum k of one
defect by ig. Since we consider a two-spinon excitation, we replace the momentum
p in Eq. (5.7) and in Eq. (5.9) by p + 2ig. We below argue that the non-Hermitian
critical point gc where the energy gap vanishes is equal to the inverse correlation
length 1/ξ = ln 2/2; it suggests that the non-Hermitian Hamiltonian (5.13) can yield
the dispersion relation on the axis Im p = g. We thereby assume that the energy
gap ∆E(g) is given by the excitation energy ε(±π + 2ig).

The dependence of the energy gap ∆ES(g) on the non-Hermiticity g on the basis
of εS(p) in Eq. (5.7) is thus given by

∆ES(g) = εS(±π + 2ig) = J

(
5

4
− cosh(2g)

)
. (5.15)

As shown in Fig. 5.1, the non-Hermitian critical point gc where the energy gap
∆ES(g) vanishes is gc = ln 2/2. The dependence of the energy gap ∆EC(g) on the
non-Hermiticity g on the basis of εC(p) in Eq. (5.9) is again given by

∆EC(g) = εC(±π + 2ig)

=
(60R + 34) cosh(4g) + (278R + 340) cosh(2g)− (475R− 731)

(16R + 8) cosh(4g) + (56R + 80) cosh(2g)− (104R− 172)
J (5.16)

with

R =

√
2 cosh(4g) + 20 cosh(2g) + 43

(5− 4 cosh(2g))2
. (5.17)
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As shown in Fig. 5.1, the non-Hermitian critical point gc is gc = ln 2/2 again. In
both cases, the non-Hermitian critical point gc is equal to the inverse correlation
length ξ−1 = ln 2/2 in Eq. (5.6).

We now give a piece of evidence that the non-Hermitian critical point is exactly
gc = ln 2/2 by showing that the ground-state property drastically changes at g =
ln 2/2. The non-Hermitian Majumdar-Ghosh model (5.13) has two-fold degenerate
dimer ground states as in the Hermitian case. The right eigenfunctions |ΨR

±〉 and
the left eigenfunctions 〈ΨL

±| of the ground states of the system of size L are given
by

|ΨR
±〉 =

1√
2 ± 2

egL + e−gL

2L/2

(|ΦR
I 〉± |ΦR

II〉),

〈ΨL
±| =

1√
2 ± 2

egL + e−gL

2L/2

(〈ΦL
I | ± 〈ΦL

II|), (5.18)

where the wave functions |ΦR
I, II〉 and 〈ΦL

I, II| are defined by

|ΦR
I 〉 = |φR

1,2〉 ⊗ |φR
3,4〉 ⊗ · · ·⊗ |φR

L−1,L〉,
|ΦR

II〉 = |φR
2,3〉 ⊗ |φR

4,5〉 ⊗ · · ·⊗ |φR
L,1〉,

〈ΦL
I | = 〈φL

1,2|⊗ 〈φL
3,4|⊗ · · ·⊗ 〈φL

L−1,L|,
〈ΦL

II| = 〈φL
2,3|⊗ 〈φL

4,5|⊗ · · ·⊗ 〈φL
L,1| (5.19)

with |φR
i,j〉 and 〈φL

i,j| denoting weighted singlet states of a pair of spins at sites i and
j:

|φR
i,j〉 =

1√
2
(e−g| ↑i↓j〉 − eg| ↓i↑j〉),

〈φL
i,j| =

1√
2
(eg〈↑i↓j |− e−g〈↓i↑j |). (5.20)

Equation (5.19) is consistent with Eq. (5.3) transformed by a many-body version of
the imaginary gauge transformation [2]

ψ(x1, x2, . . . ; g) = exp(g
∑

i

xi)ψ(x1, x2, . . . ; 0). (5.21)

Note that 〈ΦL
I |ΦR

I 〉 = 〈ΦL
II|ΦR

II〉 = 1 and 〈ΦL
I |ΦR

II〉 = 〈ΦL
II|ΦR

I 〉 =
(
egL + e−gL

)
/2L/2,

but |ΨR
±〉 and 〈ΨL

±| are bi-orthonormal. We note that the ground-state energy −3

8
J

per site does not depend on the non-Hermiticity g.

The correlation functions of the non-Hermitian system, 〈Sz
0S

z
r 〉± = 〈ΨL

±|Sz
0S

z
r |ΨR

±〉
with respect to the two-fold degenerate ground states |ΨR

+〉 and |ΨR
−〉 are obtained
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Figure 5.2: The correlation function 〈Sz
0S

z
r 〉± of the non-Hermitian Majumdar-

Ghosh model of infinite size in the regions (a) g < ln 2/2 and (b) g > ln 2/2.

in the forms

4〈Sz
0S

z
1〉± =

−1∓ 2
egL + e−gL

2L/2

2 ± 2
egL + e−gL

2L/2

,

4〈Sz
0S

z
2i〉± =

±2
egL + e−gL

2L/2

2 ± 2
egL + e−gL

2L/2

(for i ≥ 1),

4〈Sz
0S

z
2i+1〉± =

∓2
egL + e−gL

2L/2

2 ± 2
egL + e−gL

2L/2

(for i ≥ 1). (5.22)

Figure 5.2 shows the correlation function in the limit L → ∞ in the region 0 <
g < ln 2/2 and in the region g > ln 2/2, respectively. The ground state is dimerized
in the region 0 < g < ln 2/2 and is an extended state in the region g > ln 2/2.
The phase transition from the dimer state to the extended state reminds us of the
localization-delocalization transition of the non-Hermitian random Anderson model
discussed by Hatano and Nelson [2] (see Appendix A). The phase transition point
gc = ln 2/2 then may be naturally regarded as the non-Hermitian critical point. We
thus conjecture from the above discussions that the non-Hermitian critical point is
equal to the inverse correlation length of the Hermitian systems for the Majumdar-
Ghosh model.



Chapter 6

Numerical analysis of
non-Hermitian models

In the previous chapter, we discussed the non-Hermitian generalization of exactly
solved models and suggested the conjecture that the non-Hermitian critical point
gc where the energy gap vanishes is equal to the inverse correlation length of the
Hermitian system. We now numerically show that the inverse correlation length is
consistent with the extrapolated estimate gc(∞) of finite-size data gc(L) where an
eigenvalue which corresponds to the ground state in the limit L → ∞, becomes
complex. We show the above for the Hubbard model in § 6.1, for the S = 1/2 XXZ
chain in § 6.2 and for a frustrated quantum spin chain in § 6.3. Although we do not
know the correlation length of the S = 1/2 antiferromagnetic Heisenberg chain with
nearest- and next-nearest-neighbor interactions, we show in § 6.3 that the numerical
estimate gc(∞) is consistent with the ground-state phase diagram.

6.1 Non-Hermitian Hubbard model

We first analyze the non-Hermitian Hubbard models (3.11) and (4.16) of size L. We
define the non-Hermitian “critical” point gc(L) of a finite system as the point where
the energy gap between the ground state and a low-lying excited state vanishes and
beyond which the ground-state energy becomes complex. We here show that the
extrapolated estimate gc(∞) of finite-size data gc(L) is close to the exact value of
the correlation length.

We first use the non-Hermitian generalization of the form (3.11) in the subspace
Sz

tot = 0, which eliminates the charge gap. All eigenvalues are real at the Hermitian
point g = 0. Upon increasing g, a pair of eigenvalues move on the real axis. They
spread into the complex space when g exceeds a value gc(L).

Figure 6.1 (a) shows the spectral flow of the eigenvalues per site for L = 4
around the ground state for U = 2t. The eigenvalues of the ground state and the
third excited state move toward each other on the real axis and spread into the
complex space as soon as the two eigenvalues collide, which gives the non-Hermitian
“critical” point gc(L). The eigenvalues of the first and the second excited states
scarcely move. The movement of the ground-state energy is presumably a finite-size
effect; the ground-state energy does not change for g < gc for the infinite system as
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Figure 6.1: (a) The spectral flow of the eigenvalues per site around the ground state
for L = 4 with U/t = 2 as we increase the non-Hermiticity g which eliminates the
charge gap. (b) The 1/L plot of gc(L).
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shown in Fig. 3.5.
We numerically estimated gc(L) for L = 4, 6, 8 and 10 and extrapolated them to

gc(∞) by considering the finite-size correction as follows:

gc(L) = gc(∞) + a/L + O(1/L2). (6.1)

Figure 6.1 (b) shows the 1/L plot of gc(L); this implies that we have to consider
different finite-size corrections in the case L = 4n (for L = 4 and 8) and in the
case L = 4n + 2 (for L = 6 and 10). The reason why we have to consider different
finite-size corrections is that the quantum numbers Ij and Jα in the Bethe-ansatz
equations (3.17) and (3.18) are different between two cases; for L = 4n+2, we have
{Ij} = {−(N − 1)/2, · · · , (N − 1)/2} and {Jα} = {−(M − 1)/2, · · · , (M − 1)/2},
whereas for L = 4n, we have {Ij} = {−N/2, · · · , N/2 − 1} and {Jα} = {−(M −
1)/2, · · · , (M − 1)/2}.

