
Thesis

Econophysics on Interactions of Markets

Yukihiro Aiba

Department of Physics, Graduate School of Science, University of Tokyo

December 2005





Acknowledgments

I would like to express my sincere gratitude to Professor Naomichi Hatano,
for his guidance, useful discussions, and encouragements. Without his cordial
support, this work has never been performed. I also would like to express
my sincere gratitude to Dr. Hideki Takayasu for his guidance and fruitful
discussions.

I am grateful to Prof. Hajime Takayama, Prof. Miki Wadati, Prof.
Kazuyuki Aihara, Prof. Shinichi Sasa and Prof. Naoki Kawashima for their
critical reading of the manuscript and useful comments. I would like to thank
all members of Hatano Laboratory for stimulating discussions and encourage-
ments. In particular, I would like to thank Mr. Tetsuro Murai, Ms. Junko Ya-
masaki, Mr. Masahiro Kawakami, Mr. Kouhei Oikawa, Mr. Kenji Kawamura,
Dr. Manabu Machida, Dr. Shunji Tsuchiya, Dr. Akinori Nishino, Dr. Keita
Sasada, Dr. Yuichi Nakamura, Mr. Masashi Fujinaga and Mr. Naoya Sato
for stimulating discussions and their encouragements.

I acknowledge the financial support from University of Tokyo 21st Cen-
tury COE Program “Quantum Extreme System and Their Symmetries.”

Finally, I thank my family and all of my friends for their continual en-
couragement and support.

i





Contents

1 Introduction: What is Econophysics? 1
1.1 Economic systems as strongly correlated many-body systems . 1
1.2 Scaling properties of financial prices . . . . . . . . . . . . . . . 2
1.3 Econophysics of wealth distributions . . . . . . . . . . . . . . 3
1.4 An example of modeling financial fluctuations using concepts

of statistical physics . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Sznajd model . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Sato and Takayasu’s dealer model . . . . . . . . . . . . 10

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 The contents of the thesis . . . . . . . . . . . . . . . . . . . . 18

2 Triangular Arbitrage as an Interaction among Foreign Ex-
change Rates 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Existence of triangular arbitrage opportunities . . . . . . . . . 20
2.3 Feasibility of the triangular arbitrage transaction . . . . . . . 21

3 A Macroscopic Model of Triangular Arbitrage Transaction 29
3.1 Macroscopic model of triangular arbitrage . . . . . . . . . . . 29

3.1.1 Basic time evolution . . . . . . . . . . . . . . . . . . . 30
3.1.2 Estimation of parameters . . . . . . . . . . . . . . . . . 32
3.1.3 Analytical approach . . . . . . . . . . . . . . . . . . . 36

3.2 Negative auto-correlation of the foreign exchange rates in a
short time scale . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 What makes the rate product converge . . . . . . . . . . . . . 40

4 A Microscopic Model of Triangular Arbitrage Transaction 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



iv

4.2 Microscopic model of triangular arbitrage . . . . . . . . . . . . 44
4.2.1 Microscopic model of triangular arbitrage: interacting

two systems of the ST model . . . . . . . . . . . . . . 44
4.3 The microscopic parameters and the macroscopic spring constant 48

5 Summary 55



Chapter 1

Introduction: What is
Econophysics?

1.1 Economic systems as strongly correlated

many-body systems

Systems consisting of many interacting units such as strongly correlated
many-body systems are of great interest of statistical physics. In such sys-
tems, exotic phenomena like phase transitions occur, but we cannot see them
emerging if we look at each unit separately. Statistical physics treats the
interacting units as a whole and thereby have successfully elucidated the
mechanism of the phenomena.

Economic systems obviously consist of a large number of interacting units.
Thus one may expect it possible that methods and concepts developed in the
study of strongly correlated systems may yield new results in economics. In
fact, some empirical laws are founded and models aiming to reproduce such
phenomena are constructed, using the methods and the concepts developed
in statistical physics.

Econophysics is a word used to describe work being done by physicists
in which financial and economic systems are treated as complex systems [1,
2]. Many physicists have contributed to quantifying and modeling economic
fluctuations in recent years.

The content of this chapter is in preparation for submission.
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1.2 Scaling properties of financial prices

Mandelbrot, who is famous as the advocator of the concept of fractal, origi-
nally found a self-similar structure by analyzing the fluctuations of the cotton
price in a commodity market [3]. Recently, Mantegna and Stanley [4, 5, 6, 7]
found a scaling law in the fluctuations of a stock index. The stock index is
a weighted average of the stock prices. Specifically, Mantegna and Stanley
used a stock index called the S&P 500. They analyzed the price fluctuation
of the S&P 500 as follows. Let G(T ) be the logarithm of the price change in
a time step T [min]:

G(T ) = ln Y (t) − ln Y (t − T ), (1.1)

where Y (t) is the price at time t. The value G is often called ‘return.’
Mantegna and Stanley drew the histograms P (G) for the time steps T =1, 3,
10, 32, 100, 316, 1000 [min] (Fig. 1.1). The shape of the histogram of course
depends on T ; it spreads as T increases. However, the histograms for various
values of T collapsed onto one curve by scaling

G̃ ≡ G

T 1/β
(1.2)

and

P̃ (G̃) ≡ P (G̃)

T−1/β
, (1.3)

where β = 1.4. This fact means that the price fluctuations have a self-similar
structure often found in critical phenomena in physical systems.

Gopikrishnan et al. [8, 9] later analyzed a database documenting each
and every trade in the three major US stock markets, the New York Stock
Exchange (NYSE), the American Stock Exchange (AMEX), and the National
Association of Securities Dealers Automated Quotation (NASDAQ) for the
entire two-year period. They thereby extracted a sample of approximately 4
million data points, which is much larger than the 500 thousand data points
analyzed by Mantegna and Stanley, and the 2000 data points studied by
Mandelbrot. Gopikrishnan et al. found an asymptotic power-law behavior
with an exponent β ' 3 for the cumulative distribution (Fig. 1.2). They
refer to this phenomenon as an ‘inverse cubic law’ [10].

The power-law behavior was also found in the foreign exchange markets
[11, 12, 13]. These results motivated many physicists to analyze financial
fluctuations and to find ‘universality’ in the economic system in recent years.
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Figure 1.1: (a) The probability density functions of price changes measured
at different time horizons T=1, 3, 10, 32, 100, 316, 1000 minutes. The
distributions spread with increasing T . (b) The same data as in (a), but
plotted in scaled units. The distributions collapse well onto the distribution
for T=1 [min]. Both graphs are adapted from [4].

1.3 Econophysics of wealth distributions

Another important topic in econophysics is a power-law behavior of wealth
distributions [14]. Here, the ‘wealth’ means the income of individuals, the
size of business firms or the GDP of countries.

The fact that wealth distributions have power-law tails has been recog-
nized for over 100 years. Pareto [15] investigated the statistics of the wealth
of individuals by modeling them as a scale-invariant distribution

f(x) ∼ x−γ, (1.4)

where f(x) denotes the number of people having income equal to or greater
than x, and γ is an exponent that Pareto estimated to be 1.5. Nowadays,
many works have analyzed the data of personal income and modeled them
[16]–[20].

The size distributions of business firms also obey the power law. Okuyama
et al. [21] analyzed the income of business firms in Japan and Italy. Figure
1.3 is a logarithmic plot of the distributions of the income of Japanese and
Italian companies. The data for the Japanese firms can be approximated by



4 Chapter 1
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Figure 1.2: The cumulative distribution of normalized daily price changes.
The price change is often called ‘return.’ This graph is adapted from [10].
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Figure 1.3: The cumulative distribution of the income of Japanese companies
(the bold line with x a million yen) and Italian firms (the dashed line with
x a hundred thousand lira). The two straight lines show the power law with
the exponent −1, namely Zipf’s law. This graph is adapted from [21].

a straight line with slope −1 in the range of income less than 105; this means
that the distribution follows a power law with an exponent very close to −1,
namely Zipf’s law. The data for the Italian firms are roughly on a straight
line with the same slope −1, but the Italian data deviate from the straight
line in comparison to the Japanese data. Okuyama et al. concluded that
this was because of the lack of data of smaller companies.