In Fig. 6.1 (b), the line A is the linear fitting of gc(L) for L = 6 and 10 and the
line B is that for L = 4 and 8; both lines are determined by the least-squares method
under the condition that they have the same intercept gc(∞). The final estimate
of gc(∞) is 0.037, while the Bethe-ansatz method yields gc = 1/ξcharge

∼= 0.038 . . . .
Our estimate is consistent with the exact value. It is quite remarkable to obtain
such a good estimate from data for such small L.

Figure 6.2 (a) shows the spectral flow for L = 4 around the ground state when
we use the non-Hermitian generalization of the form (4.16), which eliminates the
spin gap. The eigenvalues of the first and the second excited states move toward
each other, while the eigenvalues of the ground state and the third excited state
scarcely move. We presume that the energy gap between the ground state and the
third excited state is caused by the charge excitation while the energy gap between
the first and the second excited states is caused by the spinon excitation. We
expect that the ground state and the first excited state are eventually degenerate
in the thermodynamic limit. Hence we regard the collision of the first and second
excited states as the ground-state transition. This behavior implies the charge-
spin separation of one-dimensional quantum systems in the low-energy region [22].
Figure 6.2 (b) shows the 1/L plot of gc(L). We obtain the extrapolated estimate
gc(∞) by the same least-squares method as we used above; the line A shows the
linear fitting of gc(L) for L = 4 and 8 and the line B is that for L = 6 and 10, which
yields the extrapolated estimate gc(∞) = −0.003. Our estimate is also consistent
with the exact value gc = 1/ξspinon = 0.

6.2 Non-Hermitian S = 1/2 antiferromagnetic XXZ
chain

We analyze the non-Hermitian S = 1/2 antiferromagnetic XXZ chain (4.15) in the
Ising-like region ∆ > 1 for finite L. We numerically calculate the non-Hermitian
“critical” point gc(L) of the XXZ chain of size L. We obtain the extrapolated esti-
mate gc(∞) of finite-size data gc(L) and show that the estimate gc(∞) is consistent
with the inverse correlation length of the Hermitian system. Figure 6.3 (a) shows
the spectral flow per site around the ground state of the XXZ chain of L = 8 in
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Figure 6.2: (a) The spectral flow of the eigenvalues per site around the ground state
for L = 4 with U/t = 2 as we increase the non-Hermiticity g, which eliminates the
spin gap. (b) The 1/L plot of gc(L).
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Figure 6.3: (a) The spectral flow of the eigenvalues per site of the XXZ chain for
L = 8 with ∆ = 3. (b) The finite-size plot of gc(L) [4].
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the subspace Sz
tot = 0 as we increase the non-Hermiticity g for ∆ = 3. The pair

of the first and the second excited states undergoes the real-complex transition,
which is the same as in Fig. 6.2 (a). The ground state and the first excited state
of Hermitian finite systems are eventually degenerate in the thermodynamic limit;
the ground state has the Néel order in the region ∆ > 1 for infinite L. We therefore
expect that the real-complex transition point of the first and second excited states
converges to the non-Hermitian critical point gc in the limit L → ∞. We thereby
use the real-complex transition point in order to define the non-Hermitian “critical”
point gc(L).

We then extrapolate the finite-size data. Figure 6.3 (b) shows the extrapolation
of gc(L) for the XXZ chain with ∆ = 3. The extrapolated estimate gc(∞) by linear
fitting in the form

gc(L) = gc(∞) + a/L + O(1/L2) (6.2)

for L = 12, 14 and 16, is 0.231. In order to take the finite-size data gc(L) for
small L into consideration, we also calculate the extrapolated estimate gc(∞) by a
second-order fitting in the form

gc(L) = gc(∞) + a/L + b/L2 + O(1/L3) (6.3)

for L = 4, 6, . . . , 14, 16 to obtain gc(∞) = 0.235. Both estimates are consistent with
the inverse correlation length gc = 1/ξ ∼= 0.244 calculated analytically.

6.3 NNN Heisenberg chain

In this section, we consider the S = 1/2 antiferromagnetic Heisenberg chain with
nearest- and next-nearest-neighbor interactions; we hereafter call this model the
NNN Heisenberg chain. The Hermitian Hamiltonian of this model is

HNNN = J
L∑

l=1

[Sl · Sl+1 + αSl · Sl+2], (6.4)

where J > 0 and α ≥ 0. We require the periodic boundary conditions. At the point
α = 0, the model is the standard Heisenberg chain. The ground state is a spin fluid
state and the energy gap is zero. At the point α = 1/2, the model is the Majumdar-
Ghosh model [17, 18] and the energy gap is finite. Okamoto and Nomura [23]
numerically showed that a massive-massless transition occurs at αc

∼= 0.2411.

We calculate the correlation length of the model (6.4). In general, it is hard
to calculate the correlation length of the frustrated system (6.4) because the quan-
tum Monte Carlo method is not efficient owing to the minus sign problem. By
means of the density matrix renormalization group method, the correlation length
are numerically obtained [15, 24]

In this section, we propose another method of obtaining the correlation length.
The method is the non-Hermitian analysis of the NNN Heisenberg chain; specifically,
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we hereafter analyze the following Hamiltonian:

HNNN(g) =J
L∑

l=1

[
1

2
(e2gS+

l+1S
−
l + e−2gS+

l S−
l+1) + Sz

l S
z
l+1]

+ αJ
L∑

l=1

[
1

2
(e4gS+

l+2S
−
l + e−4gS+

l S−
l+2) + Sz

l S
z
l+2]. (6.5)

We numerically estimated the non-Hermitian “critical” point gc(L) of the system (6.5)
of size L in the subspace Stot

z = 0 where an eigenvalue which corresponds to the
ground state in the thermodynamic limit becomes complex. We obtain the ex-
trapolated estimate gc(∞) of finite-size data of gc(L). We reveal that the estimate
gc(∞) calculated from finite L systems is approximately consistent with the inverse
correlation length.

Figure 6.4 shows the spectral flow of the eigenvalues per site around the ground
state for L = 8 with α = 0.49, α = 0.5 (the Majumdar-Ghosh point) and α = 0.51.
In Fig. 6.4 (a) for α = 0.49, as we increase the non-Hermiticity g, the energy gap
between the first excited state, which corresponds to one of the degenerate ground
states in L → ∞ [23], and the second excited state, which corresponds to the first
excited state in L → ∞, vanishes at g = gc1(L) ∼= 0.24. These two eigenvalues
become complex in the region gc1(L) < g < gc2(L) before they become real again at
g = gc2(L) ∼= 0.42. We define the non-Hermitian “critical” point of a finite system
for α < 0.5 as the point g = gc1(L) where the first excited-state energy first becomes
complex.

In Fig. 6.4 (b) for α = 0.5, the two-fold degenerate ground states exist for any g
and the energy gap between the ground state and the first excited state vanishes at
g = gc(L) ∼= 0.35. However, these eigenvalues do not become complex for g > gc(L).
This is presumably because gc1(L) = gc2(L) = gc(L). We still regard gc1(L) as the
non-Hermitian “critical” point gc(L) for α = 0.5.

In Fig. 6.4 (c) for α = 0.51, the ground state and the first excited state never
become complex for any g. The ground state for α > 0.5 is an incommensurate
state of the spiral phase [25]. Our non-Hermitian generalization of the form (6.5)
is presumably not appropriate for detecting the incommensurate state in the region
α > 0.5 because we can never vanish the energy gap between two states which have
the different wave numbers. In this region, other types of non-Hermitian general-
ization may be needed.

We hereafter restrict ourselves to the region 0 ≤ α ≤ 0.5. We extrapolate the
finite-size data gc(L) for L = 4, 8, 12 and 16 by the linear fitting in the form

gc(L) = gc(∞) + a/L + O(1/L2) (6.6)

and by the second-order fitting in the form

gc(L) = gc(∞) + a/L + b/L2 + O(1/L3). (6.7)

Figure 6.5 shows the extrapolated estimates gc(∞) in the region 0 ≤ α ≤ 0.5. The
second-order estimate gc(∞) around α ∼= 0 is almost zero and is consistent with
ξ−1 = 0 in the limit L → ∞. The extrapolated estimates gc(∞) at α = 0.5 are
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Figure 6.4: The spectral flow of the real part of the eigenvalues per site around the
ground state for L = 8 with (a) α = 0.49, (b) α = 0.5 and (c) α = 0.51.
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Figure 6.5: The extrapolated estimates gc(∞) as a function of α in the region
0 ≤ α ≤ 0.5 by (a) a linear fitting and by (b) a second-order fitting.
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around 0.35 for both linear and second-order fitting, which is consistent with the
inverse correlation length ξ−1 = ln 2/2 (= 0.347 . . . ); see § 5.1. At α = 0.48, on
the other hand, the extrapolated estimates gc(∞) for linear fitting is 0.165 and the
one for second-order fitting is 0.154. These values are approximately consistent
with the inverse correlation length ξ−1 ∼= 0.175 by means of the density matrix
renormalization group method [15].

The estimate gc(∞) is almost zero in the region 0 ≤ α ! 0.25 and is finite in the
region 0.25 ! α ≤ 0.5. This is consistent with the massive-massless transition [23]
at α ∼= 0.2411 if we admit that gc(∞) is equal to the inverse correlation length. (We
here comment that the jump of the estimate gc(∞) around α = 0.25 is caused from
inaccuracies of the extrapolation; the energy gap between the first excited state A
and the second excited state B at g = 0 in Fig. 6.4 (a) becomes almost zero around
α = 0.25.) It is remarkable that gc(∞) is at least approximately equal to the inverse
correlation length all through the region 0 ≤ α ≤ 0.5 though we do not know the
exact dispersion relation of the elementary excitation of this model.



Chapter 7

Summary and discussions

To summarize, we first conjectured that the imaginary part of a zero of the dispersion
relation of the elementary excitation in the complex momentum space is equal to
the inverse or twice the inverse correlation length. The factor one or two comes from
the number of the elementary excitation involved in the excited state. We obtain
the dispersion relation in the complex momentum space by analytic continuation of
the one on the real axis. We confirmed the equality for several strongly correlated
quantum systems, that is, the S = 1/2 XY chain in a magnetic field, the Hubbard
model in the half-filled case and the S = 1/2 antiferromagnetic XXZ chain in the
Ising-like region. We also confirmed the equality for unsolved systems, namely, the
Majumdar-Ghosh model, whose variational dispersion relations are only obtained.
We expect that it may be a universal relation for any strongly correlated quantum
systems that the imaginary part of a zero of the dispersion relation of the elementary
excitation in the complex momentum space is equal to the inverse correlation length.

We next proposed the method of obtaining the dispersion relation on the axis
Im p = g (g is a real positive constant) for the purpose of searching zeros of the
dispersion relation in the complex momentum space. The method is to consider
a non-Hermitian generalization of strongly correlated quantum systems where an
imaginary vector potential is added to the momentum operator; specifically, we
multiply the right hopping energy by eg and the left hopping energy by e−g. We
argued that we may be able to obtain zeros only by observing the spectral behavior,
that is, by looking for the point where the energy gap from the ground state vanishes.
We partly analytically confirmed the relation that the non-Hermitian critical point
gc where the energy gap vanishes for a non-Hermitian system is equal to the inverse
correlation length of a Hermitian system. The relation is valid for the S = 1/2
isotropic XY chain in a magnetic field; and is suggested to be valid for the Hub-
bard model in the half-filled case and for the S = 1/2 XXZ chain in the Ising-like
region. The equality between the non-Hermitian critical point gc of a non-Hermitian
system and the inverse correlation length of a Hermitian system is thus equivalent
to our conjecture that the imaginary part of a zero of the dispersion relation is
equal to the inverse correlation length. We also numerically analyzed the S = 1/2
antiferromagnetic Heisenberg chain with the nearest- and the next-nearest-neighbor
interactions, which is unsolved analytically. We presented numerical evidence that
the extrapolated estimates of the non-Hermitian “critical” point for finite systems
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is consistent with the inverse correlation length.
We have to admit that our non-Hermitian generalization is not always appropri-

ate for having the inverse correlation length. One example is the NNN Heisenberg
chain (6.5) with α > 0.5 in the incommensurate state, whose energy gap between the
ground state and the excited state have different wave numbers. Another example is
the S = 1/2 ferromagnetic transverse Ising chain whose elementary excitation is ob-
tained by the Bogoliubov transformation; the creation and annihilation operators at
two different wave numbers k and −k are mixed. Other principles of non-Hermitian
generalizations for such cases may be needed.



Appendix A

Non-Hermitian analysis of the
random Anderson model

We review an application of the non-Hermitian generalization (1.9), which was first
discussed by Hatano and Nelson [2] for the random Anderson model. We can es-
timate the localization length only by observing the energy-spectral flow upon in-
creasing the non-Hermiticity g without calculating the wave function directly. A
one-electron non-Hermitian Anderson model in one dimension is given by

H = −t
∞∑

x=−∞

(
eg|x + 1〉〈x| + e−g|x〉〈x + 1|

)
+

∞∑

x=−∞
Vx|x〉〈x|, (A.1)

where Vx is a random potential at site x. In solving the non-Hermitian Schrödinger
equations

HΨR
g (x) = εgΨ

R
g (x),

ΨL
g (x)H = εgΨ

L
g (x), (A.2)

we look for the right eigenfunction ΨR
g (x) and the left eigenfunction ΨL

g (x) in the
normalizable functional space. A localized eigenfunction for g = 0 is, except for an
oscillatory factor, asymptotically given by

Ψ0(x) ∼ e−κ|x|, (A.3)

where κ is the inverse localization length and we set the localization center to x = 0
for simplicity. We here introduce the imaginary vector potential i!g. We readily see
that the right and the left wavefunctions [2]

ΨR
g (x) = egxΨ0(x), (A.4)

ΨL
g (x) = e−gxΨ0(x), (A.5)

satisfy Eq. (A.2) with the same eigenvalue as in the Hermitian case, namely εg = ε0.
We refer to Eqs. (A.4) and (A.5) as the imaginary gauge transformation. Equa-
tions (A.4) and (A.5) with Eq. (A.3) yield

ΨR
g (x) ∼ egx−κ|x|, ΨL

g (x) ∼ e−gx−κ|x|, (A.6)
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Figure A.1: The right eigenfunction ΨR
g = egx−|x| for g = 0.9, 1 and 1.1. The

non-Hermitian critical point is gc = 1 in this case.

which is schematically shown in Fig. A.1 for κ = 1. The right and left eigenfunctions
are indeed normalizable for |g| < κ, that is,

ΨR
g (±∞)→ 0, ΨL

g (±∞)→ 0, (A.7)

and hence they can be solutions of Eq. (A.2) in the normalizable functional space.
However, the solution changes dramatically for |g| > κ. The functions of the

forms (A.4) and (A.5) diverge as

ΨR
g (+∞)→∞, ΨL

g (−∞)→∞, (A.8)

and are not normalizable any more. They are no longer the solution in the normal-
izable functional space. In fact, an extended wavefunction

ΨR(L)
g (x) ∼ eikx (A.9)

with an approximate eigenvalue

εg
∼=

(!k + i!g)2

2m
. (A.10)

is permitted [2]. Note that εg is a complex number depending on g. In numeri-
cal calculations, we can reproduce the above for finite systems under the periodic
boundary condition:

H = −t
L∑

x=1

(
eg|x + 1〉〈x| + e−g|x〉〈x + 1|

)
+

L∑

x=1

Vx|x〉〈x|, (A.11)

where the site L + 1 is identified with the site 1. The spectrum of periodic systems
converge to Eq. (A.10) as L → ∞. The functions (A.4) and (A.5) satisfy the
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periodic boundary condition for |g| < κ because of Eq. (A.7) in the large L limit,
while they never satisfy the periodic boundary condition for |g| > κ because of
Eq. (A.8) in the large L limit. We define the non-Hermitian critical point gc(L) at
which the eigenvalues change from real to complex for system size L. We presume
that gc(L) converges to the inverse localization length κ for the infinite system as
L → ∞. We thus estimate the inverse localization length κ only by observing the
spectral change, not by calculating the wave function directly. It is a merit of the
non-Hermitian generalization.





Appendix B

Non-Hermitian analysis of the
S = 1/2 transverse Ising chain

We derive an appropriate non-Hermitian version of the S = 1/2 ferromagnetic trans-
verse Ising chain

H = −J
L∑

l=1

Sx
l Sx

l+1 − h
L∑

l=1

Sz
l (B.1)

by making the momentum k of the elementary excitation transformed to k + ig.
We argue that the non-Hermitian generalization in Eq. (1.9) is not efficient for this
model.

The Hamiltonian (B.1) is transformed into (2.22) by the Jordan-Wigner trans-
formation in Eq. (2.3). By the Fourier transformation (2.23), the Hamiltonian (2.22)
is rewritten in the form (2.24). The Hamiltonian (2.24) is then diagonalized in the
momentum space in the form (2.27). The elementary excitation in Eq. (2.27) is
given by the Bogoliubov transformation (2.25). The dispersion relation ε(p) is given
by (2.28).