Furthermore, M.H.R. Stanley et al. [22, 23] calculated histograms of how
the firm size changes from one year to the next. They made 15 histograms
for each of 15 bins of the firm size. The largest firms have very narrow
distributions of growth rates. This means that the percentage of the size
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change from year to year for the largest firms cannot be so great. A tiny
firm, on the other hand, can radically increase or decrease in size from year
to year. These 15 histograms thus have widths that depend on the firm size.
The width showed a power law of the firm size with an exponent λ ' 1/6 over
8 orders of magnitude, from the tiniest firm to the largest firm [22, 23]. The
growth rate therefore can be normalized and the data collapse on a single
curve.

This scaling property can be extended to the growth rate of countries by
analyzing the GDP. Lee et al. [24] found that the histograms of the country
size in the GDP behave the same way as the histograms of the firm size.
They analyzed the annual growth rate R ≡ ln[g(t + 1)/g(t)], where g(t) is
the GDP of a country in the year t. They found that, for all countries and
years, the probability density of R is consistent with an exponential decay for
a certain range of |R| (see Fig. 1.4(a)). In order to investigate the dependence
of the growth rate on the initial value of the GDP, they divided the countries
into groups according to their GDPs. The empirical conditional probability
density of R for countries is also consistent with an exponential form in a
range (see Fig. 1.4(b)). They found that the conditional probability density
of R for countries can be scaled by its standard deviation. The results are in
quantitative agreement with findings for the growth of firms [22, 23, 25, 26]
(see Fig. 1.5).

1.4 An example of modeling financial fluctua-

tions using concepts of statistical physics

There are many models aiming to reproduce the price fluctuations in the
financial market (for example, [27]–[32]). Here we first review the Sznajd
model of price formation proposed by Sznajd-Weron and Weron [32]. Next,
we review Sato and Takayasu’s dealer model [29]. These models well re-
produce the power-law behavior of the price fluctuation by quite different
approaches.

1.4.1 Sznajd model

The time evolution of the Sznajd model are as follows. Prepare an Ising chain
consisting of N spins Si with a periodic boundary condition. Regard the spins
as traders in a financial market. The directions of the spins represent traders’
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Figure 1.4: (a) The probability density function of the annual growth rate.
Shown are the average annual growth rates for the entire period 1950–1992
together with an exponential fit. (b) The probability density function of the
annual growth rate for two subgroups with different ranges of g, where g
denotes the GDP detrended by the average yearly growth rate. The entire
database was divided into three groups: 6.9×107 ≤ g < 2.4×109, 2.4×109 ≤
g < 2.2 × 1010, and 2.2 × 1010 ≤ g < 7.6 × 1011, and the figure shows the
distributions for the groups with the smallest and the largest GDPs. Lee et
al. considered only three subgroups in order to have enough events in each
bin for the determination of the distribution. This graph is adapted from
[24].
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Figure 1.5: The conditional probability density of the annual growth rates
of countries and firms. The data are rescaled by their standard deviations.
All data collapse onto a single curve, showing that the distributions indeed
have the same functional form. This graph is adapted from [24].
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actions: if the ith spin is up, the ith trader wants to buy; if the ith spin is
down, the ith trader wants to sell.

We now define the rule of opinion formation. Select a pair of consecutive
traders Si and Si+1 at random. If SiSi+1 = 1, then make the directions of
Si−1 and Si+2 the direction of Si(= Si+1). If SiSi+1 = −1, then change the
directions of Si−1 and Si+2 to ±1 at random. Let the magnetization

m(t) =
1

N

N∑
i=1

Si(t) (1.5)

be the price of the market, which is the normalized difference between de-
mand and supply.

Obviously, the above model has two stable states, all spins up and all
spins down. They are, however, not the states that we want to reproduce.
In order to avoid this problem, let one of the N traders be a fundamentalist.
The fundamentalist changes his/her direction depending on the price m. The
fundamentalist buys, or takes the value 1 at time t with probability |m(t)| if
m(t) < 0 and sells, or takes the value −1 with probability m(t) if m(t) > 0.
This rule means that if the system becomes close to the stable state ‘all up,’
the fundamentalist will place a sell order, take the value −1 almost certainly
and hence the system will start to reverse. When the price m(t) is close to
the other stable state ‘all down,’ on the other hand, the fundamentalist will
place a buy order, take the value 1, and the price will start to grow. Thus
the ferromagnetic states are made unstable states.

The dynamics of the price m(t) simulated by the Sznajd model is shown
in Fig. 1.6 together with the USD/DEM exchange rate. The returns r(t) ≡
m(t) − m(t − 1) are compared to the USD/DEM exchange rate in the top
panels of Fig. 1.7 and the normal probability plot of r(t) are compared to
the USD/DEM returns in the bottom panels of Fig. 1.7. Sznajd-Weron et al.
concluded that this simple model is a good first approximation of a number
of real financial markets, because the results show good agreement with the
actual market data.

This model is very simple at first sight; there is no connection between
an Ising-like spin system and a financial market. Nonetheless, the model
well reproduces the statistics of the price change in foreign exchange markets
including the fat-tail behavior of the fluctuations. It is interesting that two
systems having no connection at first sight behave similarly.
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Figure 1.6: A typical fluctuation of the simulated price process m(t) on the
left with the USD/DEM exchange rate on the right. In the simulation, eight
simulation steps are regarded as one day. This graph is adapted from [32].

1.4.2 Sato and Takayasu’s dealer model

We next review Sato and Takayasu’s dealer model (the ST model) briefly [29]
(Fig. 1.8). The ST model also reproduces the power-law behavior of the price
fluctuations. The basic assumption of the ST model is that dealers want to
buy stocks or currencies at a lower price and to sell them at a higher price.
There are N dealers; the ith dealer has bidding prices to buy, Bi(t), and to
sell, Si(t), at time t. We assume that the difference between the buying price
and the selling price is a constant Λ ≡ Si(t) − Bi(t) > 0 for all i, in order to
simplify the model.

The model assumes that a trade takes place between the dealer who
proposes the maximum buying price and the one who proposes the minimum
selling price. A transaction thus takes place when the condition

max{Bi(t)} ≥ min{Si(t)} (1.6)

or

max{Bi(t)} − min{Bi(t)} ≥ Λ (1.7)

is satisfied, where max{·} and min{·}, respectively, denote the maximum
and the minimum values in the set of the dealers’ buying threshold {Bi(t)}.
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Figure 1.7: The returns r(t) of the simulated price process m(t) and daily
returns of the USD/DEM exchange rate during the last decade, respectively
(the top panels). The normal probability plots of r(t) and USD/DEM re-
turns, respectively, clearly show fat tails of the price-return distributions (the
bottom panels). This graph is adapted from [32].
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Figure 1.8: A schematic image of a transaction of the ST model. Only the
best bidders are illustrated, in order to simplify the image. The circles denote
the dealers’ bidding price to buy and the squares denote the dealers’ bidding
price to sell. The filled circles denote the best bidding price to buy, max{Bi},
and the grey circles denote the best bidding price to sell, min{Bi}+Λ. In (a),
the condition (1.7) is not satisfied, and the dealers, following Eq. (1.9), change
their relative positions by ai. Note that the term c∆P does not depend on
i; hence it does not change the relative positions of dealers but change the
whole dealers’ positions. In (b), the best bidders satisfy the condition (1.7).
The price P is renewed according to Eq. (1.8), and the buyer and the seller,
respectively, become a seller and a buyer according to Eq. (1.10).
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Figure 1.9: A schematic image of the price difference ∆P . The price differ-
ence ∆P is defined as the difference between the present price and the price
at the time when the previous trade was done, and it maintains its value
until the next trade happens.

The market price P (t) is defined by the mean value of max{Bi} and min{Si}
when the trade takes place. The price P (t) maintains its previous value when
the condition (1.7) is not satisfied:

P (t) =

{
(max{Bi(t)} + min{Si(t)})/2, if the condition (1.7) is satisfied,

P (t − 1), otherwise.

(1.8)
The dealers change their prices in a unit time by the following determin-

istic rule:

Bi(t + 1) = Bi(t) + ai(t) + c∆P (t), (1.9)

where ai(t) denotes the ith dealer’s characteristic movement in the price at
time t, ∆P (t) is the difference between the price at time t and the price at
the time when the previous trade was done (see Fig. 1.9), and c(> 0) is a
constant which specifies dealers’ response to the market price change, and is
common to all of the dealers in the market. The absolute value of a dealer’s
characteristic movement ai(t) is given by a uniform random number in the
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range [0, α) and is fixed throughout the time. The sign of ai is positive when
the ith dealer is a buyer and is negative when the dealer is a seller. The
buyer (seller) dealers move their prices up (down) until the condition (1.7)
is satisfied. Once the transaction takes place, the buyer of the transaction
becomes a seller and the seller of the transaction becomes a buyer; in other
words, the buyer dealer changes the sign of ai from positive to negative and
the seller dealer changes it from negative to positive:

ai(t + 1) =

{
−ai(t) for the buyer and the seller,

ai(t) for other dealers.
(1.10)

The initial values of {Bi} are given by uniform random numbers in the
range (−Λ, Λ). We thus simulate this model specifying the following four
parameters: the number of dealers, N ; the spread between the buying price
and the selling price, Λ; the dealers’ response to the market price change, c;
and the average of dealers’ characteristic movements in a unit time, α.

The ST model well reproduces the power-law behavior of the price change
when the dealers’ response to the market change c > c∗, where c∗ is a critical
value to the power-law behavior (Figs. 1.10 and 1.11). The critical point
depends on the other parameters; e.g. c∗ ' 0.25 for N = 100, Λ = 1.0 and
α = 0.01 [29]. For c < c∗, the probability distribution of the price change
∆P can be approximated by a hybrid distribution in the tails of |∆P |. For
c > c∗ the probability distribution is approximated by a power law. As c
increases, the distribution has longer tails and the exponent of the power-
law distribution is estimated to be smaller. For c greater than 0.45, the price
fluctuation is very unstable and diverges quickly; that is, one cannot observe
any steady distributions. The probability distribution looks similar to the
distribution of price changes for real stock markets reported by Mantegna
and Stanley [4] in the case c ' 0.3 except the tail parts for very large |∆P |.

1.5 Summary

Economic systems consist of a large number of interacting units and exhibit
various scaling properties. The fact has physicists anticipate the existence
of a connection between the fluctuations in economic systems and critical
phenomena in the physical systems. The methods and the concepts developed
in statistical physics have been used to reproduce the financial fluctuations.
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Figure 1.10: Examples of temporal fluctuations of the market price P (t),
simulated by the ST model: (a) c = 0.0; (b) c = 0.3. This graph is adapted
from [29].
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Figure 1.11: Semi-logarithmic plots of the probability density functions of
∆P , simulated by the ST model: (a) c = 0.0; (b) c = 0.3. The dots represent
results of the numerical simulation and the lines represent theoretical curves:
(a) a hybrid of Gaussian-Laplacian distribution, whose variance is 0.001; (b)
a power-law distribution, f(∆P ) ∝ (∆P )−2.5. This graph is adapted from
[29].



Section 5 17

Gopikrishnan et al. [8, 9] found the power-law behavior of the stock-
price fluctuations only in the time interval greater than 16 [min]. However,
in the highest resolution data (tick-by-tick data), the stock price change is
essentially discrete and does not seem to obey a power law; it rather seems
to obey a step-like function. Therefore, in the time scale shorter than 16
[min], there is a possibility that one may find in the stock-market fluctuation
another ‘law’ which may not be a simple power law.

The author would like to make two notes on the power-law behavior.
First, econophysics thus found new laws in economic systems and reproduced
the financial phenomena by constructing various models. Although financial
engineering can reproduce the power-law behavior of the price fluctuations
by, for example, the famous GARCH [5, 33, 34] model, econophysics has con-
structed and is constructing various types of models from both microscopic
and macroscopic viewpoints, aiming to find universality in economic systems.

Second, there is a possible mistake in analyzing the logarithm of the price
change. Nowadays, analyzing the logarithm of the price change

G(t) = ln
Y (t)

Y (t − T )
(1.11)

is becoming the standard. An alternative way of analyzing the price change
is to focus on the absolute change

∆Y (t) ≡ Y (t) − Y (t − T ). (1.12)

Substituting the equation (1.12) into (1.11), we obtain

G(t) = ln
Y (t − T ) − ∆Y (t)

Y (t − T )
(1.13)

= ln

(
1 − ∆Y (t)

Y (t − T )

)
(1.14)

' − ∆Y (t)

Y (t − T )
(1.15)

for ∆Y (t) ¿ Y (t − T ). The absolute value of ∆Y is usually of the order
of 1% of the price Y for frequently traded stocks in Japan. Analyzing the
quantity G(t) = ln(Y (t)/Y (t − T )) ' ∆Y/Y may be dangerous, because
its distribution obeys a power law even if, in the simplest case, |∆Y | is a
constant and hence Y is a normal random walk. Therefore we should be
careful in analyzing the price fluctuation using the formula (1.11).



18 Chapter 1

In the future, econophysics may be a part of financial engineering or
classical economics. If it will be so, however, the efforts of econophysics,
analyzing huge amount of high frequency financial data and modeling eco-
nomic systems by using the concepts and methods developed in physics, will
make an important part of the compound field. The position of econophysics
as against to financial engineering and classical economics is just like that
of quantum physics as against to classical physics or like that of statistical
physics as against to thermodynamics.

From the physical viewpoint, the economic systems are, in some sense,
ideal non-equilibrium open systems and strongly correlated many-body sys-
tems. We can obtain huge amount of electronic data to analyze without
any experiments. Econophysics aims to analyze these data, find laws and
understand the mechanisms of the laws. One day we may be able to import
the harvests of the econophysics into the study in other physical complex
systems.

1.6 The contents of the thesis

The aim of the thesis is to reproduce and understand an interaction among
financial markets though triangular arbitrage in the foreign exchange market.
In Chap. 2, we explain what is the triangular arbitrage transaction and
analyze the feasibility of the transaction. In Chap. 3, we introduce a new
model which reproduces the interaction among the foreign exchange rates
well. We refer to this model as the macroscopic model because the model
is phenomenological. We then show that the macroscopic model can explain
a negative auto-correlation of the fluctuations of the foreign exchange rates.
We explain that the correlation of the foreign exchange rates can appear
without actual triangular arbitrage transactions. In Chap. 4, we introduce a
new model which focuses on the dynamics of each dealer in the markets. We
refer to this model as the microscopic model. The microscopic model also
describes the interactions among the markets well. We explore the relation
between the microscopic model and the macroscopic model.



Chapter 2

Triangular Arbitrage as an
Interaction among Foreign
Exchange Rates

2.1 Introduction

Analyzing correlation in financial time series is a topic of considerable interest
[35]–[50]. In the foreign exchange market, a correlation among the exchange
rates can be generated by a triangular arbitrage transaction. The triangular
arbitrage is a financial activity that takes advantage of the three exchange
rates among three currencies [51, 52, 53]. Suppose that we exchange one US
dollar to some amount of Japanese yen, exchange the amount of Japanese
yen to some amount of euro, and finally exchange the amount of euro back
to US dollar; then how much US dollar do we have? There are opportunities
that we have more than one US dollar. The triangular arbitrage transaction
is the trade that takes this type of opportunities. It has been argued that the
triangular arbitrage makes the product of the three exchange rates converge
to a certain value [51]. In other words, the triangular arbitrage is a form of
interaction among currencies.