By replacing p with p + ig in the dispersion relation ε(p), let us consider the
non-Hermitian Hamiltonian of the form

H(g) =
∑

−π<p<π

ε(p + ig)

(
η†pηp −

1

2

)
. (B.2)
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The inverse Bogoliubov transformation of (B.2), after some algebra, gives

H(g) =
1

2

∑

0<p<π

[
ε(p + ig)− ε(p− ig)− (J cos p/2− h)

ε(p + ig) + ε(p− ig)

ε(p)

]
c†pcp

+
1

2

∑

0<p<π

[
−ε(p + ig) + ε(p− ig)− (J cos p/2− h)

ε(p + ig) + ε(p− ig)

ε(p)

]
c†−pc−p

− 1

2

∑

0<p<π

J sin p

2

ε(p + ig) + ε(p− ig)

ε(p)
(c†pc

†
−p + c−pcp)

+
∑

0<p<π

(J cos p/2− h)
ε(p + ig) + ε(p− ig)

2ε(p)

=−
∑

0<p<π

Γ1(p)(c†pcp + c†−pc−p) +
∑

0<p<π

Γ2(p)(c†pcp − c†−pc−p)

−
∑

0<p<π

Γ3(p)(c†pc
†
−p + c−pcp) +

∑

0<p<π

Γ4(p), (B.3)

where

Γ1(p) = (J cos p/2− h)
ε(p + ig) + ε(p− ig)

2ε(p)
,

Γ2(p) =
ε(p + ig)− ε(p− ig)

2
,

Γ3(p) =
J sin p

2

ε(p + ig) + ε(p− ig)

2ε(p)
,

Γ4(p) = (J cos p/2− h)
ε(p + ig) + ε(p− ig)

2ε(p)
. (B.4)

We rewrite Γ1(p),Γ2(p) and Γ3(p) by the Fourier-series expansions

Γ1(p) = 2
∞∑

n=0

αn cos(np), Γ2(p) = −2i
∞∑

n=0

βn sin(np), Γ3(p) = −2
∞∑

n=0

γn sin(np),

(B.5)
where the coefficients αn, βn and γn are given by the following integrals:

αn =
1

2π

∫ π

−π
Γ1(p) cos(np)dp =

1

2π

∫ π

−π

(
J cos p

2
− h

)
ε(p + ig) + ε(p− ig)

2ε(p)
cos(np)dp,

βn =
i

2π

∫ π

−π
Γ2(p) sin(np)dp =

i

2π

∫ π

−π

ε(p + ig)− ε(p− ig)

2
sin(np)dp,

γn = − 1

2π

∫ π

−π
Γ3(p) sin(np)dp = − 1

2π

∫ π

−π

J sin p

2

ε(p + ig) + ε(p− ig)

2ε(p)
sin(np)dp.

(B.6)

We thus the Hamiltonian (B.2) rewritten in the form

H(g) =
∑

l

∞∑

n=1

[
(−αn + βn)c†l+ncl + (−αn − βn)c†l cl+n − γn(c

†
l+nc

†
l + clcl+n)

]
−2α0

∑

l

c†l cl+C

(B.7)
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in the real space. By the inverse Jordan-Wigner transformation, we further have

H(g)

=
∑

l

∞∑

n=1

(−2)n−1Sz
l+1 . . . Sz

l+n−1

[
(−αn + βn)S+

l+nS
−
l + (−αn − βn)S+

l S−
l+n + γn(S+

l+nS
+
l + S−

l S−
l+n)
]

− 2α0

∑

l

Sz
l − α0L + C

=
∑

l

∞∑

n=1

(−2)nSz
l+1 . . . Sz

l+n−1

[
(αn − γn)Sx

l+nS
x
l + (αn + γn)S

y
l+nS

y
l + iβn(Sx

l+nS
y
l − Sy

l+nS
x
l )
]

− 2α0

∑

l

Sz
l , (B.8)

where

C ≡ L

2π

∫ π

0

Γ4(p)dp =
L

2π

∫ π

0

Γ1(p)dp =
L

2π

∫ π

0

(J cos p/2−h)
ε(p + ig) + ε(p− ig)

2ε(p)
dp.

(B.9)
We note that

−α0L + C = − L

4π

∫ π

−π
Γ1(p)dp +

L

2π

∫ π

0

Γ1(p)dp = 0. (B.10)

We can see from Eq. (B.8) that the non-Hermitian Hamiltonian is very com-
plicated; interactions between spins beyond the nearest neighbor sites emerge as
soon as g is finite. It is because its elementary excitation is obtained by the Bogoli-
ubov transformation; the creation and annihilation operators at two different wave
numbers p and −p are mixed. Conversely, the non-Hermitian generalization of the
simple form (1.9) does not produce the dispersion relation ε(p + ig) in this model.
We may need another principle of non-Hermitian generalization for this case.





Appendix C

Equality of gc and 1/ξ for the
Hubbard model

We show for the Hubbard model that the non-Hermitian critical point gc in Eq. (3.12)
for the non-Hermitian model and the inverse correlation length 1/ξ in Eq. (3.2) for
the Hermitian model are actually equal. The non-Hermitian critical point gc is given
by

gc = lim
Λ→∞

[
arcsinh(U/4t) + 2i

∫ Λ

−Λ

arctan
λ + iU/4t

U/4t
σ(λ)dλ

]

= lim
Λ→∞

[
arcsinh(U/4t) +

i

π

∫ Λ

−Λ

dλ arctan
λ + iU/4t

U/4t

∫ ∞

0

cos(ωλ)J0(ω)

cosh((U/4t)ω)
dω

]
,

(C.1)

where σ(λ) is a distribution function of the spin rapidity λ given in Eq. (3.32). Using
the variable transformation

θ = arctan(λ/(U/4t) + i) (C.2)

with

tan θ1 = − Λ

U/4t
+ i, tan θ2 =

Λ

U/4t
+ i, (C.3)

we have

gc = lim
Λ→∞

[
arcsinh(U/4t) +

i

π

∫ θ2

θ1

(U/4t)θ

cos2 θ

∫ ∞

0

cos((U/4t)ω tan θ − i(U/4t)ω)J0(ω)dω

cosh((U/4t)ω)
dθ

]

= lim
Λ→∞

[
arcsinh(U/4t) +

i

π

∫ ∞

0

(U/4t)J0(ω)dω

cosh((U/4t)ω)

×






[
sin((U/4t)ω tan θ − i(U/4t)ω)

(U/4t)ω
θ

]θ2

θ1︸ ︷︷ ︸
I1

−
∫ θ2

θ1

sin((U/4t)ω tan θ − i(U/4t)ω)

(U/4t)ω
dθ

︸ ︷︷ ︸
I2









.

(C.4)
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We rewrite the term I1 in the form

I1 =
1

(U/4t)ω
[θ2 sin((U/4t)ω tan θ2 − i(U/4t)ω)− θ1 sin((U/4t)ω tan θ1 − i(U/4t)ω)]

=
1

(U/4t)ω
(θ1 + θ2) sin(ωΛ), (C.5)

where the coefficients θ1 and θ2 for Λ3 1 take the form

θ1 = −π
2
− δ1, θ2 =

π

2
− δ2 (C.6)

with |δ1|, |δ2|4 1. Because of

tan θ1 =
1

tan δ1
, 1

δ1
, tan θ2 =

1

tan δ2
, 1

δ2
, (C.7)

we have

I1 =
1

(U/4t)ω
(−δ1 − δ2) sin(ωΛ)

=
1

(U/4t)ω

(
− U/4t

i(U/4t)− Λ
− U/4t

i(U/4t) + Λ

)
sin(ωΛ)

=
2i(U/4t)

ω((U/4t)2 + Λ2)
sin(ωΛ)

Λ→∞−−−→ 0. (C.8)

Next we calculate the integral I2 in Eq. (C.4). By using the variable transformation
x = tan θ − i, we have

I2 = lim
Λ→∞

∫ Λ/(U/4t)

−Λ/(U/4t)

sin((U/4t)ωx)

(U/4t)ω

dx

1 + (x + i)2

=

∫ ∞

−∞

sin((U/4t)ωx)

(U/4t)ω(x2 + 2ix)
dx =

π

2i(U/4t)ω
(1− e−2|ω|(U/4t)). (C.9)

We thus arrive at

gc =arcsinh(U/4t)− i

π

∫ ∞

0

(U/4t)J0(ω)

cosh((U/4t)ω)

π

2i(U/4t)ω
(1− e−2|ω|(U/4t))dω

=arcsinh(U/4t)− 2

∫ ∞

0

J0(ω) sinh((U/4t)ω)

ω(1 + eωU/2t)
dω. (C.10)

We thus confirmed that the expression (C.10), or Eq. (3.12) is actually equal to the
inverse correlation length of the charge excitation (3.2).



Appendix D

Lieb-Wu equation for the
non-Hermitian Hubbard model

We derive Lieb-Wu equation for the non-Hermitian Hubbard model [3]:

H = −t
L∑

l=1

∑

σ=↑,↓

(egc†l+1,σcl,σ + e−gc†l,σcl+1,σ) + U
L∑

l=1

nl,↑nl,↓. (D.1)

We prepare the right eigenfunction |N, M〉 with N electrons and with M down spins;

|N, M〉 =
∑

{σj}

∑

{xj}

Ψ(R)
g (x1, x2, · · · , xN ; σ1, σ2, · · · , σN)c†x1,σ1

· · · c†xN ,σN
|0〉. (D.2)

Considering the Fermion’s anticommutation relation, we impose the condition

Ψ(R)
g (xP1 , xP2 , · · · , xPN ; σP1 , σP2 , · · · , σPN ) = sgn(P )Ψ(R)

g (x1, x2, · · · , xN ; σ1, σ2, · · · , σN ),
(D.3)

where P = (P1, P2, · · · , PN) is a permutation of the labels 1, 2, · · · , N . The Schrödinger

equation for the right eigenfunction Ψ(R)
g is

− te−g
N∑

j=1

Ψ(R)
g (x1, · · · , xj + 1, · · · , xN ; σ1, σ2, · · · , σN)

− teg
N∑

j=1

Ψ(R)
g (x1, · · · , xj − 1, · · · , xN ; σ1, σ2, · · · , σN)

+ U
∑

xj<xk

δ(xj , xk)Ψ
(R)
g (x1, · · · , xj , · · · , xk, · · · , xN ; σ1, σ2, · · · , σN )

= EΨ(R)
g (x1, · · · , xj, · · · , xN ; σ1, σ2, · · · , σN ), (D.4)

where E is an eigenenergy. In order to diagonalize the Hamiltonian (D.1), we make

the ansatz for the right eigenfunction Ψ(R)
g of the form

Ψ(R)
g (x1, x2, · · · , xN ; σ1, σ2, · · · , σN )

=
∑

{P}

sgn(PQ)AσQ1 ,··· ,σQN
(kP1, · · · , kPN ) exp

(
i

N∑

j=1

(kPj − ig)xQj

)
(D.5)
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under the condition
1 ≤ xQ1 ≤ xQ2 ≤ · · · ≤ xQN ≤ L. (D.6)

In the case xQ1 < xQ2 < · · · < xQN , the Schrödinger equation (D.4) is reduced
to

∑

{P}

sgn(PQ)AσQ1 ,··· ,σQN
(kP1 , · · · , kPN )

N∑

j=1

(−teikPj − te−ikPj ) exp

(

i
N∑

j=1

(kPj − ig)xQj

)

= E
∑

{P}

sgn(PQ)AσQ1 ,··· ,σQN
(kP1, · · · , kPN ) exp

(

i
N∑

j=1

(kPj − ig)xQj

)

. (D.7)

We therefore obtain the eigenenergy E of the form

E = −2t
N∑

j=1

cos kPj = −2t
N∑

j=1

cos kj . (D.8)

We next consider the case xQi = xQi+1 = x, where Qi = a and Qi+1 = b are
assumed. We derive two sets of equations. First, the continuity of the wavefunction
Ψ(R)

g at xa = xb = x requires

AσQ1 ,··· ,σQi
,σQi+1

,··· ,σQN
(kP1, · · · , kPi, kPi+1, · · · , kPN )

− AσQ1 ,··· ,σQi
,σQi+1

,··· ,σQN
(kP1, · · · , kPi+1, kPi, · · · , kPN )

=− AσQ1 ,··· ,σQi+1
,σQi

,··· ,σQN
(kP1, · · · , kPi, kPi+1, · · · , kPN )

+ AσQ1 ,··· ,σQi+1
,σQi

,··· ,σQN
(kP1 , · · · , kPi+1, kPi, · · · , kPN ). (D.9)

Next, we use Ψ(R)
g (x1, · · · , xa, · · · , xb, · · · , xN ; σ1, σ2, · · · , σN)

= Ψ(R)
g (x1, · · · , x, · · · , x, · · · , xN ; σ1, σ2, · · · , σN) in the Schrödinger equation (D.4).

By taking all terms proportional to ei(kP1−ig)xQ1+···+i(kPi
−ig)x+i(kPi+1

−ig)x+···+i(kPN
−ig)xQN ,

we obtain the relation

AσQ1 ,··· ,σQi
,σQi+1

,··· ,σQN
(kP1, · · · , kPi, kPi+1, · · · , kPN )

× [teikPi+1 + te−ikPi − 2t cos kPi − 2t cos kPi+1 − U ]

−AσQ1 ,··· ,σQi
,σQi+1

,··· ,σQN
(kP1, · · · , kPi+1, kPi, · · · , kPN )

× [teikPi + te−ikPi+1 − 2t cos kPi − 2t cos kPi+1 − U ]

−AσQ1 ,··· ,σQi+1
,σQi

,··· ,σQN
(kP1, · · · , kPi, kPi+1, · · · , kPN )[teikPi+1 + te−ikPi ]

+AσQ1 ,··· ,σQi+1
,σQi

,··· ,σQN
(kP1, · · · , kPi+1, kPi, · · · , kPN )[teikPi + te−ikPi+1 ]

= 0. (D.10)

By using the sets of equations (D.9) and (D.10), we have

AσQ1 ,··· ,σQi
,σQi+1

,··· ,σQN
(kP1, · · · , kPi+1, kPi, · · · , kPN )

=
−U/2it

sin kPi − sin kPi+1 − U/2it
AσQ1 ,··· ,σQi

,σQi+1
,··· ,σQN

(kP1 , · · · , kPi, kPi+1, · · · , kPN )

+
sin kPi − sin kPi+1

sin kPi − sin kPi+1 − U/2it
AσQ1 ,··· ,σQi+1

,σQi
,··· ,σQN

(kP1 , · · · , kPi, kPi+1, · · · , kPN ).

(D.11)
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We now define a particular set of state in the spin chain:

|kP1, · · · , kPN 〉 =
∑

{σi}=↑,↓

Aσ1,σ2,··· ,σN (kP1, kP2, · · · , kPN )|σ1, σ2, · · · , σN〉. (D.12)

We thus map the problem in the space of (N !)2 dimensions to a problem in the
space of 2N dimensions. We then introduce an operator Y (a,b)(x) of the form

Y (a,b)(x) ≡ −U/2it

x− U/2it︸ ︷︷ ︸
≡α(x)

I +
x

x− U/2it︸ ︷︷ ︸
≡β(x)

Π(a,b), (D.13)

where the operator Π(a,b) is an exchange operator defined by

|σ1, · · · , σb, · · · , σa, · · · , σN〉 = Π(a,b)|σ1, · · · , σa, · · · , σb, · · · , σN〉. (D.14)

We can easily show that

Y (a,b)(sin kPi−sin kPi+1)|kP1, · · · , kPi, kPi+1, · · · , kPN 〉 = |kP1, · · · , kPi+1, kPi, · · · , kPN 〉
(D.15)

by considering Eqs. (D.11) and (D.13).

We next map the periodic boundary conditions

Ψ(R)
g (x1, · · · , xj−1, 0, xj+1, · · · , xN ; σ1, σ2, · · · , σN )

=Ψ(R)
g (x1, · · · , xj−1, L, xj+1, · · · , xN ; σ1, σ2, · · · , σN) (D.16)

and

Ψ(R)
g (x1, · · · , xj−1, 1, xj+1, · · · , xN ; σ1, σ2, · · · , σN )

=Ψ(R)
g (x1, · · · , xj−1, L + 1, xj+1, · · · , xN ; σ1, σ2, · · · , σN), (D.17)

where Q1 = j is assumed, in the space of (N !)2 dimensions to the space of 2N

dimensions. By inserting Eq. (D.5) into Eq. (D.17), we obtain

AσQ1 ,σQ2 ··· ,σQN
(kP1, kP2, · · · , kPN ) = ei(kP1−ig)LAσQ2 ··· ,σQN

,σQ1
(kP2, · · · , kPN , kP1).

(D.18)
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We thus have

|kP1, kP2, · · · , kPN 〉 =
∑

{σi}=↑,↓

Aσ1,σ2··· ,σN (kP1, · · · , kPN )|σ1, σ2, · · · , σN〉

=ei(kP1−ig)L
∑

{σi}=↑,↓

Aσ2,··· ,σN ,σ1(kP2, · · · , kPN , kP1)
N−1∏

j=1

Π(j,j+1)|σ2, · · · , σN , σ1〉

=ei(kP1−ig)L
N−1∏

j=1

Π(j,j+1)
∑

{σi}=↑,↓

Aσ2,··· ,σN ,σ1(kP2, · · · , kPN , kP1)|σ2, · · · , σN , σ1〉

=ei(kP1−ig)L
N−1∏

j=1

Π(j,j+1)
∑

{σi}=↑,↓

Aσ1,··· ,σN (kP2, · · · , kPN , kP1)|σ1, · · · , σN〉

=ei(kP1−ig)L
N−1∏

j=1

Π(j,j+1)|kP2, · · · , kPN , kP1〉

=ei(kP1−ig)L
N−1∏

l=1

Π(l,l+1)
N−2∏

j=0

Y (N−j−1,N−j)(sin kP1 − sin kPN−j )|kP1, kP2, · · · , kPN 〉

=ei(kP1−ig)L
N−2∏

j=0

X(1,N−j)(sin kP1 − sin kPN−j )|kP1, kP2, · · · , kPN 〉, (D.19)

where we define the operator X(j,k)(x) of the form

X(j,k)(x) ≡ Π(j,k)Y (j,k)(x). (D.20)