The purpose of this chapter is to show that there is in fact triangular
arbitrage opportunities in foreign exchange markets and they generate an
interaction among foreign exchange rates. We analyze real data in Sec. 2.2,

The content of this chapter was published in: [52] Y. Aiba, N. Hatano, H. Takayasu,
et al., Physica A 310 (2002) 467–379.

19
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showing that the product of three foreign exchange rates has a narrow dis-
tribution with fat tails.

2.2 Existence of triangular arbitrage oppor-

tunities

We analyze actual data of the yen-dollar rate, the yen-euro rate and the
dollar-euro rate, taken from January 25 1999 to March 12 1999 except for
weekends. We show in this section that there are actually triangular arbitrage
opportunities and that the three exchange rates correlate strongly.

In order to quantify the triangular arbitrage opportunities, we define the
quantity

µ(t) =
3∏

x=1

rx(t) , (2.1)

where rx(t) denotes each exchange rate at time t. We refer to this quantity
as the rate product. There is a triangular arbitrage opportunity whenever
the rate product is greater than unity.

To be more precise, there are two types of the rate product. One is based
on the arbitrage transaction in the direction of dollar to yen to euro to dollar.
The other is based on the transaction in the opposite direction of dollar to
euro to yen to dollar. Since these two values show similar behavior, we focus
on the first type of µ(t) in the present and the next chapters. Thus, we
specifically define each exchange rate as

r1(t) ≡ 1

yen-dollar ask (t)
(2.2)

r2(t) ≡ 1

dollar-euro ask (t)
(2.3)

r3(t) ≡ yen-euro bid (t). (2.4)

Here, ‘bid’ and ‘ask,’ respectively, represent the best bidding prices to buy
and to sell in each market. We assume here that an arbitrager can transact
instantly at the bid and the ask prices provided by information companies
and hence we use the prices at the same time to calculate the rate product.

For later convenience, we also define the logarithm rate product ν as the
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logarithm of the product of the three rates:

ν(t) = ln
3∏

x=1

rx(t) =
3∑

x=1

ln rx(t). (2.5)

There is a triangular arbitrage opportunity whenever this value is positive.
We can define another logarithm rate product ν ′, which has the opposite

direction of the arbitrage transaction to ν, that is, from Japanese yen to euro
to US dollar back to Japanese yen:

ν ′(t) =
3∑

x=1

ln r′x(t), (2.6)

where

r′1(t) ≡ yen-dollar bid (t) (2.7)

r′2(t) ≡ dollar-euro bid (t) (2.8)

r′3(t) ≡
1

yen-euro ask (t)
. (2.9)

This logarithm rate product ν ′ will appear in Chap. 4.
Figure 2.1(a)-(c) shows the actual changes of the three rates: the yen-

euro ask, the dollar-euro ask and the yen-euro bid. Figure 2.1(d) shows
the behavior of the rate product µ(t). We can see that the rate product µ
fluctuates around the average

m ≡ 〈µ(t)〉 ' 0.99998. (2.10)

(The average is less than unity because of the spread; the spread is the
difference between the ask and the bid prices and is usually of the order of
0.05% of the prices.) The probability density function of the rate product
µ (Fig. 2.2) has a sharp peak and fat tails while those of the three rates
(Fig. 2.3) do not. It means that the fluctuations of the exchange rates have
correlation that makes the rate product converge to the average m.

2.3 Feasibility of the triangular arbitrage trans-

action

We discuss here the feasibility of the triangular arbitrage transaction. We
analyze the duration of the triangular arbitrage opportunities and calculate
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Figure 2.1: The time dependence of (a) the yen-dollar ask 1/r1, (b) the
dollar-euro ask 1/r2, (c) the yen-euro bid r3 and (d) the rate product µ. The
horizontal axis denotes the seconds from 00:00:00, January 12 1999.
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Figure 2.2: The probability density function of the rate product µ. (b) is a
semi-logarithmic plot of (a). The shaded area represents triangular arbitrage
opportunities. The data were taken from January 25 1999 to March 12 1999.
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March 12 1999.
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Figure 2.4: The cumulative distributions of τ+ (◦) and τ− (¦). The distribu-
tion of τ+ shows a power-low behavior. The data were taken from January
25 1999 to March 12 1999.

whether an arbitrager can make profit or not.

The shaded area in Fig. 2.2 represents triangular arbitrage opportunities.
We can see that the rate product is grater than unity for about 6.4% of the
time. It means that triangular arbitrage opportunities exist about ninety
minutes a day. The ninety minutes, however, include the cases where the
rate product µ is greater than unity very briefly. The triangular arbitrage
transaction is not feasible in these cases.

In order to quantify the feasibility, we analyze the duration of the trian-
gular arbitrage opportunities. Figure 2.4 shows the cumulative distributions
of the duration τ+ of the situation µ > 1 and τ− of µ < 1. It is interesting
that the distribution of τ+ shows a power-law behavior while the distribu-
tion of τ− dose not. This difference may suggest that the triangular arbitrage
transaction is carried out indeed.

In order to confirm the feasibility of the triangular arbitrage, we simulate
the triangular arbitrage transaction using our time series data. We assume
that it takes Trec[sec] for an arbitrager to recognize triangular arbitrage op-
portunities and Texe[sec] to execute a triangular arbitrage transaction; see
Fig. 2.5. We also assume that the arbitrager transacts whenever the arbi-
trager recognizes the opportunities. Figure 2.6 shows how much profit the
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Figure 2.5: A conceptual figure of the profit calculation. We assume that it
takes Trec[sec] for an arbitrager to recognize triangular arbitrage opportunities
and Texe[sec] to execute a triangular arbitrage transaction. The circles (◦)
indicate the instances where triangular arbitrage transactions are carried out.

arbitrager can make from one US dollar (or Japanese yen or euro) in a day.
We can see that the arbitrager can make profit if it takes the arbitrager a few
seconds to recognize the triangular arbitrage opportunities and to execute the
triangular arbitrage transaction.
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Figure 2.6: A phase diagram of the profit that an arbitrager can make from
one US dollar (or Japanese yen or euro) in a day under the assumption shown
in Fig. 2.5.



Chapter 3

A Macroscopic Model of
Triangular Arbitrage
Transaction

3.1 Macroscopic model of triangular arbitrage

We here introduce a new model that takes account of the effect of the tri-
angular arbitrage transaction in the form of an interaction among the three
rates. Many models of price change have been introduced so far: for example,
the Lévy-stable non-Gaussian model [35]; the truncated Lévy flight [54]; the
ARCH/GARCH processes [55, 56]. They discuss, however, only the change
of one price. They did not consider an interaction among multiple prices.
As we discussed in Sec. 2.2, however, the triangular arbitrage opportunity
exists in the market and is presumed to affect price fluctuations in the way
the rate product tends to converge to a certain value.

The content of this chapter was published in: [52] Y. Aiba, N. Hatano, H. Takayasu,
K. Marumo, T. Shimizu, Physica A 310 (2002) 467–379; Y. Aiba, N. Hatano, H. Takayasu,
K. Marumo, T. Shimizu, Physica A 324 (2003) 253–257; [57] Y. Aiba, N. Hatano, Physica
A 344 (2004) 174–177; [58] Y. Aiba, N. Hatano, H. Takayasu, K. Marumo, T. Shimizu,
in: H. Takayasu (Ed.) The Application of Econophysics, Proceedings of the Second Nikkei
Symposium, Springer-Verlag Tokyo (2004) pp. 18–23.

29
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3.1.1 Basic time evolution

The basic equation of our model is a time-evolution equation of the logarithm
of each rate:

ln rx(t + T ) = ln rx(t) + ηx(t) + g(ν(t)), (x = 1, 2, 3) (3.1)

where ν is the logarithm rate product (2.5), and T is a time step which
controls the time scale of the model; we later use the actual financial data
every T [sec]. Just as µ fluctuates around m = 〈µ〉 ' 0.99998, the logarithm
rate product ν fluctuates around

ε ≡ 〈ln µ〉 ' −0.00091 (3.2)

(Fig. 3.1(a)). In this model, we focus on the logarithm of the rate-change
ratio ln(rx(t + T )/rx(t)), because the relative change is presumably more
essential than the absolute change. We assumed in Eq. (3.1) that the change
of the logarithm of each rate is given by an independent fluctuation ηx(t) and
an attractive interaction g(ν). The triangular arbitrage is presumed to make
the logarithm rate product ν converge to the average ε; thus, the interaction
function g(ν) should be negative for ν greater than ε and positive for ν less
than ε:

g(ν)

{
< 0 , for ν > ε
> 0 , for ν < ε.