We here introduce an additional site a and define an operator S of the form

S ≡
N−1∏

j=0

X(a,N−j)(sin kP1 − sin kPN−j ). (D.21)

We can easily show that

Tr(a)S ≡〈↑a |S| ↑a〉+ 〈↓a |S| ↓a〉 =
N−2∏

j=0

X(1,N−j)(sin kP1 − sin kPN−j ) (D.22)

From Eqs. (D.19) and (D.22), we have

|kP1, kP2, · · · , kPN 〉 = ei(kP1−ig)LTr(a)S|kP1, kP2, · · · , kPN 〉. (D.23)

In order to calculate Tr(a)S, we introduce the Yang-Baxter relation for the X
operator:

X(j,k)(λ− µ)X(j,l)(λ)X(k,l)(µ) = X(k,l)(µ)X(j,l)(λ)X(j,k)(λ− µ), (D.24)

which is proved after some elementary algebra. By operating Π(k,l) to both hand
sides in Eq. (D.24), we obtain the relation

X(j,l)(λ− µ)X(j,k)(λ)Y (k,l)(µ) = Y (k,l)(µ)X(j,l)(λ)X(j,k)(λ− µ). (D.25)
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We here introduce additional sites a and b. On the basis |σa, σb, σ1, · · · , σN 〉, the
Yang-Baxter equation

Y (a,b)(λ− µ)X(a,l)(λ)X(b,l)(µ) = X(a,l)(µ)X(b,l)(λ)Y (a,b)(λ− µ) (D.26)

is satisfied for l = 1, 2, · · · , N . By using the Yang-Baxter relation (D.26) recursively,
we prove that

Y (a,b)(λ− µ)T (a)(λ)T (b)(µ) = T (a)(µ)T (b)(λ)Y (a,b)(λ− µ), (D.27)

where we define T (a)(λ) of the form

T (a)(λ) ≡ X(a,N)(λ− λN) · · ·X(a,1)(λ− λ1), (D.28)

with λj ≡ sin kPj − U/4it. On the basis | ↑a〉 and | ↓a〉, we set elements of T (a)(λ)
as follows:

T (a)(λ) ≡
( | ↑a〉 | ↓a〉

〈↑a | A(λ) B(λ)
〈↓a | C(λ) D(λ)

)
, (D.29)

where A, B, C and D are all matrices of 2N+1 dimensions. We can show by mathe-
matic induction the following relations:

A(λ)|vac〉 = |vac〉,
C(λ)|vac〉 = 0,

D(λ)|vac〉 =
N∏

j=1

(
λ− λj

λ− λj − U/2it

)
|vac〉 =

N∏

j=1

(
λ− sin kPj + U/4it

λ− sin kPj − U/4it

)
|vac〉 ≡ d(λ)|vac〉,

(D.30)

where we define the vacuum state |vac〉 as the state where all spins are up. We can
prove Eq. (D.30) by rewriting the operator X(a,j)(λ− λj) in the form

X(a,j)(λ−λj) =





(λ− λj − U/4it)I − (U/4it)σz
j

λ− λ1 − U/2it

−(U/2it)σ−
j

λ− λj − U/2it
−(U/2it)σ+

j

λ− λj − U/2it

(λ− λj − U/4it)I + (U/4it)σz
j

λ− λ1 − U/2it



 ,

(D.31)
where σz

j , σ
+
j and σ−

j are 2× 2 Pauli matrices acting on site j.

We next derive relations involving A, B, C and D. The operator Y (a,b)(x) is given
by

Y (a,b)(x) =





| ↑a↑b〉 | ↑a↓b〉 | ↓a↑b〉 | ↓a↓b〉
〈↑a↑b | 1 0 0 0
〈↑a↓b | 0 b(x) c(x) 0
〈↓a↑b | 0 c(x) b(x) 0
〈↓a↓b | 0 0 0 1



, (D.32)
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where

b(x) ≡ −U/2it

x− U/2it
, c(x) ≡ x

x− U/2it
. (D.33)

By substituting Eqs. (D.29) and (D.32) to Eq. (D.27), we obtain sixteen (= 4× 4)
equalities among A, B, C and D. We hereafter use the matrix elements of row 1
and column 4, row 1 and column 3 and row 2 and column 4 to obtain the following
equalities:

B(λ)B(µ) = B(µ)B(λ),

B(λ)A(µ) = c(λ− µ)A(µ)B(λ) + b(λ− µ)B(µ)A(λ),

b(λ− µ)B(µ)D(λ) + c(λ− µ)D(λ)B(µ) = D(µ)B(λ), (D.34)

or

B(λ)B(µ) = B(µ)B(λ),

A(µ)B(λ) =
1

c(λ− µ)
B(λ)A(µ)− b(λ− µ)

c(λ− µ)
B(µ)A(λ),

D(µ)B(λ) =
1

c(µ− λ)
B(λ)D(µ)− b(µ− λ)

c(µ− λ)
B(µ)D(λ). (D.35)

We make the ansatz for the eigenfunction |kP1, kP2, · · · , kPN 〉 of the form

|kP1, kP2, · · · , kPN 〉 = B(Λ1)B(Λ2) · · ·B(ΛM)|vac〉 (D.36)

by introducing M parameters Λ1, · · · ,ΛM . The eigenvalue equation (D.23) becomes

|kP1, kP2, · · · , kPN 〉 = ei(kP1−ig)L [A(sin kP1 − U/4it) + D(sin kP1 − U/4it)] |kP1, kP2, · · · , kPN 〉.
(D.37)

We calculate (A(λ) + D(λ))|kP1, kP2, · · · , kPN 〉. By using

A(λ)|kP1, kP2, · · · , kPN 〉 =
M∏

j=1

1

c(Λj − λ)
|kP1, kP2, · · · , kPN 〉

+
M∑

j=1

−b(Λj − λ)

c(Λj − λ)

M∏

k=1,k '=j

1

c(Λk − Λj)
B(λ)B(Λ1) · · ·B(Λj−1)B(Λj+1) · · ·B(ΛM)|0

(D.38)

and

D(λ)|kP1, kP2, · · · , kPN 〉 = d(λ)
M∏

j=1

1

c(λ− Λj)
|kP1, kP2, · · · , kPN 〉

+
M∑

j=1

−b(λ− Λj)d(Λj)

c(λ− Λj)

M∏

k=1,k '=j

1

c(Λj − Λk)
B(λ)B(Λ1) · · ·B(Λj−1)B(Λj+1) · · ·B(ΛM)|0〉,

(D.39)
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we have

(A(λ) + D(λ))|kP1, kP2, · · · , kPN 〉

=

(
M∏

j=1

1

c(Λj − λ)
+ d(λ)

M∏

j=1

1

c(λ− Λj)

)
|kP1, kP2, · · · , kPN 〉

+
M∑

j=1

(

−b(Λj − λ)

c(Λj − λ)

M∏

k=1,k '=j

1

c(Λk − Λj)
− b(λ− Λj)d(Λj)

c(λ− Λj)

M∏

k=1,k '=j

1

c(Λj − Λk)

)

× B(λ)B(Λ1) · · ·B(Λj−1)B(Λj+1) · · ·B(ΛM)|0〉. (D.40)

The condition that the state |kP1, kP2, · · · , kPN 〉 should be an eigenstate of the op-
erator A(λ) + D(λ) with λ = sin kP1 − U/4it requires

− b(Λj − λ)

c(Λj − λ)

M∏

k=1,k '=j

1

c(Λk − Λj)
− b(λ− Λj)d(λj)

c(λ− Λj)

M∏

k=1,k '=j

1

c(Λj − Λk)
= 0 (D.41)

for j = 1, · · · , M . From Eq. (D.41), we have

N∏

l=1

(
Λj − sin kPl

+ U/4it

Λj − sin kPl
− U/4it

)
= −

M∏

k=1

(
Λj − Λk + U/2it

Λj − Λk − U/2it

)
(j = 1, · · · , M),

(D.42)

If the relation (D.42) is satisfied for j = 1, · · · , M , the eigenvalue equation (D.37)
for the eigenstate |kP1, kP2, · · · , kPN 〉 is reduced to

1 =ei(kP1−ig)L

(
M∏

j=1

1

c(Λj − sin kP1 + U/4it)
+ d(sin kP1 − U/4it)

M∏

j=1

1

c(sin kP1 − Λj − U/4it)

)

=ei(kP1−ig)L
M∏

j=1

(
Λj − sin kP1 − U/4it

Λj − sin kP1 + U/4it

)
, (D.43)

using d(sin kP1 − U/4it) = 0. We thus obtain the Lieb-Wu equation of the non-
Hermitian Hubbard model (D.1) as follows:

exp(iLkj + gL) =
M∏

β=1

sin kj − Λβ + iU/4t

sin kj − Λβ − iU/4t
(j = 1, . . . , N),

N∏

j=1

sin kj − Λα + iU/4t

sin kj − Λα − iU/4t
= −

M∏

β=1

Λα − Λβ − iU/2t

Λα − Λβ + iU/2t
(α = 1, . . . , M). (D.44)





Appendix E

Strong coupling expansion of the
non-Hermitian t-t′-U model

E.1 Application of MacDonald’s technique to the
non-Hermitian t-t′-U model

We consider the strongly coupling expansion of the non-Hermitian t-t′-U model
(5.14) and derive the effective Hamiltonian (6.5) by applying MacDonald’s tech-
nique [26]. The non-Hermitian t-t′-U model is

H = T + V, (E.1)

where

T = −t
L∑

i=1

∑

σ=↑,↓

(egσc†i+1,σci,σ + e−gσc†i,σci+1,σ)− t′
L∑

i=1

∑

σ=↑,↓

(e2gσc†i+2,σci,σ + e−2gσc†i,σci+2,σ),

(E.2)

V = U
L∑

l=1

nl,↑nl,↓. (E.3)

The real parameter g denotes the non-Hermiticity and σ corresponds to +1 for σ =↑
and −1 for σ =↓. We divide the hopping-energy term T into Tm which increases
the number of doubly occupied sites by m. We then have

T ≡ T1 + T−1 + T ′
1 + T ′

−1 + T0, (E.4)
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where the operators T±1, T ′
±1 and T0 are given by

T1 = −t
L∑

i=1

∑

σ=↑,↓

(egσni+1,σ̄c
†
i+1,σci,σhi,σ̄ + e−gσni,σ̄c

†
i,σci+1,σhi+1,σ̄), (E.5)

T−1 = −t
L∑

i=1

∑

σ=↑,↓

(egσhi+1,σ̄c
†
i+1,σci,σni,σ̄ + e−gσhi,σ̄c

†
i,σci+1,σni+1,σ̄), (E.6)

T ′
1 = −t′

L∑

i=1

∑

σ=↑,↓

(e2gσni+2,σ̄c
†
i+2,σci,σhi,σ̄ + e−2gσni,σ̄c

†
i,σci+2,σhi+2,σ̄), (E.7)

T ′
−1 = −t′

L∑

i=1

∑

σ=↑,↓

(e2gσhi+2,σ̄c
†
i+2,σci,σni,σ̄ + e−2gσhi,σ̄c

†
i,σci+2,σni+2,σ̄), (E.8)

T0 = −t
L∑

i=1

∑

σ=↑,↓

(
egσni+1,σ̄c

†
i+1,σci,σni,σ̄ + e−gσni,σ̄c

†
i,σci+1,σni+1,σ̄

+egσhi+1,σ̄c
†
i+1,σci,σhi,σ̄ + e−gσhi,σ̄c

†
i,σci+1,σhi+1,σ̄

)

− t′
L∑

i=1

∑

σ=↑,↓

(
e2gσni+2,σ̄c

†
i+2,σci,σni,σ̄ + e−2gσni,σ̄c

†
i,σci+2,σni+2,σ̄

+e2gσhi+2,σ̄c
†
i+2,σci,σhi,σ̄ + e−2gσhi,σ̄c

†
i,σci+2,σhi+2,σ̄

)
(E.9)

with hi,σ as hi,σ ≡ 1− ni,σ. We can immediately derive the following relations:

[V, T±1] = ±UT±1, [V, T ′
±1] = ±UT ′

±1, [V, T0] = 0. (E.10)

We here introduce a new Hamiltonian H′ of the form

H′ ≡ eiSHe−iS = H +
[iS,H]

1!
+

[iS, [iS,H]]

2!
+ · · · , (E.11)

where S is an operator. All eigenvalues of H are equal to the ones of H′.
We hereafter obtain the Hamiltonian H′(k) recursively in the way

H′(k) = eiS(k−1)H′(k−1)e−iS(k−1)
(E.12)

by choosing eiS(k−1)
so that hopping terms changes the number of doubly occupied

sites may not be generated in the order higher than (1/U)k−2 in the Hamiltonian
H′(k). We start from the Hamiltonian H′(1) ≡ H:

H′(1) ≡ H = V + T1 + T−1 + T ′
1 + T ′

−1 + T0. (E.13)

We can eliminate the terms T±1 and T ′
±1 which change the number of doubly occupied

sites by choosing iS(1) as

iS(1) = U−1(T1 − T−1 + T ′
1 − T ′

−1). (E.14)
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The transformations eiS(1)
and e−iS(1)

are not unitary operators for any finite g. The
transformed Hamiltonian H′(2) is

H′(2) = eiS(1)H′(1)e−iS(1)
= eiS(1)He−iS(1)

= V + T0 +
1

U

(
[T1, T−1] + [T1, T ′

−1] + [T ′
1 , T−1] + [T ′

1 , T ′
−1]

+[T1, T0] + [T0, T−1] + [T ′
1 , T0] + [T0, T ′

−1]
)

+ O
(
(1/U)2

)
, (E.15)

where we used the following relations:

[iS(1),H] = −(T1 + T−1 + T ′
1 + T ′

−1) +
2

U
([T1, T−1] + [T1, T ′

−1] + [T ′
1 , T−1] + [T ′

1 , T ′
−1])

+
1

U
([T1, T0] + [T0, T−1] + [T ′

1 , T0] + [T0, T ′
−1]), (E.16)

[iS(1), [iS(1),H]] = − 2

U
([T1, T−1] + [T1, T ′

−1] + [T ′
1 , T−1] + [T ′

1 , T ′
−1]) + O

(
(1/U)2

)
,

(E.17)

[iS(1), [iS(1), [iS(1),H]]] = O
(
(1/U)2

)
. (E.18)

For the purpose of further procedures, we introduce the operator T (k)(m1, m2, · · · , mk)
of the form

T (k)(m1, m2, · · · , mk) ≡ T (k)[m] = Tm1Tm2 · · · Tmk
. (E.19)

We can easily derive the following relation by noting Eq. (E.10):

[V, T (k)[m]] = U
k∑

l=1

mlT (k)[m] = UM (k)[m]T (k)[m], (E.20)

where we define M (k)[m] as

M (k)[m] ≡
k∑

l=1

ml. (E.21)

The transformed Hamiltonian H′(k) in Eq. (E.12), by definition, does not have
hopping terms that change the number of doubly occupied sites, in the order higher
than (1/U)k−2. It can have the following form:

H′(k) = V+
k−1∑

l=1

U1−l
∑

{m|M [m]=0}

C(l)[m]T (l)[m]+U1−k
∑

{m}

C(k)[m]T (k)[m]+O
(
(1/U)k

)
,

(E.22)
where C(k)[m] is a parameter. We here prove that we can eliminate all of the terms
that change the number of doubly occupied sites, in the order (1/U)k−1 by choosing
iS(k) as

iS(k) ≡ U−k
∑

{m|M [m] '=0}

C(k)[m]T (k)[m]

M (k)[m]
. (E.23)

The transformed Hamiltonian H′(k+1) is produced in the following procedure:

H′(k+1) = eiS(k)H′(k)e−iS(k)
= H′(k) +[iS(k),H′(k)]+

[iS(k), [iS(k),H′(k)]]

2
+ · · · . (E.24)
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The term [iS(k),H′(k)] is given by

[iS(k),H′(k)]

= [iS(k),V +
k−1∑

l=1

U1−l
∑

{m|M [m]=0}

C(l)[m]T (l)[m] + U1−k
∑

{m}

C(k)[m]T (k)[m] + O
(
(1/U)k

)
]

= [iS(k),V] + O
(
(1/U)k

)
, (E.25)

where

[iS(k),V] = U−k
∑

{m|M [m] '=0}

C(k)[m]

M (k)[m]
[T (k)[m],V]

=U−k
∑

{m|M [m] '=0}

C(k)[m]

M (k)[m]

(
−UM (k)[m]T (k)[m]

)
= −U1−k

∑

{m|M [m] '=0}

C(k)[m]T (k)[m].

(E.26)

By noting

[iS(k), [iS(k),H′(k)]] = O
(
(1/U)2k−1

)
, (E.27)

we obtain

H′(k+1) =eiS(k)H′(k)e−iS(k)
= H′(k) + [iS(k),H′(k)] +

[iS(k), [iS(k),H′(k)]]

2
+ · · ·

=V +
k−1∑

l=1

U1−l
∑

{m|M [m]=0}

C(l)[m]T (l)[m] + U1−k
∑

{m}

C(k)[m]T (k)[m]

− U1−k
∑

{m|M [m] '=0}

C(k)[m]T (k)[m] + O
(
(1/U)k

)

=V +
k∑

l=1

U1−l
∑

{m|M [m]=0}

C(l)[m]T (l)[m] + O
(
(1/U)k

)
. (E.28)

We therefore confirm that we can eliminate the terms of order (1/U)k−1 in Eq. (E.22)
by operating eiS(k)

and e−iS(k)
to H′(k).