(3.3)

As a linear approximation, we define g(ν) as

g(ν) ≡ −k(ν − ε) (3.4)

where k is a positive constant which specifies the interaction strength.
The time-evolution equation of ν is given by summing Eq. (3.1) over all

x:
ν(t + T ) − ε = (1 − 3k)(ν(t) − ε) + F (t), (3.5)

where

F (t) ≡
3∑

x=1

ηx(t). (3.6)

This is our basic time-evolution equation of the logarithm rate product.
From a physical viewpoint, we can regard the model equation (3.1) as

a one-dimensional random walk of three particles with a restoring force, by
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Figure 3.1: The time dependence of ν(t[min]) of (a) the real data, (b) the
simulation data with the interaction and (c) without the interaction. In (b),
ν fluctuates around ε like the real data.
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Figure 3.2: A schematic image of the model. The three random walkers with
the restoring force working on the center of gravity.

interpreting ln rx as the position of each particle (Fig. 3.2). The logarithm
rate product ν is the summation of ln rx, hence is proportional to the center
of gravity of the three particles. The restoring force g(ν) makes the center
of gravity converge to a certain point 〈ν〉. The form of the restoring force
(3.4) is the same as that of the harmonic oscillator. Hence we can regard the
coefficient k as a spring constant.

3.1.2 Estimation of parameters

The spring constant k is related to the auto-correlation function of ν as
follows:

1 − 3k = c(T ) ≡ 〈ν(t + T )ν(t)〉 − 〈ν(t)〉2

〈ν2(t)〉 − 〈ν(t)〉2
. (3.7)

Using Eq. (3.7), we can estimate k from the real data series as a function of
the time step T . The auto-correlation function c(T ) is shown in Fig. 3.3(a).
The estimate of k(T ) is shown in Fig. 3.3(b). The spring constant k increases
with the time step T . In the present chapter, we fix the time step at T =
60[sec] and hence use

k(1[min]) = 0.17 ± 0.02 (3.8)

for our simulation. We will come back to this point in Sec. 4.3.

On the other hand, the fluctuation of foreign exchange rates is known to
be a fat-tail noise [59, 60]. Here we take ηx(t) as the truncated Lévy process
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constant k as a function of the time step T . The spring constant k increases
with the time step T .
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rate α γ l
r1 (1/yen-dollar ask) 1.8 7.61×10−7 1.38×10−2

r2 (1/dollar-euro ask) 1.7 4.06×10−7 3.81×10−2

r3 (yen-euro bid) 1.8 6.97×10−7 7.58×10−2

Table 3.1: The estimates of the parameters.

[54, 61]

PTLF(η; α, γ, l) = qPL(η; α, γ)Θ(l − |η|), (3.9)

(3.10)

where q is the normalization constant, Θ(x) represents the step function and
PL(x; α, γ) is the symmetric Lévy distribution of index α and scale factor γ:

PL(x; α, γ) =
1

π

∫ ∞

0

e−γ|k|α cos(kx)dk 0 < α < 2. (3.11)

We determine the parameters α, γ and l by using the following relations for
1 < α < 2 [13, 59]:

c2 =
α(α − 1)γ

| cos(πα/2)|
l2−α, (3.12)

κ =
(3 − α)(2 − α)| cos(πα/2)|

α(α − 1)γ
lα, (3.13)

where cn denotes the nth cumulant and κ is the kurtosis κ = c4/c2
2. The

estimates are shown in Table 3.1. The generated noises with the estimated
parameters are compared to the actual data in Fig. 3.4.

We simulated the time evolution (3.5) with the parameters given in Eqs.
(3.2), (3.8) and Table 1. The probability density function of the results
(Fig. 3.1(b)) is compared to that of the real data (Fig. 3.1(a)) with T = 1[min]
in Fig. 3.5. The fluctuation of the simulation data is consistent with that of
the real data. In particular, we see good agreement around ν ' ε as a result
of the linear approximation of the interaction function. Figure 3.1(c) shows
ν(t) of the simulation without the interaction, i.e. k = 0. The quantity ν
fluctuates freely, which is inconsistent with the real data.
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(a)

(b)

(c)

Figure 3.4: The cumulative distributions of one-minute changes | ln rx(t +
1[min]) − ln rx(t)| (◦ represents upward movements and ¦ represents down-
ward movements) and the generated noise ηx (—): (a) the yen-dollar ask and
η1, (b) the dollar-euro ask and η2, and (c) yen-euro bid and η3. The real data
were taken from January 25 1999 to March 12 1999.
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Figure 3.5: The probability density function of ν. The circle (◦) denotes the
real data and the solid line denotes our simulation data with the interaction.
The simulation data fit the real data well.

3.1.3 Analytical approach

We can solve the time-evolution equation (3.5) analytically in some cases.
Let us define

ω(t) ≡ ν(t) − ε (3.14)

and 
ω = ω(t), ω′ = ω(t + T ),
F = F (t), F ′ = F (t + T ),
c = c(T ).

(3.15)

Equation (3.5) is then reduced to

ω′ = cω + F (3.16)

Assume that the probability of ω having a value in ω ∼ ω + dω is Pω(ω).
The joint probability of ω′ having a value in ω′ ∼ ω′ + dω′ and F ′ having a
value in F ′ ∼ F ′ + dF ′ is given by

Pω′,F ′(ω′, F ′)dω′dF ′ = Pω(ω)PF (F ′)dωdF ′

=
1

c
Pω(

ω′ − F ′

c
)PF (F ′)dω′dF ′, (3.17)
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where PF (F ) is the probability of F having a value in F ∼ F + dF . The
probability density function of ω′ is thus given by

Pω′(ω′) =
1

c

∫
Pω(

ω′ − F ′

c
)PF (F ′)dF ′. (3.18)

The characteristic function of ω′ is the Fourier transform

P̃ω′(θ) =

∫
Pω′(ω′)eiω′θdω′ = P̃ω(cθ)P̃F (θ), (3.19)

where P̃ω and P̃F are the Fourier transforms of Pω and PF , respectively. Then
we obtain

P̃ω(t)(θ) = P̃ω(t−T )(cθ)P̃F (t−T )(θ)

= P̃ω(0)(c
Nθ)

N∏
n=0

P̃F (cnθ)

= P̃ω(0)(c
Nθ)

3∏
x=1

N∏
n=0

P̃ηx(c
nθ)

=
3∏

x=1

N∏
n=0

P̃ηx(c
nθ), (3.20)

where t = NT . We here assumed Pω(0)(ω) = δ(ω) and hence P̃ω(0)(θ) = 1.
The above argument shows the essential reason of the sharp peak and fat

tails in Fig. 2.2. If we had c = 1, or k = 0 (without the interaction), the
noise F at every time step would accumulate in ω and the probability density
function of ω = ν − ε would be Gaussian due to the central limit theorem.
If we have c < 1, or k > 0 (with the interaction), the noise at the past time
steps decay as cn. The largest contribution to ω comes from the noise one
time step before, which is a fat-tail noise [54].

As a special case, if the noises ηx(t) obey a Lévy distribution of the same
index α and the same scale factor γ, namely if

P̃ηx(θ) = e−γ|θ|α for all x, (3.21)

the distribution of ω is also a Lévy distribution of the same index α and a
different scale factor γ′ given by

γ′ =
3

1 − {c(T )}α
γ. (3.22)
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3.2 Negative auto-correlation of the foreign

exchange rates in a short time scale

We point out another consequence of the triangular arbitrage, namely the
negative auto-correlation of each exchange rate in a short time scale. Let
us first show it in the actual data. We analyzed actual tick-by-tick data of
the yen-dollar rate, the dollar-euro rate and the yen-euro rate, taken from
January 25, 1999 to March 12, 1999 except for the weekends.

The auto-correlation function of the rate fluctuation is defined by the
following formula:

cx(n) =
〈∆rx(t + nT )∆rx(t)〉 − 〈∆rx(t)〉2

〈∆rx(t)2〉 − 〈∆rx(t)〉2
, (x = 1, 2, 3; n = 0, 1, 2, ...),

(3.23)
where

∆rx(t) ≡ ln
rx(t + T )

rx(t)
(x = 1, 2, 3), (3.24)

and the angular brackets 〈· · · 〉 denote the time average. We fixed the time
step T at one minute.

Figure 3.6 shows that the auto-correlation function of each rate has a
negative value for n = 1. We here claim that the triangular arbitrage is one
of the major causes of this negative auto-correlation. In order to see it, we
simulated Eq. (3.1) and calculated the auto-correlation function (3.23). The
simulation data (also shown in Fig. 3.6) are qualitatively consistent with the
behavior of the auto-correlation function of the actual data.

Another analysis is possible. Using Eqs. (2.5) and (3.1)-(3.6), we can
rewrite the auto-correlation function (3.23) for n = 1 as

cx(n = 1) =
〈(ηx(t + T ) + g(t + T ))(ηx(t) + g(t))〉 − 〈ηx(t) + g(t)〉2

〈(ηx(t) + g(t))2〉 − 〈ηx(t) + g(t)〉2
(3.25)

= −k
σ2

ηx
− k(1 − 3k)σ2

ν

σ2
ηx

+ k2σ2
ν

, (3.26)

where σx
2 denotes the variance of the variable x. We here used the following

relations:

〈ηx(t)〉 = 0, (3.27)

〈ηx(t + T )ηx(t)〉 = 0. (3.28)
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Figure 3.6: The auto-correlation function of the rate change of the actual
data: (a) c1(n); (b) c2(n); (c) c3(n). The circles (◦) denote the actual data
and the diamonds (¦) denote the simulation data.
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Table 3.2: The value of cx(n = 1) from the actual data, the simulation data
and Eq. (3.26).

Rate Actual Data Simulation Eq. (3.26)
r1 (1/yen-dollar ask) −0.27 −0.12 −0.12
r2 (1/dollar-euro ask) −0.18 −0.061 −0.095
r3 (yen-euro bid) −0.28 −0.11 −0.13

Note that we have cx(n = 1) ≈ −k < 0 for small k.
We can estimate σν and σηx from the market data. The auto-correlation

function for n = 1 thus-estimated is compared in Table 3.2 to the one from
the actual data and the one from the simulation data.

The value of cx(n = 1) from the actual data is less than those from the
simulation data and Eq. (3.26). This may suggest that there are contribu-
tions from the triangular arbitrage of other combinations of three rates; for
example, the triangular arbitrage among Japanese yen, US dollar and British
pound.

3.3 What makes the rate product converge

The feasibility of the triangular arbitrage transaction is of much interest for
financial-market practitioners and researchers. In Sec. 2.2, we discussed the
feasibility of the transaction and concluded that the transaction is quite pos-
sible, by analyzing the high-frequency data [52]. Unfortunately, evidence
for the actual occurrence of the transaction is not available to us. We nev-
ertheless claim that the correlation can be generated even without actual
triangular arbitrage transactions. Even if there is actually no triangular
arbitrage transactions, the rate product should converge to unity. (Note,
however, that we are not claiming that the transaction is infeasible.)

Consider the following situation: an international company wants to ob-
tain Japanese Yen (JPY). The company has both Euro (EUR) and U.S.
Dollar (USD). The exchange rates are:

1[JPY] = r1[USD], 1[USD] = r2[EUR] and 1[EUR] = r3[JPY].

Should the company sell Euro or U.S. Dollar to obtain Japanese Yen? It
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costs r1[USD] to buy one Japanese yen. If the company sells Euro, on the
other hand, it costs

1[JPY] =
1

r3

[EUR] =
1

r2r3

[USD].

In order to make the cost lower, the company compares the value r1 with
1/r2r3. It means that they compare the rate product µ in Eq. (2.1) with unity.
When r1 > 1/r2r3, or µ > 1, this is the situation of the triangular arbitrage
opportunity, hence the company sells Euro and buys Japanese Yen. This
transaction increases the demand of Japanese Yen against Euro and hence
makes the JPY-EUR rate r3 converge to the neutral one. Thus, the rate
product µ converges to unity.

In the above example, the company needs to obtain Japanese Yen by
selling Euro or U.S. Dollar. In the actual market, there are also companies
which need to obtain Euro or U.S. Dollar by selling the other two currencies.
They choose their trading strategies so as to avoid losses. The trading based
on these strategies generates the correlation among foreign exchange rates.
In this way, the three rates keep a certain relation without the triangular
arbitrage transaction itself.





Chapter 4

A Microscopic Model of
Triangular Arbitrage
Transaction

4.1 Introduction

In Chap. 2, we pointed out the existence of the triangular arbitrage opportu-
nity in the foreign exchange market and showed that the triangular arbitrage
transaction makes the product of the three foreign exchange rates converge
to its average, thereby generating an interaction among the rates. In order to
study effects of the triangular arbitrage on the fluctuations of the exchange
rates, in the previous chapter, we introduced a stochastic model (3.1) de-
scribing the time evolution of the exchange rates with an interaction. The
model successfully describs the fluctuation of the data of the real market.
The model is phenomenological; i.e. it treats the fluctuations of the rates
as fluctuating particles and the interaction among the rates as a spring. We
refer to this model as the ‘macroscopic model’ hereafter.

The purpose of this chapter is to understand microscopically effects of the
triangular arbitrage on the foreign exchange market. For the purpose, we
introduce a new model which focuses on each dealer in the markets; we refer
to the new model as the ‘microscopic model’ hereafter. We then show the
relation between the macroscopic model and the microscopic model through
an interaction strength which is regarded as a spring constant.

The content of this chapter is in preparation for submission.

43
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This chapter is organized as follows. In Sec. 4.2, we introduce the micro-
scopic model which focuses on the dynamics of each dealer in the markets.
The model reproduces the interactions among the markets well. We explore
the relation between the spring constant of the macroscopic model and the
parameters in the microscopic model in Sec. 4.3.

4.2 Microscopic model of triangular arbitrage

We here introduce a microscopic model which describes interactions among
foreign exchange markets. The model focuses on the dynamics of each dealer
in the market.

In order to describe each foreign exchange market microscopically, we use
Sato and Takayasu’s dealer model (the ST model; see Sec. 1.4.2) [29], which
reproduces the power-law behavior of price changes in a single market well.
Although we focus on the interactions among three currencies, two of the
three markets can be regarded as one effective market [62]; i.e. the yen-
euro rate and the euro-dollar rate are combined to an effective yen-dollar
rate. In terms of the macroscopic model, we can redefine a variable r2 as the
product of r2 and r3. Then the renormalized variable r2 follows a similar time-
evolution equation. We therefore describe triangular arbitrage opportunities
with only two interacting ST models, in order to simplify the situation.

4.2.1 Microscopic model of triangular arbitrage: inter-
acting two systems of the ST model

We describe our microscopic model as a set of the ST models. In order to
reproduce effects of the triangular arbitrage, we prepare two systems of the
ST model, the market X and the market Y . As is noted above, we prepare
only two markets to reproduce the effect of the triangular arbitrage because
we regard two of the three markets as one effective market. Note that we
can reproduce the markets interaction by preparing all of the three markets.