By using the expression (E.23) and by referring to Eq. (E.15), we have iS(2) as

iS(2) = U−2
∑

{m|M [m] '=0}

C(2)[m]T (2)[m]

M (2)[m]
=

1

U2
([T1, T0]− [T0, T−1] + [T ′

1 , T0]− [T0, T ′
−1]).

(E.29)
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We thus obtain H′(3) in the form:

H′(3) = eiS(2)H′(2)e−iS(2)
= H′(2) + [iS(2),H′(2)] +

[iS(2), [iS(2),H′(2)]]

2
+ · · ·

= V + T0 +
1

U

(
[T1, T−1] + [T1, T ′

−1] + [T ′
1 , T−1] + [T ′

1 , T ′
−1]

+[T1, T0] + [T0, T−1] + [T ′
1 , T0] + [T0, T ′

−1]
)

+
1

U2

[
([T1, T0]− [T0, T−1] + [T ′

1 , T0]− [T0, T ′
−1]),V

]
+ O

(
(1/U)2

)

= V + T0 +
1

U

(
[T1, T−1] + [T1, T ′

−1] + [T ′
1 , T−1] + [T ′

1 , T ′
−1]
)

+ O
(
(1/U)2

)
.

(E.30)

E.2 Effective Hamiltonian in the half-filled case

We consider the Hamiltonian (E.30) in the half-filled case. We restrict ourselves to
the subspace where there are no doubly occupied sites. For any basis |ΨL〉 in our
subspace, the relations

T−1|ΨL〉 = 0, T ′
−1|ΨL〉 = 0 (E.31)

must be satisfied. Equation (E.31) is generalized in the form

T (k)[m]|ΨL〉 ≡ 0 (E.32)

for any integer n (1 ≤ n ≤ k) as long as

M (k)
n [m] ≡

k∑

l=n

ml < 0. (E.33)

The Hamiltonian H′(3) in Eq. (E.30) is then reduced in the subspace to

H′(3)
HL = V + T0 −

1

U

(
T−1T1 + T ′

−1T1 + T−1T ′
1 + T ′

−1T ′
1

)
+ O

(
(1/U)2

)
. (E.34)

By noting

V|ΨL〉 = 0, T0|ΨL〉 = 0, T ′
−1T1|ΨL〉 = 0, T−1T ′

1 |ΨL〉 = 0, (E.35)

we arrive at the Hamiltonian H′(3)
HL of the form

H′(3)
HL = − 1

U

(
T−1T1 + T ′

−1T ′
1

)
+ O

(
(1/U)2

)
. (E.36)
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Specifically, the Hamiltonian H′(3)
HL is given by

H′(3)
HL =− t2

U

L∑

i1,i2=1

∑

σ1,σ2=↑,↓

(
(egσ1hi1+1,σ̄1c

†
i1+1,σ1

ci1,σ1ni1,σ̄1 + e−gσ1hi1,σ̄1c
†
i1,σ1

ci1+1,σ1ni1+1,σ̄1)

×(egσ2ni2+1,σ̄2c
†
i2+1,σ2

ci2,σ2hi2,σ̄2 + e−gσ2ni2,σ̄2c
†
i2,σ2

ci2+1,σ2hi2+1,σ̄2)
)

− t′2

U

L∑

i1,i2=1

∑

σ1,σ2=↑,↓

(
(e2gσ1hi1+2,σ̄1c

†
i1+2,σ1

ci1,σ1ni1,σ̄1 + e−2gσ1hi1,σ̄1c
†
i1,σ1

ci1+2,σ1ni1+2,σ̄1)

×(e2gσ2ni2+2,σ̄2c
†
i2+2,σ2

ci2,σ2hi2,σ̄2 + e−2gσ2ni2,σ̄2c
†
i2,σ2

ci2+2,σ2hi2+2,σ̄2)
)

+ O
(
(1/U)2

)
.

(E.37)
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In order to prohibit doubly occupied sites and empty sites, the relation i1 = i2 must
be satisfied. We thus rewrite Eq. (E.37) as follows:

H′(3)
HL =− t2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi+1,σ̄1c
†
i+1,σ1

ci,σ1ni,σ̄1ni+1,σ̄2c
†
i+1,σ2

ci,σ2hi,σ̄2)e
g(σ1+σ2)

︸ ︷︷ ︸
A1

− t2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi+1,σ̄1c
†
i+1,σ1

ci,σ1ni,σ̄1ni,σ̄2c
†
i,σ2

ci+1,σ2hi+1,σ̄2)e
g(σ1−σ2)

︸ ︷︷ ︸
A2

− t2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi,σ̄1c
†
i,σ1

ci+1,σ1ni+1,σ̄1ni+1,σ̄2c
†
i+1,σ2

ci,σ2hi,σ̄2)e
g(−σ1+σ2)

︸ ︷︷ ︸
A3

− t2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi,σ̄1c
†
i,σ1

ci+1,σ1ni+1,σ̄1ni,σ̄2c
†
i,σ2

ci+1,σ2hi+1,σ̄2)e
−g(σ1+σ2)

︸ ︷︷ ︸
A4

− t′2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi+2,σ̄1c
†
i+2,σ1

ci,σ1ni,σ̄1ni+2,σ̄2c
†
i+2,σ2

ci,σ2hi,σ̄2)e
2g(σ1+σ2)

︸ ︷︷ ︸
A5

− t′2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi+2,σ̄1c
†
i+2,σ1

ci,σ1ni,σ̄1ni,σ̄2c
†
i,σ2

ci+2,σ2hi+2,σ̄2)e
2g(σ1−σ2)

︸ ︷︷ ︸
A6

− t′2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi,σ̄1c
†
i,σ1

ci+2,σ1ni+2,σ̄1ni+2,σ̄2c
†
i+2,σ2

ci,σ2hi,σ̄2)e
2g(−σ1+σ2)

︸ ︷︷ ︸
A7

− t′2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi,σ̄1c
†
i,σ1

ci+2,σ1ni+2,σ̄1ni,σ̄2c
†
i,σ2

ci+2,σ2hi+2,σ̄2)e
−2g(σ1+σ2)

︸ ︷︷ ︸
A8

.

(E.38)

Since the basis |ΨL〉 have no doubly occupied sites, the relations

A1|ΨL〉 = 0, A4|ΨL〉 = 0, A5|ΨL〉 = 0, A8|ΨL〉 = 0, (E.39)
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must be satisfied. By using (E.39), H′(3)
HL in Eq. (E.38) becomes

H′(3)
HL =− t2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi+1,σ̄1c
†
i+1,σ1

ci,σ1ni,σ̄1ni,σ̄2c
†
i,σ2

ci+1,σ2hi+1,σ̄2)e
g(σ1−σ2)

︸ ︷︷ ︸
A2

− t2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi,σ̄1c
†
i,σ1

ci+1,σ1ni+1,σ̄1ni+1,σ̄2c
†
i+1,σ2

ci,σ2hi,σ̄2)e
g(−σ1+σ2)

︸ ︷︷ ︸
A3

− t′2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi+2,σ̄1c
†
i+2,σ1

ci,σ1ni,σ̄1ni,σ̄2c
†
i,σ2

ci+2,σ2hi+2,σ̄2)e
2g(σ1−σ2)

︸ ︷︷ ︸
A6

− t′2

U

L∑

i=1

∑

σ1,σ2=↑,↓

(hi,σ̄1c
†
i,σ1

ci+2,σ1ni+2,σ̄1ni+2,σ̄2c
†
i+2,σ2

ci,σ2hi,σ̄2)e
2g(−σ1+σ2)

︸ ︷︷ ︸
A7

.

(E.40)

By noting that all |ΨL〉 satisfy ni,↑ + ni,↓ = 1 and by using the transformation

S+
i = c†i,↑ci,↓, S−

i = c†i,↓ci,↑, Sz
i =

1

2
(ni,↑ − ni,↓), (E.41)

we have A2 and A3 in the forms

A2 = A3 = −
L∑

i=1

[
e2gS+

i+1S
−
i + e−2gS+

i S−
i+1 + 2Sz

i S
z
i+1 −

1

2

]
(E.42)

after some algebra. We next calculate A6 and A7 in the same procedure:

A6 = A7 = −
L∑

i=1

[
e4gS+

i+2S
−
i + e−4gS+

i S−
i+2 + 2Sz

i S
z
i+2 −

1

2

]
. (E.43)

We thus obtain the effective Hamiltonian of the non-Hermitian t-t′-U model of the
form

H′(3)
HL =

4t2

U

L∑

i=1

[
1

2

(
e2gS+

i+1S
−
i + e−2gS+

i S−
i+1

)
+ Sz

i S
z
i+1 −

1

4

]

+
4t′2

U

L∑

i=1

[
1

2

(
e4gS+

i+2S
−
i + e−4gS+

i S−
i+2

)
+ Sz

i S
z
i+2 −

1

4

]
. (E.44)
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