The dealers in the markets X and Y change their bidding prices according
to the ST model as follows:

Bi,X(t + 1) = Bi,X(t) + ai,X(t) + c∆PX(t) and (4.1)

Bi,Y (t + 1) = Bi,Y (t) + ai,Y (t) + c∆PY (t), (4.2)
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where X and Y denote the markets X and Y , respectively. An intra-market
transaction takes place when the condition

max{Bi,x(t)} ≥ min{Si,x}, x = X or Y (4.3)

is satisfied. We assume that Λ is common to the two markets. The price
Px(t) is renewed in analog to the ST model:

Px(t) =

{
(max{Bi,x(t)} + min{Si,x(t)})/2, if the condition (4.3) is satisfied,

Px(t − 1), otherwise,

(4.4)
where x = X or Y .

We here add a new inter-market transaction rule which makes the systems
interact. The arbitrage transaction can take place when one of the conditions

νX ≡ max{Bi,X(t)} − (min{Bi,Y (t)} + Λ) ≥ 0 (4.5)

νY ≡ max{Bi,Y (t)} − (min{Bi,X(t)} + Λ) ≥ 0 (4.6)

is satisfied (see Fig. 4.1). When the conditions (4.3) and (4.5) or (4.6) are
both satisfied simultaneously, the condition (4.3) precedes.

Note that the arbitrage conditions νX ≥ 0 and νY ≥ 0 in the microscopic
model correspond to the arbitrage condition ν ≥ 0 in the actual market,
where ν is defined by the equation (2.5). We assume that the dealers’ bid-
ding prices {Bi} and {Si} correspond to the logarithm of the exchange rate,
ln ri. Therefore, max{Bi,X} may be equivalent to − ln(yen-dollar ask) while
min{Si,Y } may be equivalent to ln(dollar-euro ask) − ln(yen-euro bid), and
hence νX may be equivalent to ν. More precisely, the direction of the arbi-
trage transaction determines which of the quantities, νX or νY , corresponds
to the logarithm rate product ν. There are two directions of the triangu-
lar arbitrage transaction. The definition (2.5) specifically has the direction
of Japanese yen to US dollar to euro to Japanese yen. As is mentioned in
Sec. 2.2, we can define another logarithm rate product ν ′ in the actual mar-
ket which has the opposite direction to ν, Japanese yen to euro to US dollar
to Japanese yen. Hence, if the logarithm rate product ν in the actual mar-
ket corresponds to νX in the equation (4.5), ν ′ corresponds to −νY in the
equation (4.6).

The procedures of the simulation of the microscopic model are as follows
(Fig. 4.1):
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Figure 4.1: A schematic image of the transactions. Only the best bidders
in the markets are illustrated, in order to simplify the image. The circles
and the squares denote the dealers’ bidding price to buy and to sell. The
filled circles denote the best bidding prices to buy in the markets, max{Bi,X}
and max{Bi,Y }, and the gray squares denote the best bidding prices to sell
in the markets, min{Bi,X} + Λ and min{Bi,Y } + Λ. In the case (a), any
of the conditions (4.3), (4.5) and (4.6) are not satisfied. The buyers move
their prices up, and the sellers move their prices down. In the case (b), the
dealers in the market X satisfy the condition (4.3); hence the intra-market
transaction takes place. The price in the market X, PX , is renewed, and
the buyer and the seller of the transaction become a seller and a buyer,
respectively. In the case (c), the seller in the market X and the buyer in
the market Y satisfy the condition (4.6); hence the arbitrage transaction
takes place. The price PX in the market X becomes min{Bi,X} + Λ, and
the price PY in the market Y becomes max{Bi,Y }. The buyer and the seller
of the transaction become a seller and a buyer, respectively. The arbitrage
transaction thus makes the interaction between the markets X and Y .
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1. Prepare two systems of the ST model, the market X and the market
Y , as described in Sec. 1.4.2. The parameters are common to the two
systems.

2. Check the condition (4.3) and renew the prices by Eq. (4.4). If the
condition (4.3) is satisfied, skip the step 3 and proceed to the step 4.
Otherwise, proceed to the step 3.

3. Check the arbitrage conditions (4.5) and (4.6). If the condition (4.5)
is satisfied, renew the prices PX(t) and PY (t) to max{Bi,X(t)} and
min{Bi,Y (t)} + Λ, respectively. If the condition (4.6) is satisfied, re-
new the prices PX(t) and PY (t) to min{Bi,X(t)}+Λ and max{Bi,Y (t)},
respectively. If both of the conditions in (4.5) and (4.6) are satisfied,
choose one of them with the probability of 50% and carry out the arbi-
trage transaction as described just above. If the arbitrage transaction
takes place, proceed to the step 4; otherwise skip the step 4 and proceed
to the step 5.

4. Calculate the difference between the new prices and the previous prices,
∆PX(t) = PX(t)−PX(t− 1) and ∆PY (t) = PY (t)−PY (t− 1), and use
them in Eqs. (4.1) and (4.2), respectively. Change the buyer and the
seller of the transaction to a seller and a buyer, respectively. In other
words, change the signs of ai,X and ai,Y of the dealers who transacted.

5. If any of the conditions (4.3), (4.5) and (4.6) are not satisfied, maintain
the previous prices, PX(t) = PX(t − 1) and PY (t) = PY (t − 1), as well
as the previous price differences, ∆PX(t) = ∆PX(t− 1) and ∆PY (t) =
∆PY (t − 1).

6. Change the dealers’ bidding prices following Eqs. (4.1) and (4.2).

7. Repeat the steps from 2 to 6.

The quantities νX and νY are shown in Fig. 4.2. (The parameters are
common to the two markets X and Y : N = 100, α = 0.01 and Λ = 1.0,
which follows Ref. [29].) In Fig. 4.2(b) for c = 0.3, the fat-tail behavior of
the price difference νX is consistent with the actual data as well as with the
macroscopic model. Furthermore, νX reproduces the skewness of the actual
data, which cannot be reproduced by the macroscopic model (Fig. 4.3). Note
that the skewness of νY is consistent with the behavior of ν ′.
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Figure 4.2: The distributions of νX and −νY . The parameters are fixed to
N = 100, α = 0.01, Λ = 1.0 and (a) c = 0.0, (b) c = 0.3, and are common to
the market X and the market Y . The solid line denotes νX and the dashed
line denotes νY in each graph.

4.3 The microscopic parameters and the macro-

scopic spring constant

In this section, we discuss the relation between the macroscopic model and
the microscopic model through the interaction strength, or the spring con-
stant k.

In the microscopic model, we define the spring constant kmicro, which
corresponds to the spring constant k of the macroscopic model, as follows:

kmicro ≡
1

2

(
1 − 〈νX(t + 1)νX(t)〉 − 〈νX(t)〉2

〈νX(t)2〉 − 〈νX(t)〉2

)
. (4.7)

Figure 4.4 shows the estimate (4.7) as a function of several parameters.
Remember that, in the macroscopic model, the spring constant k depends

on the time step T (see Fig. 3.3(b)). The spring constant of the microscopic
model kmicro also depends on a time scale as follows. The time scale of the
ST model may be given by the following combination of the parameters [29]:

〈n〉 ' 3Λ

Nα
, (4.8)
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Figure 4.3: The probability distribution of the difference between the loga-
rithm rate product and its average for (a) the actual data, |ν − 〈ν〉| and for
(b) the data of the microscopic model, |νx −〈νx〉| for c = 0.3. The solid lines
represent the part in which the difference is positive and the dotted lines
represent the part in which the difference is negative, in the both graphs.
We can see that the probability distribution of the logarithm rate product ν
has a skewness around its average, and the microscopic model qualitatively
reproduces it well.
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(a) (b)

Figure 4.4: The spring constant kmicro as a function of parameters. The
panel (a) shows the dependence on N . The other parameters are fixed to
Λ = 1.0 and α = 0.0001, 0.001 and 0.01 for the circles, the squares and
the diamonds, respectively, and c = 0.3 for the all plots. The panel (b)
shows the dependence on α. The other parameters are fixed to Λ = 1.0
and N = 100, 1000 and 10000 for the circles, the squares and the diamonds,
respectively, and c = 0.3 for the all plots.
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Figure 4.5: The scaling plot of the spring constant kmicro as a function of
the trade frequency f = Nα/3Λ. The vertical axes are displayed in the
logarithmic scale. The dealers’ response to the price change, c, is fixed to
0.0 in (a) and 0.3 in (b). We fix α = 0.0001, 0.001 and 0.01 and change N
(open circles, squares, and diamonds, respectively) and N = 100, 1000 and
10000 and change α (crosses, filled circles and triangles, respectively), while
Λ is fixed to 1. Note that all points collapse onto a single curve. The spring
constant kmicro is scaled by f , and decays exponentially in both of the plots
(a) and (b).

where n denotes the interval between two consecutive trades. Hence, the
inverse of the equation (4.8),

f ≡ 1/〈n〉 ' Nα

3Λ
, (4.9)

is the frequency of the trades.
Although there are four parameters N , α, Λ and c, we change only three

parameters N , α, and c and set Λ = 1.0, because only the ratios N/Λ and
α/Λ are relevant in this system. The ratio N/Λ controls the density of the
dealers and α/Λ controls the speed of the dealers’ motion on average. Hence,
we set Λ = 1.0 and change the other parameters hereafter.

We plot the spring constant kmicro as a function of the trade frequency f ≡
Nα/3Λ in Fig. 4.5. The plots show that the spring constant kmicro(N,α, Λ)
can be scaled by the trade frequency f well.
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Figure 4.6: A schematic image of the second best bidders’ motion. The circles
and the squares denote the dealers’ bidding price to buy and to sell. The
filled circles and the grey squares represent the best bidding prices to buy
and sell, respectively. The hexagons denote the second best bidding prices
to buy (the filled one) and to sell (the grey one).

In order to determine a reasonable range of the parameters, let us consider
the situation in Fig. 4.6, where the arbitrage transaction is about to take
place. At the moment, the positions of the second best bidders (hexagons) in
the markets X and Y are, on average, Λ/N away from the prices transacted,
PX and PY . In the next step, the second best bidders in the markets X and
Y will move by α/2 on average toward to the prices PX and PY , respectively.
The next transaction will be carried out probably by the second best bidders.
For α/2 > Λ/N , the prices of the transactions may move away from each
other. The arbitrage transaction cannot bind the two prices of the markets
X and Y enough and the two prices PX and PY fluctuate rather freely. It is
not a realistic situation. Therefore, the condition

f =
Nα

3Λ
≤ 2

3
(4.10)

should be satisfied for the real market to be reproduced. On the other side,
the simulation data have too large errors in the region f < 1/3 because the
transaction rarely occurs. We hence use the data in the region 1/3 ≤ f ≤ 2/3
hereafter.

The spring constant kmicro decays exponentially in the range 1/3 ≤ f ≤
2/3 in both of the plots (a) and (b) of Fig. 4.5, having different slopes. Hence
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Figure 4.7: The dependence of f0(c) on c, estimated by fitting the data in
Fig. 4.5 as well as the same plots for different values of c.

we assume that the spring constant decays as

kmicro ∝ e−f/f0(c), (4.11)

where f0(c) denotes the characteristic frequency dependent on c. The esti-
mates of the characteristic frequency f0(c) are shown in Fig. 4.7 as a function
of c. The characteristic frequency f0(c) thus estimated decays linearly with
c. The reason why f0(c) behaves so is an open problem.

In Fig. 4.8, we plot the same data as in Fig. 3.3(b), but by making the
horizontal axis the trade frequency freal. In order to compare it with Fig. 4.5
quantitatively, we used the time scale Treal = 7[sec]; the interval between
two consecutive trades in the actual foreign exchange market is, on average,
known to be about 7[sec] [63]. The spring constant in the actual market k
is of the same magnitude as kmicro. It decays exponentially with the trade
frequency freal, which is also consistent with that of the microscopic model
shown in Fig. 4.5. The real characteristic frequency in Fig. 4.8, however, is
quite different from that of the microscopic model plotted in Fig. 4.5. This
is also an open problem.
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Figure 4.8: We plotted the same data as in Fig. 3.3(b), but the horizontal
axis here is the trade frequency scaled by the realistic time scale of the trades,
Treal = 7[sec].
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Summary

In Chap. 2 we showed that triangular arbitrage opportunities exist in the
foreign exchange market. The probability density function of the rate prod-
uct µ has a sharp peak and fat tails. It means that the fluctuations of the
exchange rates have correlation that makes the rate product converge to its
average 〈µ〉 ' 0.99998. If the rate product µ is greater than unity, the
trader can make profit through the above transaction. This is the triangu-
lar arbitrage transaction. Once there is a triangular arbitrage opportunity,
many traders will make the transaction. This makes µ converge to a value
less than unity, thereby eliminating the opportunity. Triangular arbitrage
opportunities nevertheless appear, because each rate rx fluctuates strongly.

In Chap. 3, we first introduced a model including the interaction caused
by the triangular arbitrage transaction. We showed that the interaction is
the reason of the sharp peak and the fat-tail property of the distribution of
the logarithm rate product ν. We also showed that our model is solvable ana-
lytically in some cases. Second, on the basis of the model, we showed that the
triangular arbitrage makes the auto-correlation function of each rate negative
for n = 1. The comparison with the actual data is good qualitatively, but it
also suggests that the triangular arbitrage of various combinations must be
considered. Finally, we explain that the correlation of the foreign exchange
rates can appear without actual triangular arbitrage transactions.

In Chap. 4, we introduced the microscopic model, which consists of two
systems of the ST model. The microscopic model reproduced the actual
behavior of the logarithm rate product ν well. The microscopic model can
describe more details than the macroscopic model, in particular, the skewness
of the distribution of the logarithm rate product ν. We finally explored the
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relation between the spring constant of the macroscopic model and the pa-
rameters in the microscopic model. The spring constant of the microscopic
model kmicro can be scaled by the trade frequency f , and it decays expo-
nentially with f , which is consistent with the spring constant of the actual
market k.



Bibliography

[1] H.E. Stanley, L.A.N. Amaral, D. Canning, P. Gopikrishnan, Y. Lee, Y.
Liu, Physica A 269 (1999) 156–169.

[2] H.E. Stanley, Physica A 318 (2003) 279–292.

[3] B.B. Mandelbrot, J. Business 36 (1963) 393.

[4] R.N. Mantegna and H.E. Stanley, Nature 376 (1995) 46.

[5] R. N. Mantegna, H. E. Stanley, An Introduction to Econophysics: Cor
relations and Complexity if Finance, Cambridge University Press, Cam-
bridge, 1999.

[6] A. Timmermann, Nature 376 (1995) 18.

[7] R.N. Mantegna, Physica A 179 (1991) 232.

[8] P. Gopikrishnan, M. Meyer, L.A.N. Amaral, H.E. Stanley, A.L. Gold-
berger, Eur. J. Phys. B: Rapid Commun. 3 (1998) 139.

[9] P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer, H.E. Stanley,
Phys. Rev. E 3 (1998) 139–140 .

[10] X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Physica A 324
(2003) 1–5.

[11] H. Takayasu, M. Takayasu, M.P. Okazaki, K. Marumo, T. Shimizu, in:
M.M. Novak (Ed.), Paradigms of Complexity, World Scientific, Singa-
pore, 2000, pp. 243–258.

[12] J.P. Bouchaud, M. Potters, Theory of financial risks, Cambridge Uni-
versity Press, Cambridge, 2000.

57



58

[13] J. Voit, The Statistical Mechanics of Financial Markets, Springer, Berlin,
2001.

[14] A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti (Eds.), Econophysics
of wealth Distributions, Springer-Verlag, Italia, 2005, and references
therein.

[15] V. Pareto, Cours d’Economie Politique, Lausanne, Paris, 1897.

[16] H. Aoyama, W. Souma, Y. Nagahara, M.P. Okazaki, H. Takayasu, M.
Takayasu, Fractals 8 (2000) 293–300.

[17] W. souma, Fractals 9 (2000) 463–470.
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